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Abstract

While neural architecture search (NAS) is an intensely-researched area, approaches
typically still suffer from either (i) high computational costs or (ii) lack of robust-
ness across datasets and experiments. Furthermore, most methods start searching
for an optimal architecture from scratch, ignoring prior knowledge. This is in
contrast to the manual design process by researchers and engineers that leverage
previous deep learning experiences by, e.g., transferring architectures from previ-
ously solved, related problems. We propose to adopt this human design strategy and
introduce a novel surrogate for NAS, that is meta-learned across prior architecture
evaluations across different datasets. We utilize Bayesian Optimization (BO) with
deep-kernel Gaussian Processes, graph neural networks for the architecture em-
beddings and a transformer-based set encoder of datasets. As a result, our method
consistently achieves state-of-the-art results on six computer vision datasets, while
being as fast as one-shot NAS methods.

1 Introduction

While deep learning has removed the need for manual feature engineering, it has shifted this manual
work to the meta-level, introducing the need for manual architecture engineering. The natural next
step is to also remove the need to manually define the architecture. This is the problem tackled by the
field of neural architecture search (NAS).

However, there is no NAS method yet that is both generally robust and efficient. Blackbox opti-
mization methods, such as reinforcement learning [1], evolutionary algorithms [2], and Bayesian
optimization [3, 4] reliably minimize the validation error but are slow. On the other hand, one-shot
methods [5, 6] often have problems with robustness [7], and the newest trend of zero-cost proxies
often does not provide more information about an architecture’s performance than simple statistics,
such as the architecture’s number of parameters [8].

An understudied path towards efficiency in NAS is to transfer information across datasets. While a
few NAS approaches in this direction exist [9–13, 3], an effective approach to obtain efficient NAS
methods that has been overlooked in the literature is to exploit the common formulation of NAS as a
hyperparameter optimization (HPO) problem [14–17] and draw on the extensive literature on transfer
HPO [18–22]1. This approach is naturally motivated by how researchers and engineers tackle new
deep learning problems: they leverage the knowledge they obtained from previous experimentation
and, e.g., re-use architectures designed for one task and apply or adapt them to a novel task.

In this work, we present an efficient Bayesian Optimization (BO) method with a novel deep-kernel
surrogate that yields a new NAS method which combines the best of both worlds: the reliability of

1For a more in-depth discussion of related work we refer to Section 2

6th Workshop on Meta-Learning at NeurIPS 2022, New Orleans.



blackbox optimization at a computational cost in the same order of magnitude as one-shot approaches.
Concretely, we propose a BO method for NAS that leverages dataset-contextualized surrogates
for transfer learning. Following Lee et al. [13], we use a graph encoder [23] to encode neural
architectures and an attention-based dataset encoder to obtain context features. We then use deep
kernel learning [24] to obtain meta-learned kernels for the joint space of architectures and datasets,
allowing us to use the full power of BO for efficient NAS. In contrast to standard transfer HPO
methods that meta-learn parametric surrogates from a pool of source datasets [18, 19, 22], in this
work we explore the direction of meta learning surrogates by contextualizing them on the dataset
characteristics (a.k.a. meta-features) [25–27]. Exploiting these dataset characteristics is particularly
important in NAS to find a strong architecture quickly. Instead of using manually chosen ad-hoc
meta-features, we represent meta-features as the latent embeddings of a set-transformer network for
image datasets [28], that is jointly meta-learned as part of our deep surrogate in an end-to-end manner.
As a result, our surrogates are optimized for efficiently transferring architectures for a new target
dataset based on its meta-features. To sum up, our contributions are as follows:

• Inspired by manual architecture design, we treat NAS as a transfer or few-shot learning prob-
lem. We leverage ideas from transfer HPO to meta-learn a kernel for Bayesian Optimization,
which encodes both architecture and dataset information.

• We are the first to combine deep-kernel Gaussian Processes (GPs) with a graph neural
network encoder, a transformer-based dataset encoder, the first to apply BO with deep GPs
to NAS, and the first to do all of this in a transfer NAS setting.

• Our resulting method outperforms both state-of-the-art blackbox NAS methods as well as
state-of-the-art one-shot methods across six computer vision benchmarks.

To foster reproducibility, we make our code available at https://github.com/TNAS-DCS/
TNAS-DCS.git. We address the points in the “NAS Best Practices Checklist” in Appendix H.

2 Related Work

NAS is an intensely-researched field, with over 1000 papers published in the last two years alone2.
We therefore limit our discussion of NAS to the most related fields of Bayesian optimization for
NAS and meta learning approaches for NAS. For a full discussion of the NAS literature, we refer
the interested readers to a series of recent surveys by Elsken et al. [29], Wistuba et al. [30], Xie et al.
[31], Ren et al. [32], Benmeziane et al. [33] and Dong et al. [34], and for an introduction to BO to
Shahriari et al. [35], Hutter et al. [36].

Bayesian optimization (BO) for NAS. As BO is commonly used in hyperparameter optimization
(HPO), one can simply treat architectural choices as categorical hyperparameters and re-use, e.g.,
tree-based HPO methods that can natively handle categorical choices well [14, 15, 37]. While
Gaussian Processes (GPs) are more typically applied to continuous hyperparameters, they can also
be used for NAS by creating an appropriate kernel; such kernels for GP-based BO were manually
engineered by Swersky et al. [38], Kandasamy et al. [39] and Ru et al. [3]. A recent alternative is to
exploit (Bayesian) neural networks for BO [40, 41, 4]. However, while these neural networks are very
expressive and parallelize well, they require more data to fit well than GPs and thus are outperformed
by GP-based approaches when only a few function evaluations can be afforded. In this work, we
combine the sample efficiency of GPs and the expressive power of neural networks, by using deep
GPs combined with a graph neural network encoder.

Meta learning for NAS. To mitigate the computational infeasibility of starting NAS methods from
scratch for each new task, several approaches have been proposed along the lines of meta and transfer
learning [9–13, 3]. Most of these warm-start the weights of architectures in a target task [9–12].
Ru et al. [3] extracts architectural motifs that can be reused on other datasets. Most related to our
work is MetaD2A [13], where the authors propose to generate candidate architectures and rank them
conditioned directly on a task, utilizing a meta-feature extractor [28]. However, there are two key
differences in our work: (i) the performance predictor of MetaD2A is not probabilistic and thus can
not naturally trade-off exploration vs. exploitation but rather only exploits what has been observed
during meta-training. (ii) During the meta testing phase, MetaD2A simply proposes N architectures

2See list at: https://www.automl.org/automl/literature-on-neural-architecture-search
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for a new task, trains the top-K (as estimated by the performance predictor) out of N architectures
and returns the best. In particular, the performance of the K evaluated architectures is not used as
feedback for MetaD2A and thus the method never adapts to function evaluations on the test task,
blindly following what has been observed during meta training. This can cause problems for new
tasks which are poorly correlated with the meta training data, and indeed, MetaD2A stagnates on
several of the datasets in our experimental analysis. In contrast, TNAS uses the function evaluations
from meta testing to update the surrogate employed within our BO framework, thus allowing to adapt
to the meta testing scenario.

Meta & transfer learning for HPO There are many approaches to achieve meta or transfer learning
in HPO, see, e.g., the survey by Vanschoren [42] or the nine different classes of methods discussed
by Feurer et al. [43, Section 7]. One particularly promising approach is to employ Deep Kernel
Learning. While existing kernels for BO for NAS are manually defined [38, 39, 3], Deep Kernel
Learning [24] is an approach that strives to learn the kernel function by using a neural network
to transform the input to a latent representation, which is then used in a kernel function. Wistuba
and Grabocka [22] and Jomaa et al. [44] utilized a deep kernel for transfer learning in HPO. While
numerical hyperparameters can be encoded using an MLP, we adapt this Deep Kernel Learning
approach to NAS by using a graph neural network to encode architectures as inputs; we also extend it
by encoding datasets into a latent embedding and learning a deep kernel that spans the combined
space of architectures and datasets.

3 Proposed Method

3.1 Bayesian optimization with deep kernel Gaussian processes

We start by introducing Gaussian Processes, which represents the surrogate of our method within
Bayesian optimization (BO). In a typical hyperparameter optimization (HPO) setup, the inputs x ∈ X
represent hyperparameter configurations, and the target y ∈ Y denotes the performance of a machine
learning method when trained with the hyperparameter configuration x. Consider the training
D = {(xi, yi)}ni=1 and testing D∗ = {(x∗i , y∗i )}n

∗

i=1 splits of a dataset of evaluated hyperparameters.
In that context, GPs are non-parametric models that assume a prior over functions, and approximate
the target y ∈ Y ⊆ R+ given the features x ∈ X ⊆ RL. The estimation of the target variable y∗ for

the test instances x∗ is also jointly Gaussian as
[
y
y∗

]
∼ N

(
0,

(
K(x, x) K(x, x∗)
K(x, x∗)T K(x∗, x∗)

))
. Each

respective block of the covariance matrix is the result of applying a kernel function k : X ×X → R+

on pairs of instances, e.g., K(x, x∗)i,j := k(xi, x
∗
j ). The estimated posterior mean and the posterior

covariance of GPs [45] for the target y∗ of the test instances x∗ is given as follows:

E[y∗ | x∗, x, y] = K(x∗, x)K(x, x)−1y (1)

cov[y∗ | x∗, x] = K(x∗, x∗)−K(x, x∗)TK(x, x)−1K(x, x∗). (2)

We refer to, e.g., Murphy [46] for the derivation. GPs are lazy models that rely on the similarity of the
test instances to the training instances via kernel functions k, such as the Matérn kernel. Unfortunately,
typical kernels used with GPs are designed manually and rely on sub-optimal assumptions [47], which
deteriorates the GP’s performance. A promising direction for designing powerful and efficient kernel
functions that adapt to a learning task is Deep Kernel Learning [24], where kernels are represented as
trainable neural networks. A mapping ξ : X → RM projects the features to a latent representation,
where similar instances are co-located.

The embedding ξ for the deep kernel of our GPs is a fully-connected neural network, that takes as
input the encoding of the architecture ψ as well as the dataset encoding ϕ. In detail, the L-dimensional
architecture encoding ψ is fused with the K-dimensional dataset encoding ϕ and processed through a
fully connected neural network ξ : RK+L → RM , where the last layer has M neurons.

The architecture encoding ψ consists of a directed acyclic graph encoder [23] to obtain the
encoding for the architectures. By using one GRU cell to traverse the topological order of the DAG
in the direction from the input to the output, and another GRU cell to pass through the DAG in
the backward direction, we obtain latent representations of the graph which are then put through a
fully-connected neural network layer to obtain the encoding for the architecture.
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Figure 1: Illustration of TNAS . We employ a GNN ψ to encode architectures, a transformer ϕ to
encode a dataset, and an MLP ξ to merge the encodings. This joint encoding is then fed into a GP
surrogate used within BO. All encodings are meta-learned.

The dataset encoding ϕ is based on the encoder proposed by Lee et al. [13]. It consists of two stacked
Set-Transformer [28] architectures. The first Set-Transformer layer captures the interaction between
randomly sampled data points of the same class, whereas the second one captures the interactions
between the different classes of the dataset. The resulting output of the second Set-Transformer layer
represents the dataset encoding. We tuned the dimensionality of the embedding of the dataset encoder
and graph encoder, as well as the architecture of the feed-forward neural network of our method using
the multi-fidelity Bayesian optimization method BOHB [37] on the meta-training dataset; please
refer to Appendix E for details.

Putting it all together, the kernel/similarity between two architectures, specifically x evaluated on
dataset D, and x′ evaluated on dataset D′, is:

k (x,D,x′,D′;w) = k

(
ξ
( [
ψ(x;w(ψ)), ϕ

(
D;w(ϕ)

)]
;w(ξ)

)
,

ξ
( [
ψ(x′;w(ψ)), ϕ

(
D′;w(ϕ)

)]
;w(ξ)

)
;w(k)

)

with w(ξ) being the parameters of the neural network ξ, w(ψ) the parameters of the architecture
encoding ψ, w(ϕ) the parameters of the dataset encoding ϕ, and w(k) additional parameters of the
kernel function. We denote the cumulative parameters as w :=

(
w(ξ), w(ψ), w(ϕ), w(k)

)
. We refer to

Figure 1 for an overview of our framework. All parameters are jointly meta-learned to maximize the
marginal likelihood [22], which we discuss in detail in Appendix B.

4 Experimental Setup

We follow the experimental setup and use the same meta datasets as Lee et al. [13]. It consists of
4230 meta-training datasets derived from ImageNet. For each of these datasets, the accuracy of one
(different) architecture from the NAS-Bench-201 [48] search space is given. For the evaluation of
our method and the baselines, we use six popular computer vision datasets: CIFAR-10, CIFAR-
100, SVHN, Aircraft, Oxford IIT Pets, and MNIST. For CIFAR-10 and CIFAR-100, we query the
performances of architectures from the NAS-Bench-201 benchmark, whereas for the other four
datasets we train the suggested architectures from scratch using the NAS-Bench-201 pipeline (as
these are not available in the benchmark). For all experiments, we use the NAS-Bench-201 search
space. We ran three trials for each experiment and report the mean and standard deviations.

5 Research Hypotheses and Experimental Results

Our experiments are designed to validate the following research hypotheses for our approach, dubbed
TNAS :
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(b) Average Ranking over the course of runtime.

Figure 2: Consistency of TNAS compared to baselines.

Hypothesis 1: TNAS is more efficient than classical HPO methods applied to NAS as well as HPO
methods specifically adapted to NAS and outperforms them in terms of anytime-performance, while
achieving strong final performance.

Hypothesis 2: TNAS is competitive with one-shot approaches in terms of runtime.

Hypothesis 3: TNAS achieves the consistency of blackbox optimization algorithms (such as classical
HPO methods) while being as efficient as one-shot methods.

For all classical HPO methods except for RS, we use the 5 top-performing architectures from the
meta-training dataset as a starting point. In that sense, all these baselines are “transfer learning” by
being initialized with the best architectures on the meta-training dataset.

In Figure 2, we show that TNAS consistently achieves strong results, while the existing state-of-the-art
NAS baselines have much higher variance - their ranking changes across benchmarks. Furthermore,
the figure shows how the ranking evolves over the course of running of the methods (by means of
runtime in GPU hours). The analysis indicates that TNAS consistently achieves the best performance,
for both small and large computational budgets, in particular also when compared to MetaD2A.
We show more detailed results on these six datasets in Appendix D.1. We show the performance
comparison of TNAS to classical HPO methods in Figure 3, whereas Figure 4 shows the comparison
to one-shot NAS methods. Furthermore, in Appendix D.2 we empirically analyse our design choices,
and demonstrate a lift in performance compared to ceteris paribus ablations that do not employ these
designs.

6 Conclusions and Future Work

NAS is an intensely researched task and in essence is an instance of the hyperparameter optimiza-
tion (HPO) problem. In this work, we exploited this relationship and, motivated by state-of-the-art
transfer HPO methods, adapted deep Gaussian Process (GP) surrogates to capture architecture repre-
sentations. Furthermore, we proposed a novel conditioning of the deep GP on dataset meta-features to
enable transferring well-performing architectures from source datasets with similar meta-features. In
addition, we showed that our novel deep GPs with dataset meta-features and architecture encodings
achieve the highest accuracy on six computer vision datasets compared to a broad range of HPO
methods, BO methods for NAS, and one-shot NAS methods. Lastly, we demonstrated that proxy
architecture evaluations allow our method to discover more accurate architectures within the same
search time one-shot NAS methods require.
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A Method Preliminaries

We consider the following problem: given a history of Q datasets, where for each dataset D(q)

we have already evaluated a set of neural network architectures x(q)1 , . . . , x
(q)
n with corresponding

performance (e.g., accuracy) y(q)1 , . . . , y
(q)
n . For a new dataset D(new), we want to quickly discover

an optimal architecture by leveraging information from the history of datasets. We build upon the
state-of-the-art few-shot Bayesian optimization (BO) framework by Wistuba and Grabocka [22],
which was proposed to address a similar problem: transferring optimal hyperparameter configurations
across datasets. The authors propose to learn a deep kernel across tasks, which is then used for a
Gaussian process (GP) surrogate in the typical BO setup.

However, while hyperparameter configurations can typically be presented by an N-dimensional vector,
it is less clear how to represent neural network architectures. Simply representing architectures as
vectors and plugging them into an off-the-shelf GP kernel is likely sub-optimal. In fact, White et al.
[49] have shown that the type of architecture representation substantially impacts the performance of
a downstream NAS algorithm. To address this issue, we employ graph neural networks (GNNs) to
obtain a learnable representation of neural networks. GNNs are a common choice in NAS as neural
networks architectures can be naturally represented as graphs [50, 49, 51, 52].

Furthermore, while we could directly feed this architecture encoding into the GP’s kernel, we argue
that the kernel should also be conditioned on the characteristics of a dataset in order to meaningfully
asses (dis-)similarities between architectures. To motivate this, consider the question “What makes
two architectures similar?”. We argue that two architectures are not similar only because they share
some similar sub-graph components (which will be represented by the GNN encoding), but also
because they achieve similar performance on the target dataset. Following this line of reasoning, we
condition the deep kernel on the characteristics (meta-features) of a dataset [25]. In a similar fashion
as for the architecture encoding, we again use a learnable representation of datasets via employing a
set transformer [28].

The architecture and dataset encoding are then processed by a fully-connected neural network, whose
output serves as the input for an off-the-shelf kernel function, e.g., a Matérn kernel, which is finally
used to compute the distance of two (architecture, dataset) datapoints. This results in an end-to-end
learnable encoding of the problem, and the parameters of the GNN, transformer and fully-connected
neural network are meta-learned in a similar fashion as in Wistuba and Grabocka [22].

B Meta-learning deep-kernel GP Surrogates

Recall that we assume we are given a set of Q datasets, where on each dataset Dq we have Nq ∈ N+

evaluated architectures. We denote the n-th architecture evaluated on the q-th dataset as xq,n and its
validation accuracy as yq,n. Overall, the meta-dataset of all the evaluations on all the datasets is defined
asM :=

⋃Q
q=1

⋃Nq

n=1 {(xq,n, yq,n,Dq)}. By x := (x1,1, . . . , xQ,Nq
),y := (y1,1, . . . , yQ,Nq

) and
D := (D1, . . . ,DQ) we denote the vectors containing all the architectures, accuracies and datasets,
respectively.

The parameters w of the deep kernel are optimized jointly by maximizing the log marginal likelihood
of the GP surrogate on the meta training dataset:

argmax
w

log p (y | x,D ; w) (3)

∝ argmin
w

yTK−1(x,D;w) y + log |K(x,D;w)|.

Algorithm 1 Meta-learning our deep-kernel GPs

1: Require: meta-datasetM; learning rates ηSGD, ηREP ;
inner update steps v.

2: while not converged do
3: Sample mini-batch fromM:

x = [x1, . . . , xk], y = [y1, . . . , yk], D = [D1, . . . ,Dk]
4: L(w) = yTK−1(x,D;w)y + log |K(x,D;w)|
5: w′ ← w
6: for j = 1 to v do
7: w′ ← w′ − ηSGD∇w′L(w′)
8: Update w ← w − ηREP (w − w′)

In practice, we resort to sampling
mini-batches and employ stochas-
tic gradient descent, following es-
tablished practices on Deep Kernel
Learning for GPs [24, 22, 53]. As all
components of our method are differ-
entiable, our approach is end-to-end
differentiable.
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For updating the meta-parameters w,
we use the meta-learning algorithm
REPTILE [54], due to its simplicity
and faster convergence time compared
to, e.g., MAML [55]. Our method’s
pseudocode is given in Algorithm 1. The procedure samples a mini-batch of (architecture, dataset)
pairs with corresponding validation accuracy (line 3). We simply sample datasets and architectures
uniformly at random from the meta-training dataset. Then we fit the surrogate to estimate the
accuracies y of architectures x on a data set D using SGD by minimizing Equation 3 (lines 4-7).
Finally, we use REPTILE [54] to update w (line 8). Once the optimal w are found, we plug in the
meta-learned kernel for a GP, with the posterior and use vanilla Bayesian Optimization (BO) to
quickly identify the optimal configuration in the new response surface.

C Baselines

Classic HPO. A simple and standard baseline is Random Search (RS) [56]. RS samples architectures
uniformly at random from the search space and returns the top preforming one. Another simple yet
powerful baseline is Bayesian Optimization with a vanilla GP surrogate [57]. We use the Matérn 5/2
kernel and rely on the GPytorch [58] implementation. We tried both Expected Improvement (EI)
and Upper Confidence Bound (UCB) as acquisition functions, with UCB performing better in our
experiments. Additionally, we compare to HEBO [47], a black-box HPO method that performs input
and output warping to mitigate the effects of heteroscedasticity and non-stationarity on HPO problems.
HEBO won the 2020 NeurIPS blackbox optimization challenge [59]. We use the implementation
provided by the authors.

HPO for NAS. White et al. [4] proposed a BO method for NAS that uses an ensemble of fully-
connected neural networks as a surrogate, named BANANAS. Moreover, BANANAS uses a path
encoding for the neural architectures, which serves as an input to the ensemble. When applied
to a new test task, BANANAS starts the neural architecture search from scratch. NASBOWL [3]
is a GP-based BO method for NAS and utilizes the Weisfeiler-Lehman kernel [60]. We use the
implementations provided by the authors for BANANAS and NASBOWL.

State-of-the-art in NAS. One-shot methods have recently shown strong empirical performance for
NAS. We compare to GDAS [6], SETN [61], PC-DARTS [62] and DrNAS [63]. For these methods,
we compare to published results from the literature for six computer vision datasets.

Transfer NAS. We compare to the most related transfer NAS method, MetaD2A [13], which
is a transfer learning NAS method with a dataset-contextualized neural network generator and
performance predictor. The neural network generator and performance predictor are meta-trained
on the same source datasets that we also use. When applied to a test task, MetaD2A generates 500
candidate architectures conditioned on the test dataset and then selects the top architectures based on
its performance predictor. We use the implementation provided by MetaD2A’s authors.

D Additional Experimental Results

D.1 Comparison of TNAS to baselines

Results for Hypothesis 1. In Figure 3, we compare the performance of TNAS, with several HPO
baselines. For all methods, we use the 5 top-performing architectures from the meta-training dataset
as a starting point. In that sense, all these baselines are “transfer learning” by being initialized with the
best architectures on the meta-training dataset. On all of the datasets except CIFAR100, TNAS finds
top-performing architectures faster than all the baselines and achieves stronger anytime performance.
Furthermore, on all benchmarks, TNAS eventually performs best.

Results for Hypothesis 2. We demonstrate that with our meta-learned deep kernel within Bayesian
Optimization, the search time can be significantly reduced, to the same order as one-shot approaches.
Figure 4 shows the performance of both TNAS and MetaD2A compared to state-of-the-art NAS
methods. Except for CIFAR10 and CIFAR100, TNAS clearly outperforms the NAS baselines by the
time the one-shot approaches finish the search. On CIFAR10, TNAS achieves similar performance as
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Figure 3: Comparing TNAS to random search (RS) and the four different Bayesian optimization
methods on six image datasets.
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Figure 4: Comparison of TNAS to state-of-the-art NAS methods.

the baselines, while it is slightly inferior on CIFAR100 for some baselines and only overtakes them
given more time. We refer to Table 1 in the appendix for concrete numbers. We can furthermore
observe the drawbacks of MetaD2A discussed earlier: (i) MetaD2A does not trade-off exploration vs.
exploitation but rather only exploits what has been observed during meta-training and (ii) MetaD2A
does not use evaluations on the new target dataset as feedback and never adapts. As a result, MetaD2A
stagnates on several of the datasets.

D.2 Ablating our Design Choices

We empirically analyse our design choices, namely the graph and dataset encoder and demonstrate a
lift in performance compared to ceteris paribus ablations that do not employ these designs.
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Table 1: Accuracy of our method (TNAS ) in terms of time and accuracy compared to state-of-the-art
NAS methods.

Data Method GPU days Accuracy

CIFAR-10

SETN 0.40 87.64±0.00

GDAS 0.34 93.61±0.09

PC-DARTS 0.17 93.66±0.17

DrNAS 0.30 94.36±0.00

MetaD2A 2.08 94.37±0.00

TNAS 2.18 94.37±0.00

CIFAR-100

SETN 0.73 59.09±0.24

GDAS 0.64 70.70±0.30

PC-DARTS 0.28 66.64±2.34

DrNAS 0.45 73.51±0.00

MetaD2A 2.08 73.51±0.15

TNAS 2.18 73.51±0.00

MNIST

SETN 0.87 99.69±0.04

GDAS 0.76 99.64±0.04

PC-DARTS 0.35 99.66±0.04

DrNAS 0.57 99.59±0.02

MetaD2A 0.83 99.71±0.02

TNAS 0.89 99.78±0.00

Aircraft

SETN 0.46 44.84 ±3.96

GDAS 0.46 53.52±0.48

PC-DARTS 0.29 26.33±3.40

DrNAS 0.65 46.08±7.00

MetaD2A 0.83 57.71±0.72

TNAS 0.89 59.51±0.0

Pets

SETN 0.35 25.17±1.68

GDAS 0.33 24.02±2.75

PC-DARTS 0.28 25.31±1.38

DrNAS 0.31 26.73±2.61

MetaD2A 0.83 39.04±0.72

TNAS 0.89 43.24±0.0

SVHN

SETN 1.61 96.02±0.04

GDAS 1.46 95.57±0.04

PC-DARTS 0.99 95.40±0.04

DrNAS 1.24 96.30±0.02

MetaD2A 1.08 96.44±0.05

TNAS 1.18 96.57±0.00
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Figure 5: Ablation of the components of TNAS .
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Concretely, we ablate our method’s components and test them on CIFAR-10 and CIFAR-100,
reporting the result in Figure 5. TNAS (no Set Encoder) shows the performance of our method using
a graph encoder, but no set-encoder (i.e., without using any dataset meta-features). TNAS (no Graph
Encoder) shows the performance of our method using the dataset encoding in combination with a
matrix encoding for the architectures (i.e., no graph encoder). TNAS outperforms the other variations;
thus, we conclude that using both the learnable dataset meta-features and a graph neural network
encoding is the most robust surrogate design. This finding validates the design choices of our method.
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Figure 6: Ablation of the initial design and the initialization of our method on CIFAR-10 (top row)
and CIFAR-100 (bottom row). Left: using up to 5 random architectures; middle: using up to 5 top
architectures from the meta-training set; right: ablating the comparison of (i) a meta-learned surrogate
and a randomly initialized one with (ii) a random initial design and an initial design from the top 5
architectures from the meta-training set.

We also empirically evaluated (i) whether there is actually a benefit in meta-learning the surrogate,
and (ii) our method’s performance with different initial architectures. Remember that as an initial
design for our method, we used the top-5 performing architectures from the meta-training dataset.
As alternatives, we consider values other than 5 and also start from randomly sampled architectures.
We also turn-off meta-learning. The plots for these experiments are shown in Figure 6, evaluated on
CIFAR-10 and CIFAR-100. The results suggest that both design choices are beneficial.

E Hyperparameter optimization for GNN and set transformer architectures

We tuned the dimensionality of the embedding of the dataset encoder and graph encoder (Embedding
dims.), the architecture of the feed-forward neural network of our method (Num. layers, Num. units
in layer 1, Num. units in layer 2, Num. units in layer 3, Num. units in layer 4), and the learning rate
of the joint meta-training using BOHB [37] on the meta-training dataset.

F Societal Implications

Better optimization of neural network architectures allows the enhancement of the performance of
many crucial applications of deep learning, such as climate science, medicine, and recommender
systems. Furthermore, through the use of transfer learning to speed up the optimization of neural
architectures, we reduce the time costs, and therefore the energy consumption of our method. However,
there are also potential disadvantages in the neural network components of our method because they
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Hyperparameter Range
Embedding dims. {8, 16, 20, 28, 32, 48, 56}
Num. layers [1, 4] (integer)
Num. units in layer 1 [16, 512] (log space)
Num. units in layer 2 [16, 512] (log space)
Num. units in layer 3 [16, 512] (log space)
Num. units in layer 4 [16, 512] (log space)
Learning rate [10−6, 10−1] (log space)

Table 2: The hyperparameter space for tuning our method with BOHB [37].

are more difficult to interpret compared to simpler, traditional ML methods; we therefore encourage
research on interpretable deep learning.

G Future work

A deep surrogate in principle allows us to capture the interaction between architectures and hyperpa-
rameter configurations. The NAS literature at the moment underexplores the impact of hyperparame-
ters on the performance of an architecture. In fact, it is commonly known that the same architecture
would perform differently if the training pipeline is altered, for example by changing the learning
rate, the number of epochs, or the degree of regularization. Our previously-defined surrogate can be
trivially extended to model the interaction of architecture embeddings, the dataset meta-features and
hyperparameter configurations. We have not explored this direction empirically due to the lack of
available NAS meta-datasets that vary both architectures and hyperparameters but would like to do in
the future.

H NAS Best Practice Checklist

We now describe how we addressed the individual points of the NAS best practice checklist [64].

1. Best Practices for Releasing Code

For all experiments you report:

(a) Did you release code for the training pipeline used to evaluate the final architectures?
The code for the training pipeline for the architectures can be found in the repo we
provide.

(b) Did you release code for the search space? We used the NAS-Bench-201 search space
in our experiments, the description and code for which is publicly available.

(c) Did you release the hyperparameters used for the final evaluation pipeline, as well
as random seeds? We the NAS-Bench-201 pipeline and hyperparameters as our final
evaluation pipeline. We release it as well as the random seeds in the repo we provide.

(d) Did you release code for your NAS method? The code for our NAS method can be
found in https://anonymous.4open.science/r/TNAS-DCS-CC08.

(e) Did you release hyperparameters for your NAS method, as well as random seeds? The
hyperparameters for our NAS method, as well as random seeds for the experiments can
be found in the repo we provide.

2. Best practices for comparing NAS methods
(a) For all NAS methods you compare, did you use exactly the same NAS benchmark,

including the same dataset (with the same training-test split), search space and code for
training the architectures and hyperparameters for that code?? Yes, for fair comparison
we made sure to use the same evaluation pipeline for all NAS methods we compare.

(b) Did you control for confounding factors (different hardware, versions of DL libraries,
different runtimes for the different methods)? We ran all the methods on the same
hardware and the same environment to control for confounding factors.
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(c) Did you run ablation studies? We ran extensive ablation studies on the components of
our method.

(d) Did you use the same evaluation protocol for the methods being compared? Yes.
(e) Did you compare performance over time? Yes.
(f) Did you compare to random search? Performance comparison to random search as

well as other baselines can be found in Figure 3.
(g) Did you perform multiple runs of your experiments and report seeds? For each of the

experiments we performed three runs with different seeds (333, 444, 555).
(h) Did you use tabular or surrogate benchmarks for in-depth evaluations? We used

NAS-Bench-201 as a tabular benchmark.
3. Best practices for reporting important details

(a) Did you report how you tuned hyperparameters, and what time and resources this
required? We use BOHB[37] to tune the hyperparameters of our method. We ran
BOHB with three different random seeds for 24 hours.

(b) Did you report the time for the entire end-to-end NAS method (rather than, e.g., only
for the search phase)? Yes.

(c) Did you report all the details of your experimental setup? The details of our experimen-
tal setup can be found in Section 4.
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