
Published in Transactions on Machine Learning Research (03/2025)

ASTRA: A Scene-aware TRAnsformer-based model for tra-
jectory prediction

Izzeddin Teeti izzeddin.teeti@gmail.com
Visual Artificial Intelligence Laboratory (VAIL), Oxford Brookes University

Aniket Thomas∗ aniket.thomas@iitb.ac.in
Indian Institute of Technology Bombay

Munish Monga∗ munish30monga@gmail.com
Indian Institute of Technology Bombay

Sachin Kumar∗ sgiroh@gmail.com
Indian Institute of Technology Bombay

Uddeshya Singh∗ ud.uddeshya16@gmail.com
Indian Institute of Technology Bombay

Andrew Bradley abradley@brookes.ac.uk
Oxford Brookes University

Biplab Banerjee getbiplab@gmail.com
Center of Machine Intelligence & Data Science, Indian Institute of Technology Bombay

Fabio Cuzzolin fabio.cuzzolin@brookes.ac.uk
Visual Artificial Intelligence Laboratory (VAIL), Oxford Brookes University

Reviewed on OpenReview:

Abstract

We present ASTRA (A Scene-aware TRAnsformer-based model for trajectory prediction),
a light-weight pedestrian trajectory forecasting model that integrates the scene context,
spatial dynamics, social inter-agent interactions and temporal progressions for precise fore-
casting. We utilised a U-Net-based feature extractor, via its latent vector representation, to
capture scene representations and a graph-aware transformer encoder for capturing social
interactions. These components are integrated to learn an agent-scene aware embedding,
enabling the model to learn spatial dynamics and forecast the future trajectory of pedes-
trians. The model is designed to produce both deterministic and stochastic outcomes, with
the stochastic predictions being generated by incorporating a Conditional Variational Auto-
Encoder (CVAE). ASTRA also proposes a simple yet effective weighted penalty loss function,
which helps to yield predictions that outperform a wide array of state-of-the-art determin-
istic and generative models. ASTRA demonstrates an average improvement of 27%/10% in
deterministic/stochastic settings on the ETH-UCY dataset, and 26% improvement on the
PIE dataset, respectively, along with seven times fewer parameters than the existing state-
of-the-art model (see Figure 1). Additionally, the model’s versatility allows it to generalize
across different perspectives, such as Bird’s Eye View (BEV) and Ego-Vehicle View (EVV).

∗Authors are listed in alphabetical order and contributed equally.

1

Published in Transactions on Machine Learning Research (03/2025)

Figure 1: Comparison of average (minADE20/minFDE20) against the number of parameters for various
models on the ETH-UCY dataset. Each point represents a different model, with the model name and
number of parameters in millions indicated. Our model, ASTRA, achieves state-of-the-art results with the
least number of parameters, demonstrating its efficiency and effectiveness in pedestrian trajectory forecasting.

1 Introduction

Motivation & Importance The pursuit of forecasting human trajectories is central, acting as a cor-
nerstone for devising secure and interactive autonomous systems across various sectors. This endeavour is
crucial in a wide array of applications, encompassing autonomous vehicles, drones, surveillance, human-robot
interaction, and social robotics. Furthermore, it is crucial for predictive models to strike a balance between
accuracy, dependability, and computational efficiency, given the imperative for these models to function on
in-vehicle processing units with limited capabilities. The challenge of trajectory prediction involves esti-
mating the future locations of agents within a scene, given its past trajectory. This estimation task can be
tackled either through Bird’s Eye View (BEV) or Ego-Vehicle View (EVV) perspectives. This demands a
comprehensive understanding of the scene, in addition to spatial, temporal, and social aspects that govern
human movement and interaction.

Limitations in Existing Models To solve the prediction problem, various building blocks, including
RNNs, 3D-CNNs, and transformers, have been employed to address the temporal dimension, with trans-
formers demonstrating superior efficacy Giuliari et al. (2021a); Rasouli & Kotseruba (2023). However,
temporal modelling alone is unaware of the social behaviour of the agents within the scene, i.e. how agents
interact with one another. In addressing the social dimension, methods such as Social Pooling Pang et al.
(2021) and Graph Neural Networks Kipf & Welling (2016) (GNNs) have been explored, with GNN emerging
as the most effective Xu et al. (2023). Some researchers have integrated both transformers and GNN, either
sequentially or in parallel, to refine the prediction paradigm Li et al. (2022); Chen et al. (2023); Jia et al.
(2023); Liu et al. (2022). However, these approaches entail heightened computational burdens due to the
resource-intensive nature of both GNNs and transformers. Furthermore, transformers, by their inherent
design, may pose potential challenges in preserving information, as they do not inherently accommodate
the graph structure in their input. On the other hand, scene dimension, or scene embedding, delves into
the interaction between an agent and its surroundings. Rasouli et al. (2021) and Mangalam et al. (2021)
utilised semantic segmentation maps which enhanced the model’s grasp of environmental context. Another
aspect across all surveyed papers, however, is their tendency to focus exclusively on either BEV or EVV,
rarely considering both like Yao et al. (2021). This narrow focus becomes particularly problematic in, e.g.,
unstructured environments where a BEV might not be available, limiting the applicability of these methods.

Contributions of ASTRA In light of these challenges, this paper introduces a lightweight model, coined
ASTRA (A Scene-aware TRAnsformer-based model for trajectory prediction). By integrating a U-Net-

2

Published in Transactions on Machine Learning Research (03/2025)

based key-point extractor Ribera et al. (2019), ASTRA captures essential scene features without relying
on explicit segmentation map annotations and alleviates the data requirements and preprocessing efforts
highlighted earlier. This method also synergises the strengths of GNNs in representing the social dimension
of the problem and of transformers in encoding its temporal dimension. Crucially, our approach processes
spatial, temporal, and social dimensions concurrently, by embedding the graph structure into the token’s
sequence prior to the attention mechanism, rendering the transformer graph-aware. The model does so while
keeping the complexity of the model minimal. To refine the model’s ability to accurately learn trajectories,
we implemented a modified version of the trajectory prediction loss, incorporating a penalty component
(detailed in Section 4.5). This is in contrast to Yuan et al. (2021) which does not build a graph and does
not preserve the social structure; they distinguish between self-agent and all other agents, then they treat
all other agents the same without encoding the positional or structural encodings.

Furthermore, distinct from the vast majority of models in this domain, our model demonstrates generalis-
ability by being applicable to both types of trajectory prediction datasets, BEV and EVV.

Our methodology underwent evaluation using renowned benchmark trajectory prediction datasets ETH
Pellegrini et al. (2009a), UCY Lerner et al. (2007), and the PIE dataset Rasouli et al. (2019). The empirical
findings highlight ASTRA’s outperforming the latest state-of-the-art methodologies. Notably, our method
showcased significant improvements of 27% on the deterministic and 10% on the stochastic settings of the
ETH and UCY datasets and 26% on PIE.

While maintaining high accuracy, ASTRA also features a significant reduction in the number of model’s
parameters (Figure 1), FLOPs (Floating Point Operations), inference running time & MACs (Multiply-
Accumulate Operations) than the existing competing state-of-the-art model Mao et al. (2023); Yuan et al.
(2021).

The paper’s highlights are as follows:

1. A lightweight model architecture that is seven times lighter than the existing state-of-the-art model,
tailored for deployment on devices with limited processing capabilities while maintaining state-of-
the-art predictive performance.

2. A loss-penalization strategy that enhances trajectory prediction, featuring a weighting trajectory
loss function that dynamically adjusts penalty progression in response to prediction challenges.

3. Utilisation of the Scene-aware embeddings with a U-Net-based feature extractor to encode scene
representations from frames, addressing a critical aspect often overlooked in recent works.

4. A graph-aware transformer encoder that contributes to generating Agent-Scene aware embedding
for improved prediction accuracy, ensuring informed inter-agent interaction capture.

Paper Organisation The paper is structured as follows: Section 2 reviews related work in trajectory
prediction. Sections 3 and 4 defines the problem and details ASTRA’s architecture and key innovations, re-
spectively. Section 5 describes the experimental setup. Section 6 presents empirical findings and performance
comparisons. Finally, Section 7 summarizes contributions, limitations, and future directions.

2 Related Work

2.1 Stochastic vs. Deterministic Approaches in Trajectory Prediction

The trajectory prediction problem is usually addressed in two ways: stochastic predictions Mao et al. (2023);
Yuan et al. (2021); Xu et al. (2022b); Yao et al. (2021) and deterministic predictions Helbing & Molnar
(1995); Pellegrini et al. (2009b); Alahi et al. (2016). A deterministic approach assumes a fixed future and
produces only a single, most probable trajectory per input motion, making it suitable for scenarios where
uncertainty is minimal or a single best estimate is required. In contrast, a stochastic approach acknowledges
uncertainty in future motion and generates multiple possible trajectories for the same input, capturing the in-
herent variability in human movement. Stochastic approaches utilizes generative techniques like Conditional

3

Published in Transactions on Machine Learning Research (03/2025)

Variational Auto-Encoders (CVAEs) Yuan et al. (2021); Yao et al. (2021), Generative Adversarial Networks
(GANs) Huang et al. (2021), Normalizing Flows Bhattacharyya et al. (2020), or Denoising Diffusion Prob-
abilistic Models Mao et al. (2023) to introduce randomness into the prediction process, thereby generating
diverse future trajectories that better represent the distribution of possible pedestrian movements. ASTRA,
like some prior works Xu et al. (2023); Yao et al. (2021); Salzmann et al. (2020), supports both deterministic
and stochastic predictions.

2.2 Social & Scene-aware Modelling

Approaches to Agent-Agent Interaction Modelling The social dimension focuses on capturing agent-
agent interactions, emphasizing how individuals or objects influence each other’s movements within a shared
space. Notably, some methodologies incorporate social pooling, concurrently with attention mechanisms
Pang et al. (2021). Algorithms in this domain predominantly leverage various forms of Graph Neural
Networks (GNNs) to encapsulate the social dynamics among agents. Some methods employ a fully connected
undirected graph, encompassing all scene agents Xu et al. (2023); Gilles et al. (2021); Kosaraju et al. (2019).
This approach, albeit comprehensive, escalates exponentially with the number of agents (nodes). Conversely,
other methods opt for sparsely connected graphs, establishing connections solely among agents within a
proximal range, thereby reducing the linkage count substantially Fang et al. (2021); Girase et al. (2021);
Salzmann et al. (2020); Weng et al. (2021). In a similar vein, Yuan et al. (2021); Salzmann et al. (2020)
proposes sparse, directional graphs, predicated on the premise that different agent types possess varying
perceptual ranges. Regarding the optimal depth of GNN layers, Addanki et al. (2021) advocate for deeper
graphs to enhance performance. This stands in contrast to the findings of Weng et al. (2021) and Liu et al.
(2020), who posit that two layers are optimal. Nevertheless, this depth increases computational demands,
particularly when agent nodes are numerous, posing challenges for autonomous vehicle applications reliant
on edge devices for processing.

Scene Embeddings The scene dimension, extracted from the video frames, includes the low-level rep-
resentation of the physical environment, obstacles, and any elements that could affect the agent’s path,
ensuring a comprehensive understanding of both social and environmental factors in predicting movement
trajectories. Rasouli et al. (2021) and Mangalam et al. (2021) capture scene dimension with the help of
semantic segmentation to delineate visual attributes of varied classes, subsequently elucidating their interre-
lations via attention. However, obtaining a panoptic segmentation mask, might not be always feasible. Also,
this approach introduces a considerable dependency on the availability of additional segmentation maps,
presenting a challenge in terms of data requirements and preprocessing efforts.

2.3 Temporal Dimension

Understanding the trajectory history of an agent significantly augments the predictive accuracy regarding
its potential future path. Predominantly, ego-camera-based models are tailored to shorter temporal horizons
and employ 3D Convolutional Neural Networks (3D-CNNs) Fang et al. (2021); Kotseruba et al. (2021).
Some research, instead, adopts Hidden Markov Models (HMMs) for temporal analysis Cai et al. (2020).
For scenarios necessitating extended time horizon considerations, more intricate structures are proposed,
including Transformers Yuan et al. (2021); Xu et al. (2023); Giuliari et al. (2021b); Chen et al. (2021) and
various forms of Recurrent Neural Networks (RNNs) Girase et al. (2021), including Long Short-Term Memory
networks (LSTMs) Rasouli & Kotseruba (2023); Bhattacharyya et al. (2021); Fang et al. (2021) and Gated
Recurrent Units (GRUs) Gilles et al. (2021). Both Transformer and RNN-based models have exhibited
superior performance, often achieving state-of-the-art results in this domain. However, some of these models
tend to address the temporal dimension in isolation from the social context. This segregated approach
potentially results in information loss and contributes to an increased computational load, necessitated by
the addition of separate components to handle the social dimension. Consequently, there emerges a pressing
demand for integrated models capable of concurrently processing both temporal and social dimensions. A
promising direction in this regard is the development of graph-aware transformers, which encapsulate the
essence of both temporal dynamics and social interactions within a unified framework.

4

Published in Transactions on Machine Learning Research (03/2025)

2.4 Graph-aware Transformers

Graph-aware transformers aim to compound the benefits of graphs (with their associated social embeddings)
and of transformers, with their acclaimed attention mechanism and temporal embeddings. Notably, these
advancements have predominantly catered to graph-centric datasets like ACTOR Tang et al. (2009) and
CHAMELEON SQUIRREL Rozemberczki et al. (2021). Direct application of graph-aware transformers
remains untouched in pedestrian trajectory forecasting, with prevalent methodologies leaning towards trans-
formers processing embeddings emanating from graphs Li et al. (2022); Chen et al. (2023); Jia et al. (2023).
There has been a discernible preference for using GNN and transformer blocks, rather than fully-integrated
graph-aware transformers.

A comprehensive evaluation of numerous contemporary graph-transformer models across three graph-centric
datasets is conducted in Müller et al. (2023). The analysis reveals a consistent pattern: models employing
Random Walk for structural encoding exhibit superior performance across all tested datasets. Building
on this empirical evidence, our approach utilizes Random Walk to encode the pedestrian graph, which is
then seamlessly integrated into the transformer architecture. This integration is designed to yield a graph-
aware transformer, thereby enhancing the model’s capability to effectively capture and interpret complex
pedestrian dynamics within various environments. To the best of the authors’ knowledge, this is the first
work towards utilising a graph-aware transformer to solve the trajectory prediction problem, opposing many
methods which use graphs along with transformers.

3 Problem Formulation

The objective of trajectory prediction is to forecast a pedestrian’s future position based on their observed
historical trajectory. Formally, the historical trajectory of A target agents is given as a sequence of coordi-
nates:

X = {Xa
t | t ∈ (1, 2, . . . , Tobs); a ∈ (1, 2, . . . , A)}, (1)

where Xa
t represents the position of agent a at time t over the past Tobs time steps. For bird’s-eye view

(BEV) datasets, Xa
t consists of 2D coordinates {xa

t , ya
t }. For egocentric view (EVV) datasets, it consists of

bounding box coordinates {xa
1,t, ya

1,t, xa
2,t, ya

2,t}. Additionally, the corresponding visual input frames/images
are given as I = {It | t ∈ (1, 2, . . . , Tobs)}.

Deterministic Setting The goal of ASTRA is to predict deterministic future trajectories for the pedes-
trians. In the deterministic setting, the model predicts future trajectory coordinates for each of the A agents
over the next Tpred time steps:

Ŷ = {Ŷ a
t | t ∈ (1, 2, . . . , Tpred); a ∈ (1, 2, . . . , A)}, (2)

where Ŷ a
t represents the predicted position of agent a at future time t, and the ground truth trajectory is

denoted as Y = {Y a
t | t ∈ (1, 2, . . . , Tpred); a ∈ (1, 2, . . . , A)}.

Stochastic Setting In the stochastic setting, the goal is to learn a generative model parameterized by θ
as pθ(Y|X, I), which, given the historical observations X and I, generates K possible future trajectories:

Y = {Ŷ (1), Ŷ (2), . . . , Ŷ (K)}. (3)

This enables the model to capture the inherent uncertainty in pedestrian motion by producing diverse
trajectory hypotheses.

5

Published in Transactions on Machine Learning Research (03/2025)

Scene-aware
Transformer

Encoder

Concatenate
1
2...

Tobs

TObs+1
TObs+2...

TPred

Past frames
coordinates

Extracted Future
Trajectories

RWPE
1

...

1
2

Tobs

Concatenate

Predicted
Trajectories

Actual
Trajectories

Sinosuidal Temporal
Encoding

Concatenate

1
2...

TPred
Sequence

Coordinates

ENC

U-Net Based
Keypoint Extractor

DEC
12

Tobs

...

Past Frames
Images

Agent-aware
Transformer

Encoder

Sinosuidal Temporal
Encoding

Latent
Representaion

Future frames
coordinates

CVAE
for stochastic

predictions

deterministic
predictions

: Frozen : Trainable

Figure 2: Model Architecture. Overview of ASTRA model architecture for pedestrian trajectory forecasting.

4 ASTRA Model

4.1 High-Level Overview

The encoder part of our model consists of two main components: A scene-aware component and an agent-
aware component. While the former is dedicated to encoding the scene, and encapsulating the contextual
details, the latter focuses on encoding the spatial, temporal, and social dimensions of the agents, as shown in
Figure 2. The output from these two components is aggregated before being decoded to generate predicted
future trajectories for deterministic or stochastic predictions.

4.2 Scene-aware Transformer Encoder

12
Tobs

...

Frames

ENC

U-Net Based
Keypoint Extractor

12

Tobs

...

DEC

Corresponding
Keypoints

Figure 3: Pretraining U-Net based keypoint extractor.

In order to learn essential information about the scene’s spatial layout and the positional dynamics of agents
within it, the U-Net Ronneberger et al. (2015) is pre-trained to predict the location of pedestrians in the
frame using the method detailed in Ribera et al. (2019), which utilizes a specialized loss function, Weighted
Hausdorff Distance. This, in turn, helps the model learn a representation of the scene context (Figure
3), focusing on the pedestrians in the scene. This method of pre-training method allows the extraction of
essential scene features involving pedestrians —since keypoints or locations of the pedestrians are always
available in form of trajectories —without relying on explicit segmentation map annotations. This not
only alleviates the need for labor-intensive annotation processes but also enables more efficient training on
datasets where only pedestrian locations are provided.

A latent representation of pedestrian characteristics is obtained using a pre-trained U-Net encoder (Figure
2); this latent vector can include some crucial characteristics like spatial groupings and interactions with

6

Published in Transactions on Machine Learning Research (03/2025)

the environment. The Grad-CAM visualizations (Figure 4) highlight this capability, showing that the pre-
trained model pays attention to regions with a high likelihood of pedestrian activity. This step is crucial as
the U-Net extractor possesses the proficiency to discern both labelled and unlabelled pedestrians, depicted
in green and red, respectively in Figure 4a.

More sophisticated schemes to generate the scene representation, like transformer-based architectures, and
fusing social representations via gated cross-attention can also be considered but we leave exploring possibly
more effective and sophisticated architecture designs as future work. The U-Net-based keypoint extractor is
frozen after the pretraining (Figure 2) when used in ASTRA model architecture.

(a) Original Image (b) Grad-CAM Image (c) Overlayed Grad-CAM

Figure 4: Grad-CAM visualizations: In (a), the red circle indicates unlabelled pedestrians, while the
green square highlights labelled pedestrians. In (b), the U-Net-based keypoint extractor focuses on unlabelled
pedestrians as well, thereby capturing scene context from them too.

The latent representation of all frames (ΨScene) is treated as input tokens to the scene-aware single-layer
transformer encoder (TScene-aware), which in turn generates scene-aware embeddings (ΦScene) for each frame.
The single-layer transformer encoder architectural choice significantly contributes to the lightweight nature
of our model. The resulting scene embedding is:

ΨScene = ΓScene (ΥEncoder(I)) (4)
ΦScene = TScene-aware ([ΨScene; ΦTemporal]) (5)

where the latent representation of past input frame images (I) projected using a Multi-Layer Perceptron
(MLP) layer (ΓScene), and ΥEncoder(.) denotes the encoder part of the U-Net.

The temporal encoding ΦTemporal, crucial for capturing the temporal dynamics within the observed frames,
adopts the design of the traditional positional encoding Vaswani et al. (2017) and follows the work of Yuan
et al. (2021).

4.3 Agent-aware Transformer Encoder

The second component is dedicated to encoding the different dimensions of each agent for all agents in the
scene.

Spatial Dimension The spatial coordinates X of each agent are linearly projected using an MLP layer
(ΓSpatial) to obtain the spatial encoding (ΦSpatial). The spatial encoding belongs to RA×DS , where A is the
number of agents and DSp is the spatial feature dimension.

ΦSpatial = ΓSpatial(X) ∈ RA×DSp (6)

Temporal Dimension Relying solely on spatial embeddings is insufficient, as agents occupying the same
location in different frames would have identical spatial representations. To address this, we incorporate
temporal encoding to distinguish agents across time.

7

Published in Transactions on Machine Learning Research (03/2025)

To model temporal dependencies within pedestrian trajectories, we introduce temporal encodings for both
agents and the scene. These encodings guide the network in capturing sequential information, similar to
positional encodings in the Transformer architecture Vaswani et al. (2017). The temporal encoding ΦTemporal
belongs to RA×DT , where A is the number of agents and DT is the temporal feature dimension.

ΦTemporal(t, i) =

sin
(

t
100002i/DT

)
if i is even,

cos
(

t
100002i/DT

)
if i is odd.

∈ RA×DT (7)

Social Dimension Having the spatial and temporal dimensions of the agents is still not enough to un-
derstand their interaction in the scene. To capture the social dimension in this multi-agent environment, we
generate a fully connected undirected graph between agents, in which the nodes are the agents’ locations,
and the edges between agents are the reciprocal of the distance. Consequently, the closer the agents are to
each other, the stronger the link between them. Formally, we represent the social dimension using a graph
G = (V, E), where V is the set of agents and E is the collection of edges, with weights

eij = 1
d(vi, vj) (8)

where d(vi, vj) is the distance between agents vi and vj .

Subsequently, Random Walk Positional Encodings (RWPEs) Dwivedi et al. (2021) are used to capture
the structural relationships between nodes in the graph, such as their proximity and connectivity patterns.
RWPE leverages random walks to encode positional information, allowing the model to incorporate relational
dependencies between agents in a data-driven manner. By considering the number of paths and transition
probabilities between nodes, RWPE provides a meaningful representation of spatial interactions in a dynamic
environment.

These RWPEs are then projected using a separate MLP (ΓSocial) to obtain social encodings (ΦSocial). The
social encoding belongs to RA×DSo , where A is the number of agents and DSo is the social feature dimension:

ΦSocial = ΓSocial (RWPE(G)) ∈ RA×DSo (9)

This preserves the graph structure of the agents while making the transformer encoder graph-aware. Fur-
thermore, our method empowers the network to determine the significance of each agent relative to others
autonomously.

While we do not claim to be the first to use transformers or graphs, we claim that we are the first to
integrate RWPE directly into transformer tokens, creating a graph-aware transformer in the context of
trajectory prediction.

Aggregating After computing the spatial, temporal, and social representations for each agent, our model
concatenates them along the agent dimension. This ensures that each agent has a single feature vector con-
sisting of a timestamp (temporal encoding), a social feature vector, and a spatial feature vector. The con-
catenated representation is then processed by an agent-aware single-layer transformer encoder (TAgent-aware),
which generates the final agent-aware embedding (ΦAgents).

ΦAgents = TAgent-aware ([ΦSpatial; ΦTemporal; ΦSocial]) ∈ RA×(DSp+DT+DSo) (10)

4.4 Decoder

Stochastic Decoding To generate multiple stochastic trajectories, we learn a generative model,
pθ(Y|X, I) for which we adopted CVAE (Conditional Variational Auto Encoder). We train CVAE, sim-
ilar to Yuan et al. (2021) and Yao et al. (2021), to learn the inherent distribution of future target trajectories

8

Published in Transactions on Machine Learning Research (03/2025)

conditioned on observed past trajectories, by utilizing a latent variable Z. CVAE consists of three compo-
nents - prior network (pθ(Z|X̃)), recognition network (or posterior) (qϕ(Z|Y, X)) and generation network
(gν(Ŷ |Z)), parameterized by θ, ϕ and ν respectively. Here X̃ is the latent representation of X and I, obtained
after concatenating ΦAgents and ΦScene and Ŷ is the output of the generation network and are the predicted
future trajectories.

For CVAE, prior distribution (pθ(z|X̃)) is parameterized by N (µp
z, (σp

z)2). The approximate posterior distri-
bution (qϕ(z|Y, X)) is parameterized by N (µq

z, (σq
z)2), where µp

z and (σp
z)2 represent the mean and variance

of the prior distribution and µq
z and (σq

z)2 represent the mean and variance of the posterior distribution.
During training, we sample latent variable (z) from the recognition network (posterior distribution) and
feed it to the generation network ((gν(Ŷ |Z)), whereas during testing we sample z from the prior network
(prior distribution). We use the reparameterization trick to sample z through the mean and variance pairs of
(µp

z, (σp
z)2) and (µq

z, (σq
z)2), respectively. KL divergence Loss (LKL) help in minimizing the difference between

the distribution of latent variable(z) of prior and recognition network.

K samples are drawn from the learned distribution and decoded using an MLP to obtain future trajectories.
We optimize the parameters of the networks using the KL divergence which ensures that the prior network
implicitly learns the dependency between future trajectories (Y) and past trajectories (X)

LKL = DKL

(
qϕ(Z | Y, X)

∥∥ pθ(Z | X̃)
)

= DKL

(
N (µzq

, (σq
z)2)

∥∥ N (µzp
, (σzp

)2)
)
. (11)

Deterministic Decoding For deterministic predictions, CVAE is skipped and the outputs of both the
scene transformer (ΦScene) and the agents’ transformer (ΦAgents) are concatenated and directly passed
through an MLP decoder (ΓDecoder) to produce future trajectories (Ŷ) of the agents in the future frames as
shown in Figure 2, namely:

Ŷ = ΓDecoder([ΦScene; ΦAgents]) (12)

4.5 Weighted Loss Function

We introduce a weighted-penalty strategy that can be applied to common loss functions used in trajectory
prediction such as MSE and Smooth L1 Loss. The application of this strategy is through a dynamic penalty
function w(t), designed to escalate or de-escalate the significance of prediction errors as one moves further
into the future. The definition of the weighted loss function is given by:

Lweighted(Ŷ , Y) =
Tpred∑
t=1

w(t) · L(Ŷt, Yt). (13)

Where Ŷ and Y are the predicted and actual trajectories respectively, Tpred denotes the number of prediction
timesteps, w(t) represents the dynamic weighting function at time t, and L(Ŷt, Yt) is the predefined loss
function (e.g., MSE or SmoothL1 Loss) applied to the predicted and true positions at each time step t.

In time series data, as we move further into the future relative to the last observed data, the drift in
predictions tends to increase, leading to higher errors. Motivated by this intuition, we initially penalized
the predictions using linear and quadratic loss functions. These approaches showed improvements in overall
prediction accuracy. However, upon closer analysis of the results, we observed that in some trajectories,
there was a noticeable offset in the earlier parts of the predictions. To address this issue, we experimented
with a parabolic weighting function for the penalty. Empirically, this approach outperformed the linear and
quadratic strategies, yielding the most balanced and accurate predictions across the trajectories.

The weight function w(t) (generally defined as w(t) = f(t, Tpred, α, β)) is designed to be versatile, accommo-
dating a spectrum of mathematical formulations that align with the specific needs of the predictive model.
We used the parabolic weighted penalty, defined as:

w(t) = (α − β) ·
(

2 · t

Tpred
− 1

)2
+ β = 3

(
2 · t

Tpred
− 1

)2
+ 1 (14)

9

Published in Transactions on Machine Learning Research (03/2025)

where α and β are parameters that establish the bounds of the weighting function (during our experimen-
tations and hyperparameter tuning, we found that α = 4 and β = 1, as the optimal values), and f is an
adaptable function that governs the progression of weights at each timestep t.

In particular, the function w(t) may be selected from various mathematical forms, such as linear, parabolic,
or quadratic (discussed more in the supplementary materials). The choice of function enables the model to
adjust the penalty progression in alignment with the anticipated prediction challenge at each timestep.

Hence, in the stochastic setting, the final loss consists of the weighted loss and the KL divergence loss from
the CVAE. In contrast, in the deterministic setting, since the CVAE is not used, the KL term is omitted
from the final loss:

Lfinal = Lweighted(Ŷ , Y) + LKL. (15)

5 Experiments

5.1 Datasets & Evaluation Protocols

For a comprehensive evaluation, we benchmarked our model on three trajectory prediction datasets; namely,
ETH Pellegrini et al. (2009a), UCY Lerner et al. (2007), and PIE dataset Rasouli et al. (2019).

ETH-UCY (Bird’s Eye View) ETH and UCY offer a bird’s-eye view of pedestrian dynamics in urban
settings, including five datasets with 1,536 pedestrians across four scenes. For evaluation, we used their
standard protocol; leave-one-out strategy, observing eight time steps (3.2s) and predicting the following 12
steps (4.8s).

PIE (Ego-Vehicle View) In contrast, the PIE dataset provides an Ego-vehicle perspective, containing
over 6 hours of ego-centric driving footage, along with bounding box annotations for traffic objects, action
labels for pedestrians, and ego-vehicle sensor information Rasouli et al. (2019). A total of 1,842 pedestrian
samples are considered with the following split: Training(50%), Validation(40%) and Testing(10%) Rasouli
et al. (2019). Model performance is evaluated based on a shorter observational window of 0.5 seconds and
a prediction window of 1 second, providing insights into the model’s capability in rapidly evolving traffic
scenarios Rasouli & Kotseruba (2023).

5.2 Evaluation Metrics

We used the standard evaluation metrics of ADE and FDE for ETH-UCY deterministic settings and minADE
and minFDE for their stochastic settings. CADE, CFDE, ARB and FRB for PIE dataset. The supplementary
material explains these metrics.

5.3 Hyperparameter Tuning & Hardware Settings

The hyperparameters were initially tuned on the ETH subset of the ETH-UCY dataset and subsequently
applied across all subsets. The key architectural hyperparameters used in our model are as follows: spatial
embedding dimension (ΦSpatial ∈ R16), U-Net scene latent representation (ΨScene ∈ R16), temporal embed-
ding dimension (ΦTemporal ∈ R8), and random walk embedding (ΦSocial ∈ R8). The transformer encoder
consists of a single layer with two attention heads and a dropout rate of 0.2. To keep the model lightweight,
MobileNet v2 Sandler et al. (2018) encoder layers are used for U-Net to reduce computational overhead while
maintaining feature extraction efficiency.

For training, we employ the AdamW optimizer with a weight decay of 5 × 10−4 over 200 epochs. A cosine
annealing scheduler is used, starting with an initial learning rate of 1×10−3. All experiments were conducted
on an NVIDIA DGX A100 system with 8 GPUs, each equipped with 80 GB of memory.

10

Published in Transactions on Machine Learning Research (03/2025)

6 Results & Discussion

6.1 Quantitative Results

ETH-UCY For ETH-UCY, we compared our model results against several baselines. These comparisons
are presented in Table 1 and Table 4, which contains results primarily sourced from the EqMotion (CVPR
2023) Xu et al. (2023) for deterministic predictions and LeapFrog (CVPR 2023) Mao et al. (2023) for stochas-
tic predictions respectively. It is important to note that to provide a thorough comparative framework, we
independently computed and included additional models Wang et al. (2022); Yao et al. (2021) to their re-
spective tables as they were not originally part of the EqMotion or LeapFrog analysis. Our model advances
the state-of-the-art on ETH-UCY, outperforming the EqMotion Xu et al. (2023) by improving predictive
accuracy by approximately 27% on average for deterministic predictions as shown in Table 1 and approxi-
mately 10% on average improvement over LeapFrogMao et al. (2023) for stochastic predictions as shown in
Table 4, highlighting the efficacy of our approach in diverse scenarios. While ASTRA maintains superior
performance across most benchmarks, there are, however, some exception cases, like in the Hotel and Univ
scenes, where a notable proportion of pedestrians remain largely stationary throughout both the observation
and prediction windows, resulting in slightly inferior performance in these scenarios. We also highlight the
effectiveness of utilizing frame encodings from U-Net, as demonstrated in Table 4.

PIE Similarly, we benchmarked our model against various established models for the PIE dataset. The
comparative analysis is summarized in Table 2, with the reference results taken from PedFormer Rasouli &
Kotseruba (2023), demonstrating an average improvement of 26%.

Table 1: Deterministic Results: ADE/FDE results for ETH-UCY baselines. Best in bold, second best
underlined.

Model ETH Hotel Univ Zara1 Zara2 Average
Linear 1.33/2.94 0.39/0.72 0.82/1.59 0.62/1.21 0.77/1.48 0.79/1.59
S-LSTMAlahi et al. (2016) 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54
S-AttentionVemula et al. (2018) 1.39/2.39 2.51/2.91 1.25/2.54 1.01/2.17 0.88/1.75 1.41/2.35
SGAN-indGupta et al. (2018) 1.13/2.21 1.01/2.18 0.60/1.28 0.42/0.91 0.52/1.11 0.74/1.54
Traj++Salzmann et al. (2020) 1.02/2.00 0.33/0.62 0.53/1.19 0.44/0.99 0.32/0.73 0.53/1.11
TransFGiuliari et al. (2021b) 1.03/2.10 0.36/0.71 0.53/1.32 0.44/1.00 0.34/0.76 0.54/1.17
MemoNetXu et al. (2022b) 1.00/2.08 0.35/0.67 0.55/1.19 0.46/1.00 0.37/0.82 0.55/1.15
SGNetWang et al. (2022) 0.81/1.60 0.41/0.87 0.58/1.24 0.37/0.79 0.31/0.68 0.56/1.04
EqMotionXu et al. (2023) 0.96/1.92 0.30/0.58 0.50/1.10 0.39/0.86 0.30/0.68 0.49/1.03
ASTRA (Ours) 0.47/0.82 0.29/0.56 0.55/1.00 0.34/0.71 0.24/0.41 0.38/0.70

Table 2: Results for PIE dataset.

Model CADE CFDE ARB FRB
FOLYao et al. (2019) 73.87 164.53 78.16 143.69
FPLYagi et al. (2018) 56.66 132.23 - -
B-LSTMBhattacharyya et al. (2018) 27.09 66.74 37.41 75.87
PIEtrajRasouli et al. (2019) 21.82 53.63 27.16 55.39
PIEfullRasouli et al. (2019) 19.50 45.27 24.40 49.09
BiPedRasouli et al. (2020) 15.21 35.03 19.62 39.12
PedFormerRasouli & Kotseruba (2023) 13.08 30.35 15.27 32.79
ASTRA(Ours) 9.91 22.42 18.32 17.07

Table 3: Ablation: ADE/FDE for penalised vs.
unpenalised loss functions on UNIV dataset us-
ing SOTA ASTRA’s configuration

Loss Normal Penalised

MSE 0.58/1.13 0.57/1.00
SmoothL1 0.57/1.15 0.55/1.00

6.2 Efficiency

Regarding the computational side, ASTRA has seven times fewer trainable parameters than the existing
SOTA model LeapFrog Mao et al. (2023) as shown in Figure 1. It is important to note that the parameter
count reported for ASTRA in Figure 1 includes the parameters from the U-Net, which is otherwise actually

11

Published in Transactions on Machine Learning Research (03/2025)

Table 4: Stochastic Results: minADE20 and minFDE20 results for ETH-UCY baselines. Best in bold,
second best underlined. NP- means unpenalised.

Model ETH Hotel Univ Zara1 Zara2 Average
Social-GAN Gupta et al. (2018) 0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.84 0.61/1.21
NMMP Hu et al. (2020) 0.61/1.08 0.33/0.63 0.52/1.11 0.32/0.66 0.43/0.85 0.41/0.82
STAR Yu et al. (2020a) 0.36/0.65 0.17/0.36 0.31/0.62 0.29/0.52 0.22/0.46 0.26/0.53
PECNet Mangalam et al. (2020) 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48
Trajectron++ Salzmann et al. (2020) 0.61/1.02 0.19/0.28 0.30/0.54 0.24/0.42 0.18/0.32 0.30/0.51
BiTrap-NP Yao et al. (2021) 0.55/0.95 0.17/0.28 0.25/0.47 0.22/0.44 0.16/0.33 0.27/0.49
MemoNet Xu et al. (2022b) 0.40/0.61 0.11/0.17 0.24/0.43 0.18/0.32 0.14/0.24 0.21/0.35
GroupNet Xu et al. (2022a) 0.40/0.76 0.12/0.18 0.22/0.41 0.17/0.31 0.12/0.24 0.21/0.38
SGNet Wang et al. (2022) 0.47/0.77 0.20/0.38 0.33/0.62 0.18/0.32 0.15/0.28 0.27/0.47
MID Gu et al. (2022) 0.46/0.73 0.15/0.25 0.26/0.49 0.21/0.39 0.17/0.33 0.25/0.44
Agentformer Yuan et al. (2021) 0.45/0.75 0.14/0.22 0.25/0.45 0.18/0.30 0.14/0.24 0.23/0.39
EqMotion Xu et al. (2023) 0.40/0.61 0.12/0.18 0.23/0.43 0.18/0.32 0.13/0.23 0.21/0.35
Leapfrog Mao et al. (2023) 0.39/0.58 0.11/0.17 0.26/0.43 0.18/0.26 0.13/0.22 0.21/0.33
TrajFine Wang et al. (2024) 0.35/0.60 0.11/0.18 0.22/0.48 0.15/0.30 0.12/0.25 0.19/0.36
ASTRA(Non Penalised) 0.37/0.49 0.24/0.34 0.37/0.52 0.23/0.32 0.16/0.23 0.27/0.38
ASTRA(Without Image Input) 0.29/0.39 0.18/ 0.29 0.29/ 0.43 0.17/0.26 0.14/0.2 0.21/ 0.31
ASTRA(With Image Input) 0.27/0.36 0.17/0.25 0.28/0.41 0.15/0.23 0.13/0.16 0.20/0.28

frozen during the trajectory prediction phase. The complete ASTRA architecture, including all compo-
nents, comprises 1.56M parameters, 652M FLOPs (floating-point operations), and 326M MACs (Multiply-
Accumulate Operations). Even in configurations without U-Net pretraining, the deterministic variant has
13.52K parameters, 15.87K FLOPs, and 7.935K MACs, while the stochastic variant has 141.48K parame-
ters, 165.416K FLOPs, and 82.708K MACs. This flexibility allows ASTRA to scale efficiently under strict
resource constraints.

Additionally, we computed the model’s running time, which takes 19.23ms to generate predictions for future
trajectories. To further assess ASTRA’s efficiency, we compare its running time, FLOPs, MACs, and number
of parameters with three other models: AgentFormer, a transformer-based architecture similar to ours;
Leapfrog, a state-of-the-art approach; and GroupNet, which has the fewest parameters among all compared
models. As shown in the Table 5, ASTRA demonstrates strong efficiency compared to these alternatives.

Table 5: Model Parameters and Inference Time comparison. (M denotes Million and ms denotes Millisecond)

Model Parameters (M) FLOPS (M) MACs (M) Inference Time (ms)
GroupNet 3.14 806 403 105.78
Agentformer 6.78 3084 1542 521.34
Leapfrog 11.2 5695 2848 28.91
Astra (Ours) 1.56 652 326 19.23

6.3 Ablations

In the ablation study presented in Table 6, we evaluated the contribution of each component in our trajectory
prediction model to ascertain their individual and collective impact on the performance metrics on the
ETH-UCY (UNIV) dataset. Initially, the model incorporated only spatial information, which served as a
baseline for subsequent enhancements. The sequential integration of temporal and social components yielded
successive improvements, demonstrating their respective significance in capturing the dynamics of agent
movement. The addition of the data augmentation technique (detailed in the supplementary material) further
refined the model’s performance, illustrating the value of varied training samples in enhancing generalization
capabilities. Moreover, the incorporation of U-Net features contributed to a leap forward, highlighting
the importance of context-aware embeddings in accurately forecasting agent trajectories. This progression

12

Published in Transactions on Machine Learning Research (03/2025)

emphasizes the synergistic effect of combining heterogeneous data representations to capture the nuanced
patterns of movement within a scene.

We also investigate the effect of using a Single Transformer Encoder versus Dual Transformer Encoders
(Table 6, last two rows). For the Single Encoder setup, we merge TScene-aware and TAgent-aware into a unified
transformer encoder. While this configuration captures a joint representation of scene features and agent
dynamics, it inherently limits the model performance, as can be inferred from Table 6.

Table 6: Ablation: ADE/FDE & minADE20/minFDE20 with variations in ASTRA’s model components
on UNIV dataset (where ✓: Component enabled, ×: Component disabled).

Spatial Temporal Augmentation Social U-Net
Features

Transformer
Encoder ADE/FDE minADE20/

minFDE20

✓ × × × × Single 1.05/1.66 0.43/0.63
✓ ✓ × × × Single 0.86/1.47 0.39/0.54
✓ ✓ ✓ × × Single 0.67/1.17 0.31/0.48
✓ ✓ ✓ ✓ × Single 0.66/1.12 0.29/0.43
✓ ✓ ✓ ✓ ✓ Single 0.74/0.61 0.98/1.41
✓ ✓ ✓ ✓ ✓ Dual 0.55/1.00 0.28/0.41

The ablation study also extended to the evaluation of loss functions, comparing the effects of penalised
versus unpenalised approaches. Penalized loss functions, designed to focus the model’s attention on more
critical prediction horizons, proved to be more effective in refining the predictive accuracy, as outlined in
Table 3 and in Table 4 (ASTRA(NP)) for deterministic and stochastic setting respectively and the same can
be observed in Figure 7.

Additionally, we compared the CLIP encoder —with added linear layer for fine-tuning in an end-to-end
fashion —with our U-Net-based encoder, as shown in Table 7. Our model consistently performed on par
with or better than CLIP while using significantly fewer parameters, MACs, and FLOPs, highlighting its
efficiency. This can be attributed to the pre-training, which enables the model to focus specifically on
pedestrians.

Table 7: Efficiency and quantitative (minADE20 and minFDE20) results for ETH-UCY baselines for different
image encoders. (Million denotes M)

Encoder Parameter
Count (M)

FLOPs
(M)

MACs
(M) ETH Hotel Univ Zara1 Zara2 Average

CLIP Radford et al. (2021) 149.77 22540 11270 0.26/0.37 0.18/0.28 0.34/0.48 0.18/0.29 0.15/0.21 0.22/0.324
UNET (Ours) 1.56 652 326 0.27/0.36 0.17/0.25 0.28/0.41 0.15/0.23 0.13/0.16 0.2/0.282

6.4 Qualitative Analysis

We can clearly see the results of our prediction from Figure 5 for deterministic predictions and Figure 6
for stochastic prediction. Figure 7 exemplifies the proximity of our model’s results to the ground truth, it
also shows how using the weighted penalty strategy has yielded better results than the unpenalised one,
highlighting the improved effectiveness of our strategy.

7 Conclusion & Future Work

We presented ASTRA, a model in the domain of pedestrian trajectory prediction, that outperforms the
existing state-of-the-art models. This advancement renders ASTRA particularly suitable for deployment on
devices with limited processing capabilities, thereby broadening the applicability of high-accuracy trajectory
prediction technologies. ASTRA’s adeptness in handling both BEV and EVV modalities further solidifies its
applicability in diverse operational contexts. With the ability to produce deterministic and stochastic results,
it enhances the predictive robustness and situational awareness of autonomous systems. Moving forward, we
aim to extend the capabilities of the ASTRA model beyond pedestrian trajectory prediction to encompass

13

Published in Transactions on Machine Learning Research (03/2025)

(a) BEV (b) EVV

Figure 5: Sample images of the deterministic prediction from BEV datasets (a.) (ETH and UCY) and
EVV dataset (b.) (PIE). The Red and Yellow bounding box indicates the ground-truth and predicted final
position respectively and the Blue bounding box indicates the start position.

Figure 6: Sample images of the stochastic pre-
dictions from ETH-UCY Dataset.

Figure 7: Visual comparison of penalised and
unpenalised loss on ETH-UCY, showing the en-
hanced performance of the former.

a broader range of non-human agents. This expansion will involve adapting the model to understand and
predict the movements of various entities within shared environments using more sophisticated architectural
design choices to encode the scene and its fusion with social dimension. By broadening our focus, we hope
to contribute to the development of truly comprehensive and adaptive systems capable of navigating the
complexities of real-world interactions among a wide array of agents.

14

Published in Transactions on Machine Learning Research (03/2025)

References
Ravichandra Addanki, Peter W Battaglia, David Budden, Andreea Deac, Jonathan Godwin, Thomas Keck,

Wai Lok Sibon Li, Alvaro Sanchez-Gonzalez, Jacklynn Stott, Shantanu Thakoor, et al. Large-scale graph
representation learning with very deep gnns and self-supervision. arXiv preprint arXiv:2107.09422, 2021.

Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, and Silvio Savarese.
Social lstm: Human trajectory prediction in crowded spaces. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

Apratim Bhattacharyya, Mario Fritz, and Bernt Schiele. Long-term on-board prediction of people in traffic
scenes under uncertainty, 2018.

Apratim Bhattacharyya, Christoph-Nikolas Straehle, Mario Fritz, and Bernt Schiele. Haar wavelet based
block autoregressive flows for trajectories. CoRR, abs/2009.09878, 2020. URL https://arxiv.org/abs/
2009.09878.

Apratim Bhattacharyya, Daniel Olmeda Reino, Mario Fritz, and Bernt Schiele. Euro-pvi: Pedestrian vehi-
cle interactions in dense urban centers. 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 6404–6413, 2021.

Wenqi Cai, Ganglei He, Jianlong Hu, Haiyan Zhao, Yuhai Wang, and Bingzhao Gao. A comprehensive
intention prediction method considering vehicle interaction. 2020 4th CAA International Conference on
Vehicular Control and Intelligence, CVCI 2020, pp. 204–209, 12 2020. doi: 10.1109/CVCI51460.2020.
9338520.

Weihuang Chen, Fangfang Wang, and Hongbin Sun. S2tnet: Spatio-temporal transformer networks for
trajectory prediction in autonomous driving. In Asian Conference on Machine Learning, pp. 454–469.
PMLR, 2021.

Xiaobo Chen, Huanjia Zhang, Yu Hu, Jun Liang, and Hai Wang. Vnagt: Variational non-autoregressive graph
transformer network for multi-agent trajectory prediction. IEEE Transactions on Vehicular Technology,
pp. 1–12, 2023. doi: 10.1109/TVT.2023.3273230.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Graph neural
networks with learnable structural and positional representations. arXiv preprint arXiv:2110.07875, 2021.

Jianwu Fang, Dingxin Yan, Jiahuan Qiao, Jianru Xue, and Hongkai Yu. Dada: Driver attention prediction
in driving accident scenarios. IEEE Transactions on Intelligent Transportation Systems, 2021. ISSN
15580016. doi: 10.1109/TITS.2020.3044678.

Thomas Gilles, Stefano Sabatini, Dzmitry Tsishkou, Bogdan Stanciulescu, and Fabien Moutarde. Gohome:
Graph-oriented heatmap output for future motion estimation. arXiv preprint arXiv:2109.01827, 2021.

Harshayu Girase, Haiming Gang, Srikanth Malla, Jiachen Li, Akira Kanehara, Karttikeya Mangalam, and
Chiho Choi. Loki: Long term and key intentions for trajectory prediction. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 9803–9812, 2021.

Francesco Giuliari, Irtiza Hasan, Marco Cristani, and Fabio Galasso. Transformer networks for trajectory
forecasting. In 2020 25th international conference on pattern recognition (ICPR), pp. 10335–10342. IEEE,
2021a.

Francesco Giuliari, Irtiza Hasan, Marco Cristani, and Fabio Galasso. Transformer networks for trajectory
forecasting. In 2020 25th international conference on pattern recognition (ICPR), pp. 10335–10342. IEEE,
2021b.

Tianpei Gu, Guangyi Chen, Junlong Li, Chunze Lin, Yongming Rao, Jie Zhou, and Jiwen Lu. Stochastic
trajectory prediction via motion indeterminacy diffusion. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 17113–17122, June 2022.

15

https://arxiv.org/abs/2009.09878
https://arxiv.org/abs/2009.09878

Published in Transactions on Machine Learning Research (03/2025)

Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi. Social gan: Socially accept-
able trajectories with generative adversarial networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2255–2264, 2018.

Dirk Helbing and Peter Molnar. Social force model for pedestrian dynamics. Physical review E, 51(5):4282,
1995.

Yue Hu, Siheng Chen, Ya Zhang, and Xiao Gu. Collaborative motion prediction via neural motion message
passing. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
6319–6328, 2020.

Lei Huang, Jihui Zhuang, Xiaoming Cheng, Riming Xu, and Hongjie Ma. Sti-gan: Multimodal pedestrian
trajectory prediction using spatiotemporal interactions and a generative adversarial network. IEEE Access,
9:50846–50856, 2021.

Xiaosong Jia, Penghao Wu, Li Chen, Yu Liu, Hongyang Li, and Junchi Yan. Hdgt: Heterogeneous driving
graph transformer for multi-agent trajectory prediction via scene encoding. IEEE transactions on pattern
analysis and machine intelligence, 2023.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. CoRR,
abs/1609.02907, 2016. URL http://arxiv.org/abs/1609.02907.

Vineet Kosaraju, Amir Sadeghian, Roberto Martín-Martín, Ian D. Reid, Seyed Hamid Rezatofighi, and Silvio
Savarese. Social-bigat: Multimodal trajectory forecasting using bicycle-gan and graph attention networks.
In NeurIPS, 2019.

Iuliia Kotseruba, Amir Rasouli, and John K. Tsotsos. Benchmark for evaluating pedestrian action prediction.
In 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1257–1267, 2021. doi:
10.1109/WACV48630.2021.00130.

Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski. Crowds by example. Computer Graphics
Forum, 26(3):655–664, 2007. doi: https://doi.org/10.1111/j.1467-8659.2007.01089.x. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2007.01089.x.

Lihuan Li, Maurice Pagnucco, and Yang Song. Graph-based spatial transformer with memory replay for
multi-future pedestrian trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2231–2241, 2022.

Bingbin Liu, Ehsan Adeli, Zhangjie Cao, Kuan-Hui Lee, Abhijeet Shenoi, Adrien Gaidon, and Juan Car-
los Niebles. Spatiotemporal relationship reasoning for pedestrian intent prediction. IEEE Robotics and
Automation Letters, 5(2):3485–3492, 2020.

Yao Liu, Lina Yao, Binghao Li, Xianzhi Wang, and Claude Sammut. Social graph transformer networks for
pedestrian trajectory prediction in complex social scenarios. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Management, CIKM ’22, pp. 1339–1349, New York, NY, USA,
2022. Association for Computing Machinery. ISBN 9781450392365. doi: 10.1145/3511808.3557455. URL
https://doi.org/10.1145/3511808.3557455.

Karttikeya Mangalam, Harshayu Girase, Shreyas Agarwal, Kuan-Hui Lee, Ehsan Adeli, Jitendra Malik,
and Adrien Gaidon. It is not the journey but the destination: Endpoint conditioned trajectory predic-
tion. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part II 16, pp. 759–776. Springer, 2020.

Karttikeya Mangalam, Yang An, Harshayu Girase, and Jitendra Malik. From goals, waypoints & paths to
long term human trajectory forecasting. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 15233–15242, 2021.

Weibo Mao, Chenxin Xu, Qi Zhu, Siheng Chen, and Yanfeng Wang. Leapfrog diffusion model for stochastic
trajectory prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 5517–5526, June 2023.

16

http://arxiv.org/abs/1609.02907
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2007.01089.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2007.01089.x
https://doi.org/10.1145/3511808.3557455

Published in Transactions on Machine Learning Research (03/2025)

Abduallah Mohamed, Kun Qian, Mohamed Elhoseiny, and Christian Claudel. Social-stgcnn: A social spatio-
temporal graph convolutional neural network for human trajectory prediction. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 14424–14432, 2020.

Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to graph transformers.
arXiv preprint arXiv:2302.04181, 2023.

Bo Pang, Tianyang Zhao, Xu Xie, and Ying Nian Wu. Trajectory prediction with latent belief energy-
based model. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
11809–11819, 2021. doi: 10.1109/CVPR46437.2021.01164.

S. Pellegrini, A. Ess, K. Schindler, and L. van Gool. You’ll never walk alone: Modeling social behavior for
multi-target tracking. In 2009 IEEE 12th International Conference on Computer Vision, pp. 261–268,
2009a. doi: 10.1109/ICCV.2009.5459260.

Stefano Pellegrini, Andreas Ess, Konrad Schindler, and Luc Van Gool. You’ll never walk alone: Modeling
social behavior for multi-target tracking. In 2009 IEEE 12th international conference on computer vision,
pp. 261–268. IEEE, 2009b.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pp. 8748–8763. PMLR,
2021.

Amir Rasouli and Iuliia Kotseruba. Pedformer: Pedestrian behavior prediction via cross-modal attention
modulation and gated multitask learning. In 2023 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 9844–9851. IEEE, 2023.

Amir Rasouli, Iuliia Kotseruba, Toni Kunic, and John Tsotsos. Pie: A large-scale dataset and models for
pedestrian intention estimation and trajectory prediction. In 2019 IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 6261–6270, 2019. doi: 10.1109/ICCV.2019.00636.

Amir Rasouli, Mohsen Rohani, and Jun Luo. Pedestrian behavior prediction via multitask learning and
categorical interaction modeling. CoRR, abs/2012.03298, 2020. URL https://arxiv.org/abs/2012.
03298.

Amir Rasouli, Mohsen Rohani, and Jun Luo. Bifold and semantic reasoning for pedestrian behavior predic-
tion. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15600–15610,
2021.

Javier Ribera, David Guera, Yuhao Chen, and Edward J Delp. Locating objects without bounding boxes. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6479–6489,
2019.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th
International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pp. 234–241.
Springer, 2015.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal of
Complex Networks, 9(2):cnab014, 2021.

Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and Marco Pavone. Trajectron++: Dynamically-
feasible trajectory forecasting with heterogeneous data. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVIII 16, pp. 683–700. Springer, 2020.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 4510–4520, 2018.

17

https://arxiv.org/abs/2012.03298
https://arxiv.org/abs/2012.03298

Published in Transactions on Machine Learning Research (03/2025)

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and
Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In
Proceedings of the IEEE international conference on computer vision, pp. 618–626, 2017.

Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks. In Proceed-
ings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’09, pp. 807–816, New York, NY, USA, 2009. Association for Computing Machinery. ISBN 9781605584959.
doi: 10.1145/1557019.1557108. URL https://doi.org/10.1145/1557019.1557108.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/
2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Anirudh Vemula, Katharina Muelling, and Jean Oh. Social attention: Modeling attention in human crowds.
In 2018 IEEE international Conference on Robotics and Automation (ICRA), pp. 4601–4607. IEEE, 2018.

Kira Vinogradova, Alexandr Dibrov, and Gene Myers. Towards interpretable semantic segmentation
via gradient-weighted class activation mapping (student abstract). Proceedings of the AAAI, 34(10):
13943–13944, April 2020. ISSN 2159-5399. doi: 10.1609/aaai.v34i10.7244. URL http://dx.doi.org/10.
1609/aaai.v34i10.7244.

Chuhua Wang, Yuchen Wang, Mingze Xu, and David J Crandall. Stepwise goal-driven networks for trajectory
prediction. IEEE Robotics and Automation Letters, 7(2):2716–2723, 2022.

Kuan-Lin Wang, Li-Wu Tsao, Jhih-Ciang Wu, Hong-Han Shuai, and Wen-Huang Cheng. Trajfine: Predicted
trajectory refinement for pedestrian trajectory forecasting. In 2024 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pp. 4483–4492, 2024. doi: 10.1109/CVPRW63382.
2024.00451.

Xinshuo Weng, Ye Yuan, and Kris Kitani. Ptp: Parallelized tracking and prediction with graph neural
networks and diversity sampling. IEEE Robotics and Automation Letters, 6:4640–4647, 7 2021. ISSN
23773766. doi: 10.1109/LRA.2021.3068925.

Chenxin Xu, Maosen Li, Zhenyang Ni, Ya Zhang, and Siheng Chen. Groupnet: Multiscale hypergraph neural
networks for trajectory prediction with relational reasoning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 6498–6507, June 2022a.

Chenxin Xu, Weibo Mao, Wenjun Zhang, and Siheng Chen. Remember intentions: Retrospective-memory-
based trajectory prediction, June 2022b.

Chenxin Xu, Robby T Tan, Yuhong Tan, Siheng Chen, Yu Guang Wang, Xinchao Wang, and Yanfeng Wang.
Eqmotion: Equivariant multi-agent motion prediction with invariant interaction reasoning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1410–1420, 2023.

Takuma Yagi, Karttikeya Mangalam, Ryo Yonetani, and Yoichi Sato. Future person localization in first-
person videos, 2018.

Yu Yao, Mingze Xu, Chiho Choi, David J Crandall, Ella M Atkins, and Behzad Dariush. Egocentric vision-
based future vehicle localization for intelligent driving assistance systems. In 2019 International Conference
on Robotics and Automation (ICRA), pp. 9711–9717. IEEE, 2019.

Yu Yao, Ella Atkins, Matthew Johnson-Roberson, Ram Vasudevan, and Xiaoxiao Du. Bitrap: Bi-directional
pedestrian trajectory prediction with multi-modal goal estimation. IEEE Robotics and Automation Letters,
6(2):1463–1470, 2021.

Cunjun Yu, Xiao Ma, Jiawei Ren, Haiyu Zhao, and Shuai Yi. Spatio-temporal graph transformer networks for
pedestrian trajectory prediction. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XII 16, pp. 507–523. Springer, 2020a.

18

https://doi.org/10.1145/1557019.1557108
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
http://dx.doi.org/10.1609/aaai.v34i10.7244
http://dx.doi.org/10.1609/aaai.v34i10.7244

Published in Transactions on Machine Learning Research (03/2025)

Cunjun Yu, Xiao Ma, Jiawei Ren, Haiyu Zhao, and Shuai Yi. Spatio-temporal graph transformer networks for
pedestrian trajectory prediction. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XII 16, pp. 507–523. Springer, 2020b.

Ye Yuan, Xinshuo Weng, Yanglan Ou, and Kris Kitani. Agentformer: Agent-aware transformers for socio-
temporal multi-agent forecasting. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), 2021.

Simone Zamboni, Zekarias Tilahun Kefato, Sarunas Girdzijauskas, Christoffer Norén, and Laura Dal Col.
Pedestrian trajectory prediction with convolutional neural networks. Pattern Recognition, 121:108252,
2022.

19

Published in Transactions on Machine Learning Research (03/2025)

A Weighted Loss Function Details

A.1 Loss Function Formulation

The loss for stochastic predictions is given in equations equation 16 and equation 17.
Lweighted(Yk, Y) is calculated similar to Equation 18.

Lweighted(Ŷ , Y) = min
k=1,...,K

Lweighted(Yk, Y) (16)

Lfinal = Lweighted(Ŷ , Y) + DKL(N (µzq
, σzq

) || N (µzp
, σzp

)) (17)

For deterministic predictions, the final loss is the same as the weighted loss:

Lfinal = Lweighted(Ŷ , Y) =
Tpred∑
t=1

w(t) · L(Ŷt, Yt), (18)

where w(t) represent the weighted penalty function (section A.2) and L(Ŷt, Yt) is the predefined loss function:
MSE or Smooth L1 loss (discussed below).

Mean square error (MSE)

MSE = 1
N

N∑
i=1

(yi − ŷi)2 (19)

where yi and ŷi represent, the actual and predicted coordinates, respectively. MSE penalises larger trajectory
prediction errors more heavily, ensuring model accuracy in critical scenarios.

Smooth L1 loss (SL1)

SL1(yi, ŷi) =
{

0.5 × (yi − ŷi)2 if |yi − ŷi| < 1
|yi − ŷi| − 0.5 otherwise.

(20)

Unlike MSE, SL1 effectively balances the treatment of small and large errors. This loss is also less sensitive
to outliers, due to its combination of L1 and L2 loss properties.

A.2 Weighted Penalty Function

In many trajectory prediction tasks, errors at different time steps may have varying importance. For instance,
predictions further into the future might be more uncertain, whereas errors in early predictions could be
more critical for subsequent decisions. To address this, we introduce a weighted penalty function w(t) that
adjusts the loss function’s sensitivity to prediction errors over time.

Our ablation focuses on three distinct penalty functions, w(t, Tpred, α, β): Linear, Quadratic, and Parabolic,
which are parameterized by α and β, determined empirically as shown in Figure 8. Here, t represents the
current time step, and Tpred denotes the total prediction horizon. Once the values of α and β are determined,
w(t, Tpred, α, β) can be simply denoted as w(t).

Table 8 presents a quantitative analysis comparing the three penalty strategies as applied to the ETH-UCY
(UNIV) dataset using SL1 loss. It can be observed that the Parabolic penalty yields better results compared
to the other penalization strategies.

Figure 8 illustrates a comparison of the three weighted penalty strategies for a prediction window of 12
frames. The subsequent sections provide a detailed explanation of each of these penalty strategies.

20

Published in Transactions on Machine Learning Research (03/2025)

Figure 8: Comparison of various weighted penalty strategies

A.2.1 Linear Weighted Penalty

The Linear Weighted Penalty employs a weight function, w(t), that linearly increases from a start weight (α)
to an end weight (β), over the prediction period. This approach aims to progressively increase the penalty
for prediction inaccuracies, particularly toward the latter part of the prediction horizon.

The weight function w(t) is defined as:

w(t) = α + t

Tpred
· (β − α), (21)

where α and β are the weights assigned to the initial and final predicted time steps, respectively.

A.2.2 Quadratic Weighted Penalty

The quadratic weighted penalty strategy intensifies the penalty in a quadratic manner as the difference
between the prediction time and the past frames increases. This approach is more aggressive than the
linear strategy, applying an exponentially increasing weight to errors in later prediction frames. The weight
function w(t) in this case is defined as:

w(t) =
(

α + t

Tpred
· (β − α)

)2
(22)

A.2.3 Parabolic Weighted Penalty

The Parabolic Weighted Penalty assigns the maximum weight, α, to both the initial and final predicted
time steps, highlighting their significance. Meanwhile, the minimum weight, β (β < α), is allocated to the
midpoint of the prediction interval. This distribution forms a parabolic trajectory (shown in Figure 8) of
weights across the prediction period, as defined by:

w(t) = (α − β) ·
(

2 · t

Tpred
− 1

)2
+ β, (23)

A.2.4 Augmentation

To enhance the robustness and generalization of our trajectory prediction model, we implement a data
augmentation strategy inspired by Zamboni et al. (2022). This strategy applies random rotation and trans-

21

Published in Transactions on Machine Learning Research (03/2025)

(a) Univ (No Penalty) (b) Univ (Penalty)

(c) Zara01 (No Penalty) (d) Zara01 (Penalty)

Figure 9: Qualitative comparison of unpenalised vs. penalised trajectories on ETH-UCY dataset in stochastic
setting.

Table 8: Ablation: Comparing penalization strategies with SL1 loss on ETH-UCY (UNIV) dataset using
ASTRA’s SOTA configuration

Loss minADE20/minFDE20

Unpenalised 0.37/0.52
Linear 0.33/0.47
Quadratic 0.30/0.46
Parabolic 0.28/0.41

lation transformations to the trajectory sequences with a probability of 0.4, as illustrated in Fig. 11. By
introducing these augmentations, the model becomes orientation-agnostic and better equipped to handle po-
sitional shifts in agents. The increased diversity in training data enables the model to learn more generalized
representations of agent movements, improving its adaptability to real-world scenarios.

B Evaluation Metrics

B.1 ETH-UCY

To evaluate our model on ETH-UCY, we used commonly employed evaluation metrics Xu et al. (2023);
Mohamed et al. (2020); Chen et al. (2023); Yu et al. (2020b): ADE/FDE and minADEK/minFDEK . Average
Displacement Error (ADE) computes the average Euclidean distance between the predicted trajectory and
the true trajectory across all prediction time steps for each agent. minADEK refers to the minimum ADE
out of K randomly generated trajectories and ground truth future trajectories. We also used the Final
Displacement Error (FDE), which focuses on the prediction accuracy at the final time step. It computes the

22

Published in Transactions on Machine Learning Research (03/2025)

(a) Univ (No Penalty) (b) Univ (Penalty)

(c) Zara01 (No Penalty) (d) Zara01 (Penalty)

Figure 10: Qualitative comparison of unpenalised vs. penalised trajectories on ETH-UCY dataset in stochas-
tic setting.

Figure 11: Illustration of data augmentation to trajectory sequences

Euclidean distance between the predicted and actual positions of each agent at the last prediction time step.
minFDEK refers to the minimum FDE out of K randomly generated trajectories and ground truth future
trajectories. For stochastic setting, minADEK and minFDEK metrics are used for evaluation.

23

Published in Transactions on Machine Learning Research (03/2025)

ADE = 1
Tpred

Tpred∑
t=1

∥Y a
t − Ŷ a

t ∥2. (24)

minADEK = min
k

 1
Tpred

Tpred∑
t=1

∥Y a
t − Ŷ a

t,k∥2

 (25)

FDE = ∥Y a
Tpred

− Ŷ a
Tpred

∥2 (26)

minFDEK = min
k

(
∥Y a

Tpred
− Ŷ a

Tpred,k∥2

)
(27)

B.2 PIE

For the PIE Dataset, the ADE and FDE metrics are calculated based on the centroid of the bounding box
Rasouli et al. (2019); Rasouli & Kotseruba (2023), denoted as Centre average displacement error for the
bounding box (CADE) and Centre final displacement error for the bounding box (CFDE). In addition, we
reported the average and final Root Mean Square Error (RMSE) of bounding box coordinates, denoted as
ARB and FRB, respectively Rasouli et al. (2021).

C Grad-CAM visualizations

Grad-CAM images were obtained by generating heatmaps overlaid onto the original image to aid in vali-
dating the relevance of highlighted regions. To obtain the Grad-CAM visualization, a single-channel output
segmentation map was obtained from the pre-trained U-Net network, representing the probability of each
pixel location being a keypoint Ribera et al. (2019). Probabilities were aggregated across all pixels, by
comparing them with true keypoints and gradients of activation for the initial layer were extracted, similar
to the approach taken by Vinogradova et al. (2020). Utilizing these gradients, a weighted average of the ac-
tivation maps of the initial layer was computed to reconstruct the heatmap, similar to the method described
in Selvaraju et al. (2017), for the Grad-CAM visualization. Overlaying this heatmap onto the original image
highlights the regions that contribute significantly to the keypoint predictions made by the model.

D Abbreviations and Mathematical Notation

To ease reading the paper, Table 9 and 10 list the abbreviations and the mathematical symbols mentioned
in the paper, respectively.

24

Published in Transactions on Machine Learning Research (03/2025)

(a) ETH (b) Hotel

(c) Univ (d) Zara1

(e) Zara2

Figure 12: Trajectory visualizations for stochastic setting on ETH-UCY dataset (BEV)

25

Published in Transactions on Machine Learning Research (03/2025)

(a) ETH (b) Hotel

(c) Univ (d) Zara1

(e) Zara2

Figure 13: Deterministic trajectory visualizations on ETH-UCY dataset (BEV)

26

Published in Transactions on Machine Learning Research (03/2025)

(a) (b)

Figure 14: Trajectory Visualizations on PIE Dataset (EVV) where the red and cyan bounding box indicates
the ground-truth and predicted final position respectively and the blue bounding box indicates the start
position.

Table 9: Table of Abbreviations Used

Abbreviation/Term Description
ASTRA Agent-Scene aware model for pedestrian trajectory forecasting
BEV Bird’s Eye View
EVV Ego-Vehicle View
AV Autonomous Vehicle
MLP Multi-Layer Perceptron
CVAE Conditional Variational Auto-Encoder
GNN Graph Neural Network
RWPE Random Walk Positional Encoding
MSE Mean Square Error (Loss Function)
SL1 Smooth L1 Loss (Loss Function)
ADE Average Displacement Error
FDE Final Displacement Error
CADE Centre average displacement error for the bounding box
CFDE Centre final displacement error for the bounding box
ARB Average Root Mean Square Error for the bounding box
FRB Final Root Mean Square Error for the bounding box

27

Published in Transactions on Machine Learning Research (03/2025)

Table 10: Table of Mathematical Symbols Used

Symbols Description
N Total number of predictions in MSE calculation
X Observed trajectories of agents
Y Groundtruth future trajectories of agents
Ŷ Predicted trajectories of agents
Tobs Number of past time instants for observation
Tpred Number of future time instants for prediction
It=1:TObs Sequence of past input frame images
Xa

t Observed coordinates for agent a at time t

Ŷ a
t Predicted coordinates for agent a at time t

A Number of target agents
eij Edge weight in graph G between nodes i and j
d(vi, vj) Distance between agents vi and vj

w(t) Weight function in weighted-penalty strategy
wstart Start weight in weighted-penalty strategy
wend End weight in weighted-penalty strategy
ΨScene Latent representation of scene(past frame) obtained from U-Net encoder
ΦScene Scene-aware embeddings
TScene-aware Scene-aware Transformer encoder
ΥEncoder U-Net Encoder
ΓScene Multi-layer Perceptron layer for Scene embeddings
ΦTemporal Temporal encoding
ΓSpatial Multi-layer Perceptron layer for Spatial embeddings
ΦSpatial Spatial embeddings
ΓSocial Multi-layer Perceptron layer for Social embeddings
ΦSocial Social Embeddings
TAgent-aware Agent-aware Transformer encoder
ΦAgents Agent-aware embeddings
Lweighted(Ŷ , Y) Weighted-penalty Loss Function

28

	Introduction
	Related Work
	Stochastic vs. Deterministic Approaches in Trajectory Prediction
	Social & Scene-aware Modelling
	Temporal Dimension
	Graph-aware Transformers

	Problem Formulation
	ASTRA Model
	High-Level Overview
	Scene-aware Transformer Encoder
	Agent-aware Transformer Encoder
	Decoder
	Weighted Loss Function

	Experiments
	Datasets & Evaluation Protocols
	Evaluation Metrics
	Hyperparameter Tuning & Hardware Settings

	Results & Discussion
	Quantitative Results
	Efficiency
	Ablations
	Qualitative Analysis

	Conclusion & Future Work
	Weighted Loss Function Details
	Loss Function Formulation
	Weighted Penalty Function
	Linear Weighted Penalty
	Quadratic Weighted Penalty
	Parabolic Weighted Penalty
	Augmentation

	Evaluation Metrics
	ETH-UCY
	PIE

	Grad-CAM visualizations
	Abbreviations and Mathematical Notation

