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Abstract

Neural network models are vulnerable to adver-
sarial examples, and adversarial transferability
further increases the risk of adversarial attacks.
Current methods based on transferability of-
ten rely on substitute models, which can be
impractical and costly in real-world scenarios
due to the unavailability of training data and
the victim model’s structural details. In this pa-
per, we propose a novel approach that directly
constructs adversarial examples by extracting
transferable features across various tasks. Our
key insight is that adversarial transferability can
extend across different tasks. Specifically, we
train a sequence-to-sequence generative model
named CT-GAT (Cross-Task Generative Ad-
versarial ATtack) using adversarial sample data
collected from multiple tasks to acquire univer-
sal adversarial features and generate adversar-
ial examples for different tasks. We conduct
experiments on ten distinct datasets, and the
results demonstrate that our method achieves
superior attack performance with small cost.
You can get our code and data at: https:
//github.com/xiaoxuanNLP/CT-GAT

1 Introduction

Neural network-based natural language processing
(NLP) is increasingly being applied in real-world
tasks(Oshikawa et al., 2018; Xie et al., 2022; Ope-
nAI, 2023). However, neural network models are
vulnerable to adversarial examples(Papernot et al.,
2016; Samanta and Mehta, 2017; Liu et al., 2022).
Attackers can bypass model-based system monitor-
ing by intentionally constructing adversarial sam-
ples to fulfill their malicious objectives, such as
propagating rumors or hate speech. Even worse,
researchers have discovered the phenomenon of
adversarial transferability, where adversarial exam-
ples can propagate across models trained on the
same or similar tasks(Papernot et al., 2016; Jin
et al., 2019; Yuan et al., 2020; Datta, 2022; Yuan

∗Kun Li is the corresponding author.

Figure 1: Heatmap of the Highly-transferable Adver-
sarial Word replacement Rules (HAWR) on all datasets
in TCAB. The bottom and left words of the heatmap
represent the replaced words and synonyms respectively.
The values in the figure are derived using this rule, with
higher values indicating greater transferability. The
heatmap in the figure provides an intuitive observation
that a replaced word has multiple replacements with
high transferability.

et al., 2021). This transferability enables attackers
to target victim models using adversarial examples
crafted by substitute models.

The majority of existing research on adversar-
ial transferability involves training one or more
substitute models that perform identical or similar
tasks to the victim model (Datta, 2022; Yuan et al.,
2021). However, due to the constraints of the black
box scenario, the attacker lacks access to the train-
ing data and structural details of the victim model,
making it exceedingly challenging to train compa-
rable substitute models. Consequently, it becomes
arduous to achieve a satisfactory success rate in
adversarial attacks solely through transferability
between models based on the same task.

To mitigate the above challenges, we introduce
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a method that directly constructs adversarial ex-
amples by extracting transferable features across
various tasks, without the need for constructing
task-specific substitute models. Our key insight is
that adversarial transferability is not limited to mod-
els trained on the same or similar tasks, but rather
extends to models across different tasks. There
are some observations that support our idea. For
instance, we discovered that adversarial word sub-
stitution rules offer a variety of highly transferable
candidate replacement words. As illustrated in Fig-
ure 1, a larger pool of candidate words can be uti-
lized to generate a diverse set of highly transferable
adversarial samples, thereby compensating for the
shortcomings of previous methods that relied on
greedy search. In particular, we train a sequence-to-
sequence generative model CT-GAT (Cross-Task
Gerative Adversarial ATtack) using adversarial
sample data obtained from multiple tasks. Remark-
ably, we find that the generated adversarial sample
can effectively attack test tasks, even in the absence
of specific victim model information.

We conduct attack experiments on five security-
related NLP tasks across ten datasets, adhering
to the Advbench(Chen et al., 2022) paradigm of
Security-oriented Natural Language Processing
(SoadNLP), a framework that mirrors real-world
application scenarios more closely. And the exper-
iments demonstrate that our method achieves the
best attack performance while using a relatively
small number of queries.

To summarize our contributions to this paper are
as follows:

• We introduce an approach that leverages texts
to learn an effective, transferable adversarial
text generator.

• Our method can combine adversarial features
from different tasks to enhance the adversarial
effect.

• We test the effectiveness of our method in the
decision-based black-box scenario. The exper-
iments demonstrate that our method achieves
the best attack performance while using a rel-
atively small number of queries.

2 Related Work

In this section, we review the recent works on adver-
sarial attacks, with a focus on transferability-based
approaches.

White-box attacks are prominent methods in at-
tack methods, which can obtain high attack success
rate and low distortion adversarial data with few
access times. Typical white-box attack methods in-
cluded CWBA(Liu et al., 2022), GBDA(Guo et al.,
2021). The effectiveness of obtaining adversar-
ial samples efficiently in these scenarios stemmed
from the fact that attackers have comprehensive
access to information, including the model’s struc-
ture, parameters, gradients, and training data.

Black-box attacks assume that the attacker only
has knowledge of the confidence or decision of the
target’s output, including query-based attacks and
transfer-based attacks. Query-based attack meth-
ods include PWWS(Ren et al., 2019), TextBug-
ger(Li et al., 2018), Hotflip(Ebrahimi et al., 2018),
etc. These methods often required hundreds of
queries to successfully obtain low-distortion adver-
sarial samples, and the attack effect may have been
worse in the decision-based scenario.

Adversarial transferability has been observed
across different models(Szegedy et al., 2014). This
poses a threat to the security of decision-based
black-box models. Attackers employ white-box
attacks to obtain adversarial samples on substitute
models. This method is prone to overfitting, result-
ing in limited transferability. To address this issue,
some methods proposed using mid-layer features
instead of the entire model to obtain more general-
ized adversarial samples(Wang et al., 2023). How-
ever, this approach has not been widely applied in
the text adversarial domain. Model aggregation
methods were primarily used in the text domain,
although the overall research in this area was not
extensive. Additionally, there were approaches that
extracted adversarial perturbation rules as a basis
for adversarial features(Yuan et al., 2021). This
rule-based approach provided insights into leverag-
ing the distinctive characteristics of different adver-
sarial samples.

3 Methodology

3.1 Textual Adversarial Attack

For a natural language classifier f , it can accurately
classify the original input text into the label ytrue
based on the maximum a priori probability:

argmax
yi∈Y

f(yi|x) = ytrue (1)

Where ytrue represents the ground truth label
of input x. To fool the classifier, the attacker in-



Victim Model

various tasks

original text

Attack
Method

different attack methods

attack
successful
adversarial 

text

encoder decoder

Adversarial Text Generator
Training data acquisition

Training stage

result 
feedback

encoder decoder

Adversarial Text Generator

mutiple 
adversarial 
texts

adversarial 
text

original text

attack

New
Victim
Models

Using stage

Figure 2: Overview of the training process and application of our approach. (Training stage) We initially launch
attacks tailored to different tasks, employing one or more attack strategies until successful adversarial examples
are obtained. We then use the original samples and the successful adversarial examples as training data for the
adversarial example generator, learning potential common patterns within these training data. (Using stage) The
trained generator can produce a large number of adversarial examples without the need for feedback from the victim
model, integrating various attack methods. The high transferability learned enables it to successfully attack victim
models that were not encountered during the training phase.

troduces a perturbation δ to the original input x,
thereby creating an adversarial sample xadv.

argmax
yi∈Y

f(yi|xadv) ̸= ytrue, xadv = x+ δ (2)

Typically, the perturbation δ is explicitly con-
strained, such as by setting a limit on the number
of modifications(Li et al., 2018) or by imposing
semantic constraints(Gan and Ng, 2019). In other
words, the adversarial sample xadv is intended to
remain similar to the original sample x. In our
approach, this constraint is not explicitly imposed
but is implicitly reflected in the training data. The
adversarial examples in training data are obtained
under explicit constraint conditions.

3.2 Transferability-Based Generator for
Perturbations

To effectively learn the distributional character-
istics from original sentences to adversarial sen-
tences and generate diverse adversarial samples,
we choose to utilize the encoder-decoder architec-
ture of Transformer(Vaswani et al., 2017). The
encoder uses self-attention mechanism, which can
comprehensively extract the features and context
information of the original sentence. The decoder
can handle variable-length problems, enabling the
learning of complex attacks such as character-level
attacks and phrase-level attacks. The use of the
encoder-decoder architecture allows us to combine
the strengths of both components. The learning ob-
jective of this task can be formalized as maximizing

the following likelihood:

L(U, Û) =
∑
i

logP (ui|u<i, X,Θ) (3)

We first train victim models on multiple datasets
across different tasks, each using a distinct model
structure. Successful adversarial samples are ob-
tained from various attack methods on each victim
model, and these samples are then mixed to serve
as training data for the generator. We aim to learn
features with high transferability across tasks and
models through this data, and to integrate various
attack methods to generate a more diverse set of ad-
versarial samples. Due to the efficiency issues with
traditional attack methods, where generating a large
number of adversarial samples is time-consuming,
we directly utilize the TCAB(Asthana et al., 2022)
dataset as training data.

The TCAB dataset consists of two tasks with
a total of six datasets: hate speech detection
(Hatebase(Davidson et al., 2017), Civil Com-
ments1, and Wikipedia(Wulczyn et al., 2016;
Dixon et al., 2018)) and sentiment analysis (SST-
2(Socher et al., 2013), Climate Change2, and
IMDB(Maas et al., 2011)).

The TCAB dataset consists of adversarial sam-
ples at different granularities, including word-level
adversarial samples (Genetic(Alzantot et al., 2018),
TextFooler etc.), character-level adversarial sam-
ples (DeepWordBug(Gao et al., 2018), HotFlip

1https://www.kaggle.com/c/
jigsaw-unintended-bias-in-toxicity-classification

2https://www.kaggle.com/edqian/
twitter-climate-change-sentiment-dataset
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etc.), and mixed-granularity adversarial samples
(TextBugger, Viper(Eger et al., 2019), etc.). These
methods include both white-box attacks and black-
box attacks. The adversarial samples of each task
are obtained by attacking BERT, RoBERTa, and
XLNet respectively. Our generation network is
trained across diverse datasets, models, and attack
methods to learn universal adversarial features.

We don’t strictly define the bounds of pertur-
bations as previous methods did because it is im-
plicitly reflected in the training data. In the adver-
sarial sample generation stage, we can control the
perturbation degree of the adversarial samples by
adjusting the temperature parameter in the model
logits.

4 Experiments and Results

In this chapter, we evaluate the performance of
CT-GAT in the decision-based black-box scenario,
using the security-oriented NLP benchmark Ad-
vbench. To demonstrate the high interpretability of
CT-GAT in practical settings, we also conducted a
manual evaluation.

4.1 Implementation

Victim Model BERT is a widely recognized pre-
trained transformer that is highly representative in
natural language understanding (NLU) tasks. We
chose to fine-tune the BERT model as the victim
model for all tasks.

Generation Model We choose BART (Lewis
et al., 2019) as our generation model. BART learns
to generate text that is semantically similar to the
original data by trying to recover it from its per-
turbed version. This enables BART to fully learn
the similarities and differences between different
word meanings and to have the ability to preserve
semantic invariance. Moreover, BART is trained
on a large amount of text and possesses the ability
to analyze parts of speech, which allows it to fur-
ther learn complex patterns of replacement during
fine-tuning.

4.2 Baseline

Our baseline method follows the experimental
setup of Advbench. We use the NLP attack pack-
age OpenAttack 3 (Zeng et al., 2020) to imple-
ment some common attacks. We implement the
rocket attack using the source code provided by

3https://github.com/thunlp/OpenAttack

Advbench. Specifically, the attack methods we em-
ploy include (1)TextFooler, (2)PWWS, (3)BERT-
Attack(Li et al., 2020), (4)SememePSO(Zang
et al., 2020), (5)DeepWordBug(Gao et al., 2018),
(6)ROCKET(Chen et al., 2022). Furthermore,
we train CT-GATword using word-level adversar-
ial samples from the TCAB to examine if it learns
imperceptible perturbation features, as character-
level attacks often introduce grammar errors and
increase perplexity.

4.3 Datasets
We evaluate CT-GAT on nine datasets from Ad-
vbench, which include tasks such as misinforma-
tion, disinformation, toxic content, spam, and sen-
sitive information detection (excluding the HSOL
dataset(Davidson et al., 2017)). Since the HSOL
dataset and the dataset used to train our adversar-
ial sample generator are the same, we substitute it
with the Founta dataset (Founta et al., 2018) in this
study.

4.4 Evaluation metrics
To evaluate the effectiveness of CT-GAT, we need
to measure the attack success rate, query count,
perturbation degree, and text quality. (1) ASR is
defined as the percentage of successful adversarial
samples. (2)The query count is defined as the aver-
age number of queries required to make adversarial
samples. (3)The perturbation degree is measured
by the Levenshtein distance. (4)Text quality is mea-
sured by the relative increase in perplexity (% PPL)
and the absolute increase in the number of gram-
mer errors (∆I). (5)Semantic similarity is an eval-
uative metric quantifying the extent to which the
meaning of the original sentence is preserved post-
perturbation. We represent this using the cosine
similarity of Universal Sentence Encoder (USE)
vectors.

4.5 Experimental Results
ASR and Query Count The ASR and query count
results are shown in Table 1. Our method CT-
GAT achieves excellent results on all tasks and
datasets. CT-GAT achieves the highest ASR and
the least number of queries on majority of datasets.
On a few datasets, even though it do not achieve
the highest ASR, it achieved the second highest
ASR. With only 2.3%-5.6% lower than the highest
ASR method, the number of queries was reduced
by 31.9%-91.2%. The ASR of CT-GAT did not
achieve optimal results on the EDENCE, FAS, and

https://github.com/thunlp/OpenAttack


Task Misinformation Disinformation Toxic Spam Sensitive Information

Method | Dataset
LUN Amazon-LB Founta SpamAssassin EDENCE

ASR(%)↑ Query↓ ASR(%)↑ Query↓ ASR(%)↑ Query↓ ASR(%)↑ Query↓ ASR(%)↑ Query↓

TextFooler 0.4 1294.38 9.0 740.42 52.7 67.46 0.2 961.88 23.9 94.67
PWWS 1.3 1707.19 18.8 1019.91 61.0 113.89 0.3 1308.50 46.0 129.68

BERT-Attack 7.0 3966.60 43.0 1625.37 77.0 109.52 2.2 4336.18 90.3 140.98
SememePSO(maxiter=100) 0.9 2020.85 23.8 1627.97 79.5 209.59 0.9 1945.74 79.6 231.17
DeepWordBug(power=5) 0.1 287.04 9.3 162.37 40.7 21.78 0.1 263.84 22.9 26.06
DeepWordBug(power=25) 0.2 287.04 12.4 162.41 65.5 22.03 0.0 263.84 79.9 26.63

ROCKET 7.2 300.38 38.7 218.69 97.0 5.03 1.1 60.09 84.5 20.93
CT-GATword(our) 1.9 98.58 19.5 83.44 90.3 14.28 3.1 59.45 53.0 58.91

CT-GAT(our) 10.0 92.69 56.2 54.51 99.3 39.02 14.8 59.36 88.0 19.08

Acc.(%) 99.2 92.1 93.1 99.7 97.8

SATNews CGFake Jigsaw2018 Enron FAS
ASR(%)↑ Query↓ ASR(%)↑ Query↓ ASR(%)↑ Query↓ ASR(%)↑ Query↓ ASR(%)↑ Query↓

TextFooler 2.9 1889.32 18.2 360.13 12.5 201.72 0.1 682.40 17.4 130.73
PWWS 1.2 2565.37 69.0 489.78 20.2 268.87 0.0 928.58 36.5 177.18

BERT-Attack 30.6 5102.34 94.6 400.61 40.4 450.67 1.4 2954.86 92.4 305.59
SememePSO(maxiter=100) 4.2 2217.34 67.2 689.46 51.9 539.25 1.0 1724.70 61.4 506.82
DeepWordBug(power=5) 2.5 430.59 41.7 75.00 35.9 45.71 0.0 182.27 40.8 39.91
DeepWordBug(power=25) 1.9 430.59 68.8 75.28 57.6 45.92 0.0 182.27 77.6 40.27

ROCKET 4.4 324.30 97.2 37.11 64.2 78.85 6.5 56.92 82.0 52.77
CT-GATword(our) 1.5 97.25 69.25 43.09 67.0 40.75 4.0 38.97 42.0 67.60

CT-GAT(our) 39.0 69.59 99.2 6.38 75.2 34.93 4.2 38.79 86.8 26.92

Acc.(%) 96.6 99.1 95.7 99.3 96.3

Table 1: The results of attack performance for various attack methods in decision-based black-box scenarios. ASR
stands for the attack success rate. Query signifies the average number of launching a successful adversarial attack.
Acc represents the accuracy of the victim model on the test set. A higher ASR and a lower Query indicate a more
effective attack. The bolded part indicates the best result, and the underlined part indicates the second best result.

Enron datasets, which is related to the degree of
perturbation. This can be seen more clearly in Ta-
ble 3, where our method has half the perturbation
rate of the method with the highest ASR on these
three datasets, which indicates that the impercep-
tibility learned from the data is constraining our
perturbation method. Although we can increase the
ASR by increasing the sampling temperature, this
may greatly affect the readability and change the
original sentence meaning.

To further evaluate the effectiveness of CT-GAT,
we conduct additional experiments on two datasets,
Jigsaw20184 and EDENCE, which have similar av-
erage query counts to the baseline. We conduct
attacks on the model under strict constraints on
the number of access queries, as shown in Fig-
ure 3. The differences in our replication of the
ROCKET method are large, therefore they are not
included in the graph for comparison. We observe
that CT-GAT consistently outperforms other meth-
ods and achieves higher attack success rates even
at extremely low query counts.

Perturbation Degree, Text Quality and Con-
sistency From Table 3, we can observe the level
of perturbation and text quality of CT-GAT, and

4https://www.kaggle.com/c/
jigsaw-toxic-comment-classification-challenge

the baseline. Considering the previous attack re-
sults, the CT-GATword method demonstrates good
performance in terms of perturbation rate and the
number of introduced grammar errors while main-
taining satisfactory attack effectiveness. This may
be attributed to the model’s ability to discern parts
of speech and assess the importance of substitute
words. To some extent, this demonstrates the ca-
pability of CT-GAT to learn the distribution of ad-
versarial examples and the implicit constraint of
imperceptibility.

However, perplexity does not necessarily reflect
the real reading experience. For example, the
ROCKET method uses a large number of repeated
words or letters inserted into the original sentence,
which makes the model easy to predict the words
and reduces the perplexity. CT-GAT, due to the in-
troduction of character-level attacks, does not seem
outstanding in terms of grammatical errors and flu-
ency. But in fact, we may not encounter too many
obstacles when reading in practice. We follow the
description of the Advbench, which emphasizes
that the purpose of the attack is to propagate harm-
ful information. We design human evaluations to
measure the effectiveness of the method.

In terms of consistency, the cosine similarity of
our method is at a relatively high level, indicating

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
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(a) EDENCE

(b) Jigsaw2018

Figure 3: Attack success rate under restriction of maxi-
mum query number in (a)EDENCE, (b)Jigsaw2018

that the sentences before and after the perturbation
by our method maintain good semantic consistency.
To further analyze semantic consistency, we adopt
a human evaluation approach.

Model 2 1 0 2+1 succ
Founta 64.5 23.5 12.0 88.0 83.5

FAS 56.0 39.0 5.0 95.0 96.5

Table 2: Human evaluation is conducted on two
tasks: hate speech detection and sensitive informa-
tion detection. The evaluation uses the following
scale: 0=meaning changed, 1=partially preserved,
2=essentially the same. Succ indicates whether the
adversarial samples retain their original labels accord-
ing to the human evaluation.

Human Evalution Automatic metrics provide
insights into the quality of the text. To verify
whether adversarial examples are truly effective
in real-world applications, we adopt a manual eval-
uation approach.

We choose two tasks, hate speech detection and
sensitive information detection, because these tasks
have clear definitions and are easy to evaluate man-
ually. We select the Founta dataset and the FAS

dataset, each consisting of 40 pairs of original texts
and adversarial texts. For each pair of samples, we
ask 5 evaluators to assess the following aspects se-
quentially: (1) whether the adversarial sample con-
veys malicious intent (or contains sensitive infor-
mation), and (2) the degree to which the intended
meaning of the original sample and the adversarial
sample aligns, measured on a scale of 0-2. The
label of 0 indicates no relevance at all, 1 indicates
partial conveyance of the original sentence’s mean-
ing, and 2 indicates substantial conveyance of the
original sentence’s meaning.

The results of the human evaluation are pre-
sented in Table 2. Labels of 1 or 2 are considered
meaningful. It can be observed that CT-GAT can
largely preserve the original meaning and effec-
tively convey malicious intent.

4.6 Case Study

We select three successful adversarial examples
from EDENCE and Amazon-LB. It can be ob-
served from Table 4. The perturbation patterns
of these adversarial samples originate from pre-
vious attack methodologies, effectively learning
and integrating prior adversarial features at both
the character and word levels. This includes tac-
tics such as word segmentation, similar character
substitution, and synonym replacement.

5 Further Analysis

In this chapter, our objective is to thoughtfully ex-
amine the areas where prior research could possibly
be further enriched, particularly in terms of trans-
ferability. Simultaneously, we will elucidate the
factors that enable our approach to effectively har-
ness certain transferable attributes.

5.1 Cross-task Adversarial Features

In this section, we aim to validate our hypothe-
sis that leveraging adversarial features from differ-
ent tasks can enhance the attack success rate for
the current task. Based on previous research(Yuan
et al., 2021), we can formulate the extraction of
adversarial features as a perturbation substitution
rule. We propose Cross-task Adversarial Word
Replacement rules (CAWR) to expand the rules in
order to extract adversarial features across different
tasks. The specific algorithm details can be found
in Appendix A.

We partition the TCAB(Asthana et al., 2022)
dataset into three subsets for our study: the Hate-



Task Misinformation Toxic Sensitive Information

Method | Dataset Amazon-LB Founta EDENCE
Levenstein ↓ ∆ I ↓ % PPL ↓ USE↑ Levenstein ↓ ∆ I ↓ % PPL ↓ USE ↑ Levenstein ↓ ∆ I ↓ % PPL ↓ USE ↑

TextFooler 25.68 0.57 1.79 0.95 18.29 3.15 1.21 0.87 11.86 0.10 2.51 0.87
PWWS 95.89 1.27 3.69 0.84 20.38 2.93 1.65 0.81 30.06 0.21 5.84 0.87

BERT-Attack 117.31 0.41 6.60 0.81 23.41 2.56 1.69 0.76 24.78 0.07 3.69 0.74
SememePSO(maxiter=100) 28.58 0.64 1.93 0.92 21.37 3.08 1.62 0.80 14.71 0.09 3.35 0.86
DeepWordBug(power=5) 18.86 0.33 4.19 0.82 8.05 4.23 1.13 0.73 6.66 -0.02 5.13 0.57
DeepWordBug(power=25) 34.43 0.23 4.27 0.32 17.96 11.43 0.19 0.24 19.57 -0.04 2.41 0.08

ROCKET 82.93 1.01 1.81 0.71 367.67 15.48 -0.98 0.05 97.95 5.01 0.34 0.32
CT-GATword(our) 50.51 -1.00 0.12 0.90 18.02 0.29 0.61 0.81 13.27 0.10 0.63 0.87

CT-GAT(our) 82.96 11.67 -0.15 0.73 18.49 0.27 0.61 0.80 12.90 2.93 1.69 0.76

Method | Dataset Amazon-LB Founta EDENCE
Levenstein↓ ∆ I ↓ % PPL ↓ USE↑ Levenstein ↓ ∆ I ↓ % PPL ↓ USE ↑ Levenstein ↓ ∆ I ↓ % PPL ↓ USE ↑

TextFooler 16.62 0.23 2.12 0.93 14.64 0.09 1.21 0.84 13.12 0.05 2.45 0.90
PWWS 101.47 1.11 4.69 0.80 52.76 0.38 4.19 0.79 48.93 0.23 5.04 0.84

BERT-Attack 82.85 0.48 11.41 0.79 30.65 0.05 3.33 0.77 53.20 0.10 6.12 0.75
SememePSO(maxiter=100) 23.77 0.31 3.15 0.86 18.23 0.11 3.42 0.76 15.55 0.03 2.37 0.82
DeepWordBug(power=5) 10.01 0.05 5.16 0.83 10.79 0.03 3.45 0.60 6.65 -0.02 3.64 0.58
DeepWordBug(power=25) 29.49 0.00 4.13 0.26 20.49 -0.05 2.27 0.25 18.33 -0.03 2.44 0.15

ROCKET 38.27 1.03 1.66 0.60 1084.44 44.99 -0.96 0.05 97.95 5.01 0.34 0.41
CT-GATword(our) 64.08 -0.85 3.01 0.86 20.47 0.05 0.11 0.76 23.01 0.40 0.25 0.84

CT-GAT(our) 42.46 6.43 9.40 0.79 16.28 2.54 1.03 0.70 25.70 6.84 1.16 0.69

Table 3: The results of attacking performance and adversarial samples’ quality. ∆I represents the relative increase
in the number of grammatical errors, %PPL represents the relative increase rate of perplexity.

Original Sentence it is true that the bush administration refused to help enron stave off
bankruptcy.

Adversarial Sentence it is tru e that the bush administration refused to assistance en ron
stave off bankruptcy.

Original Sentence was able to withstand the pressure.
Adversarial Sentence was aЬle to withstαnd tհe pressure.
Original Sentence great consistency. i love essie. beautiful color too!
Adversarial Sentence ǵřeat cônsîsteňcy. i love êssîe. beaǔtîfuᶅ coloř too!

Table 4: Adversarial samples crafted by CT-GAT. The red parts correspond to the modified words or characters
(blue parts) in the original sentence.

base dataset, the hate speech detection datasets
(comprising Hatebase, Civil Comments), and a
mixed dataset that combines sentiment detection
with the previous abuse detection datasets and ad-
ditional datasets (SST-2, Climate Change, and
IMDB). We extract rules from these subsets and
attack models on Jigsaw2018, Founta(Founta et al.,
2018), and tweet5. Table 5 shows the results. It can
be inferred that, overall, regardless of whether the
adversarial sample construction method is simple
and rule-based or based on model generation, the
amalgamation of different task methods tends to
result in a higher rate of successful attacks, or in
other terms, enhanced transferability.

5.2 Selection of Words

In this subsection, we discuss some evidence that
CT-GAT can learn transferable adversarial features

5https://github.com/sharmaroshan/
Twitter-Sentiment-Analysis

directly from the text. The process of generating ad-
versarial samples can be considered a search prob-
lem(Zang et al., 2020), where we aim to find the
vulnerable words and the optimal substitute words.

Vulnerable Words The selection of vulnera-
ble words is the process of choosing words to be
replaced. We aim to investigate whether differ-
ent models exhibit similar patterns of vulnerable
(or important) word distributions, which could be
one of the manifestations of transferability across
different models for the same task. We measure
the vulnerability of words by sequentially masking
them in a sentence and comparing the difference in
confidence scores of the correct class before and
after masking the input to the model.

We rank the vulnerability levels of the same sen-
tence across different models and compare the Jac-
card similarity of the selected top words to assess
the consistency among different models. As shown
in Table 6, We find some consistency both between

https://github.com/sharmaroshan/Twitter-Sentiment-Analysis
https://github.com/sharmaroshan/Twitter-Sentiment-Analysis


ASR Jigsaw Founta tweet
Hatebase 0.116 0.195 0.449

Toxic domain 0.131 0.217 0.507
All datasets 0.132 0.221 0.552

(a) CAWR

ASR Jigsaw Founta tweet
Hatebase 0.620 0.937 0.855

Toxic domain 0.705 0.948 0.468
All datasets 0.738 0.958 0.520

(b) CT-GATword

Table 5: The CAWR (a) and CT-GATword (b) method
demonstrates adversarial transferability using features
from different domains. Specifically, it utilizes one
dataset, three datasets, and six datasets successively
from top to bottom.

Model Jaccard
tweets & Founta 0.272

tweets & hatebase 0.519
Founta & hatebase 0.318

(a) Different training data

Architecture Jaccard
BERT & RoBERTa 0.508

BERT & XLNet 0.508
RoBERTa & XLNet 1.000

(b) Different architectures

Table 6: Models using (a) training datasets and (b) dif-
ferent architectures are evaluated by calculating the Jac-
card similarity for the top 20% percent vulnerable words.
The Jaccard similarity calculated on a randomly sam-
pled set of the top 20% words is 0.125

different model architectures and among training
data from similar domains.

We extract the substitution rules from CT-
GATword for generating adversarial samples and
find that the average perturbation rate is 16.6%.
The proportion of the words replaced by CT-
GATword that belong to the top 20% vulnerable
word set is 36%. These results indicate that it is
possible to learn the vulnerable words of a sentence
directly from the adversarial text.

Substitution preference Figure 1 presents the
heatmap of transferability metrics for replacement
rules, as derived through the HAWR algorithm by
Yuan et al. (2021). Upon intuitive observation, it is
apparent that certain replaced words possess mul-
tiple highly transferable replacements. Simulta-
neously, we compute the Gini inequality coeffi-
cient by tallying the number of word replacement
rules in successful adversarial samples. Through
statistical analysis of the replacement preferences

for each substituted word, we derived a Gini im-
balance coefficient of 0.161. This suggests that
the process of word replacement adheres to a dis-
cernible pattern, rather than manifesting as chaotic,
and further demonstrates a certain level of diver-
sity, which aligns with our observations from the
heatmap. The prior application of greedy methods
to select the most transferable replacement rules ex-
hibits certain constraints, whereas the technique of
employing a network for searching can effectively
discern diverse patterns.

The previously mentioned transferable elements
can all be represented in the statistical rules of
the text. This offers the potential for employing
neural network methodologies to learn transferable
characteristics from adversarial samples.

5.3 Defense

Learning to map from adversarial samples back to
the original sample distribution is relatively easier
compared to the inverse process. To further validate
the ability to learn adversarial sample distributions
from text, we conduct defensive experiments us-
ing generative models. We use adversarial samples
as input and the original samples as predictions.
Generative models can serve as a data cleansing
method by cleaning the input text before feeding
it into the victim model. Appendix B presents
the defensive experiments conducted on two vic-
tim models trained using CGFake and Hatebase
datasets.

Overall, using this method can effectively re-
duce the success rate of attackers and increase the
cost of queries. CT-GAT demonstrates excellent
defense against character-level attack methods like
DeepWordBug, indicating the presence of strong
patterns in character-level attacks. However, the
performance against word-level attacks is not par-
ticularly outstanding. This mainly occurs because
the attack method gradually intensifies its attack
magnitude after a failed attack. This surpasses the
defense model’s capability, which is trained on im-
perceptible samples.

6 Conclusion

In this article, we propose a cross-task generative
adversarial attack (CT-GAT), which is based on our
insight that adversarial transferability exists across
different tasks. Our method solves the problem of
needing to train a substitute model for the victim
model. Experiment demonstrates that our method



not only significantly increases the attack success
rate, but also drastically reduces the number of
required queries, thus underscoring its practical
utility in real-world applications.

Limitations

Our method has the following limitations: (1) CT-
GAT was trained on a limited dataset. While it has
demonstrated effectiveness within the scope of our
experiments, the ability to generalize to broader,
real-world scenarios may be constrained due to the
restricted data diversity. To enhance the applica-
bility of our method in a wider range of contexts,
it would be necessary to incorporate more diverse
datasets. This implies that for future enhancements
of this work, gathering and integrating data from
various sources or environments should be consid-
ered to improve the model’s broad applicability. (2)
Our method does not interact with the victim model.
If we could adjust the generation strategy based on
query results, it might enhance the success rate of
attacks.

Ethics Statement

The datasets we use in our paper, Advbench(Chen
et al., 2022), TCAB(Asthana et al., 2022) and
Founta dataset(Founta et al., 2018), are both open-
source. We do not disclose any non-open-source
data, and we ensure that our actions comply with
ethical standards. However, it is worth noting that
our method is highly efficient in generating adver-
sarial examples and does not require access to the
victim model. This could potentially be misused
by users for malicious activities such as attacking
communities, spreading rumors, or disseminating
spam emails. Therefore, it is important for the re-
search community to pay more attention to security-
related studies.
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to denote the significance statistics of the substi-
tution rule, which is measured by the change in
model confidence. We employ a large-scale statis-
tical approach to identify highly transferable rules
(see Algorithmic 1). After obtaining the rules, we

http://arxiv.org/abs/1812.05271
http://arxiv.org/abs/1812.05271
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
http://arxiv.org/abs/2210.17004
http://arxiv.org/abs/2210.17004
https://aclanthology.org/P11-1015
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1605.07277
https://doi.org/10.18653/v1/P19-1103
https://doi.org/10.18653/v1/P19-1103
http://arxiv.org/abs/1707.02812
http://arxiv.org/abs/1707.02812
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1610.08914
https://doi.org/10.18653/v1/2022.naacl-main.43
https://doi.org/10.18653/v1/2022.naacl-main.43
https://doi.org/10.18653/v1/2022.naacl-main.43
http://arxiv.org/abs/2011.08558
http://arxiv.org/abs/2011.08558
http://arxiv.org/abs/2011.08558
http://arxiv.org/abs/2011.08558
http://arxiv.org/abs/2011.08558
http://arxiv.org/abs/2011.08558
https://doi.org/10.18653/v1/2020.acl-main.540
https://doi.org/10.18653/v1/2020.acl-main.540
http://arxiv.org/abs/2009.09191
http://arxiv.org/abs/2009.09191


can achieve text perturbation by sequentially re-
placing the most significant words until reaching
the perturbation threshold.

Algorithm 1 Adversarial rules Extraction
Require:

D: A set of test datasets Di on different tasks i
M: A set of modelsMi on different tasks i

Ensure: a set of word replacement rules as well
as their salience.

1: for each datasets Di in D do
2: for each instance (x, y) in Di do
3: x̂← attack(x,Mi)
4: z ← argmaxMi(x̂)
5: if z ̸= y then
6: for each ŵ that replaces w do
7: if (synonym(ŵ)∪ŵ)∩synonym(w)̸= ∅ then
8: c(wi → ŵi) = c(wi → ŵi) + 1
9: ∆ = (Mi(x)[y]−Mi(x̂)[y])

10: h(wi → ŵi) = h(wi → ŵi) + ∆

11: for each word replacement rule do
12: h(w → ŵ) = h(w → ŵ)/c(w → ŵ)

B Defense

The following are the defense effects on the CG-
Fake and Hatebase datasets. Here, Query refers to
the average number of attack queries for successful
attack samples, not the average of the total number
of queries.

Method CGFake Hatebase

ASR(%) Query ASR(%) Query

TextFooler 18.2 360.13 10.4 78.46
+defend 16.25 396.25 10.0 78.63

PWWS 69.0 489.78 9.9 107.20
+defend 54.0 481.72 9.0 105.13

BERT-Attack 94.6 400.61 56.8 139.14
+defend 92.75 462.92 56.7 152.27

SememePSO(maxiter=20) 52.25 236.34 66.0 88.07
+defend 48.75 240.34 65.25 92.71

DeepWordBug(power=5) 41.7 75.00 56.4 21.40
+defend 1.25 80.23 1.25 21.07

DeepWordBug(power=25) 68.8 75.28 85.4 21.72
+defend 1.5 80.23 2.5 21.08

DeepWordBug(power=100) 93.0 81.14 90.0 21.96
+defend 2.25 80.24 2.25 21.08

Table 7: Attack success rate of preprocessing defense
using a generator trained with adversarial samples and
without defense strategies.


