
UICOMPASS: UI Manual Guided Mobile Task Automation via Adaptive
Instruction Replanning

Anonymous ACL submission

Abstract

Large language model(LLM)-based agents001
have been widely applied in the field of mo-002
bile task automation. However, LLMs, which003
are proficient in general task execution prac-004
tices, often struggle to execute tasks cor-005
rectly on specific applications due to a lack of006
application-specific knowledge, leading to con-007
fusion and errors. Although existing methods008
use exploration-memory mechanisms to miti-009
gate this issue, excessive exploration on user010
devices is unacceptable, and these mechanisms011
still struggle to handle tasks effectively. In this012
work, we propose a method for assisting agents013
in mobile task completion using a User Inter-014
face Manual, called UICOMPASS. Specifically,015
it first automates the extraction of the User In-016
terface Manual from the source code, which017
describes the application’s interface and inter-018
action logic. During execution, it analyzes the019
User Interface Manual to generate simulation020
paths for the given task and adaptively adjusts021
the execution path based on the actual applica-022
tion state. Experiments show that UICOMPASS023
achieves state-of-the-art performance on the024
DroidTask dataset, with a success rate improve-025
ment of 14.48%, and a reduction in the length026
of execution paths.027

1 Introduction028

With the increasing prevalence of mobile devices,029

a vast array of diverse mobile applications has030

gradually become an inseparable part of our daily031

lives(Islam et al., 2010). These applications boast032

a wide range of functionalities and varied designs,033

supporting numerous daily tasks such as online034

ordering, chatting, and reading. However, the com-035

plexity of these application designs imposes a sig-036

nificant learning cost on users. For instance, the037

option to “enable night mode” might be located in038

a side drawer or within the settings activity, or it039

might not be supported in the app. Users need to040

constantly try out these applications to understand041

There are no
elements related to
the target task ... I
don't know which
action to choose.

Based on the instructions to be
executed, the third event should
be selected for execution.

current screen

screen

possible screen

posiible action

action

simulated Path

Figure 1: Comparison of Task Execution with and with-
out Guidance in LLMs.

them, which severely impacts the user experience. 042

Therefore, designing an intelligent assistant capa- 043

ble of automating the use of applications according 044

to user goals has the potential to enhance user ex- 045

perience and assist users in completing their tasks 046

automatically in inconvenient scenarios (Xing et al., 047

2024; Wang et al., 2024). 048

Large Language Models (LLMs) excel in vari- 049

ous fields (Xu et al., 2023; Chen et al., 2024; Zhang 050

et al., 2024b,c), with strong natural language under- 051

standing, generation, and decision-making abilities. 052

In the field of mobile task automation, a more gen- 053

eral method (Wen et al., 2024; Ran et al., 2024; 054

Lee et al., 2024; Guan et al., 2024; Wen et al., 055

2023) involves providing the LLM with informa- 056

tion (such as target task description, historical ex- 057

ecution records, user interface information, etc.) 058

and requesting the LLM to return actions. These 059

tools then interact with mobile applications based 060

on the actions returned by the LLM, ultimately 061

accomplishing the given tasks. 062

LLMs (OpenAI, 2023a,b,c; Zhu et al., 2024) are 063

trained on vast amounts of data, and their decision- 064

making often reflects general practices across ap- 065

plications. This leads to poor performance when 066

dealing with special task event sequence designs 067

1

or application-specific tasks. To enable agents068

to adapt to a wide range of applications, some069

agents (Ran et al., 2024; Lee et al., 2024; Wen070

et al., 2024; Guan et al., 2024) adopt an exploration-071

memory mechanism to explore the application and072

use the exploration results to assist in task execu-073

tion. However, these methods has two main limi-074

tations: 1) Exploration combined with execution075

may lead to a large number of task-unrelated ac-076

tions being generated on the user’s device, which077

is unacceptable to users. 2) When the user inter-078

face does not contain directly relevant information079

for the task, the LLM may become confused and080

explore aimlessly, leading to highly inefficient ex-081

ploration. As shown in Figure 1 (left), when ele-082

ments on the interface are not directly related to the083

given task, the LLM may mistakenly assume that084

it has reached the wrong user interface or engage085

in purposeless exploration.086

Considering that LLMs are familiar with gen-087

eral practices for mobile tasks, but different ap-088

plications may have different design styles, this089

leads to challenges in executing tasks on mobile090

devices. Inspired by the vehicle driving scenario,091

we observe that having a clear map not only signif-092

icantly enhances the driver’s efficiency in reaching093

their destination but also helps them make more094

informed decisions when navigating complex road095

conditions. The presence of a map provides a sense096

of direction and security, reducing the risk of get-097

ting lost or taking unnecessary detours. This con-098

cept applies equally to other fields, where clear099

guidance and effective information greatly improve100

the likelihood of achieving objectives. As shown in101

Figure 1 (right), if an application manual serving as102

a map is used to guide the agent, the agent will be103

able to clearly understand the steps and sequence104

of task execution, thereby improving the efficiency105

and accuracy of task performance. Therefore, we106

propose a scenario in which application developers107

should provide an application manual alongside the108

application APK to assist agents in executing user109

tasks. Considering that providing such a manual110

would increase the burden on developers, the goal111

of this paper is twofold: 1) to define and automate112

the generation of application manuals, and 2) to de-113

sign an agent capable of completing target tasks on114

mobile devices based on the provided application115

manual.116

In this paper, we present UICOMPASS, a system117

designed to automatically generate a User Interface118

Manual (an application manual) and use UI Man-119

ual to complete user-specified tasks on the target 120

application. First, it includes a source code analysis 121

system that analyzes the application’s source code 122

to generate a UI Manual (User Interface Manual). 123

The UIManual is a type of application guide that 124

describes the functionality of activities, elements 125

of activities, and transition relationships between 126

activities. Unlike user manuals or other application 127

guides that directly instruct how to execute a task, 128

the UI Manual retains more detailed information 129

to support a wide variety of tasks. To protect the 130

security of the application, the manual undergoes 131

multiple levels of abstraction and retains only the 132

UI-level information. Considering that applications 133

will provide user interfaces and even user documen- 134

tation, it is acceptable for application vendors to 135

provide the UI Manual to the agent. Secondly, 136

when a user provides a task, UICOMPASS gener- 137

ates instructions based on the UI Manual and the 138

task description. To better adapt to the actual ex- 139

ecution state of the program (e.g., some elements 140

may not have an ID), these instructions use natural 141

language to outline potential execution paths. Fi- 142

nally, during the execution phase, considering that 143

the program’s dynamic state may differ from the re- 144

sults of static analysis, UICOMPASS adaptively re- 145

planning the instructions based on the instructions, 146

historical execution data, and the current state of 147

the application. 148

We conducted experimental evaluations of 149

UICOMPASS on DroidTask dataset (Wen et al., 150

2024). The experimental results demonstrate that 151

UICOMPASS outperforms existing LLM-based 152

agents. UICOMPASS achieved a task success rate 153

of 68.27%, representing a 14.48% improvement. 154

Additionally, UICOMPASS demonstrated shorter 155

execution paths and a higher capability for auto- 156

matic task completion termination during the pro- 157

cess. Ablation studies show that the UI Manual 158

and the adaptive instruction replanning modules 159

are effective in enhancing the agent’s mobile task 160

execution capability. 161

Our contributions can be outlined as follows. 162

• We propose a User Interface Manual-guided 163

task execution method. This method first gen- 164

erates a User Interface Manual based on the 165

mobile application’s source code, which con- 166

tains information about the user interface and 167

operational responses, to assist the LLM in 168

generating an initial instruction list based on 169

the task and using the instruction list to aid in 170

2

task execution.171

• An adaptive planning mechanism is employed172

to adjust for discrepancies between the initial173

instruction list and the actual execution envi-174

ronment of the application, allowing the agent175

to adapt to different application states.176

• We conducted experimental evaluations of177

UICOMPASS, and the results show that, com-178

pared to the baseline, UICOMPASS demon-179

strated superior performance in executing user180

tasks. We open-source our code and experi-181

mental results 1.182

2 Background and Related Work183

2.1 Backgroud of Android Program184

To facilitate mobile task automation, understanding185

the source code of the Android application’s struc-186

ture and execution model is essential. An activ-187

ity 2 is a single screen in an Android app, handling188

user interaction and transitioning through lifecy-189

cle states such as created, resumed, and destroyed.190

Apps often include multiple activities for different191

functionalities, and fragments 3 serve as modular192

UI components within activities, supporting flexi-193

ble layouts and reuse. Android UI elements (e.g.,194

Button, TextView) are defined in XML layouts195

and assigned unique resource identifiers (@+id/...)196

for programmatic interaction, making accurate197

identification essential for automation. Each An-198

droid app includes an AndroidManifest.xml file,199

defining activities, permissions, and intent filters.200

Parsing this file helps map the application’s struc-201

ture and extract essential automation-related meta-202

data.203

Analyzing the functionality and execution logic204

of Android applications from source code is chal-205

lenging, primarily because Android is an event-206

driven system (Payet and Spoto, 2012; Li et al.,207

2017). Event handling is distributed across life-208

cycle methods, user interactions, and system call-209

backs, with the complete logic depending on the210

collaboration of multiple components. Addition-211

ally, dynamic loading, reflection, and code obfusca-212

tion obscure certain logic paths, while third-party213

libraries and frameworks may conceal critical im-214

plementations within external dependencies. These215

1https://anonymous.4open.science/r/
UICompass-B193/

2https://developer.android.com/reference/
android/app/Activity

3https://developer.android.com/guide/fragments

factors make it difficult to fully reconstruct an ap- 216

plication’s behavior and execution flow solely from 217

source code. However, with the rise of large mod- 218

els, combining static analysis tools with the pow- 219

erful reasoning capabilities of these models offers 220

a more efficient approach to interpreting UI-layer 221

events and their interaction logic, providing an op- 222

portunity to deduce the application’s functionality 223

and specific execution steps from its source code. 224

2.2 Mobile Task Automation 225

Given a user task T described in natural language, 226

mobile task automation aims to complete the task 227

on the target application. (Wen et al., 2024) An 228

inputted task is a natural language description of a 229

functional request and does not include specific ex- 230

ecution instructions, such as “Change theme color 231

to light.” The agent needs to determine the actions 232

to be performed on the current user interface based 233

on the given task, along with information about 234

the application, screen details, historical execution 235

actions, and other relevant information. 236

Traditional tools (such as Siri, Google Assistant, 237

Cortana, etc.) use template-based approaches to 238

perform tasks. These tools are difficult to handle 239

complex and flexible tasks and require developers 240

to engage in extensive programming work (Wen 241

et al., 2024). Before the emergence of large lan- 242

guage models, researchers designed supervised 243

learning (Burns et al., 2022; Li et al., 2020; Sun 244

et al., 2022; Xu et al., 2021) and reinforcement 245

learning methods (Humphreys et al., 2022; Li and 246

Riva, 2021; Toyama et al., 2021) to accomplish 247

mobile task automation. These methods not only 248

require a large amount of training data and high 249

training costs but also lack flexibility in the diverse, 250

real-world mobile applications and scenarios. 251

Large language models (LLMs) have demon- 252

strated excellent performance in mobile task au- 253

tomation due to their powerful language under- 254

standing, decision-making, and reasoning capabili- 255

ties (Wen et al., 2024; Ran et al., 2024; Lee et al., 256

2024; Zhang et al., 2023, 2024a). However, based 257

on the user interface, LLMs often provide deci- 258

sions following general practices rather than mak- 259

ing decisions specifically tailored to the application 260

itself. To enable LLMs to make decisions for a 261

given app, it is necessary to provide application- 262

specific information to the LLM, allowing it to con- 263

sider the app’s specific implementation. Existing 264

methods (Wen et al., 2024; Ran et al., 2024) have 265

designed exploration-memory mechanisms, which 266

3

https://anonymous.4open.science/r/UICompass-B193/
https://anonymous.4open.science/r/UICompass-B193/
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/guide/fragments

explore the application and store the exploration267

results. When a task is given, this exploration infor-268

mation is communicated to the LLM in a specific269

manner. Nevertheless, this approach has inherent270

limitations: 1) it is difficult to explore and com-271

plete the target task within a limited number of272

attempts, and 2) users are reluctant to accept agents273

performing extensive exploration on their mobile274

devices.275

3 Method276

Figure 2 illustrates the overall framework of277

UICOMPASS. Basically, the UI tasks are com-278

pleted in three steps: user interface (UI) manual279

generation (Section 3.1), UI instruction generation280

(Section 3.2), and adaptive instruction replanning281

(Section 3.3).282

3.1 User Interface Manual Generation283

UI Manual, which is automatically extracted from284

source code, delineates the interface layout and cor-285

responding functionalities of mobile applications.286

It serves as a crucial reference for large language287

models to acquire the application’s UI structures,288

transitions, and detailed logic. For instance, Fig-289

ure 3 describes an example UI Manual of “App290

Launcher”, which is composed of an activity list291

with detailed descriptions for each activity. Each292

activity usually corresponds to a user interface in293

the mobile apps. UI Manual of each activity in-294

cludes the activity name, function summary, transi-295

tion relationships between UIs, and contained UI296

element list. Each UI element is characterized by297

both static and dynamic properties. Static property298

defines layout information including tags, position,299

and IDs, while dynamic properties describe interac-300

tive actions and the resulting impact on which this301

element is operated (such as interface changes or302

activity transitions when a button is clicked).303

To enable LLM to better understand the appli-304

cation, UICOMPASS first builds a UI Manual by305

analyzing the source code. Specifically, UICOM-306

PASS generates UI Manual in three steps: method-307

level manual generation, activity-level manual gen-308

eration, and application-level manual generation.309

Starting from the lower levels, UICOMPASS pro-310

gressively refines and aggregates the information,311

and ultimately produces a concise and effective312

application-level UI Manual.313

Method-level manual generation. The method-314

level manual demonstrates the information defined315

in each method, including UI structure, UI transac- 316

tion relations, and functionality logic. UI structure 317

primarily describes the hierarchy or containment 318

relationships between components, such as an activ- 319

ity containing a fragment. UI transaction relations 320

describe the transitions between activities, which 321

help the LLM understand how to navigate to the 322

target activity. Functionality logic is reflected via a 323

function summary, describing the functionality of 324

this method. 325

UICOMPASS combines program analysis and 326

LLMs to generate the method-level manual. The 327

key advantage of program analysis is its ability to 328

provide precise, unambiguous information about 329

method relationships. LLMs, while powerful in 330

generating natural language, often lack the capabil- 331

ity to deeply understand code structure and depen- 332

dencies. Hence, UICOMPASS uses tree-sitter 4 333

to analyze the source code, extracting informa- 334

tion such as global variables, method names, class 335

names, source code of the method, and a Call 336

Graph. Considering that we should provide the 337

LLM with summaries of the invoked methods, 338

UICOMPASS generates the corresponding infor- 339

mation block for each method using topological 340

sorting based on the call graph. For the current 341

method, UICOMPASS provides the summary of all 342

methods invoked by the current method, along with 343

the context of the current method (the source code 344

of the method, the name of the class it belongs 345

to, and the definitions of global variables). More 346

details can be found in Appendix A.1. remove 347

variable in the paragram. 348

Activity-level manual generation. Effective 349

mobile task automation requires an understanding 350

of how user interfaces are structured and how dif- 351

ferent components interact. While method-level 352

details provide granular information, they often fail 353

to capture the holistic execution flow of an applica- 354

tion. To bridge this gap, we construct an activity- 355

level UI Manual, which abstracts method-level 356

details into structured representations of activities. 357

This approach enables a comprehensive view of 358

the application’s interface, capturing UI transitions 359

and hierarchical relationships, thereby improving 360

task execution efficiency and reducing ambiguity 361

in automated navigation. 362

The activity list is extracted from “AndroidMan- 363

ifest.xml”. In each activity, UICOMPASS collects 364

the relevant UI elements from the layout files called 365

4https://tree-sitter.github.io/tree-sitter/

4

https://tree-sitter.github.io/tree-sitter/

Perform adaptive instruction
replanning based on the
[Instructions][Screen
Info][Action History].

Determine the [Next Action]
based on [Next Instruction]
and [Screen Info].

Do action
[Updated Instructions][Next
Instruction]

[Next Action]

Until the task is completed.

Task UI Manual

Instructions

UIManual Generation1

UI Instruction Generation2

Initialize

Adaptive Instruction Replanning3

Source Code

Activity
Summary
Element

Summary UI ManualCall Graph

UI structure

UI transaction

functionality logic

method-level activity-level

Figure 2: Our tool consists of three components: UI Manual generation, instruction initialization, and adaptive
instruction replanning. We analyze the application’s source code to generate the UI Manual. During the execution
phase (2-3), an initial set of instructions is generated based on the UI Manual. As execution proceeds, the instruction
list is continuously adjusted by incorporating the program’s state and action history.

Activity list: SplashActivity, MainActivity, SettingsActivity,
AboutActivity, CustomizationActivity.
Infomation about these activity:

Activity name:
com.simplemobiletools.applauncher.activities.MainActivity
Summary: The MainActivity is the primary interface for
managing app launchers. It allows users to dynamically adjust
the column count in a grid layout, check for invalid apps,
display new release information, and manage app launchers
through a Floating Action Button (FAB)...
This activity can be transfer to: AboutActivity, SettingsActivity.
Elements:
element_1:
Static properties: tag:MySearchMenu, id:@+id/main_menu,
Dynamic properties: action:search, effect:provides a search
functionality to filter app launchers based on user input..
element_2:...

Figure 3: UI Manual of the mobile App - “APP
Launcher”.

by the activity class and its ancestor classes. Each366

activity’s functionality is then characterized by367

aggregating relevant UI elements and interaction368

logic. This includes a core functionality summary,369

a structured list of UI elements with their proper-370

ties, and the transition relationships between ac-371

tivities. This structured abstraction shifts from372

method-level details to an activity-centric perspec-373

tive, producing a concise yet expressive UI Manual374

that enhances LLM-driven task execution.375

Application-level manual generation. Build-376

ing on the activity-level manual, UICOMPASS then377

generates an application-level UI Manual that pro-378

vides a unified view of the entire application. This379

Instruction list:

Activity:
com.simplemobiletools.applauncher.activities.MainActivity.
Instructions:
1. Open the app and navigate to the MainActivity.
2. Click on the 'Settings' menu item in the options menu.

Activity:
com.simplemobiletools.applauncher.activities.SettingsActivity.
Instructions:
3. In the SettingsActivity, locate the 'Color Customization' section.
4. Click on the 'Customize Colors' option.
5. Select the 'Light' theme from the available options.
6. Confirm the selection to apply the light theme.

Figure 4: The generated instruction list for task “Change
theme color to light” in the “App Launcher” application.

step integrates activity-level information, capturing 380

inter-activity transitions, global UI elements, and 381

application-wide settings. We achieve this by ana- 382

lyzing component interactions, permission require- 383

ments, and shared UI elements across activities. 384

The resulting manual offers a high-level representa- 385

tion of the application’s navigational structure and 386

interaction logic, enabling LLM-driven agents to 387

perform complex tasks. 388

3.2 UI Instruction Generation 389

With the generated UI Manual, UICOMPASS then 390

guides LLM to generate an instruction list I to 391

complete the given UI tasks. I comprises multi- 392

ple action blocks, with each containing an activity 393

ID activity i and a set of specific execution instruc- 394

tions Ii, indicating executing Ii within activity i. 395

5

Formally,396

I = {a1(activity i, I1), · · · , am(activitym, Im)}397

Figure 4 illustrates the instruction list for the task398

“Change theme color to light” in the “App Launcher”399

application. To complete the given task, the gener-400

ated instruction lists show that we need to open the401

MainActivity, click setting to transition to Settin-402

gActivity, and click ‘Light’ theme.403

3.3 Adaptive Instruction Replanning404

A static instruction list generated from the UI Man-405

ual may not always be directly executable due to406

variations in runtime application states. Factors407

such as dynamically loaded UI elements, state-408

dependent UI transitions, and missing ids can cause409

discrepancies between the planned execution path410

and the actual interface observed during execu-411

tion. Without an adaptive replanning mechanism,412

an agent may either fail the task when encounter-413

ing an unexpected state or perform unnecessary ex-414

ploratory actions, reducing efficiency and increas-415

ing the risk of errors.416

To address these challenges, UICOMPASS incor-417

porates an adaptive instruction replanning mech-418

anism. By continuously evaluating execution419

progress and adjusting the instruction list accord-420

ingly, the agent dynamically adapts to UI changes421

while maintaining a goal-directed execution strat-422

egy. This approach minimizes unnecessary inter-423

actions, improves task success rates, and ensures424

robustness against application variability. In con-425

trast to purely exploratory methods, which rely on426

trial-and-error and may generate redundant actions,427

our adaptive replanning mechanism leverages struc-428

tured task execution data to guide decision-making429

efficiently.430

Algorithm 1 demonstrates how UICOMPASS ad-431

justs the instruction list based on the specific ap-432

plication state and tasks. The algorithm takes the433

initial instruction list I and the maximum num-434

ber of attempts max_tries as inputs, and finally435

outputs the action history. Before the action loop436

begins, UICOMPASS initializes the number of at-437

tempts and an empty action history. Leveraging the438

action history, screen information, and the instruc-439

tion list, the LLM analyzes the application’s state440

to update the instruction list and choose the next in-441

struction to be executed (line 4). This data helps the442

LLM comprehend the application’s current state,443

monitor task execution progress, and select appro-444

priate instructions. If the LLM identifies a need445

Algorithm 1: Adaptive Instruction Replan-
ning Algorithm
Input: task t, instruction list I, maximum

attempts max_tries
Output: action historyH

1 tries← 0;H ← ∅
2 while tries < max_tries do
3 S ← GetInterfaceInfo();
4 (Iupdate, Inext)← LLM(t, I,H, S);
5 I ← Iupdate;
6 if Inext == null then
7 break;
8 end
9 action← LLM(S, Inext);

10 DoAction(action) ;
11 H.push(action);
12 tries← tries+ 1;
13 end
14 returnH;

for modifications to the instructions, it makes the 446

necessary adjustments during this phase. If no next 447

instruction needs to be executed, UICOMPASS ter- 448

minates the task (lines 6-8). Otherwise, the LLM 449

proceeds by executing the instruction and record- 450

ing it in the action history (lines 9-12). Adaptive 451

instruction list replanning enables UICOMPASS to 452

complete tasks effectively while accounting for the 453

application’s dynamic nature. 454

4 Experiments 455

UICOMPASS has been developed on the founda- 456

tion of Guardian (Ran et al., 2024). To investigate 457

the performance of UICOMPASS, we conducted 458

experimental evaluations. 459

4.1 Experimental Settings 460

Datasets. We chose the DroidTask (Wen et al., 461

2024) dataset to validate UICOMPASS because it 462

is based on open-source applications and provides 463

the source code of the applications. DroidTask con- 464

tains 158 high-level tasks from 13 popular apps. 465

Since one application in the dataset is not open- 466

source, we selected 12 of these open-source appli- 467

cations. To minimize the impact of data leakage, 468

we selected the latest versions along with their cor- 469

responding source code. However, four tasks were 470

no longer executable, leaving us with a total of 145 471

tasks. 472

Baseline Methods. We chose AutoDroid (Wen 473

6

Methods SR↑ ACP↑ OSR↑ SPL↑
AutoDroid 53.79% 71.72% 76.92% 15.87%
Guardian 45.20% 71.83% 0.0% 1.70%
UICOMPASS 68.27% 81.96% 80.80% 20.92%

Table 1: Effectiveness of Task Completion.

et al., 2024) and Guardian (Ran et al., 2024) as base-474

line tools for experimental comparison. AutoDroid475

combines the commonsense knowledge of LLMs476

and domain-specific knowledge of apps through an477

exploration-memory mechanism. Guardian refines478

action spaces with domain-specific knowledge and479

adjusts application exploration through recovery-480

based replanning. Both tools utilize LLMs for mo-481

bile task automation and have demonstrated excel-482

lent performance.483

Metrics. Following existing work (Wen et al.,484

2024; Ran et al., 2024), we measure the following485

metrics:486

• Success Rate (SR): The ratio of successfully487

completed tasks to the total number of tasks.488

• Average Completion Proportion (ACP): The489

maximum proportion of the executed action490

sequence that matches the prefix of the ground491

truth action sequence.492

To evaluate whether the tools can effectively avoid493

unnecessary actions and correctly terminate, in-494

spired by robotic navigation tasks (Chen et al.,495

2024), we introduce two additional metrics:496

• Oracle Success Rate (OSR): The rate of suc-497

cessfully stopping exploration when the task498

is completed.499

• Success Rate Penalized by Path Length (SPL):500

A metric that evaluates the rate that is cal-501

culated by the ground truth action sequence502

length divided by the actual action sequence503

length.504

4.2 Results of task completion505

We validated the task execution capabilities of506

UICOMPASS, Guardian, and AutoDroid on Droid-507

Task. Table 1 summarizes the evaluation results.508

UICOMPASS achieved a higher task success rate509

(SR) of 68.27%, representing a 14.48% improve-510

ment over the best results (53.79%) from existing511

tools. This demonstrates that under the guidance512

of UI Manual, UICOMPASS can effectively com-513

plete tasks using the adaptive instruction list replan-514

ning strategy. UICOMPASS achieves an ACP of515

UI Manual Adapting SR↑ ACP↑ OSR↑ SPL↑
× × 37.24% 64.57% 60.00% 1.77%
✓ × 42.75% 64.43% 66.67% 15.00%
× ✓ 55.86% 72.62% 53.84% 17.66%
✓ ✓ 68.27% 81.96% 80.80% 30.85%

Table 2: Ablation Results of UICOMPASS

81.96%, indicating its superior understanding of 516

task execution logic and its ability to perform a 517

greater number of task-related actions. The 3.88% 518

improvement in OSR and the 5.05% enhancement 519

in SPL further demonstrate UICOMPASS’s capa- 520

bility to terminate promptly upon task completion. 521

Among these results, Guardian’s OSR is 0 because 522

it only stops after reaching the maximum number 523

of operations. These experimental results validate 524

the effectiveness of UICOMPASS, showcasing its 525

ability to accomplish more tasks while utilizing 526

fewer execution steps. 527

4.3 Ablation Study 528

To evaluate the effectiveness of UI Manual and the 529

adaptive instruction replanning, we conducted ad- 530

ditional ablation experiments. When UI Manual 531

is omitted, the agent generates an initial instruc- 532

tion list based solely on the remaining information. 533

When adaptive instruction replanning is disabled, 534

the agent follows the instruction list strictly in their 535

original sequence. 536

With UI Manual guidance vs. Without UI 537

Manual guidance. When UI Manual is enabled, 538

the task success rate (SR) increases from 37.24% 539

to 42.75% (without adaptive re-planning) and from 540

55.86% to 68.27% (with adaptive re-planning). Ad- 541

ditionally, the SPL metric improves substantially, 542

rising from 1.77% to 15.00% in the absence of 543

re-planning and from 17.66% to 30.85% when re- 544

planning is applied. These results suggest that UI 545

Manual provides crucial contextual guidance that 546

enhances both the success rate and task efficiency. 547

Direct Execution with Instructions vs. Adap- 548

tive Instruction Replanning. In scenarios without 549

UI Manual, enabling adaptive re-planning increases 550

the SR from 37.24% to 55.86%. Similarly, with 551

UI Manual guidance, adaptive re-planning boosts 552

the SR from 42.75% to 68.27%. These results 553

demonstrate that adaptive re-planning allows the 554

agent to dynamically adjust its strategy, effectively 555

improving task success and overall efficiency. 556

By combining UI Manual guidance and adaptive 557

instruction re-planning, the agent achieves the best 558

7

1 2

4 5 6

3Initial instructions:
 1. Open the app and navigate to the main interface.
 2. Go to the settings menu from the toolbar.
 3. Locate the theme customization option.
 4. Select the 'light' theme option.
 5. Confirm the theme selection.
 6. Save the changes.

Final instructions:
1. Open the app and navigate to the main interface.
2. Go to the settings menu from the toolbar.
3. Locate the theme customization option.
4. Select the 'Theme' option.
5. Select the 'light' theme option.
6. Click the 'Save' button to save the theme changes.

Figure 5: A successful case on DroidTask demonstrates the effectiveness of UICOMPASS’s UI Manual and adaptive
instruction replanning.

results across all metrics, with the SR improving559

to 68.27%. This is significantly higher than us-560

ing either UI Manual (SR: 42.75%) or adaptive re-561

planning alone (SR: 55.86%). These results demon-562

strate that UI Manual provides essential contextual563

guidance, while adaptive re-planning enhances flex-564

ibility, and their integration effectively maximizes565

task success and efficiency.566

4.4 Case Study567

As shown in Figure 5, we present a successful ex-568

ample from the DroidTask dataset, which high-569

lights the effectiveness of the UICOMPASS’s UI570

Manual-guided process and the capability of adap-571

tive instruction list replanning in real-world scenar-572

ios. The task in this example is “Set app theme to573

light and save it,” and the six images on the right574

side of Figure 5 depict the correct steps generated575

by UICOMPASS. This example presents a chal-576

lenge for the existing mobile agent. Although the577

instruction indicates this is a setting operation, the578

numerous setting options in the settings activity579

and ‘Customize colors’ (Step 3) not indicating that580

it is for modifying the theme colors both contribute581

to the difficulty of task execution. UICOMPASS582

generates the initial instruction list using the UI583

Manual (shown in the top-left of Figure 5). Due584

to the complexity of the application, the instruc-585

tion list generated by UICOMPASS is not entirely586

correct. In this example, we can see that most of587

the instruction list generated by UICOMPASS are588

correct, except for the “Select the ‘Theme’ option”589

being missing and “Confirm the theme selection”590

being mistakenly included. As shown in the final591

instructions (as shown in the bottom left of Fig-592

ure 5), UICOMPASS uses the adaptive instruction593

list replanning mechanism to correct the errors in594

the initial instruction list based on the actual ex-595

ecution context. Therefore, the initial instruction 596

list generated by the UI Manual, combined with 597

the adaptive instruction list replanning mechanism, 598

can effectively guide the LLM to complete tasks in 599

the target application. 600

5 Conclusion 601

In this paper, we propose a method for guiding 602

agents in mobile task automation using a User Inter- 603

face Manual extracted from the source code, called 604

UICOMPASS. UICOMPASS leverages LLM to ana- 605

lyze the source code and ultimately generates the 606

User Interface Manual. UICOMPASS can then use 607

this User Interface Manual along with the task to 608

generate an initial instruction list. Furthermore, 609

to ensure the agent can adapt to different applica- 610

tion states, we introduce adaptive instruction list 611

re-planning, which combines action history, and 612

the current interface to continuously adjust the in- 613

struction list. Through extensive experiments, we 614

demonstrate the effectiveness of the instruction list 615

generated by UICOMPASS and its task completion 616

capability, achieving state-of-the-art performance. 617

Limitation 618

Although UICOMPASS can automatically generate 619

the UI Manual, its reliance on application devel- 620

opers to provide the UI Manual to the agent limits 621

its usage scenarios. However, the UI Manual can 622

still effectively improve task execution capabili- 623

ties for applications with easily accessible source 624

code (e.g., system applications) or those willing 625

to provide the UI Manual. In the future, we aim 626

to explore methods for extracting the UI Manual 627

directly from APK files, which would significantly 628

expand the usage scenarios of UICOMPASS. 629

8

References630

Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha631
Kumar, Kate Saenko, and Bryan A Plummer. 2022.632
A dataset for interactive vision-language navigation633
with unknown command feasibility. In European634
Conference on Computer Vision, pages 312–328.635
Springer.636

Jiaqi Chen, Bingqian Lin, Ran Xu, Zhenhua Chai, Xi-637
aodan Liang, and Kwan-Yee Wong. 2024. Mapgpt:638
Map-guided prompting with adaptive path planning639
for vision-and-language navigation. In Proceedings640
of the 62nd Annual Meeting of the Association for641
Computational Linguistics (Volume 1: Long Papers),642
pages 9796–9810.643

Yanchu Guan, Dong Wang, Zhixuan Chu, Shiyu Wang,644
Feiyue Ni, Ruihua Song, and Chenyi Zhuang. 2024.645
Intelligent agents with llm-based process automa-646
tion. In Proceedings of the 30th ACM SIGKDD Con-647
ference on Knowledge Discovery and Data Mining,648
pages 5018–5027.649

Peter C Humphreys, David Raposo, Tobias Pohlen, Gre-650
gory Thornton, Rachita Chhaparia, Alistair Muldal,651
Josh Abramson, Petko Georgiev, Adam Santoro, and652
Timothy Lillicrap. 2022. A data-driven approach653
for learning to control computers. In International654
Conference on Machine Learning, pages 9466–9482.655
PMLR.656

Rashedul Islam, Rofiqul Islam, and Tohidul Mazumder.657
2010. Mobile application and its global impact. In-658
ternational Journal of Engineering & Technology,659
10(6):72–78.660

Sunjae Lee, Junyoung Choi, Jungjae Lee, Munim Hasan661
Wasi, Hojun Choi, Steve Ko, Sangeun Oh, and In-662
sik Shin. 2024. Mobilegpt: Augmenting llm with663
human-like app memory for mobile task automation.664
In Proceedings of the 30th Annual International Con-665
ference on Mobile Computing and Networking, pages666
1119–1133.667

Li Li, Tegawendé F Bissyandé, Mike Papadakis,668
Siegfried Rasthofer, Alexandre Bartel, Damien669
Octeau, Jacques Klein, and Le Traon. 2017. Static670
analysis of android apps: A systematic literature re-671
view. Information and Software Technology, 88:67–672
95.673

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason674
Baldridge. 2020. Mapping natural language instruc-675
tions to mobile ui action sequences. In Proceedings676
of the 58th Annual Meeting of the Association for677
Computational Linguistics, pages 8198–8210.678

Yuanchun Li and Oriana Riva. 2021. Glider: A rein-679
forcement learning approach to extract ui scripts from680
websites. In Proceedings of the 44th International681
ACM SIGIR Conference on Research and Develop-682
ment in Information Retrieval, pages 1420–1430.683

OpenAI. 2023a. Gpt-4 technical report. Technical re-684
port, OpenAI. 2023a.685

OpenAI. 2023b. Gpt-4v(ision) system card. Technical 686
report, OpenAI. 2023b. 687

OpenAI. 2023c. Gpt-4v(ision) technical work and au- 688
thors. Technical report, OpenAI. 2023c. 689

Étienne Payet and Fausto Spoto. 2012. Static analy- 690
sis of android programs. Information and Software 691
Technology, 54(11):1192–1201. 692

Dezhi Ran, Hao Wang, Zihe Song, Mengzhou Wu, Yuan 693
Cao, Ying Zhang, Wei Yang, and Tao Xie. 2024. 694
Guardian: A runtime framework for llm-based ui 695
exploration. In Proceedings of the 33rd ACM SIG- 696
SOFT International Symposium on Software Testing 697
and Analysis, pages 958–970. 698

Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai, 699
Zichen Zhu, and Kai Yu. 2022. Meta-gui: Towards 700
multi-modal conversational agents on mobile gui. 701
In Proceedings of the 2022 Conference on Empir- 702
ical Methods in Natural Language Processing, pages 703
6699–6712. 704

Daniel Toyama, Philippe Hamel, Anita Gergely, Ghe- 705
orghe Comanici, Amelia Glaese, Zafarali Ahmed, 706
Tyler Jackson, Shibl Mourad, and Doina Precup. 707
2021. Androidenv: A reinforcement learning plat- 708
form for android. arXiv preprint arXiv:2105.13231. 709

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, 710
Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, 711
and Jitao Sang. 2024. Mobile-agent-v2: Mobile 712
device operation assistant with effective naviga- 713
tion via multi-agent collaboration. arXiv preprint 714
arXiv:2406.01014. 715

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, 716
Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao Liu, 717
Yaqin Zhang, and Yunxin Liu. 2023. Empowering 718
llm to use smartphone for intelligent task automation. 719
arXiv preprint arXiv:2308.15272. 720

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, 721
Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao Liu, 722
Yaqin Zhang, and Yunxin Liu. 2024. Autodroid: Llm- 723
powered task automation in android. In Proceedings 724
of the 30th Annual International Conference on Mo- 725
bile Computing and Networking, pages 543–557. 726

Mingzhe Xing, Rongkai Zhang, Hui Xue, Qi Chen, 727
Fan Yang, and Zhen Xiao. 2024. Understanding the 728
weakness of large language model agents within a 729
complex android environment. In Proceedings of 730
the 30th ACM SIGKDD Conference on Knowledge 731
Discovery and Data Mining, pages 6061–6072. 732

Nancy Xu, Sam Masling, Michael Du, Giovanni Cam- 733
pagna, Larry Heck, James Landay, and Monica Lam. 734
2021. Grounding open-domain instructions to auto- 735
mate web support tasks. In Proceedings of the 2021 736
Conference of the North American Chapter of the 737
Association for Computational Linguistics: Human 738
Language Technologies, pages 1022–1032. 739

9

Zhuolin Xu, Qiushi Li, and Shin Hwei Tan.740
2023. Guiding chatgpt to fix web ui tests via741
explanation-consistency checking. arXiv preprint742
arXiv:2312.05778.743

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang,744
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng745
Yin. 2024. Wavecoder: Widespread and versatile746
enhancement for code large language models by in-747
struction tuning. In Proceedings of the 62nd Annual748
Meeting of the Association for Computational Lin-749
guistics (Volume 1: Long Papers), pages 5140–5153.750

Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li,751
Liqun Li, Si Qin, Yu Kang, Minghua Ma, Qingwei752
Lin, Saravan Rajmohan, et al. 2024a. Large language753
model-brained gui agents: A survey. arXiv preprint754
arXiv:2411.18279.755

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi756
Jin. 2024b. Codeagent: Enhancing code gener-757
ation with tool-integrated agent systems for real-758
world repo-level coding challenges. arXiv preprint759
arXiv:2401.07339.760

Zhe Zhang, Xingyu Liu, Yuanzhang Lin, Xiang Gao,761
Hailong Sun, and Yuan Yuan. 2024c. Llm-based unit762
test generation via property retrieval. arXiv preprint763
arXiv:2410.13542.764

Zhizheng Zhang, Xiaoyi Zhang, Wenxuan Xie, and Yan765
Lu. 2023. Responsible task automation: Empow-766
ering large language models as responsible task au-767
tomators. arXiv preprint arXiv:2306.01242.768

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu,769
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang Yue.770
2024. OpenCodeInterpreter: Integrating code gener-771
ation with execution and refinement. In Findings of772
the Association for Computational Linguistics ACL773
2024, Bangkok, Thailand and virtual meeting.774

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang,775
Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo776
Gao, Shirong Ma, et al. 2024. Deepseek-coder-v2:777
Breaking the barrier of closed-source models in code778
intelligence. arXiv preprint arXiv:2406.11931.779

Appendices780

A More Details781

A.1 Prompts782

783

To present our prompts more clearly, we further784

demonstrate practical examples in the “notes” ap-785

plication. Figure 6 is the prompt used for method-786

level manual generation. Figure 7 describes the787

prompt content for generating the initial instruction788

list when performing the task “Set the app theme789

to light and save it” in the “notes” application. Fig-790

ure 8 illustrates the detailed prompt for UICOM-791

PASS in "Adaptive Instruction Replanning," which792

facilitates adjustments to task execution in response 793

to changing requirements or unforeseen challenges. 794

A.2 Experimental Details 795

In this experiment, we utilized DeepSeek-v3 (Zhu 796

et al., 2024) as the LLM. This choice was made 797

not only because of its powerful performance but 798

also due to its high cost-effectiveness. DeepSeek 799

has been widely used and widely accepted in LLM- 800

related work (Zhang et al., 2024c; Zheng et al., 801

2024; Yu et al., 2024). 802

To ensure a fair comparison of each tool, we 803

manually annotated the experimental data. The 804

three authors of the paper first familiarized them- 805

selves with the applications and referred to the 806

ground truth provided in DroidTask (Wen et al., 807

2024). For the execution results of each tool on 808

each application, we conducted separate analyses 809

and ultimately engaged in discussions. Differ- 810

ent tasks may have multiple implementation ap- 811

proaches. Therefore, for the execution results of 812

each tool, we analyze and evaluate the shortest path 813

chosen to complete the task when calculating the 814

experimental results. In addition, during the exper- 815

iments, we prepared the data required for each task 816

in advance to ensure that the task was executable. 817

10

[Background]
You are an Android analyst. I will give you a method from the class SettingsActivity.
Here is the method from the given Android source code:
override fun onResume() {

super.onResume()
setupToolbar(binding.settingsToolbar, NavigationIcon.Arrow)
setupPurchaseThankYou()...}

[Invoked Method Summary]
Here is the explanation of the method named com.simplemobiletools.applauncher.activities.SettingsActivity.setupPurchaseThankYou that is
called within the given method:
The method `setupPurchaseThankYou` is designed to configure the UI component `settingsPurchaseThankYouHolder` for a thank you screen
after a purchase. It hides the holder if a thank you has already been shown, and sets up an onClickListener to launch a new intent if the holder
is visible.
...
Please analyze the method above and identify any activity migration relationships that exist.
Specifically, look for `startActivity` calls and their associated `Intent` objects.
[Target]
You need to analyze the functionality of the source code. If there are any actionable elements, provide a description of the element's
response.
[Notice]
Additionally, identify all **UI elements** involved in the method. An **element** should be one of the following:
- A view component such as `Button`, `TextView`, `ImageView`, etc.
- An interaction-triggering element, like a button that starts an activity or any clickable UI component.
In addition to activity migrations, please also check for:
1. Any **fragment** and **activity** dependencies or relationships in the code. Specifically, identify if a fragment is associated with an
activity (e.g., using `getActivity()`, `FragmentTransaction`, or similar methods).
2. Any **migration relationships** between fragments and activities. This could include cases where a fragment starts an activity, or an
activity dynamically replaces a fragment, or any other relationships indicating a transition between a fragment and an activity.
3. Any relationship between **XML files (R.layout，or R.menu)** and **activities** or **fragments**. Look for references to XML layouts
that are inflated in an activity or fragment (e.g., using `setContentView()`, `LayoutInflater`, `FragmentTransaction.replace()`, etc.). **You
only need to output layout files that start with R.layout and R.menu.**
4. **element_list**: Please list all the elements (normal element or menu item) present in the method. Tell me the type and ID of each
element. Additionally, describe the conditions under which the element is executed and the effects it will have. For example, the condition
could be that the login button can only be clicked after entering the account password, and the effect could be a transition to MainActivity.
[Output Example]
The output should be in JSON format, for example:
{"functionality": "description of the method functionality",

"element_list": [
{"type": "element type",
"element_id": "R.id.xx",
"action": "description of the action triggered by the element"}],

"activity_migrations": [
{"from_activity_or_fragment": "sourceActivityOrFragmentName",
"to_activity_or_fragment": "targetActivityOrFragmentName",
"description": "A brief description of how the migration happens."}],

"fragment_activity_relationships": [
{"fragment": "fragmentName",
"activity": "activityName",
"relationship": "Fragment is attached to Activity using FragmentTransaction methods like add(), replace(), or show()."}],

"xml_relationships": [
{"xml_file": "R.layout.xx.xml",
"associated_with": "activity_or_fragment"}]}

Figure 6: The prompt for the method-level manual generation of the “OnResume” method in the “Applaucher”
application.

11

[Background]
You are a user of an application, and I will provide you with the instruction manual for the application. Your task is to speculate on what
instructions is used to execute the given task.
[UI Manual]
Infomation about this app:
Activity list:
SplashActivity, MainActivity, WidgetConfigureActivity, AboutActivity, CustomizationActivity, SettingsActivity,
Infomation about these activity:
Activity name: com.simplemobiletools.notes.pro.activities.SplashActivity
The summary of com.simplemobiletools.notes.pro.activities.SplashActivity: "This activity serves as a splash screen that checks for a specific
intent extra (`OPEN_NOTE_ID`). If the extra is present, it starts `MainActivity` with the extra data; otherwise, it starts `MainActivity`
without any extra data. After starting `MainActivity`, the `SplashActivity` is finished."
This activity can be transfer to other activities: MainActivity,
Activity name: com.simplemobiletools.notes.pro.activities.MainActivity
The summary of com.simplemobiletools.notes.pro.activities.MainActivity: "The activity serves as the main interface for managing notes,
including creating, editing, deleting, and viewing notes. It supports various note types (text and checklist), handles file imports/exports,
manages search functionality, and integrates with system features like shortcuts, printing, and sharing. Additionally, it provides options for
locking/unlocking notes, sorting checklists, and managing app settings."
This activity can be transfer to other activities: MainActivity, SplashActivity, AboutActivity, SettingsActivity,
tag:MaterialToolbar, id:@+id/main_toolbar, action:toolbar, effect:Displays the activity's toolbar, which contains menu items for actions like
saving, searching, creating notes, and accessing settings..
tag:include, id:@+id/search_wrapper, action:include, effect:Embeds the search bar layout, enabling search functionality within the activity..
tag:MyViewPager, id:@+id/view_pager, action:viewpager, effect:Manages the display of multiple notes in a swipeable interface, allowing
users to navigate between notes..
tag:PagerTabStrip, id:@+id/pager_tab_strip, action:tabstrip, effect:Provides visual indicators for the current note's position within the
ViewPager, aiding navigation..
tag:MaterialToolbar, id:@+id/main_toolbar, action:toolbar, effect:Displays the activity's toolbar, which contains menu items for actions like
saving, searching, creating notes, and accessing settings..
tag:include, id:@+id/search_wrapper, action:include, effect:Embeds the search bar layout, enabling search functionality within the activity..
tag:MyViewPager, id:@+id/view_pager, action:viewpager, effect:Manages the display of multiple notes in a swipeable interface, allowing
users to navigate between notes..
tag:PagerTabStrip, id:@+id/pager_tab_strip, action:tabstrip, effect:Provides visual indicators for the current note's position within the
ViewPager, aiding navigation..
...
[Task Description]
Based on the aforementioned application information, our goal is to execute the task: "Set app theme to light and save it".
[Output Example]
{"task": "Book a flight",

"activities_sequence": [
{"activity": "LoginActivity",

"steps": [
"1. Input the account.",
"2. Submit the login form."]},

{"activity": "MainActivity",
"steps": [

"3. Search for available flights based on your preferences.",
"4. Select the flight that suits your needs."]},

{"activity": "BookingActivity",
"steps": [

"5. Enter the required passenger details for booking.",
"6. Make the payment for the selected flight.",
"7. Receive a confirmation of the flight booking."]}],

"explanation": "because the BookingActivity has the flight booking button."}

Figure 7: In the application “Notes”, the prompt content of UICOMPASS generates the initial instruction list for task
“Set app theme to light and save it”.

12

[Background]
I currently have a task Set app theme to light and save it, and I have a set of instructions for this task, but there may be errors in this set of
instructions that need to be adjusted based on the current interface.
[Instructions]
Instructions:
{'task': 'Set app theme to light and save it', 'activities_sequence': [{'activity': 'MainActivity', 'steps': ['1. Open the app and navigate to the main
interface.']}, {'activity': 'SettingsActivity', 'steps': ['2. Go to the settings menu from the toolbar.', '3. Locate the theme customization option.',
"4. Select the 'light' theme option."]}, {'activity': 'CustomizationActivity', 'steps': ['5. Confirm the theme selection.', '6. Save the changes.']}]}
[Screen Info]
Here is the information about the screen we are currently on.
Widget(text: Rename note, class: android.widget.LinearLayout, position: (539, 220, 1054, 346))
Widget(resource-id: com.simplemobiletools.notes.pro:id/content, class: android.widget.LinearLayout, position: (539, 220, 1054, 346))
Widget(resource-id: com.simplemobiletools.notes.pro:id/title, text: Rename note, class: android.widget.TextView, position: (581, 254, 1012,
311))
Widget(text: Remove done items, class: android.widget.LinearLayout, position: (539, 346, 1054, 472))
...
[Action History]
#History information (You should refer to the historical records to identify which part of the instructions they correspond to, consider the
relationship between the current interface and the next step, and then update the instructions accordingly.):{
index-0: open the target application
index-1:Event(action=click, widget=a View (accessibility information: More options, text:))
}
If Task is finished, next_instruction = none
[Output Example]
"task": "Book a flight",
"explanation": {

"current state" : "The current interface indicates that the search has been completed and the search results are displayed, but no flight has
been selected yet.",

"finished step" : "Based on the history, a search operation has already been performed. Therefore, 3. Search for available flights based
on your preferences.",

"error reason" : "The next action should select the flight",
"revised method" : "add 4. Select the flight that suits your needs",
"next_instruction": "4. Select the flight that suits your needs"},
"updated_activities_sequence": [

{"activity": "LoginActivity",
"steps": [

"1. Input the account.",
"2. Submit the login form."]},

{"activity": "MainActivity",
"steps": [

"3. Search for available flights based on your preferences.",
"4. Select the flight that suits your needs."]},

{"activity": "BookingActivity",
"steps": [

"5. Enter the required passenger details for booking.",
"6. Make the payment for the selected flight.",
"7. Receive a confirmation of the flight booking."]}]}

Figure 8: In application “Notes”, UICOMPASS generates the prompt for the "Adaptive Instruction Replanning"
section to perform task A.

13

	Introduction
	Background and Related Work
	Backgroud of Android Program
	Mobile Task Automation

	Method
	User Interface Manual Generation
	UI Instruction Generation
	Adaptive Instruction Replanning

	Experiments
	Experimental Settings
	Results of task completion
	Ablation Study
	Case Study

	Conclusion
	More Details
	Prompts
	Experimental Details

