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ABSTRACT
In competitive retrieval settings, document publishers (authors)

modify their documents in response to induced rankings so as

to potentially improve their future rankings. Previous work has

focused on analyzing ranking-incentivized document modifications

for a single query. We present a novel theoretical and empirical

study of document modification strategies applied for potentially

improved ranking for multiple queries; e.g., those representing the

same information need. Using game theoretic analysis, we show

that in contrast to the single-query setting, an equilibrium does not

necessarily exist; we provide full characterization ofwhen it does for

a basic family of ranking functions. We empirically study document

modification strategies in themultiple-queries setting by organizing

ranking competitions. In contrast to previous ranking competitions

devised for the single-query setting, we also used a neural ranker

and allowed in some competitions the use of generative AI tools

to modify documents. We found that publishers tend to mimic

content from documents highly ranked in the past, as in the single-

query setting, although this was a somewhat less emphasized trend

when generative AI tools were allowed. We also found that it was

much more difficult with neural rankers to promote a document

to the highest rank simultaneously for multiple queries than it

was with a feature-based learning-to-rank method. In addition, we

demonstrate the merits of using information induced from multiple

queries to predict which document might be the highest ranked in

the next ranking for a given query.

1 INTRODUCTION
In the Web search setting, publishers (authors) of documents are

sometimes incentivized to have their documents highly ranked by

search engines for some queries. The basicmotivation is the fact that

documents at top ranks often attract most user engagement [19]. As

a result of their ranking incentives, publishers might modify their

documents in response to rankings induced by a search engine

so as to improve their future rankings. The search setting then

becomes competitive [21] with corpus dynamics driven in part by

ranking-incentivized document modifications. These modifications

are often referred to as search engine optimization (SEO) [14].

Lately, there has been a growing body of work on studying

ranking-incentivized document modifications, and more generally,

on competitive retrieval [3, 7, 8, 11–13, 23, 25, 32, 34, 36, 37, 39,
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40]. This renewed interest in the often dubbed adversarial retrieval
setting [6] can be attributed in part to a large volume of work on

adversarial machine learning in the era of neural network models

[16–18, 20, 30, 35, 42, 44].

The focus of some recent work on competitive retrieval is on al-

gorithmic attacks on ranking functions; e.g., substituting terms with

their synonyms [7, 8, 13, 23, 25, 34, 37, 39]. There is also an emerg-

ing thread of work on analyzing, and improving, the robustness of

ranking functions to ranking-incentivized document modifications

[3, 7, 11, 36, 40]. Another type of work, which is our focus in this

paper, is analyzing human strategies of ranking-incentivized docu-

ment manipulations [32] and their resultant effect on the corpus

[3, 13, 32]. For example, it was shown theoretically and empiri-

cally that a prominent (worthwhile) strategy of publishers is to

mimic content in documents that were highly ranked in the past

for queries of interest [32], which results in an herding effect [13].
Almost all recent work on competitive retrieval has focused

on a single-query setting; i.e., assuming a publisher modifies her

document to improve its ranking for a single query
1
. However, pub-

lishers often opt to have their document highly ranked for multiple

queries; e.g., those representing a topic in the document. Accord-

ingly, in this paper we present the first — to the best of our knowl-

edge — theoretical and empirical study of ranking-incentivized

document-modification strategies of (human) publishers opting to

promote their documents for multiple queries.

Using game theoretic analysis we show that when publishers

modify their documents to improve their rankings for multiple
queries, there is not necessarily an equilibrium. This result implies

instability: a potentially endless document modification race which

can have negative effects on users; e.g., documents at top ranks

consistently change not due to pure editorial considerations but

rather due to ranking incentives. This theoretical result is in con-

trast to recent findings about the existence of an equilibrium when

documents are modified for a single query [32].

We then fully characterize the conditions for an equilibrium in

the multiple-queries setting for a basic family of ranking functions.

Furthermore, we show that best response dynamics [27] does not
necessarily converge to an equilibrium in case it exists. Best re-

sponse dynamics is a process where each publisher modifies her

document to attain the best possible ranking given the documents

written by all other publishers. The implication is that reaching

a steady state in case it is achievable might call for an external

intervention; e.g., of the search engine.

We next present an empirical study of document manipulation

strategies applied by publishers that opt for improved ranking for

multiple queries representing the same information need (topic).

The study is based on ranking competitions we organized between

students. Our competitions were inspired by those organized for

1
We discuss in Section 2 the two exceptions: algorithmic attacks for topically-related

queries [25] and the corpus effect of modifying documents for two queries (topics) [3].
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the single-query setting [11, 13, 32]. The competitions we report

differ from previous competitions [11, 13, 32] not only by the virtue

of having publishers modify their documents for multiple queries

rather than a single one, but also by two additional aspects. First,

our competitions are the first to employ not only a feature-based

learning-to-rank (LTR) method [24] as the ranking function, but

also a neural ranker [22]. Second, in some of our competitions, we

encouraged the participants to use generative AI tools (e.g., GPT

[29]) to help modify their documents. Indeed, the SEO industry

is using generative AI tools (https://www.seoclarity.net/research/

impact-generative-ai), and our (controlled) study sheds light on

usage strategies and implications. The competitions were approved

by ethics committees. The data of the competitions and our code

will be made public upon publication of this paper.

Analysis of the ranking competitions revealed that, as is the

case for the single-query setting [32], publishers tend to mimic

content from documents that were previously highly ranked. This

trend was more prominent when publishers were not allowed to

use generative AI tools. We also found that the neural ranker’s

rankings for different queries representing the same information

need were more diverse than those of the LTR method. Accordingly,

it was much harder for publishers to have their documents highly

ranked for multiple queries with the neural ranker.

Finally, as in work on the single-query setting [32], we pursue

the task of predicting which document among those not ranked first

in the last ranking will become the most highly ranked assuming

that the top ranked document is going to change. As it turns out,

utilizing information induced from rankings for other queries rep-

resenting the same information need can help improve prediction

effectiveness for the query at hand. This is yet another difference

between the multiple-queries setting and the single-query setting.

Our contributions can be summarized as follows:

• A theoretical and empirical study of documentmanipulations

intended to improve ranking for multiple queries.
• A full game theoretic characterization of when equilibrium

of document manipulation strategies exists.

• Showing that best response dynamics might not converge

even when an equilibrium exists.

• Organizing novel ranking competitions where publishers

compete for multiple queries. Additional novel aspects are

using a neural ranker and allowing publishers to use genera-

tive AI tools.

• A method for predicting which documents among those not

ranked first might be ranked first in the next ranking; the

method uses information induced from other queries.

2 RELATEDWORK
The work most related to ours is based on a game theoretic and

empirical analysis of ranking incentivized document manipulations

applied for a single query [32]. In contrast to our multiple queries
settings, an equilibrium in the single-query setting always exists.

Raifer et al. [32] and Goren et al. [13] found using ranking competi-

tions that publishers tend to mimic content from documents highly

ranked in the past for a query: a strategy justified by Raifer et al.

[32] using a game theoretic analysis. We found a similar pattern

in ranking competitions organized for the multiple-queries setting.

We use both a neural ranker and a feature-based ranker while Raifer

et al. [32] used only the latter. In contrast to our work, Raifer et

al. [32] did not allow the use of generative AI tools for document

manipulation in their ranking competitions.

Several algorithmic attacks on neural retrieval methods have

been recently reported [7, 8, 13, 23, 25, 34, 37, 39]. The attacks are

almost always for a single query, except for an attack for topically

related queries [25]. In contrast, in our game theoretic analysis, the

document manipulations are changes of the relative emphasis of a

document on different queries. This type of strategic manipulation

has not been studied in previous work to the best of our knowledge.

Furthermore, we are not aware of any other studies, as ours, of

human document-modification strategies for multiple queries with

or without generative AI tools.

The suboptimality of the probability ranking principle [33] in

competitive retrieval settings was demonstrated using a game the-

oretic approach [3]. Publishers can write either a single topic docu-

ment or a two-topics document with equal emphasis for the topics.

Since the resulting ranking game has a finite number of players

(publishers) and a finite number of actions a player can play (i.e., doc-

uments they can write), by Nash’s theorem [26], a mixed-strategies

equilibrium exists. That is, documents are stochastically created

by applying a distribution over a document set. The setting is less

realistic than the one we address here where publishers can write a

document with different emphasis (represented as a real number)

on different queries. Our resulting games have an infinite num-

ber of actions a publisher can take, and we show that there is not

necessarily an equilibrium.

3 GAME THEORETIC ANALYSIS
To analyze the search setting when publishers modify their docu-

ments to have them highly ranked for multiple queries, we use game

theory. We consider publishers as players in a ranking game: the

documents they publish are their strategies and the search engine’s

ranking function is the mediator [21].

As noted above, some previouswork used game theory to analyze

the single-query search setting where publishers opt to promote

their documents for a single query [32]; single-peaked ranking func-

tions were used [32]. Several sparse retrieval methods are single

peaked; e.g., cosine between tf.idf vectors and negative KL diver-

gence over multinomial distributions [43]. Furthermore, consider-

ing the common technique of stuffing query terms in the document

to improve its ranking [14], the retrieval function could also be

viewed as single peaked with respect to query term occurrence.

That is, moderately increasing query term occurrence usually re-

sults in monotonic increase of retrieval scores. However, as from a

certain point, further increasing query term occurrence can result

in increased penalty to retrieval scores when document quality

measures are used [5]. There is also some empirical evidence in

prior work [32] and ours (Section 5) that publishers might view the

undisclosed ranking function as single peaked. When considering

incomplete information about the ranker (unknown peak), the rank-

ing game has a minimax regret equilibrium where publishers mimic

content of documents that were previously the highest ranked [32].

Turning to our multiple-queries setting, we assume that a docu-

ment has split emphasis on various queries; e.g., different passages

https://www.seoclarity.net/research/impact-generative-ai
https://www.seoclarity.net/research/impact-generative-ai
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match different queries to varying degrees. We assume as Raifer

et al. [32] a single peaked ranking function, and focus as Basat et

al. [2] on ranking games where the retrieval function is disclosed

(i.e., its peak is known). We show that the resulting situation in the

multiple-queries setting with a disclosed ranking function is con-

siderably more subtle than that in the single query setting where it

is trivial to show that an equilibrium exists. Specifically, we prove

that there is not necessarily an equilibrium in the multiple-query

setting and fully characterize the cases when it exists.

3.1 Game Definition
Let𝐺 = ⟨𝑛,𝑚, 𝑝⟩ be a ranking game defined as follows: 𝑛 publishers

(players) write and modify documents in a corpus 𝐷 ; a query set

𝑄 contains 𝑚 queries: {𝑞1, . . . , 𝑞𝑚}. Each player writes a single

document 𝑑 ∈ 𝐷
𝑑𝑒𝑓
= {(𝑑1, . . . , 𝑑𝑚) ∈ [0, 1]𝑚 :

∑𝑚
𝑗=1 𝑑

𝑗 ≤ 1},
where 𝑑 𝑗 (∈ [0, 1]) is the relative emphasis of the document 𝑑 on

information relevant to query 𝑞 𝑗 .
2

Let 𝑓 : [0, 1] → [0, 1] be a single peak function: there exists

a unique 𝑝 ∈ [0, 1] such that 𝑓 is monotonically increasing in

[0, 𝑝] and monotonically decreasing in [𝑝, 1]. The retrieval func-
tion 𝑟 : 𝐷×𝑄 → [0, 1] assigns document 𝑑 (∈ 𝐷) the retrieval score

𝑟 (𝑑, 𝑞 𝑗 )
𝑑𝑒𝑓
= 𝑓 (𝑑 𝑗 ) with respect to query 𝑞 𝑗 ( 𝑗 ∈ {1, . . . ,𝑚}); docu-

ments are ranked in descending order of scores with ties broken

arbitrarily.

We will refer to document 𝑑𝑖 written by player 𝑖 as the (pure)

strategy of player 𝑖 in the game
3
. That is, the strategy 𝑑𝑖 is defined

by the choice of relative emphasis on each query in the document𝑑𝑖 .

A strategy profile 𝑠
𝑑𝑒𝑓
= (𝑑1, . . . , 𝑑𝑛) is the tuple of pure strategies

of the players in the game; i.e., the set of documents in the corpus.

The utility of a player 𝑖 who wrote document 𝑑𝑖 , denoted𝑈𝑖 (𝑠),
is the number of queries for which 𝑑𝑖 is ranked first; 𝑑𝑖 ’s rank for

a query depends on the strategies of all other players (i.e., their

documents). To summarize, 𝐺 is a strategic game where 𝑛 players

(publishers) opt to maximize their documents’ ranks for𝑚 queries.

A strategy profile 𝑠 is a (pure) Nash equilibrium if there is

no incentive for any player 𝑖 to change her strategy given the

strategies {𝑑 𝑗 } 𝑗≠𝑖 of all other players; i.e., a change will result in
reduced utility.

3.2 Game Analysis
Our goal is to find a full characterization of the existence (or lack

thereof) of pure Nash equilibria for 𝐺 , given 𝑛,𝑚 and 𝑝 .

It is easy to see that for a small enough 𝑝 , there exists a pure

Nash equilibrium where the documents published by all players

have the same emphasis on all queries:
4

Lemma 3.1. If 𝑝 ≤ 1

𝑚 , then the profile where all players write
𝑑 = (𝑝, . . . , 𝑝) is a pure Nash equilibrium.

To extend our analysis for any 𝑝 (∈ [0, 1]), we start by analyzing

the case of two players (𝑛 = 2). This case has an interesting property,

2
In reference to work on focused retrieval [10], 𝑑 𝑗

can be defined as the portion of the

text in 𝑑 that is marked as relevant to query 𝑞 𝑗 .
3
There is also a notion of mixed strategies where players apply a distribution over

pure strategies. Herein, we focus on pure strategies.

4
Recall that the retrieval function has a single peak at 𝑝 .

because in any pure Nash equilibrium, the two players have the

same utility. They can attain this utility, for example, by using the

same strategy (i.e., writing the same document):

Lemma 3.2. Let 𝑛 = 2 and𝑚 > 𝑛. If 𝑠 = (𝑑1, 𝑑2) is a pure Nash
equilibrium, then𝑈1 (𝑠) = 𝑈2 (𝑠) = 𝑚

2
.

Proof. Observe that for any profile 𝑠 = (𝑑1, 𝑑2),𝑈1 (𝑠) +𝑈2 (𝑠) =
𝑚. Assume by contradiction that 𝑈1 (𝑠) ≠ 𝑈2 (𝑠), w.l.o.g. 𝑈1 (𝑠) <

𝑈2 (𝑠); i.e.,𝑈1 (𝑠) < 𝑚
2
< 𝑈2 (𝑠). If player 1 adopts player 2’s strategy,

i.e., writes 𝑑′
1
= 𝑑2 then 𝑈1 (𝑑′

1
, 𝑑2) = 𝑈2 (𝑑′

1
, 𝑑2) = 𝑚

2
> 𝑈1 (𝑑1, 𝑑2);

hence, 𝑠 = (𝑑1, 𝑑2) is not a pure Nash equilibrium — a contradiction.

□

We use Lemma 3.2 to fully characterize in Theorem 3.3 the exis-

tence of pure Nash equilibrium for𝐺 when 𝑛 = 2 (i.e., two players).

Theorem 3.3. If 𝑛 = 2 and𝑚 > 𝑛, then the game 𝐺 has a pure
Nash equilibrium iff 𝑝 ≤ 1

𝑚−1 .

Proof. We provide here a proof sketch, with the comprehensive

proof provided in Appendix B. Say a strategy profile (𝑑1, 𝑑2) is a
pure Nash equilibrium; let 𝑑2 = (𝑑1

2
, . . . 𝑑𝑚

2
), and assume w.l.o.g.

that 𝑑1
2
≥ 𝑑2

2
≥ . . . ≥ 𝑑𝑚

2
. We show that there cannot be two queries

𝑞𝑖 and 𝑞 𝑗 such that 𝑑𝑖
2
< 𝑝 and 𝑑

𝑗

2
< 𝑝 . This allows to show that if

there is an equilibrium, then 𝑝 ≤ 1

𝑚−1 . If 𝑝 ≤ 1

𝑚 , then by Lemma 3.1

the profile where both players publish 𝑑 = (𝑝, . . . , 𝑝) is a pure Nash
equilibrium. We show that for

1

𝑚 < 𝑝 ≤ 1

𝑚−1 the profile where

𝑑1 = 𝑑2 = (𝑝, . . . , 𝑝, 1 − 𝑝 · (𝑚 − 1)) is a pure Nash equilibrium. □

To extend the analysis to a game with more than two players,

we start by considering the case of𝑚 > 𝑛:

Theorem 3.4. The game 𝐺 = ⟨𝑛,𝑚, 𝑝⟩ with 𝑛 < 𝑚 has a pure
Nash equilibrium iff 𝑝 ≤ 1

⌈ 2·𝑚𝑛 −1⌉ .

Proof. The full proof is mostly technical and fully detailed in

Appendix B. The central idea is to show that in any pure Nash

equilibrium the following properties must hold: (i) the highest

ranked document 𝑑 for each query 𝑞 𝑗 has 𝑑
𝑗 ≥ 𝑝 ; and, (ii) for each

player there is at most one query for which her document is ranked

first solely. For any 𝑝 > 1

⌈ 2·𝑚𝑛 −1⌉ , these properties cannot hold, and
therefore there is no pure Nash equilibrium. Conversely, we show

that if 𝑝 ≤ 1

⌈ 2·𝑚𝑛 −1⌉ then we can construct a pure Nash equilibrium

as follows.

Given some strategy profile 𝑠 = (𝑑1, . . . , 𝑑𝑛), let ℎ 𝑗 (𝑠) denote the
number of documents assigned the same highest retrieval score for

query 𝑞 𝑗 when 𝑠 is played. The strategy profile 𝑠
alg

obtained by the

following algorithm is a pure Nash equilibrium :

Algorithm 1 Equilibrium construction for𝐺 = ⟨𝑛,𝑚, 𝑝 ⟩ with𝑛 <𝑚

Initialize 𝑑
𝑗

𝑖
= 0 for all 𝑖, 𝑗 .

𝑘 =

⌊
1

𝑝

⌋
for 𝑡 = 1 to 𝑘 do

for 𝑖 = 1 to 𝑛 do
𝑗∗ = argmin𝑗 ∈{1,...,𝑚} ℎ 𝑗 (𝑑1, . . . , 𝑑𝑛 )
𝑑
𝑗∗
𝑖

= 𝑝

end for
end for

□
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In the case 𝑛 ≥ 𝑚, it is easy to see that a pure Nash equilib-

rium exists for every 𝑝 . Specifically, w.l.o.g. each (disjoint) group of⌊
𝑛
𝑚

⌋
players is assigned to an arbitrarily different query 𝑞 𝑗 among

𝑞1, . . . , 𝑞𝑚 ; each player in this group writes a document 𝑑 with

𝑑 𝑗 = 𝑝 and 𝑑𝑘 = 0 for 𝑘 ≠ 𝑗 . Together with Theorem 3.4, we arrive

to the final result:

Corollary 3.5. G=⟨𝑛,𝑚, 𝑝⟩ has a pure Nash equilibrium iff 𝑝 ≤
1

max {⌈ 2·𝑚𝑛 −1⌉,1} .

3.3 Best response dynamics
The best response of a player to the strategies played by all other

players (i.e., their documents) is the strategy (document) that max-

imizes her utility. Iteratively finding best responses until conver-

gence (if exists) — a process known as best response dynamics —
is a standard mechanism for reaching Nash equilibria, specifically

in potential games [27]. In these games, the best response dynamics

is guaranteed to converge to an equilibrium. We now show that in

our ranking games the best response dynamics does not necessarily

converge. Hence, these are not potential games. An important impli-

cation is that in order to achieve stability (specifically, equilibrium),

the game might need external intervention.

Consider the game 𝐺 = ⟨𝑛,𝑚, 𝑝⟩ for 𝑛 = 2,𝑚 = 3 and 𝑝 = 1

2
.

We show that the best response dynamics does not converge in

this game, although by Theorem 3.3 an equilibrium exists. Let

𝑠𝑡 denote the strategy profile played at round 𝑡 by two players.

The following sequence of strategies is a best response dynam-

ics given an initial strategy profile 𝑠0 = ((0.3, 0.4, 0), (0.2, 0.3, 0.5)):
𝑠1 = ((0.3, 0.4, 0), (0.4, 0.5, 0.1)), 𝑠2 = ((0.5, 0.3, 0.2), (0.4, 0.5, 0.1)),
𝑠3 = ((0.5, 0.3, 0.2), (0, 0.4, 0.3)). For example, since player 1’s docu-

ment at round 0 is (0.3, 0.4, 0) then player 2’s document at round 1,

(0.4, 0.5, 0.1), attains the maximal possible utility (3) as it outranks

player 1’s document for all three queries. Player 1’s best possible

utility given player 2’s document from round 1, (0.4, 0.5, 0.1), is 2,
which is obtained by writing, for example, a document (0.5, 0.3, 0.2)
at round 2, and so forth. Since 𝑠0 and 𝑠3 are symmetric, the dynamics

does not converge.

4 RANKING COMPETITIONS
Our next goal is to empirically analyze ranking competitions in

which publishers (document authors) modify documents with re-

spect to multiple queries (𝑚 > 1). To the best of our knowledge,

there are no datasets that support this type of analysis. There are

two publicly available datasets [12, 32] that resulted from ranking

competitions. However, in these competitions, documents were

modified with respect to a single query. Thus, we created a new

dataset by organizing our own ranking competitions inspired by

those organized in [12, 32]. International and institutional ethics

committees approved the competitions. The participants signed a

consent form and could withdraw at any time.

In addition to having publishers compete for multiple queries

rather than a single one, we introduced two novel aspects in our

competitions. The first is the ranking function. While in previous

competitions only a feature-based learning-to-rank (LTR) method

was used [12, 32], we also used a neural (NEU) ranker (BERT-based
[28]). The ranking functions are described below. The second as-

pect is the use of AI tools to modify documents in some of the

Table 1: Overview of the four ranking competitions.

Competition Ranking Function AI Tools

LTR∧AI LambdaMART ✓
LTR∧⌝AI LambdaMART ✗
NEU∧AI BERT ✓
NEU∧⌝AI BERT ✗

competitions. In total, we organized four ranking competitions

which differ by the ranking function applied and/or whether gen-

erative AI tools were allowed: LTR∧AI, LTR∧⌝AI, NEU∧AI, and
NEU∧⌝AI. Table 1 provides an overview of the competitions.

Each competition lasted for ten rounds; in each round, 30 games

were held, each with respect to a different backstory (topic) from

the UQV dataset [1].
5
Each topic was represented using 𝑚 = 3

queries: the query selected to be the focus of the backstory and two

additional query variants selected from all those provided for the

backstory. The same 30 topics were used in all four competitions.

Refer to Appendix A.1 for further details about the topic and query

selection procedures.

Competition structure. Before the start of the game, the partici-

pants were provided with three queries representing the topic of

the game, the topic description (backstory) and an example of a

relevant document. This document was generated using GPT-3.5,

as described in Appendix A.1. The participants were then asked to

write and submit their own document. In each round of the game,

the participants were presented with the documents submitted in

the previous round and the rankings induced over these documents

for each of the three queries. They were encouraged to further

modify their document to improve its ranking in the next round.

All the documents were in plain text format, limited to 150 words.

Refer to Appendix A.2 for detailed competition guidelines.

A group of 84 undergraduate and graduate students enrolled in

an information retrieval course participated in our competitions.

Each student participated in three (repeated) games and submitted

one document per game in a round. We made sure that the three

games were selected from at least two different competitions and

that there was no overlap between the topics of these games. Each

game included exactly five participants: a combination of students

and bots. Two or three students participated in every game together

with two bots that used GPT-3.5 to create documents, as explained

in Appendix A.3. If a game had only four participants, i.e., two

students and two bots, we added a third static bot that published the

initial example document in every round. To prevent any potential

bias, the students’ identities were anonymized, and they were not

informed about the use of bots. Unless otherwise mentioned, our

analysis is performed for the students’ documents only.

To encourage students to participate andmodify their documents

so as to attain high rankings in the competitions, we offered bonus

points for their course grades. We note that the students could

have earned a perfect grade in the course without participating in

the competitions. The bonus per game was awarded based on the

median reciprocal rank of a student’s document across the three

queries in the game. For example, if a student’s document was

ranked first, second, and third across the queries, they would earn

5
The dataset includes query variants for TREC’s 2013-2014Web track topics (201-300).
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half a point for that game. The points were accumulated over the

student’s three games per round and over the ten rounds.

Our dataset includes a total of 2520 documents submitted by

students (847 of which are unique), 2400 documents generated by

bots (1833 of which are unique), and 30 documents that served as

the initial document per topic. We will make the dataset publicly

available upon the publication of this work.

Ranking functions. As noted above, we experimented with two

ranking functions in our competitions: LTR and NEU. For our

learning-to-rank (LTR) approach, as in previous work [12, 32, 36],

we use LambdaMART [41] via the RankLib toolkit
6
. Unless other-

wise specified, the implementation details of this model, including

the training procedure and setting of hyper-parameter values, are

the same as those of Vasilisky et al. [36]. The model was trained on

the Combined dataset [36], which includes data from the two previ-

ous ranking competitions [12, 32]. Each document was represented

using a nine-dimensional feature vector. Some of the features are

estimates of the similarity between the query and document, and

the rest are query-independent document quality measures shown

to be effective for Web retrieval [4]. The features are: (i) TF: sum of

query term frequencies in the document, (ii) NormTF: TF normal-

ized by the document’s length, (iii) BM25: BM25 similarity between

the query and document, (iv) LMIR: language-model-based simi-

larity between the query and document
7
, (v) BERT: BERT-based

similarity between the query and document
8
, (vi) LEN: document’s

length, (vii) FracStop: percentage of terms in the document that

are stopwords
9
, (viii) StopCover: percentage of stopwords on a

stopword list that appear in the document, and (ix) ENT: entropy of
the document’s term distribution. For our neural ranking function

(NEU), we used BERT as in feature (v) above. Thus, BERT served

both as a feature in LTR and as a standalone ranking function. We

note that the ranking functions were not disclosed to the students,

who also did not know that four ranking competitions were held.

Relevance and quality judgements. Each student document was

judged by three crowd workers in CloudResearch’s connect plat-

form [15] for binary relevance to the topic and by five workers for

content quality, with 0.75 and 0.49 inter-annotator agreement rates

(free-marginal multi-rater Kappa), respectively. All workers were

native English speakers. More than 97% of all student documents

were judged relevant by at least two out of three annotators. This

high percentage is in accordance with previous reports on compe-

titions for a single query [13, 32], albeit a bit elevated. Although

students were not instructed to write relevant documents, the doc-

uments were short and students modified them for multiple queries

representing the same topic. We note that our focus is on ranking-

incentivized manipulations and not on ranking effectiveness.

Five annotators judged each student document for content qual-

ity using the categories: valid, keyword stuffed and spam (useless).

When using AI tools, 89% and 71% of the documents were judged to

be valid by at least three and at least four out of the five annotators,

respectively. When not using AI tools, the percentages were 85%

and 61%, respectively. This attests to the merit of using AI tools

6
https://sourceforge.net/p/lemur/wiki/RankLib/

7
Unigram language models with Dirichlet smoothing (𝜇 = 1000) are used.

8
We used BERT-Large fine-tuned for passage ranking on MS MARCO [28].

9
The NLTK stopword list was used in our experiments: www.nltk.org/nltk_data/.

for rank promotion while maintaining content quality. Only 9%

and 6% of the documents created with no AI tools and with AI

tools, respectively, were judged as keyword stuffed by at least three

annotators. Almost none of the documents were judged as spam.

The distribution of quality judgments was not different between

the LTR and NEU competitions.

5 EMPIRICAL ANALYSIS
5.1 Analysis of Strategies

Feature Values. Inspired by work on the single-query setting [32],

we examine the document modification strategies in our multiple-

queries setting: we analyze the changes in the documents’ feature

values along competition rounds. Recall that three document rank-

ings were induced per topic, each for one of the three queries

representing the topic. In this analysis, we examine each query

(document ranking) separately. We focus on changes in documents

that lost (i.e., were not ranked first) for at least four consecutive

rounds before reaching the first rank (L). We compare the average

feature values of the winners (i.e., the highest ranked documents)

per query (Wq) with the average feature values of two types of

losing documents (𝐿): those whose feature value was lower than or

equal to that of the winning document four rounds prior to their win

(L ≤ Wq), and those whose feature value was higher (L > Wq). We

also present for reference the average feature values of the (at most

three) winning documents per topic (Wt). Figure 1 presents the

results for representative query-independent and query-dependent

features of LTR. Figures for other features exhibit the same patterns

and are omitted as they convey no additional insight.

We see in Figure 1 that regardless of the ranking function (LTR

or NEU), the use of generative AI tools (AI or ⌝AI) and the initial

feature values (𝐿 ≤𝑊𝑞 or 𝐿 >𝑊𝑞 ), with a few exceptions, the fea-

tures of the losing documents tend to gradually converge to those

of the winners. This finding is in line with results for the setting

where publishers modified their documents for a single query [32].

Contrary to Raifer et al. [32], we see that the feature values of the

winning documents changed throughout the competition rounds.

This might be attributed to the fact that documents in our com-

petitions were modified for three different queries. For example,

say a document was ranked first for some query. The student who

wrote the document may have continued to modify it to improve

its ranking for the other two queries, and thus affected its feature

values. We delve deeper into this point in Section 5.2.

We also note that changes of winners’ feature values conceptu-

ally echo our game theoretic findings in Section 3: in the single-

query setting an equilibrium is guaranteed in contrast to themultiple-

queries setting. Hence, the single-query setting is more likely to

reach a stable state than the multiple-queries setting
10

We observe in Figure 1a a general upward trend for the query-

independent features: LEN, StopCover, and ENT; the trends are

more pronounced for LTR∧AI and LTR∧⌝AI. Hence, the documents

became longer (LEN) with increased content diversity (ENT) and

stopwords occurrence (StopCover). Interestingly, Raifer et al. [32]

10
We hasten to point out that the game theoretic analysis was performed for single

peak functions. The rankers used in the competition are not single peaked.

https://sourceforge.net/p/lemur/wiki/RankLib/
www.nltk.org/nltk_data/
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LEN

StopCover

ENT

(a) Query-Independent Features

TF

Okapi

BERT

(b) Query-Dependent Features

Figure 1: Averaged feature values of documents that lost in at least four consecutive rounds before winning. The documents are
grouped based on whether their feature values four rounds before the win were lower than or equal to (𝐿 ≤𝑊𝑞) or higher than
(𝐿 >𝑊𝑞) the values of the winners for the given query.𝑊𝑞 and𝑊𝑡 : the averaged feature values of the corresponding winner per
query and all the winners per the same topic, respectively. x-axis: the (negative) number of rounds leading up to a win. Note: in
NEU∧AI and NEU∧⌝AI, when BERT is used as a standalone ranking function, the feature values of the losing documents are
always lower than those of the winning document; therefore, 𝐿 >𝑊𝑞 is not shown.

found a downward trend for ENT when students modified doc-

uments for a single query. We therefore hypothesize that when

competing for a single query there is an attempt to focus the con-

tent for this query, while competing for multiple queries results in

increased diversity so as to better cover the query set.

We see in Figure 1b that the query-dependent feature values for

𝐿 ≤ 𝑊𝑞 (where the initial feature value of the losing document

was lower than or equal to that of the winner) increased along the

rounds, whereas the values for 𝐿 >𝑊𝑞 (where the initial feature

value of the losing document was higher than that of the winner)

somewhat fluctuated and even decreased at times. This implies that

in the former case, the students gradually increased the number

of query term occurrences in their documents, but in the latter

case, the students were careful not to add too many query terms,

possibly to avoid keyword stuffing which they were warned about.

Furthermore, this finding potentially suggests that from the point

of view of students, the ranking function might be single peaked

with respect to query term occurrence and the features based on it.

Finally, we can see that the differences between𝑊𝑞 and𝑊𝑡 are

smaller for LTR than for NEU. This finding might be attributed to

the fact that for LTR, a winning document was more likely to win

for multiple queries, resulting in fewer unique winning documents

per topic. We present further support to this claim in Section 5.2.

Prompts. To gain additional insights about the document modifi-

cation strategies, we asked the students to share the prompts they

used for the generative AI tools. We collected 44 prompts from

rounds 8 to 10 of the competitions. The prompts typically included

instructions to create a document that would be ranked high for

the specified queries. All prompts, except for three, had no mention

of the reward mechanism used in the competitions. As an exam-

ple, one of the three prompts included the text: “Since the score

is given by the median ranking among 3 queries, we can focus on

maximizing the rankings on two queries.”

Out of the 44 prompts, 29 included example documents: the initial

example document (2 prompts), the student’s document from the

previous round (15 prompts), at least one of the winning documents

from the previous round (24 prompts), or even all the documents

in the previous round (5 prompts). This further indicates that the

students considered winning documents a valuable source of infor-

mation about the undisclosed ranking functions.

5.2 Ranking Functions
Thus far, we studied the document modification strategies in our

competitions. We now shift our focus to examining the effect of the

ranking functions used. We first analyze the differences between

rankings induced by a function for the three queries representing a

topic. We computed for each ranking function the RBO similarity

(with 𝑝 = 0.9) [38] between the document rankings induced for

each pair of queries per topic. We then averaged these values over

the pairs per topic and over topics. Figure 2 presents the results for
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Figure 2: Average RBO similarity between all pairs of rank-
ings induced per topic, averaged over topics per round.

Table 2: Docs: percentage of winning documents that won
for exactly 𝑥 queries per topic. Rank: for documents that won
for 𝑥 queries per topic, the average ranks with respect to the
3 − 𝑥 queries for which they did not win.

LTR∧AI LTR∧⌝AI NEU∧AI NEU∧⌝AI
Docs Rank Docs Rank Docs Rank Docs Rank

𝑥 = 1 17.9% 2.2 17.7% 2.4 62.9% 3.4 65.7% 3.5

𝑥 = 2 17.0% 2.1 15.2% 2.3 28.5% 3.3 27.6% 3.2

𝑥 = 3 65.1% - 67.0% - 8.6% - 6.7% -

each round of the four competitions. We see that the similarities for

NEU∧AI and NEU∧⌝AI are considerably and consistently lower

than those of LTR∧AI and LTR∧⌝AI, suggesting that NEU (BERT) is

much more sensitive to the queries used than LTR (LambdaMART).

Previous research demonstrated BERT’s sensitivity to document

modifications in competitions held for a single query [36].

We further study the effect of the ranking functions on the com-

petitions in Table 2 by examining documents that won for at least

one of the queries per topic. We present the percentage of these

documents that won for exactly one, two or three queries. Addition-

ally, we present the average ranks of these documents in rankings

induced for queries for which these documents did not win. We can

see that for LTR, at least 65% of the winners won all three queries

in a game, while for NEU, less than 9% did so. Furthermore, the

average rank of documents for queries they did not win was, on

average, higher when NEU was used than when LTR was used.
11

These findings demonstrate that the ranking function used affects

the ability of a document to win for multiple queries per topic. That

is, a document that won for one of the queries is more likely to

win for additional queries for the same topic in competitions that

employed LTR compared to those that employed NEU.

5.3 Generative AI Tools
We allowed the use of generative AI tools in some of our compe-

titions. We next compare the documents created by students who

were allowed to use such tools (AI) with those who were not al-

lowed (⌝AI). We use the cosine of tf.idf vectors to compute per

topic the similarity between each document submitted by a student

in a specific round and (i) documents in the previous round that

won for at least one of the queries and (ii) all the other documents

from the previous round. We averaged the similarities over the

documents and grouped them by whether or not the students were

11
The rank of the highest-ranked document is 1. Increased rank means lower ranking.

Figure 3: Average similarity between all documents in a
round per topic and (i) Winners: documents that won at least
one query for the topic in the previous round and (ii) Losers:
all other documents in the previous round.

allowed to use AI tools. We see in Figure 3 that there were notice-

able differences in the similarity values of AI and ⌝AI. Specifically,
the documents created without the help of AI tools in LTR∧⌝AI
and NEU∧⌝AI were much more similar to documents submitted in

the previous round, whether they were winners or not, than those

created with the help of such tools in LTR∧AI and NEU∧AI. This
finding indicates that using AI tools may lead to the creation of

more diverse content. We also observe higher similarities with the

winning documents than with the losing ones for both AI and ⌝AI,
further supporting our earlier findings that the documents, whether

they were directly modified by students or generated using AI tools,

tended to converge to the winners.

6 PREDICTINGWINNERS
In this section, we address the challenge of predicting which docu-

ment among all those that did not rank first in round 𝑙 − 1 will be

ranked the highest (win) in round 𝑙 if the winner indeed changes.

The documents in our competitions were modified with respect to

𝑚 = 3 queries in the query set 𝑄 for a topic; yet, the prediction is

performed separately for each query 𝑞 ∈ 𝑄 . A similar challenge was

previously tackled for competitions held for a single query [32].

For prediction, we represent each document as a 27-dimensional

feature vector. The features we use can be divided into seven sets.

The first two sets,Micro (12 features) andMacro (3 features), were

proposed by Raifer et al. [32]. These features model properties of

the document in round 𝑙 (𝐷𝑙 ), the document published by the same

author in round 𝑙 − 1 (𝐷𝑙−1), and the winning document in round

𝑙 − 1 for the query 𝑞 (𝑊
𝑞

𝑙−1). The features in Micro quantify the

changes in 𝐷𝑙 with respect to𝑊
𝑞

𝑙−1 by counting term additions and

deletions. These features are defined for three groups of unique

terms: query terms, stopwords, and terms that are neither query

terms nor stopwords. For each group of terms, four features were

defined: the number of terms in𝑊
𝑞

𝑙−1 that were either (i) added to

or (ii) deleted from 𝐷𝑙−1, and the number of terms that were not in

𝑊
𝑞

𝑙−1 and were either (iii) deleted from or (iv) added to 𝐷𝑙−1. The

features in Macro are the similarities between 𝐷𝑙 , 𝐷𝑙−1, and𝑊
𝑞

𝑙−1;
the similarity between a pair of documents was computed using

the cosine of their tf.idf vector representations.

The features just discussed only consider thewinner for the given

query (𝑊
𝑞

𝑙−1), disregarding the rankings induced for the other two

queries and their correspondingwinners. Accordingly, we introduce
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an additional set of features, TopicMacro, that consider the group
of all winners for the three queries in 𝑄 (𝑊

𝑄

𝑙−1). We compute the

similarities between 𝐷𝑙 and𝑊
𝑄

𝑙−1 and between 𝐷𝑙−1 and𝑊
𝑄

𝑙−1. We

use cosine to compute the similarities and represent the documents

in𝑊
𝑄

𝑙−1 via the centroid of their tf.idf vectors.

In the following two feature sets, we quantify properties of

𝐷𝑙−1’s ranks in the three rankings induced for all three queries

per topic. The first set, TopicRank, includes three features: the
minimum, median, and maximum rank of 𝐷𝑙−1 across the three
queries in 𝑄 . The second set, QueryRank, includes three binary
features that are set to 1 if 𝐷𝑙−1’s minimum, median, and maximum

rank for the three queries is equal to its rank for the given query 𝑞;

otherwise, they are set to 0.

The next feature set, PrevChange, includes three features that
quantify past changes (improvements) in the document’s ranks.

The underlying assumption is that if a publisher improved her

document’s rank in round 𝑙 −1, she might do so again in round 𝑙 . To

this end, we also examine the publisher’s document in round 𝑙 − 2

(𝐷𝑙−2). For each of the three queries, we compute the difference

between the ranks of 𝐷𝑙−1 and 𝐷𝑙−2, and scale it by the maximal

possible rank change given 𝐷𝑙−2’s rank in round 𝑙 − 2. We use the

minimum, median, and maximum values across the three queries.

Finally, we found in Section 5.1 that the documents tended to

become longer throughout the four competition rounds leading to

a win; accordingly, the feature in the final set, Len, is 𝐷𝑙 ’s length.

6.1 Setup
Our dataset includes documents submitted by both students and

bots. We discarded queries for which a bot generated the winning

document. In addition, we discarded queries for which the winners

in round 𝑙 − 1 (𝑊
𝑞

𝑙−1) and round 𝑙 (𝑊
𝑞

𝑙
) were generated by the same

publisher. This was done because we aimed to predict which of the

losing documents would win in the following round. As a result,

the number of queries per competition round ranged from 3 to 39.

We experimented with four different classifiers with the features

defined above via the scikit-learn library [31]: logistic regression

(LReg), linear SVM (LSVM), polynomial SVM (PSVM) and random

forests (RForest). We applied min-max normalization to feature val-

ues per query. The document assigned the highest prediction score

per query by a classifier was deemed the winner; the remaining

documents were considered losers.

The features in PrevChange can only be computed when data for

at least two previous rounds is available; therefore, our experiments

were conducted for rounds 3 to 10. We used leave-one-out cross-

validation over rounds to train our models and select parameter

values. We used the queries from one of the rounds for testing and

those from the remaining seven for training and validation. We

repeatedly trained amodel on data from six of the seven roundswith

different parameter configurations and validated the effectiveness

over the seventh round. We selected the parameter values that

yielded the highest prediction effectiveness on average across the

seven validation rounds. Then, we trained a final model using data

from all seven rounds and applied it to the held-out test round (fold).

We repeated this entire procedure for each test fold. The models

were trained separately for each of the four competitions.

Table 3: Prediction effectiveness. All differences between our
classifiers (LReg, LSVM, PSVM, RForest) and the baselines
are statistically significant. Bold: best result in a row.

Rand QMaj TMaj AllW AllL Raifer LReg LSVM PSVM RForest

LTR∧AI Acc 0.654 0.435 0.503 0.466 0.534 0.696 0.822 0.853 0.895 0.843

LTR∧AI F1 0.622 0.397 0.497 0.635 0.000 0.678 0.810 0.843 0.885 0.832

LTR∧⌝AI Acc 0.707 0.398 0.504 0.480 0.520 0.772 0.886 0.870 0.846 0.837

LTR∧⌝AI F1 0.697 0.368 0.497 0.648 0.000 0.763 0.879 0.863 0.839 0.831

NEU∧AI Acc 0.669 0.532 0.468 0.464 0.536 0.766 0.815 0.798 0.806 0.855
NEU∧AI F1 0.643 0.495 0.588 0.634 0.000 0.747 0.800 0.782 0.790 0.842

NEU∧⌝AI Acc 0.556 0.481 0.500 0.491 0.509 0.722 0.750 0.750 0.796 0.750

NEU∧⌝AI F1 0.547 0.471 0.592 0.658 0.000 0.717 0.742 0.742 0.790 0.743

We use Acc (percentage of correctly classified winners and

losers) and F1 (harmonic mean of precision and recall), averaged

over queries and test folds, to measure prediction effectiveness; the

former served to select parameter values. Statistically significant

prediction differences were determined across queries using the

two-tailed paired t-tests with 𝑝 ≤ 0.05. LReg, LSVM and PSVMwere

trained with L1 regularization; the regularization parameter was se-

lected from {1, 10, 50, 100}. The degree of the polynomial kernel in

PSVMwas selected from {2, 3, 4, 5}. For RForest, the number of trees

and leaves were set to values in {10, 50, 100, 500} and {10, 20, 30},
respectively. All other parameters were set to default values [31].

6.2 Results
We compare in Table 3 the prediction effectiveness of our four

classifiers (LReg, LSVM, PSVM, and RForest) with that of five base-

lines
12
: (i) Random (Rand) : the winner is randomly selected, (ii)

QueryMajority (QMaj) : the winner is the document whose pub-

lisher had the highest number of past wins for the given query;

ties were broken randomly, (iii) TopicMajority (TMaj): the winner
is the document whose publisher had the highest number of past

wins for all three queries of the given topic; ties were broken ran-

domly, (iv) AllWinners (AllW): all the documents are predicted to

be winners (only one document is correctly classified per query),

(v) AllLosers (AllL): all the documents are predicted to be losers

(all but one of the documents are correctly classified per query). We

also report the effectiveness of the classifiers when using only the

two feature sets proposed by Raifer et al. [32] (Micro and Macro).

For this baseline, we show the results only for the classifier (LReg,

LSVM, PSVM, or RForest) with the highest Acc per competition.

The documents in our competitions were modified with respect

to three queries. Table 3 shows that when using only the two feature

sets proposed by Raifer et al. [32], which use information only about

the query at hand, the performance surpasses that of all baselines.

This attests to the effectiveness of these feature sets, whether the

documents are modified with respect to a single query as in [32] or

with respect to multiple queries as in our setting. Furthermore, we

see that when adding features that quantify various properties of

all three queries and the corresponding rankings, all our classifiers

consistently and statistically significantly outperform all the base-

lines, including that of Raifer et al. [32]. This attests to the merits of

using information about other queries for the same topic to predict

for a given query.

12
Except for TopicMajority, all the baselines were also used by Raifer et al. [32].
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To further examine the effectiveness of the different feature sets,

we performed ablation tests, removing one of the sets each time.

We anzlye the results for PSVM, for which the best overall perfor-

mance was attained for two of the four competitions in Table 3.

Actual numbers are omitted as they convey no additional insight

and due to space considerations. Except for Macro, removing each

feature set results in at least one statistically significant drop in

performance, attesting to the complementary nature of our fea-

tures. Comparing Macro and TopicMacro, the drop for the latter

is more substantial. These findings suggest that these two feature

sets might be somewhat correlated and that TopicMacro, which

considers the winners for all queries of the topic in the previous

round, is somewhat more informative in our setting.

7 CONCLUSIONS
We presented a novel theoretical and empirical study of the compet-

itive retrieval setting where document authors modify documents

to improve their ranking for multiple queries. We showed using

game theory that in contrast to past work on document modifi-

cations for a single query, in the multiple-queries setting there is

not necessarily an equilibrium and characterized the cases when it

exists. We organized novel ranking competitions where publishers

modified documents for multiple queries representing the same

topic. We used both neural and non-neural rankers, and allowed

the use of generative AI tools in some competitions. We found

that publishers use content from documents highly ranked in the

past, but to a somewhat reduced extent when they apply AI tools.

Finally, we addressed the task of predicting which document will

be promoted to the highest rank in the next ranking round. We

demonstrated the merits of using information induced from other

queries representing the same topic to this end.
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A RANKING COMPETITIONS
A.1 Topics, Queries, and Initial Documents
We selected from the UQV dataset [1] topics with commercial intent

that were more likely to incite competition
13
. For each topic, three

queries were used. The first query was the focus of the backstory,

while the other two were selected from all the available query vari-

ants as follows. To ensure that the variants were of high quality, we

retrieved 1000 documents per variant from the ClueWeb12 category

B corpus using LMIR via the Indri toolkit
14
. We filtered out variants

with average precision (AP) lower than 0.05. In addition, to ensure

that the queries were diverse enough, we computed the Jacquard

similarity between the terms of each pair of queries and the RBO

similarity (with 𝑝 = 0.9) [38] between the corresponding retrieved

document lists. These two scores were combined using Reciprocal

Rank Fusion (RRF) with 𝑘 = 60 [9]. Finally, from the remaining

query variants, we iteratively selected the following query with the

lowest average similarity to the already selected queries.

We provided the students with an example of a relevant docu-

ment for each topic. We generated these documents using GPT-3.5

with a prompt per topic that included the backstory and the three se-

lected queries. We continued generating the document until it was

deemed relevant by four annotators. We used the same document

per topic across all four competitions, resulting in 30 documents.

A.2 Additional Guidelines
The students were instructed to create high quality plain text doc-

uments without using any formatting tags, hyperlinks, or special

characters. They were advised to avoid using slang or informal lan-

guage and were warned against keyword stuffing. We mentioned

that using such techniques would result in a penalty, although no

actual penalty was imposed. Copying parts of other students’ doc-

uments or Web pages was allowed as long as the document also

included original content. Documents that were copied completely

from other documents received no reward. We noticed after the

third round that some students were submitting the initial example

document without modifications. Thus, we prohibited submitting

the initial documents starting from the fourth round. Students who

still used these documents did not receive points. We emphasized

that the goal was to promote documents in rankings regardless of

their relevance to the information needs expressed by the queries.

13
The selected topics are 201, 203, 204, 209, 210, 211, 212, 218, 226, 228, 233, 235, 244,

245, 246, 249, 250, 252, 255, 258, 261, 262, 268, 272, 274, 281, 283, 289, 291, and 296.

14
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A.3 Bots
We used bots in our competitions to increase the number of players

and to make the games more dynamic. The bots generated docu-

ments using GPT-3.5. The prompts asked to create documents no

longer than 150 terms, but some of the generated documents were

longer. In these cases, we removed sentences from the end of a

document until its length was between 140 and 150 terms. If no

sentence could be removed without making the document shorter

than 140 terms, we truncated the last sentence to 150 terms.

We provided our bots with the backstory, the three queries rep-

resenting the backstory, and the content and ranks of the bot’s

document in the previous round. In addition, we provided infor-

mation about other submitted documents that varied across bots

based on two parameters. The first parameter determined which of

the documents submitted in a round were accessible to the bot. We

tested bots that had access to all submitted documents (including

their ranks), the document with the highest median rank across the

three queries (excluding the actual ranks), and the bot’s document

only. The second parameter determined the number of rounds for

which the above information was made available: last round or last

three rounds. We used six bot configurations in our competitions,

each corresponding to combinations of the two parameters. Each

bot was assigned to ten different topics and competed in all ten

rounds of the game.

The documents generated by bots were generally ranked lower

than those written by students. The average rank for the bots’

documents was 3.2, while the students’ documents had an average

rank of 2.6. Moreover, the bots’ documents won less: 67.9% of the

winning documents were written by students, compared to only

23.5% generated by bots.
15

B PROOFS
B.1 Equilibrium in Two-Player Games

Theorem 3.3. If 𝑛 = 2 and𝑚 > 𝑛, then the game 𝐺 has a pure
Nash equilibrium iff 𝑝 ≤ 1

𝑚−1 .

Proof. Assume there exists some strategy profile (𝑑1, 𝑑2) that is
a pure Nash equilibrium. Let 𝑑2 = (𝑑1

2
, . . . 𝑑𝑚

2
), and assume w.l.o.g.

that 𝑑1
2
≥ 𝑑2

2
≥ . . . ≥ 𝑑𝑚

2
.

Suppose there are two queries 𝑞𝑖 and 𝑞 𝑗 such that 𝑑𝑖
2
< 𝑝 and

𝑑
𝑗

2
< 𝑝 . Define 𝑑𝑡 ∈ 𝐷 such that 𝑑𝑖𝑡 = min{𝑑𝑖

2
+ 𝑑1

2

2
, 𝑝}, 𝑑 𝑗𝑡 =

min{𝑑 𝑗
2
+ 𝑑1

2

2
, 𝑝}, 𝑑1𝑡 = 0 and 𝑑𝑘𝑡 =≤ ∑𝑚

𝑙=1
𝑑𝑙
2
≤ 1.

If player 1 writes 𝑑𝑡 , then 𝑑𝑡 will be ranked (i) first (solely) for 𝑞𝑖
and 𝑞 𝑗 , (ii) below the first rank for 𝑞1, (iii) the same as 𝑑2 for the rest

of the queries. Thus, if player 1 writes𝑑𝑡 her utility is
𝑚−3
2

+2 = 𝑚+1
2

.

By Lemma 3.2, if (𝑑1, 𝑑2) is a pure equilibrium then the utility of

player 1 is
𝑚
2
. Therefore, the move from writing 𝑑1 to writing 𝑑𝑡

is beneficial for player 1, which is a contradiction to the fact that

(𝑑1, 𝑑2) is a Nash equilibrium. Thus, we conclude that if (𝑑1, 𝑑2) is
a pure Nash equilibrium then there is at most one query 𝑞 𝑗 such

that 𝑑
𝑗

2
< 𝑝 . Now, if 1

𝑚−1 < 𝑝 , then there exists no such document

𝑑2 ∈ 𝐷 . Therefore, 𝑝 ≤ 1

𝑚−1 . Hence, we proved that if there is a

Nash equilibrium, 𝑝 ≤ 1

𝑚−1 . We now turn to show that for any

𝑝 ≤ 1

𝑚−1 there is a pure Nash equilibrium.

15
The percentages do not add up to 100 as we excluded from this analysis the static

bots that submitted the initial document in all competition rounds.
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If 𝑝 ≤ 1

𝑚 , then by Lemma 3.1 the profile where both players

publish 𝑑 = (𝑝, . . . , 𝑝) is a pure Nash equilibrium. If
1

𝑚 < 𝑝 ≤ 1

𝑚−1 ,
the profile where 𝑑1 = 𝑑2 = (𝑝, . . . , 𝑝, 1 − 𝑝 · (𝑚 − 1)) is a pure

Nash equilibrium as we show next. (Note that (𝑚 − 1) · 𝑝 ≤ 1 and

therefore the strategies (𝑑1 and 𝑑2) are well defined.)

W.l.o.g. assume that player 1 has an incentive (in terms of in-

creased utility) to move from writing 𝑑1 to writing some 𝑑𝑡 . For

every query 𝑞 𝑗 s.t. 𝑗 < 𝑚, if 𝑑
𝑗
𝑡 ≠ 𝑝 , then 𝑑𝑡 cannot be ranked first

because the retrieval function reaches its single peak at 𝑝 . Thus,

the only way to increase utility would be to have 𝑑𝑡 ranked first for

query 𝑞𝑚 . This can only be achieved by increasing the emphasis on

𝑞𝑚 but as a result decreasing the emphasis on some other query 𝑞 𝑗 ,

where 𝑗 < 𝑚. Consequently, 𝑑𝑡 will be ranked (i) first (solely) for

query 𝑞𝑚 , (ii) ranked second for query 𝑞 𝑗 (iii) the same as 𝑑2 for the

rest of the queries. Therefore, player’s 1 utility will be
𝑚−2
2

+1 = 𝑚
2
,

which is the same as her utility when writing 𝑑1; i.e., there was no

incentive to move to 𝑑𝑡 . □

B.2 Game Analysis
Notations. Let𝑤 𝑗 (𝑠) represent the value of the document ranked

highest in query 𝑞 𝑗 ∈ 𝑄 under the strategy profile 𝑠 . We use 𝑠−𝑖 to
denote the strategies of all players except player 𝑖 , and𝑤 𝑗 (𝑠−𝑖 ) to
denote the highest value of the documents in query𝑞 𝑗 when player 𝑖

doesn’t participate. Hence, if player 𝑖 is not ranked highest in query

𝑞 𝑗 , or if the highest rank is shared among multiple players, then

𝑤 𝑗 (𝑠−𝑖 ) = 𝑤 𝑗 (𝑠). However, if player 𝑖 uniquely tops the ranking in

query 𝑞 𝑗 , then𝑤 𝑗 (𝑠−𝑖 ) < 𝑤 𝑗 (𝑠).
Player 𝑖 is called a winner in query 𝑞 𝑗 if 𝑑

𝑗
𝑖
= 𝑤 𝑗 (𝑠). Define 𝐽𝑖 (𝑠)

as the set of queries in which player 𝑖 is a winner under strategy

profile 𝑠:

𝐽𝑖 (𝑠) ≔ {𝑞 𝑗 ∈ 𝑄 : 𝑑
𝑗
𝑖
= 𝑤 𝑗 (𝑠)}

We begin by identifying a set of strategies in the game that are

weakly dominated. This initial step enables us to focus solely on

strategies in subsequent proofs where 𝑑
𝑗
𝑖
≤ 𝑝 for every player 𝑖 and

query 𝑞 𝑗 ∈ 𝑄 .

Lemma B.1. For every player 𝑖 , publishing a document 𝑑 with
𝑑 𝑗 > 𝑝 for some query 𝑞 𝑗 ∈ 𝑄 is weakly dominated.

Proof. Let 𝑑𝑖 be a strategy of player 𝑖 , where max𝑞 𝑗 ∈𝑄 𝑑
𝑗
𝑖
> 𝑝 .

Consider the strategy 𝑑𝑡 which is defined by 𝑑
𝑗
𝑡 = min{𝑑 𝑗

𝑖
, 𝑝}.

In queries where 𝑑
𝑗
𝑖

> 𝑝 , the document 𝑑𝑡 will be ranked first

by 𝑟 . There will be no change in the other queries. Therefore,

𝑈𝑖 (𝑠−𝑖 , 𝑑𝑖 ) ≤ 𝑈𝑖 (𝑠−𝑖 , 𝑑𝑡 ) and 𝑑𝑖 is weakly-dominated by 𝑑𝑡 . □

To facilitate the analysis of the game dynamics, we introduce

some key definitions. The residual of a player represents their maxi-

mum potential unused resource when deviating to another strategy

profile that allows them to maintain victory in the same set of

queries. Formally,

Definition B.2 (Residual). The residual of player 𝑖 in the game

𝐺 = ⟨𝑛,𝑚, 𝑝⟩ under the strategy profile 𝑠 is given by:

𝑦𝑖 (𝑠) ≔ 1 −
∑︁

𝑞 𝑗 ∈ 𝐽𝑖 (𝑠 )
𝑤 𝑗 (𝑠−𝑖 )

The residual can be equivalently calculated by:

Lemma B.3. Let 𝐺 = ⟨𝑛,𝑚, 𝑝⟩ and 𝑠 be some pure strategy profile.

1 − 𝑦𝑖 (𝑠) = min

𝑑 ′∈𝐷𝑖


∑︁
𝑞 𝑗 ∈𝑄

𝑑′𝑗

��� 𝐽𝑖 (𝑠) = 𝐽𝑖 (𝑠−𝑖 , 𝑑′)


This expression computes the minimal total sum of document

values (

∑
𝑞 𝑗 ∈𝑄 𝑑 𝑗 ) needed for player 𝑖 to continue winning the same

set of queries when deviating from their current strategy. Although

the set of winning queries remains unchanged, the utility for player

𝑖 might vary because the number of winners in each query could

increase.

The following lemma proposes a necessary condition for the

existence of a pure equilibrium by considering the residual of a

player relative to the minimal value of the winner among all queries

where they are currently not winning. A larger residual indicates

an opportunity for a profitable deviation, as it reflects the presence

of unused resources that could be strategically allocated to win at

least one additional query.

Lemma B.4. Let 𝐺 = ⟨𝑛,𝑚, 𝑝⟩ and 𝑠 be some pure strategy profile.
For every player 𝑖 , if

𝑦𝑖 (𝑠) > min{ min

𝑞 𝑗∉𝐽𝑖 (𝑠 )
{𝑤 𝑗 (𝑠)}, 𝑝}

then 𝑖 has a profitable deviation, indicating that 𝑠 is not an equilib-
rium.

Proof. Consider a player 𝑖1 for which

𝑦𝑖1 (𝑠) > min

𝑞 𝑗∉𝐽𝑖
1
(𝑠 )

{𝑤 𝑗 (𝑠−𝑖1 )} (1)

We utilize the equivalent definition of the residual fromLemmaB.3.

Define 𝑑 as:

𝑑 = arg min

𝑑 ′∈𝐷𝑖
1


∑︁
𝑞 𝑗 ∈𝑄

𝑑′𝑗

��� 𝐽𝑖1 (𝑠) = 𝐽𝑖 (𝑠−𝑖1 , 𝑑′)


Let 𝑞 𝑗𝑡 = argmin𝑞 𝑗∉𝐽𝑖
1
(𝑠 ) {𝑤 𝑗 (𝑠−𝑖1 )}.

Consider a deviation to 𝑑𝑡 defined by:

𝑑
𝑗
𝑡 =

{
min{𝑤 𝑗 (𝑠−𝑖1 ) + 𝜖0, 𝑝}, 𝑞 𝑗 ∈ 𝐽𝑖1 (𝑠) ∪ {𝑞 𝑗𝑡 }
0, otherwise

(2)

where 𝜖0 =
𝑦𝑖

1
(𝑠 )−𝑤𝑗𝑡 (𝑠−𝑖1 )
| 𝐽𝑖

1
(𝑠 ) |+1 .

To validate the deviation, we demonstrate that

∑
𝑞 𝑗 ∈𝑄 𝑑

𝑗
𝑡 ≤ 1:∑︁

𝑞 𝑗 ∈𝑄
𝑑
𝑗
𝑡 ≤

∑︁
𝑞 𝑗 ∈ 𝐽𝑖

1
(𝑠 )∪{𝑞 𝑗𝑡 }

𝑤 𝑗 (𝑠−𝑖1 ) + 𝜖0

= 𝑦𝑖1 (𝑠) +
∑︁

𝑞 𝑗 ∈ 𝐽𝑖
1
(𝑠 )

𝑤 𝑗 (𝑠−𝑖1 )

= 𝑦𝑖1 (𝑠) + 1 − 𝑦𝑖1 (𝑠)
= 1

(3)

According to the definition of 𝑑𝑡 , for every query 𝑞 𝑗 ∈ 𝐽𝑖1 (𝑠), it
follows that 𝑞 𝑗 also belongs to 𝐽𝑖1 (𝑠−𝑖1 , 𝑑𝑡 ). After the deviation, the
number of winners (ℎ 𝑗 (𝑠)) in queries in 𝐽𝑖1 (𝑠) can only decrease,

leading to an increase in player 𝑖1’s reward for them. Furthermore,

player 𝑖1 is now ranked first in query 𝑞 𝑗𝑡 . As a result, player 𝑖1

experiences a minimum increase in overall utility by at least
1

𝑛 ,

making the deviation profitable. □
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Consider a scenario in a game where a player is one of multiple

winners (i.e., ℎ 𝑗 (𝑠) ≥ 2) for a particular query 𝑞 𝑗 . If the winning

score𝑤 𝑗 (𝑠) is not at the peak value 𝑝 , a minor strategic adjustment

could enable him to outscore other players, thus becoming the sole

winner. Such a shift would increase his utility since he would no

longer share the reward for the query. Consequently, at equilibrium,

this player must have strategically allocated all available resources

to maximize his outcome across contested queries. This implies

that his residual resources should be zero.

Lemma B.5. Let 𝐺 = ⟨𝑛,𝑚, 𝑝⟩ and 𝑠 be some pure strategy profile.
Define 𝐼𝑡 = {𝑖 : ∃𝑞 𝑗 ∈ 𝐽𝑖 (𝑠) s.t.𝑤 𝑗 (𝑠) < 𝑝,ℎ 𝑗 (𝑠) ≥ 2}. Then for
every player 𝑖 ∈ 𝐼𝑡 ,

𝑦𝑖 (𝑠) = 0

Proof. Assume by contradiction that there exists a player 𝑖1 ∈ 𝐼𝑡
with a residual 𝑦𝑖 (𝑠) > 0, indicating that they have unutilized

resources. Consider the following strategic deviation:

𝑑
𝑗
𝑡 =

{
min{𝑤 𝑗 (𝑠−𝑖 ) + 𝑦𝑖 (𝑠 )

| 𝐽𝑖 (𝑠 ) | , 𝑝}, 𝑞 𝑗 ∈ 𝐽𝑖1 (𝑠)
0, 𝑞 𝑗 ∉ 𝐽𝑖1 (𝑠)

This deviation is feasible, since:

𝑚∑︁
𝑗=1

𝑑
𝑗
𝑡 =

∑︁
𝑗∈ 𝐽𝑖 (𝑠 )

min{𝑤 𝑗 (𝑠−𝑖 ) +
𝑦𝑖 (𝑠)
|𝐽𝑖 (𝑠) |

, 𝑝}

≤
∑︁

𝑗∈ 𝐽𝑖 (𝑠 )
𝑤 𝑗 (𝑠−𝑖 ) + 𝑦𝑖 (𝑠)

≤ 1

By definition of 𝐼𝑡 , there exists a query 𝑞 𝑗1 ∈ 𝐽𝑖1 (𝑠) for which
𝑤 𝑗1 (𝑠) < 𝑝 and ℎ 𝑗1 (𝑠) ≥ 2. Player 𝑖1’s deviation would increase

his score sufficiently to potentially become the unique winner in

query 𝑞 𝑗1 , thereby increasing their utility by at least
1

2
. This gain

in utility contradicts the assumption of equilibrium, thus proving

that 𝑦𝑖 (𝑠) = 0 for all 𝑖 ∈ 𝐼𝑡 . □

The definition of the residual allows us to measure the quantity

of available resources that a player has when playing each strategy.

We introduce another strategic metric, 𝑥𝑖 (𝑠), which quantifies the

resources that a player allocates to queries they do not currently

win. Formally,

𝑥𝑖 (𝑠) ≔
∑︁

𝑞 𝑗∉𝐽𝑖 (𝑠 )
𝑑
𝑗
𝑖

This metric measures the extent to which a player invests in

preventing other winners from significantly reducing the winning

value, thus establishing a floor on the resources required for others

to secure a win in those queries. Although 𝑥𝑖 (𝑠) does not directly
impact player 𝑖’s own utility, it plays a critical role in limiting the

potential for other players to deviate. By strategically allocating

his residual resources, a player can influence the residual values of

other players, thereby affecting their ability to deviate profitably

from their current strategies.

We now derive an upper bound for 𝑥𝑖 (𝑠), stating that the amount

of resources a player uses in queries where he is the loser is no

more than his overall available resources.

Lemma B.6. Let 𝐺 = ⟨𝑛,𝑚, 𝑝⟩ and 𝑠 be a pure equilibrium profile.
For every player 𝑖 :

𝑦𝑖 (𝑠) ≥ 𝑥𝑖 (𝑠)

Proof. By definition of 𝑥𝑖 (𝑠),

1 ≥
𝑚∑︁
𝑗=1

𝑑
𝑗
𝑖

=
∑︁

𝑞 𝑗 ∈ 𝐽𝑖 (𝑠 )
𝑑
𝑗
𝑖
+

∑︁
𝑞 𝑗∉𝐽𝑖 (𝑠 )

𝑑
𝑗
𝑖

=
∑︁

𝑞 𝑗 ∈ 𝐽𝑖 (𝑠 )
𝑤 𝑗 (𝑠) + 𝑥𝑖 (𝑠)

≥
∑︁

𝑞 𝑗 ∈ 𝐽𝑖 (𝑠 )
𝑤 𝑗 (𝑠−𝑖 ) + 𝑥𝑖 (𝑠)

Rearranging, we get that the residual of player 𝑖 satisfies:

𝑦𝑖 (𝑠) = 1 −
∑︁

𝑞 𝑗 ∈ 𝐽𝑖 (𝑠 )
𝑤 𝑗 (𝑠−𝑖 ) ≥ 𝑥𝑖 (𝑠)

□

The proof theorem 3.4 relies on two key lemmas. The first states

that in an equilibrium, the winner’s value must be at least 𝑝 . The

second lemma states that every player is the unique winner in no

more than one of his winning queries. In order to prove the first

lemma, we begin by lower bounding the number of queries in which

a player wins in equilibrium.

Lemma B.7. Let 𝐺 = ⟨𝑛,𝑚, 𝑝⟩ and 𝑠 be a pure equilibrium profile.
Let 𝑘 ∈ N s.t. 1

𝑘+1 < 𝑝 ≤ 1

𝑘
. Then for every player 𝑖 ,

|𝐽𝑖 (𝑠) | ≥ 𝑘

Proof. Assume by contradiction there exists a player 𝑖1 s.t.

|𝐽𝑖 (𝑠) | ≤ 𝑘 − 1. Let 𝑞 𝑗1 be a query in which 𝑖1 is not ranked first, i.e.

𝑞 𝑗1 ∉ 𝐽𝑖 (𝑠). Consider the following deviation strategy:

𝑑
𝑗
𝑡 =


min{𝑑 𝑗

𝑖
, 𝑝}, 𝑞 𝑗 ∈ 𝐽𝑖1 (𝑠)

𝑝, 𝑞 𝑗 = 𝑞 𝑗1

0, otherwise

Given that 𝑝 ≤ 1

𝑘
, the deviation is feasible:∑︁

𝑞 𝑗 ∈𝑄
𝑑
𝑗
𝑡 = 𝑝 +

∑︁
𝑞 𝑗 ∈ 𝐽𝑖

1
(𝑠 ) }

min{𝑑 𝑗
𝑖
, 𝑝}

≤ 𝑝 + |𝐽𝑖1 (𝑠) | · 𝑝
≤ 𝑝 + (𝑘 − 1) · 𝑝
≤ 1

Player 𝑖1 maintains their winning status in all queries 𝑞 𝑗 ∈ 𝐽𝑖1 (𝑠)
under 𝑑

𝑗
𝑡 , and now potentially wins 𝑞 𝑗1 as well. Moreover, ℎ 𝑗 (𝑠) ≥

ℎ 𝑗 (𝑠−𝑖1 , 𝑑𝑡 ) for every 𝑞 𝑗 ∈ 𝐽𝑖1 (𝑠). Therefore, 𝑖1’s utility after devia-

tion is:



Ranking-Incentivized Document Manipulations for Multiple Queries Conference’17, July 2017, Washington, DC, USA

𝑈𝑖1 (𝑠−𝑖 , 𝑑𝑡 ) =
∑︁

𝑞 𝑗 ∈ 𝐽𝑖 (𝑠−𝑖 ,𝑑𝑡 )

1

ℎ 𝑗 (𝑠−𝑖1 , 𝑑𝑡 )

=
∑︁

𝑞 𝑗 ∈ 𝐽𝑖 (𝑠 )

1

ℎ 𝑗 (𝑠−𝑖1 , 𝑑𝑡 )
+ 1

ℎ 𝑗1 (𝑠−𝑖1 , 𝑑𝑡 )

≥
∑︁

𝑞 𝑗 ∈ 𝐽𝑖 (𝑠 )

1

ℎ 𝑗 (𝑠)
+ 1

ℎ 𝑗1 (𝑠−𝑖1 , 𝑑𝑡 )

= 𝑈𝑖1 (𝑠) +
1

ℎ 𝑗1 (𝑠−𝑖1 , 𝑑𝑡 )
> 𝑈𝑖1 (𝑠)

indicating a profitable deviation of player 𝑖1, by contradiction to

𝑠 being an equilibrium. □

Next, we leverage Lemma B.7 to derive an upper bound on 𝑥𝑖 (𝑠)
for all players. W.l.o.g., we assume for the rest of the section that

𝑤1 (𝑠) ≥ . . . ≥ 𝑤𝑚 (𝑠).
Lemma B.8. Let 𝐺 = ⟨𝑛,𝑚, 𝑝⟩ and 𝑠 be a pure equilibrium profile.

For every player 𝑖 ,

𝑥𝑖 (𝑠) ≤ 1 −
⌊
1

𝑝

⌋
· min

𝑞 𝑗 ∈𝑄
𝑤 𝑗 (𝑠)

Proof. By the definition of 𝑥𝑖 (𝑠), for every player 𝑖:

𝑥𝑖 (𝑠) =
∑︁

𝑞 𝑗∉𝐽𝑖 (𝑠 )
𝑑
𝑗
𝑖

=
∑︁

𝑞 𝑗∉𝐽𝑖 (𝑠 )
𝑑
𝑗
𝑖
+

∑︁
𝑞 𝑗 ∈ 𝐽𝑖 (𝑠 )

𝑑
𝑗
𝑖
−

∑︁
𝑞 𝑗 ∈ 𝐽𝑖 (𝑠 )

𝑑
𝑗
𝑖

=
∑︁
𝑞 𝑗 ∈𝑄

𝑑
𝑗
𝑖
−

∑︁
𝑞 𝑗 ∈ 𝐽𝑖 (𝑠 )

𝑑
𝑗
𝑖

≤ 1 −
∑︁

𝑞 𝑗 ∈ 𝐽𝑖 (𝑠 )
𝑑
𝑗
𝑖

= 1 −
∑︁

𝑞 𝑗 ∈ 𝐽𝑖 (𝑠 )
𝑤 𝑗 (𝑠)

≤ 1 −
∑︁

𝑞 𝑗 ∈ 𝐽𝑖 (𝑠 )
𝑤𝑚 (𝑠)

= 1 − |𝐽𝑖 (𝑠) | ·𝑤𝑚 (𝑠)

(4)

Applying Lemma B.7, we know |𝐽𝑖 (𝑠) | ≥
⌊
1

𝑝

⌋
. Thus, plugging

into Equation 4,

𝑥𝑖 (𝑠) ≤ 1 − |𝐽𝑖 (𝑠) | ·𝑤𝑚 (𝑠) ≤ 1 −
⌊
1

𝑝

⌋
·𝑤𝑚 (𝑠)

□

B.3 Equilibrium in Game with𝑚 > 𝑛

The proof of Theorem 3.4 relies on the following Lemma, which

asserts that the winning value in every query across the entire

game must meet or exceed the peak value 𝑝 .

Lemma B.9. Let 𝐺 = ⟨𝑛,𝑚, 𝑝⟩ such that 𝑛 < 𝑚 and 𝑠 be a pure
equilibrium profile. Then for every query 𝑞 𝑗 ∈ 𝑄 ,

𝑤 𝑗 (𝑠) ≥ 𝑝

We begin by proving the Lemma for the following special sce-

nario. Consider the case where there exist a query where the win-

ning value is lower than the peak, and there is only one player

winning in that query. We show that the winner in that query must

be the unique winner in all the queries where he wins. Then, we use

the upper bounds we derived on 𝑥𝑖 (𝑠) to show there must exist a

player with profitable deviation. The proof hinges on the interplay

between the number of queries a player wins and their values in

queries they do not win.

Lemma B.10. Let 𝐺 = ⟨𝑛,𝑚, 𝑝⟩ such that 𝑛 < 𝑚, 𝑝 ≤ 1

2
, and

let 𝑠 be a pure equilibrium profile. Then for every query 𝑞′
𝑗
where

ℎ′
𝑗
(𝑠) = 1:

𝑤 𝑗 ′ (𝑠) ≥ 𝑝

Proof. Assume for contradiction there exists a query 𝑞 𝑗1 where

ℎ 𝑗1 (𝑠) = 1 and𝑤 𝑗1 (𝑠) < 𝑝 . Let 𝑖1 be the sole winner of 𝑞 𝑗1 .

By the definition of 𝑦𝑖 (𝑠), since 𝑖1 is the only winner in query

𝑞 𝑗1 :

𝑦𝑖1 (𝑠) = 1 −
∑︁

𝑞 𝑗 ∈ 𝐽𝑖
1
(𝑠 )

𝑤 𝑗 (𝑠−𝑖1 )

> 1 −
∑︁

𝑞 𝑗 ∈ 𝐽𝑖
1
(𝑠 )

𝑤 𝑗 (𝑠)

≥ 1 −
∑︁
𝑞 𝑗 ∈𝑄

𝑑
𝑗
𝑖1

≥ 0

(5)

Next, assume by contradiction that there exists another query

𝑞 𝑗2 ∈ 𝐽𝑖1 (𝑠) where ℎ 𝑗2 (𝑠) > 1 — meaning 𝑖1 is not the only winner

in 𝑞 𝑗2 . By Lemma B.5, if 𝑤 𝑗2 (𝑠) < 𝑝 then the residual of player

𝑖1 is zero, in contradiction to equation 5. Therefore, we get that

𝑤 𝑗2 (𝑠) ≥ 𝑝 > 𝑤 𝑗1 (𝑠).
Consider 𝑖𝑡 , another winner in 𝑞 𝑗2 . Suppose 𝑖𝑡 deviates by re-

allocating his resources from 𝑞 𝑗2 to 𝑞 𝑗1 , aiming to win solely in

the latter. Such a deviation would make 𝑖𝑡 the only winner in 𝑞 𝑗1 ,

without affecting his rewards from other queries 𝑞 𝑗 ∈ 𝐽𝑖𝑡 (𝑠) \ {𝑞 𝑗2 }.
Thus, this deviation would be profitable for 𝑖𝑡 , in contradiction to

the assumption that 𝑠 is an equilibrium. Therefore, we conclude

that 𝑖1 must be the unique winner in all his winning queries.

We define 𝐼𝑢 as the set of players who are unique winners in all

the queries in which they are ranked highest. Under the Theorem’s

conditions, 𝐼𝑢 is non-empty. Let 𝛼 = |𝐼𝑢 | represent the number of

such winners, where 1 ≤ 𝛼 ≤ 𝑛.

Let 𝑘 =

⌊
1

𝑝

⌋
(𝑘 ≥ 2). Under the false assumption that𝑤 𝑗1 (𝑠) < 𝑝 :

𝑤𝑚 (𝑠) ≤ 𝑤 𝑗1 (𝑠) < 𝑝

According to Lemma B.6, for each player 𝑖 , 𝑥𝑖 (𝑠) is bounded by

their residual 𝑦𝑖 (𝑠). Since 𝑠 is an equilibrium, Lemma B.4 states that

for every player such that 𝑞𝑚 ∉ 𝐽𝑖 (𝑠), the residual is bounded by

𝑤𝑚 (𝑠). Combining, we get that for every player that is a loser in

query 𝑞𝑚 ,

𝑥𝑖 (𝑠) ≤ 𝑦𝑖 (𝑠) ≤ 𝑤𝑚 (𝑠) < 𝑝

If ℎ𝑚 (𝑠) ≥ 2, i.e. there are multiple winners in query 𝑞𝑚 , then by

Lemma B.5, 𝑥𝑖 (𝑠) = 𝑦𝑖 (𝑠) = 0 for each of the winners 𝑖 in query 𝑞𝑚 .

Thus, there exists a player 𝑖2 ∈ 𝐼𝑢 for which the following holds:
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∑︁
𝑞 𝑗 ∈ 𝐽𝑖

2
(𝑠 )

𝑤 𝑗 (𝑠−𝑖2 ) =
∑︁

𝑞 𝑗 ∈ 𝐽𝑖
2
(𝑠 ) :ℎ 𝑗 (𝑠 )=1

𝑤 𝑗 (𝑠−𝑖2 )

=
∑︁

𝑞 𝑗 ∈ 𝐽𝑖
2
(𝑠 ) :ℎ 𝑗 (𝑠 )=1

max

𝑖≠𝑖2
𝑑
𝑗
𝑖

≤
∑︁
𝑖≠𝑖2

𝑥𝑖 (𝑠)

=
∑︁

𝑖∈𝐼𝑢\{𝑖2 }
𝑥𝑖 (𝑠)

<
∑︁

𝑖∈𝐼𝑢\{𝑖2 }
𝑝

= (𝛼 − 1) · 𝑝
Consider the case where the number of players that win solely

in all their queries is less than 𝑘 , i.e. 𝛼 ≤ 𝑘 . We get that for player

𝑖2, ∑︁
𝑞 𝑗 ∈ 𝐽𝑖

2
(𝑠 )

𝑤 𝑗 (𝑠−𝑖2 ) + 𝑝 < (𝛼 − 1) · 𝑝 + 𝑝 = 𝛼 · 𝑝

≤ 𝑘 · 𝑝 ≤ 1

Rearranging, we obtain that the residual of player 𝑖2 is larger

that the peak value:

𝑝 < 1 −
∑︁

𝑞 𝑗 ∈ 𝐽𝑖
2
(𝑠 )

𝑤 𝑗 (𝑠−𝑖2 ) = 𝑦𝑖2 (𝑠)

By Lemma B.4, player 𝑖2 has a profitable deviation, in contradic-

tion.

For the case where 𝛼 ≥ 𝑘 + 1, we show a similar result. However,

there’s a more nuanced point to consider. The residuals not allo-

cated to winning are distributed across multiple queries involving

multiple players. If these residuals are focused on a single player,

he might not have a profitable deviation. However, this distribution

implies that another player will be minimally affected by others in

the queries they lose, and he will have an incentive to deviate.

Let 𝑖𝑚 be a winner in query 𝑞𝑚 . We bound 𝑥𝑖𝑚 (𝑠) using the

upper bound from Lemma B.8,

𝑥𝑖𝑚 (𝑠) ≤ 1 − 𝑘 ·𝑤𝑚 (𝑠)
Recall that if ℎ𝑚 (𝑠) ≥ 2, 𝑥𝑖𝑚 (𝑠) = 0.

Now that we’ve bounded 𝑥𝑖 (𝑠) for all players, we get the follow-
ing:

∑︁
𝑖∈𝐼𝑢

∑︁
𝑞 𝑗 ∈ 𝐽𝑖 (𝑠 )

𝑤 𝑗 (𝑠−𝑖 ) ≤
𝑛∑︁
𝑖=1

∑︁
𝑞 𝑗 ∈ 𝐽𝑖 (𝑠 ) :ℎ 𝑗 (𝑠 )=1

𝑤 𝑗 (𝑠−𝑖 )

≤
𝑛∑︁
𝑖=1

𝑥𝑖 (𝑠)

= 𝑥𝑖𝑚 (𝑠) +
∑︁

𝑖∈𝐼𝑢\{𝑖𝑚 }
𝑥𝑖 (𝑠)

< 1 − 𝑘 ·𝑤𝑚 (𝑠) + (𝛼 − 1) ·𝑤𝑚 (𝑠)
= 𝑤𝑚 (𝑠) · (𝛼 − (𝑘 + 1)) + 1

< 𝑝 · (𝛼 − (𝑘 + 1)) + 1

< 𝑝 · 𝛼

Therefore, there exists a player 𝑖3 ∈ 𝐼𝑢 such that:∑︁
𝑞 𝑗 ∈ 𝐽𝑖

3
(𝑠 )

𝑤 𝑗 (𝑠−𝑖3 ) < 𝑝

Rearranging, we see that by the definition of 𝑦𝑖3 (𝑠), 𝑖3’s residual
is:

𝑦𝑖3 (𝑠) = 1 −
∑︁

𝑞 𝑗 ∈ 𝐽𝑖
3
(𝑠 )

𝑤 𝑗 (𝑠−𝑖3 ) > 1 − 𝑝 ≥ 𝑝

By Lemma B.4, 𝑖1 has a profitable deviation, by contradiction. □

We now show that if 𝑝 > 1

2
there is no pure equilibrium in the

game when 𝑛 < 𝑚.

Lemma B.11. Let 𝐺 = ⟨𝑛,𝑚, 𝑝⟩ such that 𝑛 < 𝑚 and 𝑝 > 1

2
. Then

𝐺 doesn’t have a pure equilibrium.

Proof. Following similar steps as in the proof of B.10, we can

obtain that 𝑤𝑚 (𝑠) ≤ 1

2
. If 𝑤𝑚 (𝑠) > 1

2
then the number of queries

in which each of the players win is exactly 1. However, this leads to∑𝑛
𝑖=1 |𝐽𝑖 (𝑠) | = 𝑛 < 𝑚, which means there exists a query where all

players publish 𝑑
𝑗
𝑖
= 0. Every player would then have a profitable

deviation, by contradiction.

Thus, every player can win in no more than two queries, i.e.

|𝐽𝑖 (𝑠) | ≤ 2. Therefore 𝑛 < 𝑚 ≤ ∑𝑛
𝑖=1 |𝐽𝑖 (𝑠) | ≤ 2 ·𝑛, and the minimal

winning value is at least
1

2
: 𝑤𝑚 (𝑠) ≥ 1

2
. There exists a player 𝑖1

such that𝑈𝑖1 (𝑠) > 1, therefore𝑤𝑚 (𝑠) = 1

2
.

Overall, we get that 𝑥𝑖 (𝑠) < 1

2
for every player 𝑖 . So if𝑤1 (𝑠) > 1

2
,

then the residual of the player 𝑖2 that is the winner in query 𝑞1 is:

𝑦𝑖2 (𝑠) = 1 −𝑤1 (𝑠−𝑖2 ) >
1

2

= 𝑤𝑚 (𝑠)

By Lemma B.4, 𝑖2 has a profitable deviation, by contradiction.

In conclusion, 𝑤1 (𝑠) = . . . = 𝑤𝑚 (𝑠) = 1

2
. Thus, for all players:

𝑥𝑖 (𝑠) = 0.

Going back to player 𝑖1, recall that 𝑈𝑖1 (𝑠) > 1. Hence, 𝑖1 is the

unique winner in at least one of the two queries in which he wins.

Therefore we get that the residual of 𝑖1 is:

𝑦𝑖1 (𝑠) >
1

2

By Lemma B.4, 𝑠 is not an equilibrium - by contradiction. □

Following the specific case where a query had a sole winner with

a winning value less than the peak value 𝑝 , we now extend our

analysis to cover all possible configurations of the strategy profile

𝑠 . Specifically, we complete the proof for Lemma B.9:

Lemma B.9. Let 𝐺 = ⟨𝑛,𝑚, 𝑝⟩ such that 𝑛 < 𝑚 and 𝑠 be a pure
equilibrium profile. Then for every query 𝑞 𝑗 ∈ 𝑄 ,

𝑤 𝑗 (𝑠) ≥ 𝑝

Proof. Let 𝑘 =

⌊
1

𝑝

⌋
, and assume by contradiction that𝑤𝑚 (𝑠) <

𝑝 .

According to Lemma B.11, if 𝑝 > 1

2
then the game doesn’t possess

a pure equilibrium. Given that 𝑠 is a pure equilibrium profile, it

necessarily follows that 𝑝 ≤ 1

2
, thereby ensuring that 𝑘 ≥ 2. If

there exists a query 𝑞′
𝑗
such that 𝑤 ′

𝑗
(𝑠) < 𝑝 and ℎ′

𝑗
(𝑠) = 1, then
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by Lemma B.10 𝑤𝑚 (𝑠) ≥ 𝑝 . Hence, for all queries 𝑞′
𝑗
such that

𝑤 ′
𝑗
(𝑠) < 𝑝 it holds that ℎ′

𝑗
(𝑠) ≥ 2.

If there exists any query 𝑞′
𝑗
such that 𝑤 ′

𝑗
(𝑠) < 𝑝 and ℎ′

𝑗
(𝑠) = 1,

then by Lemma B.10, we should have 𝑤𝑚 (𝑠) ≥ 𝑝 . Therefore, any

query 𝑞′
𝑗
where𝑤 ′

𝑗
(𝑠) < 𝑝 must have ℎ′

𝑗
(𝑠) ≥ 2.

We now argue that the number of winning queries |𝐽𝑖 (𝑠) | for
any player 𝑖 is at most 𝑘 . Assume by contradiction that there exists

a player 𝑖1 that has |𝐽𝑖1 (𝑠) | ≥ 𝑘 + 1.

Define 𝑇 as the set of queries where 𝑖1 wins but the winning

value is less than 𝑝:

𝑇 ≔ {𝑞 𝑗 ∈ 𝐽𝑖1 (𝑠) : 𝑤 𝑗 (𝑠) < 𝑝}
Under the false assumption that |𝑇 | > 1, let 𝑞 𝑗2 ∈ 𝐽𝑖1 (𝑠) \𝑇 .

By Lemma B.5, the residual 𝑦𝑖1 (𝑠) = 0, precluding 𝑖1 from being

the unique winner in any query. Therefore, ℎ 𝑗2 (𝑠) ≥ 2, and 𝑖1 can

profitably deviate by shifting his efforts from query 𝑞 𝑗2 in order

to win solely in all queries in 𝑇 . If |𝑇 | ≥ 2, this deviation becomes

profitable, leading to a contradiction. Thus, we conclude |𝑇 | ≤ 1.

By the definition of 𝑇 , for every query 𝑞 𝑗 ∈ 𝐽𝑖1 (𝑠) \𝑇 : 𝑑
𝑗
𝑖1

= 𝑝 .

Therefore the size of 𝐽𝑖1 (𝑠) \ 𝑇 is upper bounded by 𝑘 . Overall,

|𝐽𝑖1 (𝑠) | = 𝑘 + 1.

By Lemma B.5, we know for player 𝑖1 it holds:

0 = 𝑦𝑖1 (𝑠)

= 1 −
∑︁

𝑞 𝑗 ∈ 𝐽𝑖
1
(𝑠 )

𝑤 𝑗 (𝑠−𝑖1 )

= 1 −
∑︁

𝑞 𝑗 ∈ 𝐽𝑖
1
(𝑠 )

𝑤 𝑗 (𝑠)

= 1 −𝑤𝑚 (𝑠) − 𝑘 · 𝑝
Rearranging gives that theminimalwinning value over all queries

is:

𝑤𝑚 (𝑠) = 1 − 𝑘 · 𝑝
Let 𝑖2 be a player that is not a winner in query 𝑞𝑚 , so 𝑞𝑚 ∉ 𝐽𝑖2 (𝑠).

Using similar arguments as for 𝑖1, there exists a query 𝑞 𝑗2 ∈ 𝐽𝑖2 (𝑠)
where 𝑤 𝑗2 (𝑠) = 𝑝 . If ℎ 𝑗2 (𝑠) ≥ 2, then 𝑖2 has a profitable deviation

to a strategy where he wins solely in query 𝑞𝑚 instead of sharing

his reward for query 𝑞 𝑗2 . Hence, 𝑖2 is a unique winner in 𝑞 𝑗2 , and

therefore𝑤 𝑗 (𝑠−𝑖2 ) < 𝑤𝑚 (𝑠). This applies to every for every query

𝑞 𝑗2 ∈ 𝐽𝑖2 (𝑠) where 𝑤 𝑗2 (𝑠) = 𝑝 , and 𝑖2 is the unique winner in all

queries where he is the winner.

Therefore, the residual of 𝑖2 is:∑︁
𝑞 𝑗 ∈ 𝐽𝑖

2
(𝑠 )

𝑤 𝑗 (𝑠−𝑖 ) < min{(𝑛−2), 𝑘} · (1−𝑘 ·𝑝) < 𝑘 · (1−𝑘 ·𝑝) ≤ 1−𝑝

And then the residual of player 𝑖2 is:

𝑦𝑖2 (𝑠) = 1 −
∑︁

𝑞 𝑗 ∈ 𝐽𝑖
2
(𝑠 )

𝑤 𝑗 (𝑠−𝑖 ) > 𝑝

By Lemma B.4, 𝑖2 has a profitable deviation - by contradiction.

So |𝐽𝑖 (𝑠) | = 𝑘 for every player 𝑖 . Now, every player 𝑖𝑚 that is

a winner in query 𝑞𝑚 has a profitable deviation, since 𝑦𝑖𝑚 (𝑠) > 0

(Lemma B.5). Therefore𝑤𝑚 (𝑠) ≥ 𝑝 . □

We showed that for𝑚 > 𝑛, the value of the winners in all queries

is at least 𝑝 . Next, we show that there are at most 𝑛 queries in which

there is a unique winner. Specifically, each player can be the unique

winner no more than one query.

Lemma B.12. Let 𝐺 = ⟨𝑛,𝑚, 𝑝⟩ such that 𝑛 < 𝑚, and let 𝑠 be a
pure equilibrium profile. Then every player is the unique winner in at
most one query.

Proof. Let 𝑘 =

⌊
1

𝑝

⌋
. Lemma B.9 states that for every query

𝑞 𝑗 , 𝑤 𝑗 (𝑠) ≥ 𝑝 . In conjunction with Lemma B.7, this allows us to

conclude that |𝐽𝑖 (𝑠) | = 𝑘 , meaning each player wins exactly 𝑘

queries.

Assume by contradiction that there exists some player 𝑖1 that is

the unique winner in two queries 𝑞 𝑗1 , 𝑞 𝑗2 . Let 𝑞 𝑗3 ∈ 𝑄 be a query in

which 𝑖1 is a loser, i.e. 𝑞 𝑗3 ∉ 𝐽𝑖1 (𝑠).
Since 𝑝 > 1

𝑘+1 , there exists some 𝜖 > 0 s.t. the following deviation

is well defined:

𝑑
𝑗
𝑡 =


(1 − 𝑝 · 𝑘) + 𝜖 if 𝑞 𝑗 ∈ {𝑞 𝑗1 , 𝑞 𝑗2 }
𝑝 if 𝑞 𝑗 ∈ 𝐽𝑖 (𝑠) ∪ {𝑞 𝑗3 } \ {𝑞 𝑗1 , 𝑞 𝑗2 }
0 otherwise

After deviating to 𝑑𝑡 , player 𝑖1’s position remains unchanged in

all queries 𝑞 𝑗 ∈ 𝐽𝑖1 (𝑠). Additionally, 𝑖1 now becomes at least one of

the winners in 𝑞 𝑗3 . Consequently, his utility increases by at least
1

𝑛 ,

which signifies a profitable deviation. This contradicts the initial

state 𝑠 being a pure equilibrium. □

Building on the necessary conditions established in Lemmas B.9

and B.12, we demonstrate that the game lacks pure equilibrium

when 𝑝 > 1

⌈ 2·𝑚𝑛 −1⌉ . Then, we demonstrate that when 𝑝 ≤ 1

⌈ 2·𝑚𝑛 −1⌉ ,
there exists an equilibrium in the game, and it can be achieved by

Algorithm 1.

Theorem 3.4. The game 𝐺 = ⟨𝑛,𝑚, 𝑝⟩ with 𝑛 < 𝑚 has a pure
Nash equilibrium iff 𝑝 ≤ 1

⌈ 2·𝑚𝑛 −1⌉ .

Proof. Let 𝑘 ∈ N such that
1

𝑘+1 < 𝑝 ≤ 1

𝑘
. We need to show that

𝐺 possess a pure equilibrium iff 𝑘 ≥
⌈
2·𝑚
𝑛

⌉
− 1.

Lemma B.11 establishes that no equilibrium exists for 𝑝 > 1

2
, so

we consider scenarios where 𝑘 ≥ 2. From Lemma B.9, it follows that

for every query 𝑞 𝑗 , the winning value𝑤 𝑗 (𝑠) ≥ 𝑝 . This determines

that each player 𝑖 is a winner in exactly 𝑘 queries: |𝐽𝑖 (𝑠) | = 𝑘 .

Let 𝑡 be the number of queries in which ℎ 𝑗 (𝑠) = 1:

𝑡 =
∑︁
𝑞 𝑗 ∈𝑄

1ℎ 𝑗 (𝑠 )=1 =
∑︁

𝑞 𝑗 ∈𝑄 :ℎ 𝑗 (𝑠 )=1
ℎ 𝑗 (𝑠)
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Considering the total number of winning positions, we have:

𝑛 · 𝑘 =

𝑚∑︁
𝑗=1

ℎ 𝑗 (𝑠)

=

𝑚∑︁
𝑗 :ℎ 𝑗 (𝑠 )=1

ℎ 𝑗 (𝑠) +
𝑚∑︁

𝑗 :ℎ 𝑗 (𝑠 )≥2
ℎ 𝑗 (𝑠)

= 𝑡 +
𝑚∑︁

𝑗 :ℎ 𝑗 (𝑠 )≥2
ℎ 𝑗 (𝑠)

≥ 𝑡 + (𝑚 − 𝑡) · min

𝑗 :ℎ 𝑗 (𝑠 )≥2
ℎ 𝑗 (𝑠)

= 𝑡 + 2 · (𝑚 − 𝑡)
= 2 ·𝑚 − 𝑡

Lemma B.12 restricts each player to being the unique winner in

at most one query, implying 𝑡 ≤ 𝑛. Rearranging, we get that the

value of 𝑘 is:

𝑘 ≥ 2 ·𝑚 − 𝑡

𝑛
≥ 2 ·𝑚

𝑛
− 1

Since 𝑘 ∈ N, the necessary conditions for equilibrium require

that 𝑘 ≥
⌈
2·𝑚
𝑛

⌉
− 1. Consequently, if 𝑝 > 1

⌈ 2·𝑚𝑛 −1⌉ then a pure Nash

equilibrium cannot exist in the game.

Next, we show that if 𝑘 ≥
⌈
2·𝑚
𝑛

⌉
−1, the game has an equilibrium,

which can be achieved by Algorithm 1. Let 𝑠
alg

denote the strategy

profile obtained by Algorithm 1.

At the conclusion of the algorithm, each player wins in exactly 𝑘

queries. Since 𝑘 ≥
⌈
2·𝑚
𝑛 − 1

⌉
, it ensures that at least one player se-

lects each query𝑞 𝑗 , resulting in𝑤 𝑗 (𝑠) = 𝑝 for every query. Through-

out the algorithm, players choose the query with the fewest current

winners, maintaining the condition:

max

𝑞 𝑗 ∈𝑄
ℎ 𝑗 (𝑠) − min

𝑞 𝑗 ∈𝑄
ℎ 𝑗 (𝑠) ≤ 1

By the end of the algorithm, the number of winners in each query

𝑞 𝑗 is bounded by: ⌊
𝑛 · 𝑘
𝑚

⌋
≤ ℎ 𝑗 (𝑠alg) ≤

⌈
𝑛 · 𝑘
𝑚

⌉
Assuming a lexical tie-breaking rule, no player ends up being the

sole winner in more than one query. If any player 𝑖𝑡 were to deviate

with a strategy 𝑑𝑡 , they could not potentially win in more than 𝑘

queries due to 𝑤 𝑗 (𝑠) ≥ 𝑝 > 1

𝑘+1 . Introducing this strategy would

only increase the number of winners in any query in which 𝑖𝑡 didn’t

previously won by one. Consequently, such a change would not

improve the player’s utility, as it does not offer a better payoff than

the current strategy. Thus, no deviation from 𝑠
alg

yields a higher

utility, and 𝑠
alg

is a pure Nash equilibrium. □
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