UICoMPASS: Ul Manual Guided Mobile Task Automation via Adaptive
Instruction Replanning

Anonymous ACL submission

Abstract

Large language model(LLM)-based agents
have been widely applied in the field of mo-
bile task automation. However, LLMs, which
are proficient in general task execution prac-
tices, often struggle to execute tasks cor-
rectly on specific applications due to a lack of
application-specific knowledge, leading to con-
fusion and errors. Although existing methods
use exploration-memory mechanisms to miti-
gate this issue, excessive exploration on user
devices is unacceptable, and these mechanisms
still struggle to handle tasks effectively. In this
work, we propose a method for assisting agents
in mobile task completion using a User Inter-
face Manual, called UICOMPASS. Specifically,
it first automates the extraction of the User In-
terface Manual from the source code, which
describes the application’s interface and inter-
action logic. During execution, it analyzes the
User Interface Manual to generate simulation
paths for the given task and adaptively adjusts
the execution path based on the actual applica-
tion state. Experiments show that UICOMPASS
achieves state-of-the-art performance on the
DroidTask dataset, with a success rate improve-
ment of 14.48%, and a reduction in the length
of execution paths.

1 Introduction

With the increasing prevalence of mobile devices,
a vast array of diverse mobile applications has
gradually become an inseparable part of our daily
lives(Islam et al., 2010). These applications boast
a wide range of functionalities and varied designs,
supporting numerous daily tasks such as online
ordering, chatting, and reading. However, the com-
plexity of these application designs imposes a sig-
nificant learning cost on users. For instance, the
option to “enable night mode” might be located in
a side drawer or within the settings activity, or it
might not be supported in the app. Users need to
constantly try out these applications to understand

L
/ A B o |

q / & /
= ‘.

Based on the instructions to be
executed, the third event should
be selected for execution.

There are no
elements related to
the target task ... |
don't know which
action to choose.

\
o~

@ current screen —— action

O screen

possible screen <

- - = posiible action

- N
7

simulated Path

Figure 1: Comparison of Task Execution with and with-
out Guidance in LLMs.

them, which severely impacts the user experience.
Therefore, designing an intelligent assistant capa-
ble of automating the use of applications according
to user goals has the potential to enhance user ex-
perience and assist users in completing their tasks
automatically in inconvenient scenarios (Xing et al.,
2024; Wang et al., 2024).

Large Language Models (LLMs) excel in vari-
ous fields (Xu et al., 2023; Chen et al., 2024; Zhang
et al., 2024b,c), with strong natural language under-
standing, generation, and decision-making abilities.
In the field of mobile task automation, a more gen-
eral method (Wen et al., 2024; Ran et al., 2024,
Lee et al., 2024; Guan et al., 2024; Wen et al.,
2023) involves providing the LLM with informa-
tion (such as target task description, historical ex-
ecution records, user interface information, etc.)
and requesting the LLLM to return actions. These
tools then interact with mobile applications based
on the actions returned by the LLM, ultimately
accomplishing the given tasks.

LLMs (OpenAl, 2023a,b,c; Zhu et al., 2024) are
trained on vast amounts of data, and their decision-
making often reflects general practices across ap-
plications. This leads to poor performance when
dealing with special task event sequence designs

or application-specific tasks. To enable agents
to adapt to a wide range of applications, some
agents (Ran et al., 2024; Lee et al., 2024; Wen
etal., 2024; Guan et al., 2024) adopt an exploration-
memory mechanism to explore the application and
use the exploration results to assist in task execu-
tion. However, these methods has two main limi-
tations: 1) Exploration combined with execution
may lead to a large number of task-unrelated ac-
tions being generated on the user’s device, which
is unacceptable to users. 2) When the user inter-
face does not contain directly relevant information
for the task, the LLM may become confused and
explore aimlessly, leading to highly inefficient ex-
ploration. As shown in Figure 1 (left), when ele-
ments on the interface are not directly related to the
given task, the LLM may mistakenly assume that
it has reached the wrong user interface or engage
in purposeless exploration.

Considering that LLMs are familiar with gen-
eral practices for mobile tasks, but different ap-
plications may have different design styles, this
leads to challenges in executing tasks on mobile
devices. Inspired by the vehicle driving scenario,
we observe that having a clear map not only signif-
icantly enhances the driver’s efficiency in reaching
their destination but also helps them make more
informed decisions when navigating complex road
conditions. The presence of a map provides a sense
of direction and security, reducing the risk of get-
ting lost or taking unnecessary detours. This con-
cept applies equally to other fields, where clear
guidance and effective information greatly improve
the likelihood of achieving objectives. As shown in
Figure 1 (right), if an application manual serving as
a map is used to guide the agent, the agent will be
able to clearly understand the steps and sequence
of task execution, thereby improving the efficiency
and accuracy of task performance. Therefore, we
propose a scenario in which application developers
should provide an application manual alongside the
application APK to assist agents in executing user
tasks. Considering that providing such a manual
would increase the burden on developers, the goal
of this paper is twofold: 1) to define and automate
the generation of application manuals, and 2) to de-
sign an agent capable of completing target tasks on
mobile devices based on the provided application
manual.

In this paper, we present UICOMPASS, a system
designed to automatically generate a User Interface
Manual (an application manual) and use Ul Man-

ual to complete user-specified tasks on the target
application. First, it includes a source code analysis
system that analyzes the application’s source code
to generate a Ul Manual (User Interface Manual).
The UIManual is a type of application guide that
describes the functionality of activities, elements
of activities, and transition relationships between
activities. Unlike user manuals or other application
guides that directly instruct how to execute a task,
the UI Manual retains more detailed information
to support a wide variety of tasks. To protect the
security of the application, the manual undergoes
multiple levels of abstraction and retains only the
Ul-level information. Considering that applications
will provide user interfaces and even user documen-
tation, it is acceptable for application vendors to
provide the UI Manual to the agent. Secondly,
when a user provides a task, UICOMPASS gener-
ates instructions based on the UI Manual and the
task description. To better adapt to the actual ex-
ecution state of the program (e.g., some elements
may not have an ID), these instructions use natural
language to outline potential execution paths. Fi-
nally, during the execution phase, considering that
the program’s dynamic state may differ from the re-
sults of static analysis, UICOMPASS adaptively re-
planning the instructions based on the instructions,
historical execution data, and the current state of
the application.

We conducted experimental evaluations of
UICoMPASS on DroidTask dataset (Wen et al.,
2024). The experimental results demonstrate that
UICOMPASS outperforms existing LLM-based
agents. UICOMPASS achieved a task success rate
of 68.27%, representing a 14.48% improvement.
Additionally, UICOMPASS demonstrated shorter
execution paths and a higher capability for auto-
matic task completion termination during the pro-
cess. Ablation studies show that the Ul Manual
and the adaptive instruction replanning modules
are effective in enhancing the agent’s mobile task
execution capability.

Our contributions can be outlined as follows.

* We propose a User Interface Manual-guided
task execution method. This method first gen-
erates a User Interface Manual based on the
mobile application’s source code, which con-
tains information about the user interface and
operational responses, to assist the LLM in
generating an initial instruction list based on
the task and using the instruction list to aid in

task execution.

* An adaptive planning mechanism is employed
to adjust for discrepancies between the initial
instruction list and the actual execution envi-
ronment of the application, allowing the agent
to adapt to different application states.

* We conducted experimental evaluations of
UICOMPASS, and the results show that, com-
pared to the baseline, UICOMPASS demon-
strated superior performance in executing user
tasks. We open-source our code and experi-
mental results !.

2 Background and Related Work
2.1 Backgroud of Android Program

To facilitate mobile task automation, understanding
the source code of the Android application’s struc-
ture and execution model is essential. An activ-
ity 2 is a single screen in an Android app, handling
user interaction and transitioning through lifecy-
cle states such as created, resumed, and destroyed.
Apps often include multiple activities for different
functionalities, and fragments 3 serve as modular
UI components within activities, supporting flexi-
ble layouts and reuse. Android UI elements (e.g.,
Button, TextView) are defined in XML layouts
and assigned unique resource identifiers (@+id/...)
for programmatic interaction, making accurate
identification essential for automation. Each An-
droid app includes an AndroidManifest.xml file,
defining activities, permissions, and intent filters.
Parsing this file helps map the application’s struc-
ture and extract essential automation-related meta-
data.

Analyzing the functionality and execution logic
of Android applications from source code is chal-
lenging, primarily because Android is an event-
driven system (Payet and Spoto, 2012; Li et al.,
2017). Event handling is distributed across life-
cycle methods, user interactions, and system call-
backs, with the complete logic depending on the
collaboration of multiple components. Addition-
ally, dynamic loading, reflection, and code obfusca-
tion obscure certain logic paths, while third-party
libraries and frameworks may conceal critical im-
plementations within external dependencies. These

1https://anonymous.4open.science/r/
UICompass-B193/

Zhttps://developer.android.com/reference/

android/app/Activity
3https://developer.android.com/guide/fragments

factors make it difficult to fully reconstruct an ap-
plication’s behavior and execution flow solely from
source code. However, with the rise of large mod-
els, combining static analysis tools with the pow-
erful reasoning capabilities of these models offers
a more efficient approach to interpreting Ul-layer
events and their interaction logic, providing an op-
portunity to deduce the application’s functionality
and specific execution steps from its source code.

2.2 Mobile Task Automation

Given a user task T described in natural language,
mobile task automation aims to complete the task
on the target application. (Wen et al., 2024) An
inputted task is a natural language description of a
functional request and does not include specific ex-
ecution instructions, such as “Change theme color
to light.” The agent needs to determine the actions
to be performed on the current user interface based
on the given task, along with information about
the application, screen details, historical execution
actions, and other relevant information.
Traditional tools (such as Siri, Google Assistant,
Cortana, etc.) use template-based approaches to
perform tasks. These tools are difficult to handle
complex and flexible tasks and require developers
to engage in extensive programming work (Wen
et al., 2024). Before the emergence of large lan-
guage models, researchers designed supervised
learning (Burns et al., 2022; Li et al., 2020; Sun
et al., 2022; Xu et al., 2021) and reinforcement
learning methods (Humphreys et al., 2022; Li and
Riva, 2021; Toyama et al., 2021) to accomplish
mobile task automation. These methods not only
require a large amount of training data and high
training costs but also lack flexibility in the diverse,
real-world mobile applications and scenarios.
Large language models (LLMs) have demon-
strated excellent performance in mobile task au-
tomation due to their powerful language under-
standing, decision-making, and reasoning capabili-
ties (Wen et al., 2024; Ran et al., 2024; Lee et al.,
2024; Zhang et al., 2023, 2024a). However, based
on the user interface, LLMs often provide deci-
sions following general practices rather than mak-
ing decisions specifically tailored to the application
itself. To enable LLMs to make decisions for a
given app, it is necessary to provide application-
specific information to the LLM, allowing it to con-
sider the app’s specific implementation. Existing
methods (Wen et al., 2024; Ran et al., 2024) have
designed exploration-memory mechanisms, which

https://anonymous.4open.science/r/UICompass-B193/
https://anonymous.4open.science/r/UICompass-B193/
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/guide/fragments

explore the application and store the exploration
results. When a task is given, this exploration infor-
mation is communicated to the LLM in a specific
manner. Nevertheless, this approach has inherent
limitations: 1) it is difficult to explore and com-
plete the target task within a limited number of
attempts, and 2) users are reluctant to accept agents
performing extensive exploration on their mobile
devices.

3 Method

Figure 2 illustrates the overall framework of
UICoMPASS. Basically, the Ul tasks are com-
pleted in three steps: user interface (Ul) manual
generation (Section 3.1), Ul instruction generation
(Section 3.2), and adaptive instruction replanning
(Section 3.3).

3.1 User Interface Manual Generation

UI Manual, which is automatically extracted from
source code, delineates the interface layout and cor-
responding functionalities of mobile applications.
It serves as a crucial reference for large language
models to acquire the application’s Ul structures,
transitions, and detailed logic. For instance, Fig-
ure 3 describes an example Ul Manual of “App
Launcher”, which is composed of an activity list
with detailed descriptions for each activity. Each
activity usually corresponds to a user interface in
the mobile apps. Ul Manual of each activity in-
cludes the activity name, function summary, transi-
tion relationships between Uls, and contained Ul
element list. Each Ul element is characterized by
both static and dynamic properties. Static property
defines layout information including tags, position,
and IDs, while dynamic properties describe interac-
tive actions and the resulting impact on which this
element is operated (such as interface changes or
activity transitions when a button is clicked).

To enable LLM to better understand the appli-
cation, UICOMPASS first builds a Ul Manual by
analyzing the source code. Specifically, UICOM-
PASS generates Ul Manual in three steps: method-
level manual generation, activity-level manual gen-
eration, and application-level manual generation.
Starting from the lower levels, UICOMPASS pro-
gressively refines and aggregates the information,
and ultimately produces a concise and effective
application-level UI Manual.

Method-level manual generation. The method-
level manual demonstrates the information defined

in each method, including UI structure, UI transac-
tion relations, and functionality logic. UI structure
primarily describes the hierarchy or containment
relationships between components, such as an activ-
ity containing a fragment. Ul transaction relations
describe the transitions between activities, which
help the LLM understand how to navigate to the
target activity. Functionality logic is reflected via a
function summary, describing the functionality of
this method.

UICOMPASS combines program analysis and
LLMs to generate the method-level manual. The
key advantage of program analysis is its ability to
provide precise, unambiguous information about
method relationships. LLMs, while powerful in
generating natural language, often lack the capabil-
ity to deeply understand code structure and depen-
dencies. Hence, UICOMPASS uses tree-sitter *
to analyze the source code, extracting informa-
tion such as global variables, method names, class
names, source code of the method, and a Call
Graph. Considering that we should provide the
LLM with summaries of the invoked methods,
UICOMPASS generates the corresponding infor-
mation block for each method using topological
sorting based on the call graph. For the current
method, UICOMPASS provides the summary of all
methods invoked by the current method, along with
the context of the current method (the source code
of the method, the name of the class it belongs
to, and the definitions of global variables). More
details can be found in Appendix A.l. remove
variable in the paragram.

Activity-level manual generation. Effective
mobile task automation requires an understanding
of how user interfaces are structured and how dif-
ferent components interact. While method-level
details provide granular information, they often fail
to capture the holistic execution flow of an applica-
tion. To bridge this gap, we construct an activity-
level UI Manual, which abstracts method-level
details into structured representations of activities.
This approach enables a comprehensive view of
the application’s interface, capturing UI transitions
and hierarchical relationships, thereby improving
task execution efficiency and reducing ambiguity
in automated navigation.

The activity list is extracted from “AndroidMan-
ifest.xml”. In each activity, UICOMPASS collects
the relevant Ul elements from the layout files called

*https://tree-sitter.github.io/tree-sitter/

https://tree-sitter.github.io/tree-sitter/

“ i e 7
| & ! } & : Activity } |
| |
| P » ‘;L: =Y | Ultransaction ! =3 | i) Y |
| ! ! l Element | |
| Source Code Call Graph I functionality logic ! ! Summary /I |
__ . __ _ _ _ _methodlevel ~~ __ _ _ activitylevel | |
) = Riapive ntcton Repering R —————— I
| | | Perform adaptive instruction . X |
| | replanning based on the Determine the [Next Actlgn]
| - | | [Instructions][Screen based on [Next Instruction] |
| = | | Info][Action History]. and [Screen Info]. |
Task Ul Manual | . |
I I »
| waize |1 QY) . |
| P @ Initialize ¥ . Do action |
. | [Updated Instructions][Next [Next Action] |
| Instructions | | Instruction] |
| - - I
_ sl __ _Untilthetaskiscompleted. J

Figure 2: Our tool consists of three components: UI Manual generation, instruction initialization, and adaptive
instruction replanning. We analyze the application’s source code to generate the Ul Manual. During the execution
phase (2-3), an initial set of instructions is generated based on the Ul Manual. As execution proceeds, the instruction
list is continuously adjusted by incorporating the program’s state and action history.

Activity list: SplashActivity, MainActivity, SettingsActivity,
AboutActivity, CustomizationActivity.
Infomation about these activity:

rActivity name: [
Icom.simplemobiIetools.applauncher.activities.MainActivity |
Summary: The MainActivity is the primary interface for |
|managing app launchers. It allows users to dynamically adjust |
|the column count in a grid layout, check for invalid apps, [
|display new release information, and manage app launchers |
|through a Floating Action Button (FAB)...

IThis activity can be transfer to: AboutActivity, SettingsActivity. |
Elements: |
Ielemen’(_1: |
Static properties: tag:MySearchMenu, id:@+id/main_menu, |
Dynamic properties: action:search, effect:provides a search I
|functionality to filter app launchers based on user input.. |

Figure 3: UI Manual of the mobile App - “APP
Launcher”.

by the activity class and its ancestor classes. Each
activity’s functionality is then characterized by
aggregating relevant Ul elements and interaction
logic. This includes a core functionality summary,
a structured list of UI elements with their proper-
ties, and the transition relationships between ac-
tivities. This structured abstraction shifts from
method-level details to an activity-centric perspec-
tive, producing a concise yet expressive Ul Manual
that enhances LLM-driven task execution.
Application-level manual generation. Build-
ing on the activity-level manual, UICOMPASS then
generates an application-level UI Manual that pro-
vides a unified view of the entire application. This

Instruction list:

| com.simplemobiletools.applauncher.activities.MainActivity. I
Instructions: I

1. Open the app and navigate to the MainActivity. I
l2. Click on the 'Settings' menu item in the options menu. |

| Activity: !
| com.simplemobiletools.applauncher.activities.SettingsActivity.
| Instructions:

3. In the SettingsActivity, locate the 'Color Customization' section.
| 4. Click on the 'Customize Colors' option.

5. Select the 'Light' theme from the available options.
L6. Confirm the selection to apply the light theme.

Figure 4: The generated instruction list for task “Change
theme color to light” in the “App Launcher” application.

step integrates activity-level information, capturing
inter-activity transitions, global Ul elements, and
application-wide settings. We achieve this by ana-
lyzing component interactions, permission require-
ments, and shared Ul elements across activities.
The resulting manual offers a high-level representa-
tion of the application’s navigational structure and
interaction logic, enabling LLM-driven agents to
perform complex tasks.

3.2 Ul Instruction Generation

With the generated Ul Manual, UICOMPASS then
guides LLLM to generate an instruction list Z to
complete the given UI tasks. Z comprises multi-
ple action blocks, with each containing an activity
ID activity; and a set of specific execution instruc-
tions I;, indicating executing I; within activity;.

Formally,
T = {ai(activity;, I), - - - , am(activity,,, In)}

Figure 4 illustrates the instruction list for the task

“Change theme color to light” in the “App Launcher”

application. To complete the given task, the gener-
ated instruction lists show that we need to open the
MainActivity, click setting to transition to Settin-
gActivity, and click ‘Light’ theme.

3.3 Adaptive Instruction Replanning

A static instruction list generated from the UI Man-
ual may not always be directly executable due to
variations in runtime application states. Factors
such as dynamically loaded UI elements, state-
dependent Ul transitions, and missing ids can cause
discrepancies between the planned execution path
and the actual interface observed during execu-
tion. Without an adaptive replanning mechanism,
an agent may either fail the task when encounter-
ing an unexpected state or perform unnecessary ex-
ploratory actions, reducing efficiency and increas-
ing the risk of errors.

To address these challenges, UICOMPASS incor-
porates an adaptive instruction replanning mech-
anism. By continuously evaluating execution
progress and adjusting the instruction list accord-
ingly, the agent dynamically adapts to UI changes
while maintaining a goal-directed execution strat-
egy. This approach minimizes unnecessary inter-
actions, improves task success rates, and ensures
robustness against application variability. In con-
trast to purely exploratory methods, which rely on
trial-and-error and may generate redundant actions,
our adaptive replanning mechanism leverages struc-
tured task execution data to guide decision-making
efficiently.

Algorithm 1 demonstrates how UICOMPASS ad-
justs the instruction list based on the specific ap-
plication state and tasks. The algorithm takes the
initial instruction list Z and the maximum num-
ber of attempts max_tries as inputs, and finally
outputs the action history. Before the action loop
begins, UICOMPASS initializes the number of at-
tempts and an empty action history. Leveraging the
action history, screen information, and the instruc-
tion list, the LLM analyzes the application’s state
to update the instruction list and choose the next in-
struction to be executed (line 4). This data helps the
LLM comprehend the application’s current state,
monitor task execution progress, and select appro-
priate instructions. If the LLM identifies a need

Algorithm 1: Adaptive Instruction Replan-
ning Algorithm

Input: task ¢, instruction list Z, maximum
attempts maz_tries
Output: action history H
1 tries < 0; H + 0
2 while tries < max_tries do

3 S < Getlnterfacelnfo();

4 (Zupdates Inext) < LLM(t,Z,H, S);
5 T« Iupdate§

6 if I,y == null then

7 ‘ break;

8 end

9 action < LLM(S, Iext);
10 DoAction(action) ;

1 ‘H.push(action);

12 tries < tries + 1;

13 end

14 return H;

for modifications to the instructions, it makes the
necessary adjustments during this phase. If no next
instruction needs to be executed, UICOMPASS ter-
minates the task (lines 6-8). Otherwise, the LLM
proceeds by executing the instruction and record-
ing it in the action history (lines 9-12). Adaptive
instruction list replanning enables UICOMPASS to
complete tasks effectively while accounting for the
application’s dynamic nature.

4 Experiments

UICoMPASS has been developed on the founda-
tion of Guardian (Ran et al., 2024). To investigate
the performance of UICOMPASS, we conducted
experimental evaluations.

4.1 Experimental Settings

Datasets. We chose the DroidTask (Wen et al.,
2024) dataset to validate UICOMPASS because it
is based on open-source applications and provides
the source code of the applications. DroidTask con-
tains 158 high-level tasks from 13 popular apps.
Since one application in the dataset is not open-
source, we selected 12 of these open-source appli-
cations. To minimize the impact of data leakage,
we selected the latest versions along with their cor-
responding source code. However, four tasks were
no longer executable, leaving us with a total of 145
tasks.

Baseline Methods. We chose AutoDroid (Wen

Methods SR ACP?T OSR?T SPLT UI Manual Adapting\ SRt ACPtT OSRT SPLt
AutoDroid 53.79% 71.72% 76.92% 15.87% x x 37.24% 64.57% 60.00% 1.77%
Guardian 4520% 71.83% 0.0% 1.70% v X 42.75% 64.43% 66.67% 15.00%
UICOMPASS 68.27% 81.96% 80.80% 20.92% ; 5 55.86% 72.62% 53.84% 17.66%

Table 1: Effectiveness of Task Completion.

et al., 2024) and Guardian (Ran et al., 2024) as base-
line tools for experimental comparison. AutoDroid
combines the commonsense knowledge of LLMs
and domain-specific knowledge of apps through an
exploration-memory mechanism. Guardian refines
action spaces with domain-specific knowledge and
adjusts application exploration through recovery-
based replanning. Both tools utilize LLMs for mo-
bile task automation and have demonstrated excel-
lent performance.

Metrics. Following existing work (Wen et al.,
2024; Ran et al., 2024), we measure the following
metrics:

* Success Rate (SR): The ratio of successfully
completed tasks to the total number of tasks.

* Average Completion Proportion (ACP): The
maximum proportion of the executed action
sequence that matches the prefix of the ground
truth action sequence.

To evaluate whether the tools can effectively avoid
unnecessary actions and correctly terminate, in-
spired by robotic navigation tasks (Chen et al.,
2024), we introduce two additional metrics:

¢ Oracle Success Rate (OSR): The rate of suc-
cessfully stopping exploration when the task
is completed.

* Success Rate Penalized by Path Length (SPL):
A metric that evaluates the rate that is cal-
culated by the ground truth action sequence
length divided by the actual action sequence
length.

4.2 Results of task completion

We validated the task execution capabilities of
UICoMPASS, Guardian, and AutoDroid on Droid-
Task. Table 1 summarizes the evaluation results.
UICoMPASS achieved a higher task success rate
(SR) of 68.27%, representing a 14.48% improve-
ment over the best results (53.79%) from existing
tools. This demonstrates that under the guidance
of UI Manual, UICOMPASS can effectively com-
plete tasks using the adaptive instruction list replan-
ning strategy. UICOMPASS achieves an ACP of

68.27% 81.96% 80.80% 30.85%

Table 2: Ablation Results of UICOMPASS

81.96%, indicating its superior understanding of
task execution logic and its ability to perform a
greater number of task-related actions. The 3.88%
improvement in OSR and the 5.05% enhancement
in SPL further demonstrate UICOMPASS’s capa-
bility to terminate promptly upon task completion.
Among these results, Guardian’s OSR is 0 because
it only stops after reaching the maximum number
of operations. These experimental results validate
the effectiveness of UICOMPASS, showcasing its
ability to accomplish more tasks while utilizing
fewer execution steps.

4.3 Ablation Study

To evaluate the effectiveness of Ul Manual and the
adaptive instruction replanning, we conducted ad-
ditional ablation experiments. When Ul Manual
is omitted, the agent generates an initial instruc-
tion list based solely on the remaining information.
When adaptive instruction replanning is disabled,
the agent follows the instruction list strictly in their
original sequence.

With UI Manual guidance vs. Without Ul
Manual guidance. When Ul Manual is enabled,
the task success rate (SR) increases from 37.24%
to 42.75% (without adaptive re-planning) and from
55.86% to 68.27% (with adaptive re-planning). Ad-
ditionally, the SPL metric improves substantially,
rising from 1.77% to 15.00% in the absence of
re-planning and from 17.66% to 30.85% when re-
planning is applied. These results suggest that UI
Manual provides crucial contextual guidance that
enhances both the success rate and task efficiency.

Direct Execution with Instructions vs. Adap-
tive Instruction Replanning. In scenarios without
UI Manual, enabling adaptive re-planning increases
the SR from 37.24% to 55.86%. Similarly, with
UI Manual guidance, adaptive re-planning boosts
the SR from 42.75% to 68.27%. These results
demonstrate that adaptive re-planning allows the
agent to dynamically adjust its strategy, effectively
improving task success and overall efficiency.

By combining UI Manual guidance and adaptive
instruction re-planning, the agent achieves the best

Initial instructions: a
1. Open the app and navigate to the main interface.
2. Go to the settings menu from the toolbar.

3. Locate the theme customization option.

4. Select the 'light' theme option. Insert text
6. Save the changes.

Final instructions: o e e(_)
Customize colors -

1. Open the app and navigate to the main interface. *

2. Go to the settings menu from the toolbar. N
3. Locate the theme customization option.

4. Select the 'Theme' option.

5. Select the 'light' theme option.

6. Click the 'Save' button to save the theme changes.

System default (Matggial You)

App icon color

Figure 5: A successful case on DroidTask demonstrates the effectiveness of UICOMPASS’s Ul Manual and adaptive

instruction replanning.

results across all metrics, with the SR improving
to 68.27%. This is significantly higher than us-
ing either UI Manual (SR: 42.75%) or adaptive re-
planning alone (SR: 55.86%). These results demon-
strate that Ul Manual provides essential contextual
guidance, while adaptive re-planning enhances flex-
ibility, and their integration effectively maximizes
task success and efficiency.

4.4 Case Study

As shown in Figure 5, we present a successful ex-
ample from the DroidTask dataset, which high-
lights the effectiveness of the UICOMPASS’s Ul
Manual-guided process and the capability of adap-
tive instruction list replanning in real-world scenar-
ios. The task in this example is “Set app theme to
light and save it,” and the six images on the right
side of Figure 5 depict the correct steps generated
by UICoOMPASS. This example presents a chal-
lenge for the existing mobile agent. Although the
instruction indicates this is a setting operation, the
numerous setting options in the settings activity
and ‘Customize colors’ (Step 3) not indicating that
it is for modifying the theme colors both contribute
to the difficulty of task execution. UICOMPASS
generates the initial instruction list using the UI
Manual (shown in the top-left of Figure 5). Due
to the complexity of the application, the instruc-
tion list generated by UICOMPASS is not entirely
correct. In this example, we can see that most of
the instruction list generated by UICOMPASS are
correct, except for the “Select the ‘Theme’ option’
being missing and “Confirm the theme selection’
being mistakenly included. As shown in the final
instructions (as shown in the bottom left of Fig-
ure 5), UICOMPASS uses the adaptive instruction
list replanning mechanism to correct the errors in
the initial instruction list based on the actual ex-

bl

B

ecution context. Therefore, the initial instruction
list generated by the Ul Manual, combined with
the adaptive instruction list replanning mechanism,
can effectively guide the LLM to complete tasks in
the target application.

5 Conclusion

In this paper, we propose a method for guiding
agents in mobile task automation using a User Inter-
face Manual extracted from the source code, called
UICoMPASS. UICOMPASS leverages LLM to ana-
lyze the source code and ultimately generates the
User Interface Manual. UICOMPASS can then use
this User Interface Manual along with the task to
generate an initial instruction list. Furthermore,
to ensure the agent can adapt to different applica-
tion states, we introduce adaptive instruction list
re-planning, which combines action history, and
the current interface to continuously adjust the in-
struction list. Through extensive experiments, we
demonstrate the effectiveness of the instruction list
generated by UICOMPASS and its task completion
capability, achieving state-of-the-art performance.

Limitation

Although UICOMPASS can automatically generate
the Ul Manual, its reliance on application devel-
opers to provide the Ul Manual to the agent limits
its usage scenarios. However, the Ul Manual can
still effectively improve task execution capabili-
ties for applications with easily accessible source
code (e.g., system applications) or those willing
to provide the Ul Manual. In the future, we aim
to explore methods for extracting the Ul Manual
directly from APK files, which would significantly
expand the usage scenarios of UICOMPASS.

References

Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha
Kumar, Kate Saenko, and Bryan A Plummer. 2022.
A dataset for interactive vision-language navigation
with unknown command feasibility. In European
Conference on Computer Vision, pages 312-328.
Springer.

Jiaqi Chen, Bingqgian Lin, Ran Xu, Zhenhua Chai, Xi-
aodan Liang, and Kwan-Yee Wong. 2024. Mapgpt:
Map-guided prompting with adaptive path planning
for vision-and-language navigation. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 9796-9810.

Yanchu Guan, Dong Wang, Zhixuan Chu, Shiyu Wang,
Feiyue Ni, Ruihua Song, and Chenyi Zhuang. 2024.
Intelligent agents with llm-based process automa-
tion. In Proceedings of the 30th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining,
pages 5018-5027.

Peter C Humphreys, David Raposo, Tobias Pohlen, Gre-
gory Thornton, Rachita Chhaparia, Alistair Muldal,
Josh Abramson, Petko Georgiev, Adam Santoro, and
Timothy Lillicrap. 2022. A data-driven approach
for learning to control computers. In International
Conference on Machine Learning, pages 9466-9482.
PMLR.

Rashedul Islam, Rofiqul Islam, and Tohidul Mazumder.
2010. Mobile application and its global impact. In-

ternational Journal of Engineering & Technology,
10(6):72-78.

Sunjae Lee, Junyoung Choi, Jungjae Lee, Munim Hasan
Wasi, Hojun Choi, Steve Ko, Sangeun Oh, and In-
sik Shin. 2024. Mobilegpt: Augmenting llm with
human-like app memory for mobile task automation.
In Proceedings of the 30th Annual International Con-
ference on Mobile Computing and Networking, pages
1119-1133.

Li Li, Tegawendé F Bissyandé, Mike Papadakis,
Siegfried Rasthofer, Alexandre Bartel, Damien
Octeau, Jacques Klein, and Le Traon. 2017. Static
analysis of android apps: A systematic literature re-

view. Information and Software Technology, 88:67—
95.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason
Baldridge. 2020. Mapping natural language instruc-
tions to mobile ui action sequences. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8198-8210.

Yuanchun Li and Oriana Riva. 2021. Glider: A rein-
forcement learning approach to extract ui scripts from
websites. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 1420-1430.

OpenAl. 2023a. Gpt-4 technical report. Technical re-
port, OpenAl. 2023a.

OpenAl 2023b. Gpt-4v(ision) system card. Technical
report, OpenAl. 2023b.

OpenAl. 2023c. Gpt-4v(ision) technical work and au-
thors. Technical report, OpenAl. 2023c.

Etienne Payet and Fausto Spoto. 2012. Static analy-
sis of android programs. Information and Software
Technology, 54(11):1192-1201.

Dezhi Ran, Hao Wang, Zihe Song, Mengzhou Wu, Yuan
Cao, Ying Zhang, Wei Yang, and Tao Xie. 2024.
Guardian: A runtime framework for llm-based ui
exploration. In Proceedings of the 33rd ACM SIG-
SOFT International Symposium on Software Testing
and Analysis, pages 958-970.

Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai,
Zichen Zhu, and Kai Yu. 2022. Meta-gui: Towards
multi-modal conversational agents on mobile gui.
In Proceedings of the 2022 Conference on Empir-
ical Methods in Natural Language Processing, pages
6699-6712.

Daniel Toyama, Philippe Hamel, Anita Gergely, Ghe-
orghe Comanici, Amelia Glaese, Zafarali Ahmed,
Tyler Jackson, Shibl Mourad, and Doina Precup.
2021. Androidenv: A reinforcement learning plat-
form for android. arXiv preprint arXiv:2105.13231.

Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang,
Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang,
and Jitao Sang. 2024. Mobile-agent-v2: Mobile
device operation assistant with effective naviga-
tion via multi-agent collaboration. arXiv preprint
arXiv:2406.01014.

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao,
Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao Liu,
Yaqin Zhang, and Yunxin Liu. 2023. Empowering
Ilm to use smartphone for intelligent task automation.
arXiv preprint arXiv:2308.15272.

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao,
Tao Yu, Toby Jia-Jun Li, Shiqi Jiang, Yunhao Liu,
Yaqin Zhang, and Yunxin Liu. 2024. Autodroid: Llm-
powered task automation in android. In Proceedings
of the 30th Annual International Conference on Mo-
bile Computing and Networking, pages 543-557.

Mingzhe Xing, Rongkai Zhang, Hui Xue, Qi Chen,
Fan Yang, and Zhen Xiao. 2024. Understanding the
weakness of large language model agents within a
complex android environment. In Proceedings of
the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 6061-6072.

Nancy Xu, Sam Masling, Michael Du, Giovanni Cam-
pagna, Larry Heck, James Landay, and Monica Lam.
2021. Grounding open-domain instructions to auto-
mate web support tasks. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1022—1032.

Zhuolin Xu, Qiushi Li, and Shin Hwei Tan.
2023. Guiding chatgpt to fix web ui tests via
explanation-consistency checking. arXiv preprint
arXiv:2312.05778.

Zhaojian Yu, Xin Zhang, Ning Shang, Yangyu Huang,
Can Xu, Yishujie Zhao, Wenxiang Hu, and Qiufeng
Yin. 2024. Wavecoder: Widespread and versatile
enhancement for code large language models by in-
struction tuning. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 5140-5153.

Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li,
Liqun Li, Si Qin, Yu Kang, Minghua Ma, Qingwei
Lin, Saravan Rajmohan, et al. 2024a. Large language
model-brained gui agents: A survey. arXiv preprint
arXiv:2411.18279.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi
Jin. 2024b. Codeagent: Enhancing code gener-
ation with tool-integrated agent systems for real-
world repo-level coding challenges. arXiv preprint
arXiv:2401.07339.

Zhe Zhang, Xingyu Liu, Yuanzhang Lin, Xiang Gao,
Hailong Sun, and Yuan Yuan. 2024c. Llm-based unit
test generation via property retrieval. arXiv preprint
arXiv:2410.13542.

Zhizheng Zhang, Xiaoyi Zhang, Wenxuan Xie, and Yan
Lu. 2023. Responsible task automation: Empow-
ering large language models as responsible task au-
tomators. arXiv preprint arXiv:2306.01242.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu,
Bill Yuchen Lin, Jie Fu, Wenhu Chen, and Xiang Yue.
2024. OpenCodelnterpreter: Integrating code gener-
ation with execution and refinement. In Findings of
the Association for Computational Linguistics ACL
2024, Bangkok, Thailand and virtual meeting.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang,
Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo
Gao, Shirong Ma, et al. 2024. Deepseek-coder-v2:
Breaking the barrier of closed-source models in code
intelligence. arXiv preprint arXiv:2406.11931.

Appendices
A More Details
A.1 Prompts

To present our prompts more clearly, we further
demonstrate practical examples in the “notes” ap-
plication. Figure 6 is the prompt used for method-
level manual generation. Figure 7 describes the
prompt content for generating the initial instruction
list when performing the task “Set the app theme
to light and save it” in the “notes” application. Fig-
ure 8 illustrates the detailed prompt for UICOM-
PASS in "Adaptive Instruction Replanning," which

10

facilitates adjustments to task execution in response
to changing requirements or unforeseen challenges.

A.2 Experimental Details

In this experiment, we utilized DeepSeek-v3 (Zhu
et al., 2024) as the LLM. This choice was made
not only because of its powerful performance but
also due to its high cost-effectiveness. DeepSeek
has been widely used and widely accepted in LLM-
related work (Zhang et al., 2024c; Zheng et al.,
2024; Yu et al., 2024).

To ensure a fair comparison of each tool, we
manually annotated the experimental data. The
three authors of the paper first familiarized them-
selves with the applications and referred to the
ground truth provided in DroidTask (Wen et al.,
2024). For the execution results of each tool on
each application, we conducted separate analyses
and ultimately engaged in discussions. Differ-
ent tasks may have multiple implementation ap-
proaches. Therefore, for the execution results of
each tool, we analyze and evaluate the shortest path
chosen to complete the task when calculating the
experimental results. In addition, during the exper-
iments, we prepared the data required for each task
in advance to ensure that the task was executable.

[Background]
You are an Android analyst. I will give you a method from the class SettingsActivity.
Here is the method from the given Android source code:
override fun onResume() {
super.onResume()
setupToolbar(binding.settingsToolbar, NavigationIcon.Arrow)
setupPurchaseThankYou()...}
[Invoked Method Summary]|
Here is the explanation of the method named com.simplemobiletools.applauncher.activities.SettingsActivity.setupPurchaseThankYou that is
called within the given method:
The method “setupPurchaseThankYou' is designed to configure the Ul component “settingsPurchaseThankYouHolder" for a thank you screen
after a purchase. It hides the holder if a thank you has already been shown, and sets up an onClickListener to launch a new intent if the holder

is visible.

Please analyze the method above and identify any activity migration relationships that exist.
Specifically, look for “startActivity" calls and their associated ‘Intent’ objects.
[Target]
You need to analyze the functionality of the source code. If there are any actionable elements, provide a description of the element's
response.
[Notice]
Additionally, identify all **UI elements** involved in the method. An **element** should be one of the following:
- A view component such as ‘Button’, ‘TextView', ‘ImageView', etc.
- An interaction-triggering element, like a button that starts an activity or any clickable UI component.
In addition to activity migrations, please also check for:
1. Any **fragment** and **activity** dependencies or relationships in the code. Specifically, identify if a fragment is associated with an
activity (e.g., using ‘getActivity()', 'FragmentTransaction’, or similar methods).
2. Any **migration relationships** between fragments and activities. This could include cases where a fragment starts an activity, or an
activity dynamically replaces a fragment, or any other relationships indicating a transition between a fragment and an activity.
3. Any relationship between **XML files (R.layout, or R.menu)** and **activities** or **fragments**. Look for references to XML layouts
that are inflated in an activity or fragment (e.g., using ‘setContentView()', "LayoutInflater’, ‘FragmentTransaction.replace()’, etc.). **You
only need to output layout files that start with R.layout and R.menu.**
4. **element_list**: Please list all the elements (normal element or menu item) present in the method. Tell me the type and ID of each
element. Additionally, describe the conditions under which the element is executed and the effects it will have. For example, the condition
could be that the login button can only be clicked after entering the account password, and the effect could be a transition to MainActivity.
[Output Example]|
The output should be in JSON format, for example:
{"functionality": "description of the method functionality",
"element list": [
{"type": "element type",
"element id": "R.id.xx",
"action": "description of the action triggered by the element"}],
"activity migrations": [
{"from_activity or fragment": "sourceActivityOrFragmentName",
"to_activity or fragment": "targetActivityOrFragmentName",
"description": "A brief description of how the migration happens."}],
"fragment_activity relationships": [
{"fragment": "fragmentName",
"activity": "activityName",
"relationship": "Fragment is attached to Activity using FragmentTransaction methods like add(), replace(), or show()."}],
"xml_relationships": [
{"xml_file": "R.layout.xx.xml",
"associated_with": "activity or fragment"}]}

Figure 6: The prompt for the method-level manual generation of the “OnResume” method in the “Applaucher”
application.

11

[Background]

You are a user of an application, and I will provide you with the instruction manual for the application. Your task is to speculate on what
instructions is used to execute the given task.

[UI Manual]

Infomation about this app:

Activity list:

SplashActivity, MainActivity, WidgetConfigureActivity, AboutActivity, CustomizationActivity, SettingsActivity,

Infomation about these activity:

Activity name: com.simplemobiletools.notes.pro.activities.SplashActivity

The summary of com.simplemobiletools.notes.pro.activities.SplashActivity: "This activity serves as a splash screen that checks for a specific
intent extra (OPEN_NOTE _ID"). If the extra is present, it starts ‘MainActivity’ with the extra data; otherwise, it starts "MainActivity
without any extra data. After starting ‘MainActivity', the "SplashActivity" is finished."

This activity can be transfer to other activities: MainActivity,

Activity name: com.simplemobiletools.notes.pro.activities.MainActivity

The summary of com.simplemobiletools.notes.pro.activities.MainActivity: "The activity serves as the main interface for managing notes,
including creating, editing, deleting, and viewing notes. It supports various note types (text and checklist), handles file imports/exports,
manages search functionality, and integrates with system features like shortcuts, printing, and sharing. Additionally, it provides options for
locking/unlocking notes, sorting checklists, and managing app settings."

This activity can be transfer to other activities: MainActivity, SplashActivity, AboutActivity, SettingsActivity,

tag:MaterialToolbar, id:@+id/main_toolbar, action:toolbar, effect:Displays the activity's toolbar, which contains menu items for actions like
saving, searching, creating notes, and accessing settings..

tag:include, id:@+id/search_wrapper, action:include, effect:Embeds the search bar layout, enabling search functionality within the activity..
tag:MyViewPager, id:@+id/view_pager, action:viewpager, effect:Manages the display of multiple notes in a swipeable interface, allowing
users to navigate between notes..

tag:PagerTabStrip, id:@-+id/pager tab_strip, action:tabstrip, effect:Provides visual indicators for the current note's position within the
ViewPager, aiding navigation..

tag:MaterialToolbar, id:@-+id/main_toolbar, action:toolbar, effect:Displays the activity's toolbar, which contains menu items for actions like
saving, searching, creating notes, and accessing settings..

tag:include, id:@+id/search_wrapper, action:include, effect: Embeds the search bar layout, enabling search functionality within the activity..
tag:MyViewPager, id:@+id/view_pager, action:viewpager, effect:Manages the display of multiple notes in a swipeable interface, allowing
users to navigate between notes..

tag:PagerTabStrip, id:@+id/pager_tab_strip, action:tabstrip, effect:Provides visual indicators for the current note's position within the
ViewPager, aiding navigation..

[Task Description]
Based on the aforementioned application information, our goal is to execute the task: "Set app theme to light and save it".
[Output Example]|
{"task": "Book a flight",
"activities_sequence": [
{"activity": "LoginActivity",
"steps": [
"1. Input the account.",
"2. Submit the login form."]},
{"activity": "MainActivity",
"steps": [
"3. Search for available flights based on your preferences.",
"4. Select the flight that suits your needs."]},
{"activity": "BookingActivity",
"steps": [
"S. Enter the required passenger details for booking.",
"6. Make the payment for the selected flight.",
"7. Receive a confirmation of the flight booking."]}],
"explanation": "because the BookingActivity has the flight booking button."}

Figure 7: In the application “Notes”, the prompt content of UICOMPASS generates the initial instruction list for task
“Set app theme to light and save it”.

12

[Background]

I currently have a task Set app theme to light and save it, and I have a set of instructions for this task, but there may be errors in this set of
instructions that need to be adjusted based on the current interface.

[Instructions]

Instructions:

{'task’: 'Set app theme to light and save it', 'activities_sequence': [{'activity': 'MainActivity', 'steps': ['1. Open the app and navigate to the main
interface.'l}, {'activity" 'SettingsActivity', 'steps" ["2. Go to the settings menu from the toolbar.', '3. Locate the theme customization option.,
"4. Select the 'light' theme option."]}, {'activity": 'CustomizationActivity', 'steps”: ['S. Confirm the theme selection.', '6. Save the changes."]}]}
[Screen Info]

Here is the information about the screen we are currently on.

Widget(text: Rename note, class: android.widget.LinearLayout, position: (539, 220, 1054, 346))

Widget(resource-id: com.simplemobiletools.notes.pro:id/content, class: android.widget.LinearLayout, position: (539, 220, 1054, 346))
Widget(resource-id: com.simplemobiletools.notes.pro:id/title, text: Rename note, class: android.widget. TextView, position: (581, 254, 1012,
311))

Widget(text: Remove done items, class: android.widget.LinearLayout, position: (539, 346, 1054, 472))

[Action History]
#History information (You should refer to the historical records to identify which part of the instructions they correspond to, consider the
relationship between the current interface and the next step, and then update the instructions accordingly.): {
index-0: open the target application
index-1:Event(action=click, widget=a View (accessibility information: More options, text:))
¥
If Task is finished, next_instruction = none
[Output Example]|
"task": "Book a flight",
"explanation": {
"current state" : "The current interface indicates that the search has been completed and the search results are displayed, but no flight has
been selected yet.",
"finished step" : "Based on the history, a search operation has already been performed. Therefore, 3. Search for available flights based
on your preferences.",
"error reason" : "The next action should select the flight",
"revised method" : "add 4. Select the flight that suits your needs",
"next_instruction": "4. Select the flight that suits your needs"},
"updated_activities_sequence": [
{"activity": "LoginActivity",
"steps": [
"1. Input the account.",
"2. Submit the login form."]},
{"activity": "MainActivity",
"steps": [
"3. Search for available flights based on your preferences.",
"4. Select the flight that suits your needs."]},
{"activity": "BookingActivity",
"steps": [
"S. Enter the required passenger details for booking.",
"6. Make the payment for the selected flight.",
"7. Receive a confirmation of the flight booking."]}]}

Figure 8: In application “Notes”, UICOMPASS generates the prompt for the "Adaptive Instruction Replanning"
section to perform task A.

13

	Introduction
	Background and Related Work
	Backgroud of Android Program
	Mobile Task Automation

	Method
	User Interface Manual Generation
	UI Instruction Generation
	Adaptive Instruction Replanning

	Experiments
	Experimental Settings
	Results of task completion
	Ablation Study
	Case Study

	Conclusion
	More Details
	Prompts
	Experimental Details

