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ABSTRACT

Advances in large language models raise the question of how alignment techniques
will adapt as models become increasingly complex and humans will only be able
to supervise them weakly. Weak-to-Strong mimics such a scenario where weak
model supervision attempts to harness the full capabilities of a much stronger
model. This work extends Weak-to-Strong to WeakS-to-Strong by exploring
an ensemble of weak models which simulate the variability in human opinions.
Confidence scores are estimated using a Bayesian approach to guide the WeakS-
to-Strong generalization. Furthermore, we extend the application of WeakS-to-
Strong from text classification tasks to text generation tasks where more advanced
strategies are investigated for supervision. Moreover, direct preference optimization
is applied to advance the student model’s preference learning, beyond the basic
learning framework of teacher forcing. Results demonstrate the effectiveness of the
proposed approach for the reliability of a strong student model, showing potential
for superalignment. 1

1 INTRODUCTION

With the increase in computing power and the amount of training data available, the capabilities of
large language models (LLMs) have been continuously brought closer to humans in many aspects.
Despite their impressive performance, the preferences and values of pre-trained LLMs do not always
align with humans, and dedicated approaches are needed to tackle the problem. Based on large-scale
instruction datasets, supervised finetuning (SFT) encourages LLMs to follow human instructions
more strictly and respond more safely (Wei et al., 2022). Reinforcement learning (RL) is commonly
applied to such alignment. By collecting model output values and the corresponding human feedback,
the model can be finetuned by RL to avoid generating undesirable outputs (Ziegler et al., 2019; Bai
et al., 2022a; Ouyang et al., 2022; Nakano et al., 2021; Askell et al., 2021).

Since no current model has yet surpassed human intelligence, alignment methods, such as SFT and
RL from human feedback (RLHF), remain effective. However, it is worthwhile considering future
scenarios where artificial intelligence (AI) might surpass human intelligence in all aspects. Would the
current alignment methods still be effective for such super AI models? How could humans supervise
the super AI? To simulate this future scenario, an analogy situation is designed that downgrades
both sides: using a weak model to simulate humans and a strong model to simulate future super
AI (Burns et al., 2023), which is termed as superalignment. It has been demonstrated that adding a
simple auxiliary loss can achieve effective Weak-to-Strong generalization, even if the weak model’s
supervision contains many errors, which offers hope of achieving superalignment. Nonetheless, this
is just the beginning of exploring along the path of Weak-to-Strong.

This paper extends the discussion on Weak-to-Strong in two directions. First, given the inherent
capability gap between the weak model and the strong model, we propose using an ensemble
of multiple weak models to improve the quality of weak supervision, which is called WeakS-to-
Strong. This also accounts for the scenario where human opinions might diverge in tasks without
a commonly accepted standard. Several approaches have been studied to effectively leverage the
diversity of different weak models, and we adapt a Bayesian approach referred to as evidential deep
learning (EDL) (Sensoy et al., 2018) to better estimate broader human preferences by learning a prior

1Code will be available upon acceptance.
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distribution over the weak labels produced by the weak models. Furthermore, the Weak-to-Strong task
was primarily studied for text classification tasks (Burns et al., 2023). This paper extends the scope
to text generation and compares three different approaches, Naive Multi-Weak, Joint Decoding and
Bayesian Multi-Weak, as shown in Figure 1. The proposed Bayesian WeakS-to-Strong approach is
demonstrated effective for both classification and generation. To better align with human preferences,
a variant of direct preference optimization (DPO) (Rafailov et al., 2023) called conservative DPO
(cDPO) (Eric, 2023) is used to finetune the strong model further on RL principles.

Our main contributions are summarized as follows.

• We proposed Bayesian WeakS-to-Strong which largely improves the quality of weak super-
vision and recovers the performance of the strong model.

• We propose to generalize both Weak-to-Strong and WeakS-to-Strong from text classification
to generation tasks, extending their scope from content regulation to content generation.

• When applied to text generation, a token-level probability estimation is proposed to achieve
soft labels for strong model training. We also propose the modified DPO algorithm under
the Bayesian WeakS-to-Strong framework to further improve text generation performance.

2 RELATED WORK

AI Alignment. Aligning LLMs with human preferences has been a long-standing goal. Instruction
tuning uses extensive datasets to improve LLMs’ adherence to human instructions (Wei et al., 2022).
RL allows LLMs to learn what types of responses humans prefer or dislike, with proximal policy
optimization (PPO) being an effective RL method first applied to LLMs and becoming part of the
standard RLHF process (Ziegler et al., 2019; Bai et al., 2022a; Ouyang et al., 2022; Nakano et al.,
2021; Askell et al., 2021). However, PPO training can be unstable, leading to the development of
DPO (Rafailov et al., 2023). Given the high cost of obtaining human preference data, researchers
are now exploring the use of LLMs to simulate human preferences, provide feedback, and finetune
models (Lee et al., 2023; Bai et al., 2022b; Gulcehre et al., 2023).

Variability in Human Opinions. In the process of aligning AI with human preferences, it is
important to consider the inconsistency of human preferences (Liu et al., 2023), which often leads to
multi-label problems. Previously, many approaches used simple methods like voting, aggregation,
and averaging to handle multi-labels (Davani et al., 2022; Munos et al., 2023; Paun & Simpson,
2021; Prabhakaran et al., 2021). However, these methods do not effectively capture the preference
differences of individual annotators included in the multiple labels. To better estimate the diversity of
human preferences, Bayesian principles have been introduced. Deep learning models can be used to
predict prior distributions, which are considered to produce the multiple available labels to estimate a
broader range of human preferences (Sensoy et al., 2018; Wu et al., 2022; 2023).

Weak-to-Strong. The goal of Weak-to-Strong is to use a weak model to better supervise a strong
model. OpenAI demonstrated that adding auxiliary confidence loss from the strong model itself can
significantly improve the Weak-to-Strong performance (Burns et al., 2023). Following OpenAI’s work,
several studies emerged to introduce multiple weak models, used either in series or parallel, to improve
the quality of supervision provided by the weak models (Liu & Alahi, 2024; Sang et al., 2024). Early
model ensemble methods like Adaboost (Freund & Schapire, 1995) and Bootstrap aggregating (Leo,
1996) were explored in these works. Furthermore, confidence scores are incorporated to help the
strong model assess the supervision quality provided by the weak models (Guo et al., 2024) and the
weak model can be directly used to modify the output of the strong model (Ji et al., 2024).

3 WEAKS-TO-STRONG METHODOLOGY

3.1 PRELIMINARY: WEAK-TO-STRONG

The Weak-to-Strong pipeline (Burns et al., 2023) involves three steps: (i) create a weak supervisor
by finetuning a small pre-trained model on ground-truth labels; (ii) train a strong student model
fΛ with weak supervision by finetuning a pre-trained LLM using “weak labels” generated by weak
supervisors, where Λ is the parameters of the strong model; (iii) finetune the large pre-trained model
directly using ground-truth labels which serve as the ceiling.

2
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Balanced diet

Q: How to keep healthy?

Regular exercise

Eat a lot

(a) Naive Multi-Weak

Balanced diet

(b) Joint Decoding

Balanced diet

Regular exercise

Eat a lot

diet
exercise

(c) Bayesian Multi-Weak

Figure 1: An overview diagram of the three ensemble approaches: (a) Naive Multi-Weak: directly
learn all weak labels produced by weak models, (b) Joint Decoding: weak models collaboratively
determine one single target, (c) Bayesian Multi-Weak: learn a prior distribution over weak labels.

To leverage the superior generalization capabilities and prior knowledge of the strong model, a loss
function with auxiliary confidence loss is proposed (Burns et al., 2023):

L = (1− γ) · LCE(fΛ(x),yw) + γ · LCE(fΛ(x), f̂Λ(x)) (1)

where yw represents the weak label from weak model, f̂Λ(x) refers to the predicted class of strong
model given input x, and LCE(·, ·) denotes the cross-entropy loss. The second term is an (optional)
auxiliary self-training loss designed to increase the confidence of the strong model in itself. The
weight of the second loss γ linearly grows up from 0 to a pre-defined hyper-parameter γmax, which
gradually reduces the weight on the weak labels and increases the weight on self-training when the
number of training steps increases.

3.2 EXTENDING WEAK-TO-STRONG WITH MULTIPLE WEAK MODELS

Although it has been shown that the Weak-to-Strong approach can recover part of the strong model’s
performance (Burns et al., 2023), the errors in weak labels limit the performance of Weak-to-Strong
generalization. In response to this problem, we propose to leverage the complementarity of the error
patterns of multiple weak models using an ensemble strategy, which is referred to as WeakS-to-Strong.

A naive approach to implementing an ensemble of multiple weak models is to calculate the loss for
each weak label respectively and then average these losses. An improvement of this approach is to
take a weighted sum instead of a simple average:

LNaive =

N∑
i=1

λiLCE(fΛ(x),y
(i)
w )), (2)

where N is the number of weak models, y(i)
w is the ith weak label produced by the ith weak model,

and λi is a pre-defined weight of the loss regarding the the ith weak model. This approach is referred
to as a Naive Multi-Weak system in the rest of the paper (as illustrated in Figure 1(a)), which is
treated as one of the baselines.

3.3 BAYESIAN WEAKS-TO-STRONG

For superalignment, multiple weak models are used to mimic the subjective preferences of multiple
humans, which can be considered as observations drawn from an underlying distribution of the opin-
ions of all humans. The naive approach described in Section 3.2 solely relies on these observations.
The number of observations (human annotations or weak labels) is often very limited due to the
considerable cost of hiring a new human annotator or training a new weak model. Such a limited
number of observations may not result in a good approximation of the true human opinion distribution.

3
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Having biased preferences or values is particularly unacceptable in the safety domain and can cause
a failure of superalignment. Therefore, we propose a Bayesian WeakS-to-Strong approach based
on EDL (Sensoy et al., 2018) to estimate the human opinion distribution based on the weak labels.
Figure 1(c) illustrates the framework where three weak models are involved.

For a given input x, consider a weak label from the ith weak model y(i)
w , which is a one-hot

vector with y
(i,k)
w being one if it belongs to class k and zero otherwise. y

(i)
w is sampled from

a categorical distribution of weak labels Cat(π), where each component πk corresponds to the
probability assignment over the possible classes y(i)

w ∼ P(y|π) = Cat(π). EDL places a Dirichlet
prior over the categorical distribution representing the probability of each categorical probability
assignment, hence modelling second-order probability π ∼ p(π|α), where α is the hyperparameter
of the Dirichlet prior. The strong model fΛ is trained to predict α for each input by minimizing the
negative log-likelihood of sampling y

(i)
w given the predicted Dirichlet prior:

L(i)
NLL = − log

∫
P(y(i)

w |π)p(π|α)dπ =

K∑
k=1

y(i,k)w (log(α0)− log(αk)), (3)

where K is the number of classes, α0 =
∑K

k=1 αk is the Dirichlet strength, and y
(i,k)
w is the kth value

of label y(i)
w . When a sample is not correctly classified, it is expected that the prior should approach

non-informative prior for this sample. Following Sensoy et al. (2018), a regularization term L(i)
REG

(KL-divergence between the misleading prediction and non-informative distribution, see Appendix H
for details) is added to penalize incorrect predictions and calibrate uncertainty estimation, resulting in
the final EDL loss L(i)

EDL = L(i)
NLL + λEDLL(i)

REG where λEDL is the coefficient.

Apart from the class predicted by the weak models, the confidence of weak models is also incorporated
for better distribution estimation. Let (p(i)1 , . . . , p

(i)
K ) be the probability assignment predicted by

the ith weak model, the EDL loss for each class is calculated based on the predicted probability
assignment for each weak model and then combined in the same way as in Eqn. (2). That is,

LEDL(fΛ(x), {y(i)
w }Ni=1) =

N∑
i=1

λi

K∑
k=1

p
(i)
k L(i)

EDL(fΛ(x), ŷ
(i,k)
w ) (4)

where ŷ(i,k)
w is the predicted result, i.e., one-hot vector for class k, and λis are hyperparameters set to

the same values as used in the Naive Multi-Weak approach. As a result, the auxiliary confidence loss
described in Eqn. (1) is adapted for Bayesian WeakS-to-Strong as follows:

L = (1− γ) · LEDL(fΛ(x), {y(i)
w }Ni=1) + γ · LEDL(fΛ(x), f̂Λ(x)). (5)

In the term of LEDL(fΛ(x), f̂Λ(x)), the class index predicted by the strong model f̂Λ(x) is used
as the target. That is to say, the predictions of the strong student model are applied as part of the
distribution estimation along with the weak label.

4 WEAKS-TO-STRONG FOR SEQUENCE GENERATION

4.1 PROBABILITY ESTIMATION FOR WEAK SEQUENCE LABELS

To enable the strong model to directly generate trustworthy content rather than only being trained
to understand whether the content is trustworthy or not, we propose to extend the scope of Weak-
to-Strong from text classification to text generation. The key challenge of directly applying the
Weak-to-Strong loss to the sequence generation task is the token-level soft labelling for the target
sequence. As the tokenizers are different between weak and strong models, it is infeasible to obtain a
one-to-one mapping from weak model output distributions to each token in the target sequence.

To obtain the soft label yw for the strong model using weak model output probabilities and bridge the
gap caused by different tokenizers, we use words as an intermediary, following the equation

P(W ) = P(w2|w1)P(w1) = P(s2|s1)P(s1), (6)

4
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target wordpiece: hel
token prob: 0.4

... lo hel wor ...
wordpiece

0.4

... lo hel wor ...
wordpiece

Weak Tokenizer

Weak Wordpiece
wordpiece: (..., he, llo, ...)

wordpiece prob: (..., 0.45, 0.8, ...)

Word
word: (..., hello, ...)

word prob: (..., 0.36, ...)

Strong Tokenizer

Strong Model

Calculate target prob

Strong Confidence

Target Prob
target wordpiece: (..., hel, lo, ...)

target prob: (..., 0.4, 0.9, ...)

Strong Wordpiece
wordpiece: (..., hel, lo, ...)

wordpiece prob: (..., p1, p2, ...)

Word
word: (..., hello, ...)

word prob: (..., 0.36, ...)

Stage 1 Stage 2 Stage 3

𝑃(𝑊) = 𝑃(𝑤2|𝑤1)𝑃(𝑤1)

strong
prob

label

Figure 2: The process of transforming per-token confidence scores from the sequence tokenized by
the weak model to the sequence tokenized by the strong. The word “hello” is used as an example.
Stage 1: The words and word scores are obtained from the weak model wordpieces and their scores.
Stage 2: The words are tokenized by the strong model tokenizer, and the tokenized sequences are fed
into the strong model to obtain the strong model predicted probability (denoted as confidence) for
each token si. This strong model confidence is then used to split word scores into target wordpiece
probabilities P (si) while keeping the probability of the word unchanged. Stage 3: The obtained
target probability is transformed into the label. Probabilities of other categories are calculated by
scaling the strong output distribution using P (si).

where we use a word containing two wordpieces from both weak and strong tokenizers as an example,
and w1, w2 and s1, s2 are both token strings that can form word W , which are generated by the
tokenizers of the weak and strong models respectively. Figure 2 shows an example of the process
in three stages. In stage 1, the per-token output probabilities of weak models are obtained when
generating output sequences. The probabilities of wordpieces in a word are then multiplied together
to obtain the score of word W , following Eqn. (6).

In stage 2, the word probability is used to assign probabilities to tokens from the strong model
tokenizer. In the process of training the strong model via teacher-forcing, the model gives a probability
to each token by applying softmax to the output logits. This probability can be seen as the model’s
confidence in predicting the target token, where we assume that the weak model and strong model
have similar confidence for wordpiece tokens in similar positions. This allows us to to obtain the
actual assignment of scores to each target token si, instead of assigning equal probabilities to all
tokens involved. Taking an example of splitting a word W into two target wordpieces s1 and s2, the
decomposition can be approximated by

log P(s1) =
e−Cs(s1)

e−Cs(s1) + e−Cs(s2)
log P(W ), log P(s2) =

e−Cs(s2)

e−Cs(s1) + e−Cs(s2)
log P(W ), (7)

where Cs(si) is strong model confidence at the step predicting wordpiece si that is the maximum
probability in the strong model output distribution at that step in practice. In this way, lower target
probabilities are allocated to tokens with lower strong model confidence, while higher probabilities
are allocated to tokens with higher strong model confidence.

After obtaining the probability of the target token of the strong model, the probabilities of other
categories can be obtained by scaling strong prediction probabilities, which can be treated as the soft
label, as shown in Figure 2. Then the obtained soft labels can be handled using methods similar to
those used in classification (as described in Section 3). Notably, during the computation of EDL loss,
the sparsity caused by high dimensional spaces results in a large KL (Kullback–Leibler) penalty term.
To solve this problem, a coefficient is added to the KL penalty to balance it with the magnitude of
the negative log-likelihood term. Additionally, clamping is applied to restrict all values within an
appropriate range, preventing potentially extremely large outliers on any particular token.

5
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4.2 DPO FOR SEQUENCE GENERATION OPTIMIZATION

Different from classification tasks, sequence generation tasks often benefit from sequence-level
objectives that directly optimize the entire sequence jointly rather than the individual tokens sepa-
rately. To further improve the strong model for sequence generation, direct preference optimization
(DPO) (Rafailov et al., 2023) is investigated for WeakS-to-Strong after supervised finetuning, where
we propose to use weak models to provide the preference for the strong model generation.

After the strong model is pretrained by supervised finetuning, it generates M output sequences based
on a given output. Then for each sequence, N scores are computed by generating it using N weak
models separately (via teacher forcing) and aggregating the output (log-)probabilities. A weighted
sum of the N scores is performed as the final score assigned to each sequence. The sequence with
the highest final score is viewed as the preferred sequence in DPO training, as shown below

yc = argmax
m,m=1,2,...,M

P(ys(m)) = argmax
m,m=1,2,...,M

N∑
i=1

λiP(ys(m)|θi), (8)

where ys(m) is the mth output sequence generated by the strong model, P(ys(m)|θi) is computed
using the ith weak model with model parameters θi, and λi is the weight assigned to the ith weak
model. The dispreferred sequence can be computed similarly by yr = argminP(ys(m)).

Considering potential errors by weak models, a variant of DPO, conservative DPO (cDPO) (Eric,
2023) with a more conservative target distribution is applied in our work. The loss of cDPO is

Lϵ
DPO = (1− ϵ)LDPO(Λ,yc,yr) + ϵLDPO(Λ,yr,yc), (9)

where ϵ is a small constant probability that labels are flipped to make DPO more conservative, and
LDPO is the standard DPO loss in (Rafailov et al., 2023), which can be written as

LDPO(Λ,yc,yr) = − log σ
(
β log

fΛ(yc)

fref(yc)
− β log

fΛ(yr)

fref(yr)

)
. (10)

5 EXPERIMENTAL SETUP

5.1 DATASETS

Classification Task. The setup of the classification task follows Burns et al. (2023). The SciQ
dataset (Welbl et al., 2017) is used, which contains 13,679 crowdsourced science exam questions
about Physics, Chemistry and Biology, among others. The questions are in multiple-choice format
with 4 answer options each. In our experiment, 5k data samples were extracted for training weak
models and another 5k samples were reserved for generating weak labels to train the strong model.
The standard test set which contains 1k data samples was used for the test. The data is restructured
into a balanced binary classification task, i.e., given a question and an answer, the model is required
to determine whether the answer is correct.

Slot filling. The performance of WeakS-to-Strong on the reliability of generated content was evaluated
on the slot-filling task, which is a crucial spoken language understanding task aiming at filling in
the correct value for predefined slots (e.g. restaurant and hotel names). SLURP dataset (Bastianelli
et al., 2020) was used which contains 16.5k sentences and 72k audio recordings of single-turn user
interactions with a home assistant, annotated with scenarios, actions and entities. Only the reference
transcriptions of the speech were used for training. Following Sun et al. (2023a;b), we designed
the prompt with slot keys and descriptions in the same way. In our setup, 2k utterances from the
train split were extracted for training the weak models, and another 2k utterances were reserved for
generating weak labels and training the strong model. We report the performance of both weak and
strong models on the standard SLURP test set.

5.2 MODELS AND BASELINES

Models. For classification, the Qwen-7B (Bai et al., 2023) model was applied as the strong stu-
dent model. Five models were used as weak teachers: GPT2-Large (Radford et al., 2019), OPT-
1.3B (Zhang et al., 2022), Pythia-1.4B (Biderman et al., 2023), BLOOM-1B1 (Le Scao et al., 2022),

6
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and TinyLlama v1.1 (Zhang et al., 2024). The last linear layer which maps the embeddings to
tokens is replaced with a linear classification head with two outputs to adapt language models to the
classification setting.

For slot filling, Llama-2-7B (Touvron et al., 2023) was used as the strong model which yielded better
performance than Qwen-7B in this task. The same set of weak models was used as the classification
task. As before, both weak and strong models are finetuned with all model parameters.

Experiments with different numbers of weak models were conducted. One set involved three weak
models (GPT2-Large, OPT-1.3B and Pythia-1.4B) in a WeakS-to-Strong experiment, which is referred
to as WeakS-to-Strong-3. Another set included all five weak models, called WeakS-to-Strong-5.

Baselines. The proposed Bayesian WeakS-to-Strong method is compared to the following three
baselines.

Naive Multi-Weak. The Naive Multi-Weak approach introduced in Section 3.2 servers as the baseline
for both classification and generation tasks. For the classification task, the loss can be computed
following Eqn. (2). For generation task, Eqn. (2) is modified as follows:

LGen
Naive =

N∑
i=1

λi
1

Ti

Ti∑
j=1

LCE(fΛ(x,y
(i,1)
w , . . . ,y(i,j−1)

w ),y(i,j)
w )), (11)

where {y(i,1)
w ,y

(i,2)
w , . . . ,y

(i,T )
w } is the sequence generated by ith weak model with length Ti. In

contrast to the classification task, where the strong model fΛ takes only x as input, in the generation
task, x is paired with the sequence generated by each weak model (which is the weak target) and
then fed into the strong model to obtain predictions. Teacher-forcing is used during training.

FlyingSquid. FlyingSquid (Fu et al., 2020) is a method for weak supervision, estimating the ac-
curacies and correlations among multiple noisy label functions (different weak labels in our case)
without ground-truth data. Latent variable probabilistic graphical models are used to model these
dependencies, with weak labels as observed variables and unobserved ground-truth labels as hidden
variables. Since FlyingSquid is designed for binary classification, this baseline is only used for
classification. Through this method, we get a label model with multiple weak labels and obtain the
probability for the positive category, which is then used as a soft label in strong model training.

Joint Decoding. Joint Decoding is used as an additional baseline for text generation tasks, which
is specifically designed for multiple weak model generations. In contrast to the Naive Multi-Weak
scheme where each weak model provides a weak target sequence, Joint Decoding employs multiple
weak models to collaboratively determine one single target, as illustrated in Figure 1(b). Specifically,
we perform Joint Decoding in a re-ranking fashion. For each weak model, the top M sequences
are generated by beam search in decoding. The sequences from the N weak models are gathered to
form a list of M ×N sequences. Then each sequence is scored in the same way in Section 4.2. The
sequence with the highest final score is used as the target sequence for strong model training. Unless
otherwise mentioned, M = 5 was used in the experiments.

Each weak-to-strong experiment was run three times with different random seeds. The average and
standard deviation were reported. More implementation details can be found in Appendix C.

5.3 EVALUATION METRICS

The classification task is evaluated by accuracy, and the SLU-F1 (Bastianelli et al., 2020) is used
for slot filling, which combines both word-level and character-level F1 scores to give partial credit
to non-exact match predictions. Performance gap recovered (PGR) (Burns et al., 2023) is used to
measure the performance gap recovered with weak supervision, which is defined as follows:

PGR :=
P − Pw

Ps − Pw
(12)

where P is Weak-to-Strong performance, Ps strong performance and Pw weak performance. For
multiple weak model cases, the average of PGRs for each weak model is treated as the final result.

7
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Table 1: Performance of single model on text classification task. Trained by ground-truth labels.

Pre-trained model # Param Accuracy

Strong Model (ceiling) Qwen-7B 7.7B 0.898

Weak Model

GPT2-Large 0.8B 0.717
OPT-1.3B 1.3B 0.699

Pythia-1.4B 1.4B 0.685
BLOOM-1B1 1.1B 0.729

TinyLlama v1.1 1.1B 0.731

Table 2: Weak(S)-to-Strong performance (train the strong model on the weak label) on text classifi-
cation task for with (w/) and without (w/o) auxiliary loss. γ in Eqn. (1) and Eqn. (5) is set to 0 if
auxiliary loss is not used. Experiments with 3 weak models and 5 weak models were conducted.
Each experiment was run with three different random seeds. The best results are shown in bold.

w/o aux loss w/ aux loss
Accuracy PGR Accuracy PGR

Weak-to-Strong

GPT2-Large 0.808 ± 0.007 0.503 ± 0.034 0.828 ± 0.006 0.614 ± 0.029
OPT-1.3B 0.807 ± 0.005 0.541 ± 0.026 0.841 ± 0.012 0.714 ± 0.058

Pythia-1.4B 0.775 ± 0.009 0.421 ± 0.042 0.793 ± 0.009 0.507 ± 0.042
BLOOM-1B1 0.823 ± 0.015 0.556 ± 0.087 0.843 ± 0.008 0.677 ± 0.049

TinyLlama v1.1 0.832 ± 0.004 0.603 ± 0.024 0.838 ± 0.005 0.643 ± 0.030

WeakS-to-Strong-3
Naive Multi-Weak 0.816 ± 0.002 0.586 ± 0.008 0.831 ± 0.013 0.661 ± 0.064

FlyingSquid 0.809 ± 0.005 0.549 ± 0.026 0.825 ± 0.003 0.631 ± 0.013
Bayesian Mutli-Weak 0.819 ± 0.006 0.600 ± 0.033 0.850 ± 0.006 0.756 ± 0.028

WeakS-to-Strong-5
Naive Multi-Weak 0.832 ± 0.005 0.641 ± 0.025 0.853 ± 0.006 0.754 ± 0.032

FlyingSquid 0.832 ± 0.004 0.643 ± 0.023 0.855 ± 0.007 0.768 ± 0.035
Bayesian Mutli-Weak 0.831 ± 0.008 0.627 ± 0.027 0.866 ± 0.006 0.828 ± 0.038

6 RESULTS

6.1 TEXT CLASSIFICATION

The proposed Bayesian WeakS-to-Strong approach was first evaluated on a classification task. Table 1
shows the respective performance of the strong model and the weak models trained using ground-truth
labels, with the former being the ceiling of the Weak(S)-to-Strong approaches. The strong model has
about 7 times the number of parameters as the weak models, which also leads to about 28% relative
improvement in the classification accuracy. Results of Weak(S)-to-Strong approaches are shown
in Table 2. γ in Eqn. (1) and Eqn. (5) were set to 0 if auxiliary loss was not used. It can be seen
that auxiliary loss was effective for both. Comparing single Weak-to-Strong results, different weak
models show significant differences in performance. For example, Pythia-1.4B recovered only 50%
of the strong performance, while OPT-1.3B recovered around 70%.

The Naive Multi-Weak baseline, FlyingSquid approach and Bayesian Multi-Weak using EDL were
applied to the classification task for WeakS-to-Strong. Experiments with three weak models (GPT2-
Large, OPT-1.3B and Pythia-1.4B) and all five weak models were conducted. With three weak models,
the Naive Multi-Weak method got an average PGR of 0.661, slightly outperforming FlyingSquid
method but still lower than the single OPT-1.3B model, and Bayesian Multi-Weak boosted PGR to
0.756. This indicates that a naive ensemble approach doesn’t necessarily outperform the best single
model, especially when there is a certain weak model which does not perform well. The Bayesian
approach can increase the fault tolerance with the usage of prior in this case, as it learns patterns from
the entire dataset. With five weak models compared to three, the Bayesian Multi-Weak approach
further increased average PGR to 0.828, which is 16% relativelt higher than the best single model
and 8% relatively higher than baselines, and consistently better with all seeds. The results show the
effectiveness of the Bayesian approach for distribution estimation.
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Table 3: Performance of single model on text generation task. Trained by ground-truth labels.

Pre-trained model # Param SLU-F1

Strong Model (ceiling) Llama-2-7B 6.7B 0.748

Weak Model

GPT2-Large 0.8B 0.660
OPT-1.3B 1.3B 0.665

Pythia-1.4B 1.4B 0.680
BLOOM-1B1 1.1B 0.651

TinyLlama v1.1 1.1B 0.676

Table 4: Weak(S)-To-Strong performance on text generation task, training strong model on weak
labels, for with (w/) and without (w/o) auxiliary loss. In cases without auxiliary loss, γ in Eqn. (1)
and Eqn. (5) is set to 0. Experiments were conducted using 3 and 5 weak labels, each run with three
different random seeds. The best results are shown in bold.

w/o aux loss w/ aux loss
SLU-F1 PGR SLU-F1 PGR

Weak-to-Strong

GPT2-Large 0.687 ± 0.011 0.303 ± 0.125 0.673 ± 0.012 0.150 ± 0.139
OPT-1.3B 0.660 ± 0.059 -0.066 ± 0.715 0.696 ± 0.009 0.367 ± 0.103

Pythia-1.4B 0.702 ± 0.007 0.320 ± 0.095 0.691 ± 0.022 0.173 ± 0.322
BLOOM-1B1 0.690 ± 0.021 0.399 ± 0.220 0.684 ± 0.021 0.337 ± 0.220

TinyLlama v1.1 0.667 ± 0.006 0.000 ± 0.084 0.658 ± 0.016 -0.250 ± 0.224

WeakS-to-Strong-3
Naive Multi-Weak 0.711 ± 0.008 0.531 ± 0.101 0.694 ± 0.013 0.318 ± 0.169

Joint Decoding 0.703 ± 0.003 0.434 ± 0.032 0.704 ± 0.015 0.442 ± 0.191
Bayesian Mutli-Weak 0.712 ± 0.014 0.549 ± 0.180 0.714 ± 0.014 0.574 ± 0.176

WeakS-to-Strong-5
Naive Multi-Weak 0.716 ± 0.010 0.606 ± 0.123 0.694 ± 0.012 0.328 ± 0.144

Joint Decoding 0.671 ± 0.010 0.037 ± 0.120 0.675 ± 0.005 0.091 ± 0.066
Bayesian Mutli-Weak 0.718 ± 0.014 0.627 ± 0.173 0.721 ± 0.013 0.668 ± 0.166

6.2 TEXT GENERATION

For the text generation task on slot filling, the performance of the student strong model and teacher
weak model finetuned on ground-truth labels is presented in Table 3. The strong ceiling performance
is 0.748, and the highest weak performance is 0.680.

The Weak(S)-to-Strong performances are reported in Table 4. For a single weak model, the Weak-
to-Strong model performance didn’t necessarily surpass the original weak performance (e.g. TinyL-
lama v1.1), and the highest PGR is 0.399. With five weak models, our proposed Bayesian Multi-Weak
approach achieved an average PGR of 0.668, which is 26% better than a single weak model, 6% better
than the naive baseline, and consistently better across three seeds. Comparing WeakS-to-Strong per-
formance with and without auxiliary loss, adding auxiliary loss is not effective for naive approaches,
but improves the performance of Bayesian approaches. It indicates that the proposed Bayesian
method, where the predictions of a strong model are applied as part of the distribution estimation as
in Eqn. (5), more effectively integrates strong model predictions into the training process, showing
the effectiveness of our Bayesian approach for the model ensemble. The ablation study can be found
in Appendix E. A noticeable decline has been observed for Joint Decoding when the number of weak
models increases from three to five. This may result from the poor performance of the TinyLlama
weak model which affects the quality of the generated weak target. Recall that in Joint Decoding,
multiple weak models collaboratively determine one single target. In contrast, Naive Multi-Weak
and Bayesian Multi-Weak methods still benefit from the increased number of weak models, which
indicates that they are more robust against the quality of a single weak model. Additional experiments
on Joint Decoding can be found in Appendix G for more analysis and insights.

Based on the strong model supervised by five weak models on the Bayesian Multi-Weak approach
with auxiliary loss, a cDPO training is conducted, which further train the model in student-forcing
form. Three separate cDPO experiments were conducted using different initial models obtained in
SFT stage with three different seeds. The results are shown in Table 5. After cDPO, three models
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Table 5: Results before and after DPO. Based on the Bayesian Multi-Weak model using five weak
models (the WeakS-to-Strong-5 setting) with auxiliary loss. Average results on three seeds are
reported. Note that the initial SFT models are different for different seeds.

seed-0 seed-1 seed-2 Average
SLU-F1 PGR SLU-F1 PGR SLU-F1 PGR SLU-F1 PGR

Before cDPO 0.706 0.477 0.730 0.776 0.728 0.751 0.721 ± 0.013 0.668 ± 0.166
After cDPO 0.707 0.490 0.733 0.813 0.733 0.813 0.724 ± 0.015 0.705 ± 0.187

showed consistent performance improvements. The average PGR reached 0.705, 6% relatively better
than that before DPO, with a maximum PGR of 0.813.

6.3 COMPLEMENTARITY OF WEAK MODELS

An experiment about the complementarity of different weak models was conducted. For classification
models, the agreement is assessed by calculating the accuracy of each model’s predictions on test set,
treating outputs from other models as references. For generation models, the Levenshtein distance is
calculated between different outputs from two models for a same input, which is obtained using the
minimum edit number required to change one sequence to another. The average Levenshtein distance
across all samples in the test set is used to measure the agreement between two models.

The results are shown in Figure 3. The agreement among different weak models is among 0.75 for
classification models, while for generation task the maximum agreement between different models
is 0.56. This suggests that the consistency among different weak models is low, thus they can
complement each other well as the faults made by different weak models are not the same. Moreover,
comparing with Naive Multi-Weak approach, our proposed Bayesian method estimates a distribution
based on weak labels, learning patterns from the entire dataset, thereby increasing the tolerance for
fault in weak models, as shown in results in Section 6.1 and 6.2.
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Figure 3: Agreement of weak models. The similarity between classification models was assessed by
calculating the accuracy of each model’s predictions against the others on the test set. For generation
models, the agreement is obtained through the Levenshtein distance.

7 CONCLUSION

This paper extends the Weak-to-Strong framework to WeakS-to-Strong by leveraging an ensemble
of weak models to capture the variability in human opinions. We propose a Bayesian inference
method, Bayesian WeakS-to-Strong, to more accurately estimate the weak label distribution based on
the outputs of multiple weak models. Additionally, while the original Weak-to-Strong method was
limited to text classification tasks, this paper expands its applicability to text generation, enabling
both the assessment of content trustworthiness and the generation of trustworthy content. Finally,
DPO is utilized to enhance the student model’s preference for learning, going beyond the traditional
teacher-forcing approach. Our results demonstrate the effectiveness of Bayesian WeakS-to-Strong for
both classification and generation tasks, highlighting its potential for superalignment.
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A LIMITATIONS

The proposed Bayesian WeakS-to-Strong method was tested on two different types of tasks: text
classification and generative slot filling. We believe the proposed method is general, and further
experiments on other applications are reserved for future work. Due to computational resource
limitations, experiments on only three and five weak models were conducted in this paper, mimicking
the situation where human annotations are costly and time-consuming to obtain. We believe that the
capabilities of the strong model can be recovered to a greater extent when more weak models are
involved.

B BROADER IMPACT

As an approach that enhances the original Weak-To-Strong method, our paper will have the following
positive broader impact:

• By ensuring strong LLMs behave in ways that are predictable and consistent with societal
values, the proposed WeakS-To-Strong further increase public trust in AI technologies.

• The use of weak model ensemble for strong model training helps to reduce risks of ethical
violations such as gender or racial biases.

• Multiple weak models can be more easily updated or replaced to adapt to changing social
norms and values. This flexibility allows LLMs to remain relevant and responsive to societal
changes, ensuring that they continue to serve the public good over time.

This paper does not give rise to any additional potential biases beyond the ones directly inherited from
the pre-trained LLM checkpoints. We encourage the practitioner to carefully select weak models
such that the biases present in individual weak models do not accumulate or amplify when combined.

C IMPLEMENTATION DETAILS

All models were trained on NVIDIA A800 GPUs using the bfloat16 data type. For the classification
tasks, the Adam optimizer was used with a cosine learning rate scheduler and no warm-up period.
The batch size was set to 32, with a mini-batch size of 1. The weak models were finetuned on the
ground-truth labels with an initial learning rate of 5× 10−5, while the strong models were trained
with a starting learning rate of 1 × 10−5 (both on the weak labels and ground-truth labels). The
Weak(S)-to-Strong training was run for two epochs.

For generation tasks, the AdamW optimizer was used with a linear learning rate scheduler, also with
no warm-up. The initial learning rates were set at 4× 10−5 for GPT2-Large and Pythia-1.4B, and
8 × 10−5 for OPT-1.3B, with a batch size of 8 (mini-batch size of 4). These models were trained
for 15 epochs. The checkpoints with the lowest validation loss were selected to ensure the quality
of weak labels produced by the weak models. The strong model was trained with a batch size of 2
(mini-batch size of 1) and an initial learning rate of 1× 10−5, evaluated at the end of two epochs. In
the training for strong ceiling performance, the hyperparameters were adjusted based on the validation
set. For Weak-to-Strong training, in which case the ground truth is not accessible, we aligned the
hyperparameter settings with those used in strong ceiling training.

For DPO, the initial learning rate was set to 5×10−7 for two epochs, with the cDPO’s hyperparameter
β set to 2.0 and label smoothing ϵ as 0.1. Other settings remain the same as the generation tasks.

D EXPERIMENTS ON AN ADDITIONAL DATASET

To verify the generalization of our method, additional experiments were conducted on another dataset,
CosmosQA (Huang et al., 2019), for the classification task. CosmosQA is a large-scale dataset of
problems that require commonsense-based reading comprehension. Like the preprocess on the SciQ
dataset, 5k data samples were extracted for training weak models, another 5k samples for strong
models, and 1k samples for testing. This dataset was also reformatted into a binary classification
format (i.e., determining correctness). Experiments with three weak models were conducted. The
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weak model performance and strong performance are listed in Table 6 and Weak(S)-to-Strong
performance in Table 7.

Table 6: Performance of single model on text classification task on CosmosQA dataset. Trained by
ground-truth labels.

Pre-trained model # Param Accuracy

Strong Model (ceiling) Qwen-7B 7.7B 0.847

Weak Model
GPT2-Large 0.8B 0.642
OPT-1.3B 1.3B 0.642

Pythia-1.4B 1.4B 0.654

Table 7: Weak(S)-to-Strong performance on text classification task for with and without auxiliary
loss on CosmosQA dataset. Experiments with 3 weak models were conducted. Each experiment was
run with three different random seeds. The best results are shown in bold.

w/o aux loss w/ aux loss
Accuracy PGR Accuracy PGR

Weak-to-Strong
GPT2-Large 0.652 ± 0.007 0.077 ± 0.032 0.651 ± 0.007 0.073 ± 0.032
OPT-1.3B 0.687 ± 0.005 0.218 ± 0.022 0.704 ± 0.009 0.304 ± 0.044

Pythia-1.4B 0.685 ± 0.010 0.162 ± 0.052 0.731 ± 0.002 0.399 ± 0.009

WeakS-to-Strong-3
Naive Multi-Weak 0.691 ± 0.009 0.232 ± 0.043 0.698 ± 0.007 0.267 ± 0.034

FlyingSquid 0.699 ± 0.004 0.272 ± 0.020 0.706 ± 0.004 0.303 ± 0.030
Bayesian Mutli-Weak 0.694 ± 0.007 0.247 ± 0.033 0.760 ± 0.005 0.571 ± 0.025

Table 6 shows that, on the CosmosQA dataset, both the weak and strong models perform worse
compared to that on the SciQ dataset, with the weak model’s performance dropping more. In the
Weak(S)-to-Strong experiments, neither multi-weak baseline outperformed the best single model
(Pythia-1.4B with auxiliary loss), while our Bayesian approach significantly exceeded it, showing the
effectiveness of our method, especially when weak model performance varies.

E ABLATION STUDY ON PROBABILITY ESTIMATION FOR WEAK SEQUENCES

The importance of probability estimation for weak sequences was explored in this section. Two key
steps were calculating target wordpiece probability using the word as a gap bridge, and estimating
probabilities of other categories by scaling the strong output (see Section 4.1 for details). The results
are shown in Table 8. The average PGR of using a one-hot label (Line 1) is negative, showing
that WeakS-to-Strong performance doesn’t surpass the weak model without probability estimation.
Estimating probability for the target wordpiece significantly improved performance compared to
using one-hot labels. This indicates the necessity of introducing target probabilities during training,
which allows the strong student model to learn the weak model’s confidence for its generated labels,
considering it may be incorrect. Based on this, adding probabilities of other categories, the overall
precision of target label estimation improves, resulting in about 20% PGR gain. This experiment
highlights the importance of precise probability estimation for weak sequences.

Table 8: Ablation study on probability estimation for weak sequence. Tested whether to calculate the
probability for target wordpiece, and the estimation for probabilities for other categories.

Target wordpiece Other category SLU-F1 PGR

0.656 ± 0.016 -0.145 ± 0.204
✓ 0.704 ± 0.025 0.453 ± 0.305
✓ ✓ 0.721 ± 0.013 0.668 ± 0.166
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F WEIGHTS OF WEAK MODELS

The selection for weights of weak models was explored in this section, where experiments on average,
dynamic and fixed weights were conducted. For average, the weight λi in Eqn. (2) and Eqn. (4) is set
to the same value for each weak model. That is to say, the losses are calculated for each weak model
respectively and then averaged as the final loss. For fixed weight, the weights are set to a fixed value
based on the performance of different weak models. Specifically, the weights were set to (0.1, 0.3, 0.2,
0.3, 0.1) for GPT2-Large, OPT-1.3B, Pythia-1.4B, BLOOM-1B1 and TinyLlama v1.1 respectively.
For dynamic weight, for a certain sample, the confidence in the utterance of a weak model is treated
as a weight for that weak model, considering the importance of different weak models could vary
on different samples. The results are shown in Table 9. Compared to the average, fixed weight
improves the average PGR by about 8% because it assigns weights based on the performance of
different weak models, rather than just averaging. Dynamic weight shows a noticeable decline in
performance compared to fixed weight. It may be because our proposed per-token target probability
already provided the student model with fine-grained information about the reliability of the label,
making dynamic weight entirely redundant.

Table 9: Different weighting strategies for weak models: experiments using average, dynamic and
fixed weights.

SLU-F1 PGR

Average 0.715 ± 0.019 0.589 ± 0.237
Dynamic weight 0.687 ± 0.013 0.241 ± 0.163
Fixed weight 0.721 ± 0.013 0.668 ± 0.166

G PERFORMANCE OF JOINT DECODING

G.1 THE IMPACT OF THE QUALITY OF WEAK MODELS

This section provides additional experiments where different weak model combinations are used: (i)
three weak models (GPT2-Large, OPT-1.3B, Pythia-1.4B), (ii) four models (adding BLOOM-1B1);
and (iii) all five models (further adding TinyLlama v1.1). For TinyLlama v1.1, two setups were
investigated: (i) only using it to generate weak target sequence but not for scoring (scoring done by
other four models); (ii) using it for both generation and scoring. The results are listed in Table 10.
Compared to the three-weak-model system, introducing the 4th model shows a 10% increase in PGR.
However, incorporating TinyLlama as the 5th weak model undermines the performance (last row in
Table 10), even nearly fails to surpass weak model performance. A possible reason is that TinyLlama
performs poorly on the text generation task. The impact of the TinyLlama can be reduced by excluding
it from scoring. As shown in the second to the last row of Table 10, without TinyLlama scoring, the
results with five weak models are close to those with three. This indicates that TinyLlama’s poor
scoring ability prevents it from selecting a good target sequence among the candidates and the poor
quality from a certain weak model can largely impact the overall results for Joint Decoding methods.
In contrast, as discussed in Section 6.2, the proposed Bayesian WeakS-to-Strong method is more
robust against the quality of a single weak model.

G.2 THE IMPACT OF BEAM SIZE

As introduced in Section 5.2, in Joint Decoding, each weak model generates M output sequences by
beam search in decoding. This section investigates Joint Decoding with different beam sizes M , as
shown in Table 11. For WeakS-to-Strong-3, results with different M yields similar results. However,
for WeakS-to-Strong-5, with TinyLlama included in the weak model set, the result with M = 10
is significantly worse than that with M = 3 and M = 5. The experiments on beam size further
demonstrate that the poor results of the WeakS-to-Strong-5 are due to its weak ability to select the
target sequence, as M = 10 introduces more distractions than M = 5.
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Table 10: Joint Decoding performance with different weak models. Experiments with three weak
models (GPT2-Large, OPT-1.3B, Pythia-1.4B), four weak models (adding BLOOM-1B1), and all
five weak models are conducted.

3 Weak models BLOOM-1B1 TinyLlama v1.1 SLU-F1 PGRGenerating Scoring

✓ 0.703 ± 0.003 0.434 ± 0.032
✓ ✓ 0.711 ± 0.008 0.549 ± 0.100
✓ ✓ ✓ 0.706 ± 0.009 0.452 ± 0.086
✓ ✓ ✓ ✓ 0.671 ± 0.010 0.037 ± 0.120

Table 11: Joint Decoding performance with different beam sizes in beam search when weak models
generate labels. Both WeakS-to-Strong-3 and WeakS-to-Strong-5 are explored.

WeakS-to-Strong-3 WeakS-to-Strong-5
SLU-F1 PGR SLU-F1 PGR

M=3 0.706 ± 0.012 0.471 ± 0.155 0.669 ± 0.023 0.022 ± 0.281
M=5 0.703 ± 0.003 0.434 ± 0.032 0.671 ± 0.010 0.037 ± 0.120
M=10 0.703 ± 0.004 0.431 ± 0.045 0.650 ± 0.004 -0.224 ± 0.050

H REGULARISING TERM OF EDL

As introduced in Section 3.3, the negative log-likelihood of a sample y with a predicted Dirichlet
prior with hyperparameter α is:

LNLL = − log

∫
P(yw|π)p(π|α)dπ =

K∑
k=1

y(k)w (log(α0)− log(αk))

When a sample is not correctly classified, it is expected the total evidence shrinks to zero for the
sample. Taking this into consideration, Sensoy et al. (2018) added a regularization term to penalise
the misleading evidence. The loss with this regularising term reads

LEDL = LNLL + λtLKL(Dir(π|α̃)||Dir(π|1))
where the KL term refers to the LREG in Section 3.3, Dir(π|1) denotes a Dirichlet distribution
with zero total evidence, α̃ = y + (1 − y) ⊙ α is the Dirichlet parameter after removal of the
non-misleading evidence from predicted α, and λt is the annealing coefficient. By adding a KL-
divergence between the Dirichlet distribution with misleading evidence and zero total evidence, the
total evidence is enforced to shrink to zero for the simple which is not correctly classified. The
annealing coefficient increases by training step, enabling the model to explore the parameter space.

I PROMPT USED IN EXPERIMENT

The prompt used for slot filling task is shown as below, in which the input reference transcription
refers to the reference transcription as the input. For example, with input “remind me about my
business meeting at 3 and 45 pm”, the expected output is ‘{“time”: “3 and 45 pm”}’

J LICENSES FOR EXISTING ASSETS

Models and datasets we used in this work were all downloaded from HuggingFace website, expect
SLURP which is downloaded from https://github.com/pswietojanski/slurp. The
licenses and paths for each asset used is listed below:

We provide the following links to special licenses below:

• Modified MIT License for GPT2-Large: https://github.com/openai/gpt-2/
blob/master/LICENSE
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USER: Consider the following list of slot types provided to you:
"event_name", "date", "person", "time", "news_topic", "relation", "list_name", "media_type", 
"business_name", "weather_descriptor", "music_genre", "house_place", "game_name", "food_type", 
"timeofday", "place_name", "definition_word", "email_address", "transport_agency", "movie_name", 
"artist_name", "transport_type", "joke_type", "movie_type", "time_zone", "music_descriptor", 
"device_type", "color_type", "meal_type", "player_setting", "podcast_name", "email_folder", 
"song_name", "change_amount", "business_type", "personal_info", "radio_name", "coffee_type", 
"audiobook_author", "audiobook_name", "currency_name", "playlist_name", "podcast_descriptor", 
"general_frequency", "music_album", "app_name", "order_type", "transport_name", 
"transport_descriptor", "cooking_type", "ingredient", "alarm_type", "drink_type", "sport_type", 
"game_type"
Now consider the following sentence(s) containing one or more of the above slot types. Can you extract 
slots belonging to that slot list and their values in json format i.e. {"slot type": "value"}? ONLY print out 
the json, or only print {} if no slot.
"{input reference transcription}"
ASSISTANT:

Model/Dataset License Huggingface Path

GPT2-Large Modified MIT License openai-community/gpt2-large
OPT-1.3B MIT license facebook/opt-1.3b

Pythia-1.4B Apache 2.0 EleutherAI/pythia-1.4b
BLOOM-1B1 RAIL License v1.0 bigscience/bloom-1b1

TinyLlama v1.1 Apache 2.0 TinyLlama/TinyLlama v1.1
Qwen-7B Tongyi Qianwen LICENSE AGREEMENT Qwen/Qwen-7B

Llama2-7B Custom commercial license meta-llama/Llama-2-7b-hf
SciQ CC BY-NC 3.0 DEED allenai/sciq

SLURP CC BY 4.0 N/A
CosmosQA CC BY 4.0 allenai/cosmos qa

• RAIL License v1.0 for BLOOM-1B1: https://huggingface.co/spaces/
bigscience/license

• Tongyi Qianwen LICENSE AGREEMENT: https://github.com/QwenLM/Qwen/
blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT

• Custom commercial license for Llama-2: https://ai.meta.com/resources/
models-and-libraries/llama-downloads

K DEMONSTRATE TRAINING STABILITY

As introduced in Section 4.1, in stage 2 of probability estimation, the word probability is used to
assign strong wordpiece tokens. This allows us to to obtain the actual assignment of scores to each
target token, instead of assigning equal probabilities to all tokens involved. However, the confidence
of strong model shifts when the network parameters update. To demonstrate the training stability, the
training loss before and after adding strong score splitting is shown in Figure 4.

This figure shows that, the trend of both losses is similar. In the early stages of training, incorporating
strong confidence as a reference, rather than equal probability, leads to a reduction in loss value. This
indicates that our approach engances training efficiency without compromising stability.
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Figure 4: Comparison of loss curve before and after adding strong score splitting. “Mean” represents
for assigning equal probabilities to all strong wordpiece, while “Strong Score Split” for assigning
probabilities following Eqn. 7.
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