
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3711896.3736573
.

.

TUTORIAL

A Survey on Model Extraction Aacks and Defenses for Large Language
Models

KAIXIANG ZHAO, University of Notre Dame, Notre Dame, IN, United States
.

LINCAN LI, Florida State University, Tallahassee, FL, United States
.

KAIZE DING, Northwestern University, Evanston, IL, United States
.

NEIL ZHENQIANG GONG, Duke University, Durham, NC, United States
.

YUE ZHAO, University of Southern California, Los Angeles, CA, United States
.

YUSHUN DONG, Florida State University, Tallahassee, FL, United States
.

.

.

Open Access Support provided by:
.

Florida State University
.

Duke University
.

University of Southern California
.

University of Notre Dame
.

Northwestern University
.

PDF Download
3711896.3736573.pdf
28 January 2026
Total Citations: 0
Total Downloads: 1577
.

.

Published: 03 August 2025
.

.

Citation in BibTeX format
.

.

KDD '25: The 31st ACM SIGKDD
Conference on Knowledge Discovery and
Data Mining
August 3 - 7, 2025
Toronto ON, Canada
.

.

Conference Sponsors:
SIGMOD
SIGKDD

KDD '25: Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.2 (August 2025)
hps://doi.org/10.1145/3711896.3736573

ISBN: 9798400714542

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3711896.3736573
https://dl.acm.org/doi/10.1145/3711896.3736573
https://dl.acm.org/doi/10.1145/contrib-99661670388
https://dl.acm.org/doi/10.1145/institution-60021508
https://dl.acm.org/doi/10.1145/contrib-99661669320
https://dl.acm.org/doi/10.1145/institution-60002092
https://dl.acm.org/doi/10.1145/contrib-99659345878
https://dl.acm.org/doi/10.1145/institution-60007363
https://dl.acm.org/doi/10.1145/contrib-81485653774
https://dl.acm.org/doi/10.1145/institution-60008724
https://dl.acm.org/doi/10.1145/contrib-99661058231
https://dl.acm.org/doi/10.1145/institution-60029311
https://dl.acm.org/doi/10.1145/contrib-99659849995
https://dl.acm.org/doi/10.1145/institution-60002092
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60002092
https://dl.acm.org/doi/10.1145/institution-60008724
https://dl.acm.org/doi/10.1145/institution-60029311
https://dl.acm.org/doi/10.1145/institution-60021508
https://dl.acm.org/doi/10.1145/institution-60007363
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3711896.3736573&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/kdd
https://dl.acm.org/conference/kdd
https://dl.acm.org/conference/kdd
https://dl.acm.org/sig/sigmod
https://dl.acm.org/sig/sigkdd
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3711896.3736573&domain=pdf&date_stamp=2025-08-03

A Survey on Model Extraction Attacks and Defenses for
Large Language Models

Kaixiang Zhao
kzhao5@nd.edu

University of Notre Dame
South Bend, Indiana, USA

Lincan Li∗
ll24bb@fsu.edu

Florida State University
Tallahassee, Florida, USA

Kaize Ding
kaize.ding@northwestern.edu

Northwestern University
Evanston, Illinois, USA

Neil Zhenqiang Gong
neil.gong@duke.edu
Duke University

Durham, North Carolina, USA

Yue Zhao
yzhao010@usc.edu

University of Southern California
Los Angeles, California, USA

Yushun Dong†
yushun.dong@fsu.edu
Florida State University
Tallahassee, Florida, USA

Abstract
Model extraction attacks pose significant security threats to de-
ployed language models, potentially compromising intellectual
property and user privacy. This survey provides a comprehen-
sive taxonomy of LLM-specific extraction attacks and defenses,
categorizing attacks into functionality extraction, training data ex-
traction, and prompt-targeted attacks. We analyze various attack
methodologies including API-based knowledge distillation, direct
querying, parameter recovery, and prompt stealing techniques that
exploit transformer architectures. We then examine defense mecha-
nisms organized into model protection, data privacy protection, and
prompt-targeted strategies, evaluating their effectiveness across
different deployment scenarios. We propose specialized metrics
for evaluating both attack effectiveness and defense performance,
addressing the specific challenges of generative language models.
Through our analysis, we identify critical limitations in current
approaches and propose promising research directions, including
integrated attack methodologies and adaptive defense mechanisms
that balance security with model utility. This work serves NLP
researchers, ML engineers, and security professionals seeking to
protect language models in production environments.

CCS Concepts
• Computing methodologies → Artificial intelligence.

Keywords
Large Language Models, Model Extraction Attacks, LLM Security

ACM Reference Format:
Kaixiang Zhao, Lincan Li, Kaize Ding, Neil Zhenqiang Gong, Yue Zhao,
and Yushun Dong. 2025. A Survey on Model Extraction Attacks and De-
fenses for Large Language Models. In Proceedings of the 31st ACM SIGKDD

∗Co-first author
†Corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 International License.
KDD ’25, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1454-2/2025/08
https://doi.org/10.1145/3711896.3736573

Conference on Knowledge Discovery and Data Mining V.2 (KDD ’25), Au-
gust 3–7, 2025, Toronto, ON, Canada. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3711896.3736573

1 Introduction
A growing number of large language models (LLMs), often devel-
oped with substantial investments by companies like OpenAI and
Google, bear significant commercial value and advanced AI capabil-
ities [1, 3, 19, 45, 60, 64]. The considerable resources invested and
the imperative to protect valuable intellectual property typically
restrict the public release of these state-of-the-art models [1, 19, 64].
Consequently, these models are commonly made accessible via
Machine-Learning-as-a-Service (MLaaS) platforms, which provide
API-based query access to pre-trained models and manage the un-
derlying infrastructure [27, 31, 54, 59, 85]. However, these platforms
also pose significant security challenges, primarily stemming from
the potential for unauthorized replication of model functionality or
theft of underlying intellectual property. Such activities, collectively
referred to as model extraction attacks (MEAs)—or model stealing
attacks—have emerged as a critical threat to private-owned LLMs
offered via these service interfaces [2, 23, 30, 51, 52, 65]. Recent re-
search demonstrates that private-owned models can be successfully
replicated, and their performance on relevant benchmarks even sur-
passed, through systematic distillation approaches. These methods
often require small amounts of training data, and empirical evi-
dence further supports this phenomenon [16, 23, 25, 34, 42, 55, 81].
Findings from these studies suggest that many well-known closed-
source and even some open-source models exhibit high degrees of
distillation from leading commercial models [4, 34, 71]. Some repli-
cated models also show response patterns and identity characteris-
tics strikingly similar to those of the original providers [4, 34, 71].
This threat is further validated by ongoing allegations that some AI
developers are potentially employing MEAs against such private-
owned commercial models to build their own powerful models,
which reportedly match the performance of leading commercial
models at a significantly lower cost [19, 34, 63, 80] These contro-
versies, even when specific claims are contested, have intensified
debate on model extraction against LLMs. Furthermore, the unique
characteristics of LLMs, such as their scale, generative capabilities,
introduce vulnerabilities that attackers can exploit with increasing
sophistication [70, 75, 84, 92]. These attacks typically exploit the
model’s query APIs to replicate functionality without authorization,

6227

https://orcid.org/0009-0005-8174-0581
https://orcid.org/0000-0003-3797-4055
https://orcid.org/0000-0001-6684-6752
https://orcid.org/0000-0002-9900-9309
https://orcid.org/0000-0003-3401-4921
https://orcid.org/0000-0001-7504-6159
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3711896.3736573
https://doi.org/10.1145/3711896.3736573

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Kaixiang Zhao et al.

leveraging techniques such as systematic API queries [5, 33, 58, 78],
parameter inference [56, 66], training data extraction [7, 18], and
prompt manipulation [53, 61, 62].

To tackle these threats, researchers have proposed various de-
fense strategies that achieve protection at different levels.. These in-
clude architectural safeguards such as watermarking [22, 40, 89, 90,
93] and access control mechanisms [37, 57, 72], training-time inter-
ventions like robust architecture design [20, 51, 74], and inference-
time protections including output sanitization [9, 28, 73] and query
monitoring [36, 79, 86]. Despite these advances, significant chal-
lenges in LLM extraction security persist, including balancingmodel
accessibility with security and utility, protecting diverse LLM archi-
tectures and deployments, and countering evolving attack strategies
[13, 14, 22, 67, 73, 84].
Core Contributions. This survey makes four key contributions
to the domain of LLM extraction security: First, we provide a clear
taxonomy of LLM extraction attacks, detailing transformer-specific
vulnerabilities and generative model risks. Second, we analyze cur-
rent defense mechanisms, examining architectural, output control,
and monitoring strategies to show their strengths and weaknesses.
Third, we examine key security-utility tradeoffs, showing how de-
fenses affect model quality and usability, to help balance security
with performance. Fourth, we propose an evaluation framework
with specificmetrics tomeasure attack success and defense strength,
suited for generative models. Finally, this work identifies research
gaps and suggests future directions in this field.
Intended Audience. This survey targets three primary audiences:
(1) NLP researchers investigating security vulnerabilities and pro-
tections for language models; (2) ML engineers and practitioners
responsible for deploying and securing LLMs in production envi-
ronments; and (3) Security professionals tasked with protecting
organizational AI assets and intellectual property. By bridging the-
oretical foundations with practical implementation considerations,
this work provides actionable insights for both academic research
and industrial applications in LLM security.

2 Preliminaries
2.1 Model Extraction Basics
Model ExtractionAttacks (MEAs) on Large LanguageModels (LLMs)
aim to illicitly replicate the functionality, knowledge, or parameters
of a target model. We first formally define the threat model.

Definition 1 (Threat Model). Given a target private-owned
LLM𝑀𝑇 , black-box query access (allowing submission of input prompts
𝑥 to receive outputs 𝑦 = 𝑀𝑇 (𝑥) without internal model access), and
a potential query budget 𝐵. The attacker aims to train a surrogate
model𝑀𝑆 that replicates the input-output functional pattern of𝑀𝑇 .

We further show Figure 1 to provide a better understanding for
the full life cycle of MEA attacks. More specifically, in the LLM
context, the target model 𝑀 typically processes input text 𝑥 (often
structured as a prompt) and generates output text 𝑦 = 𝑀 (𝑥). An
adversary with query access to 𝑀 constructs an extracted dataset
𝐷𝑒𝑥𝑡 = {(𝑥𝑖 , 𝑀 (𝑥𝑖)) |𝑥𝑖 ∼ 𝑋, 1 ≤ 𝑖 ≤ 𝑁 }, where 𝑋 represents the
input space of possible prompts and 𝑁 is the number of queries.
Using this dataset, the adversary trains a surrogate model𝑀′ that
approximates the behavior of 𝑀 by minimizing a loss function

UsersUser Devices

Server Database

R
e
q
u

e
st

fo
r

se
rv

ic
e

Distributed

Computing
Attack Goal

Attacker

T
ra

in

Prompt

R
es
p
o
n
se

𝑥′

𝑓(𝑥′)

User Environment

Query

Response

Figure 1: Illustration of the Model Extraction Attack pipeline
on Large Language Models.

𝑀′ = argmin𝑀 ′∈𝐻
∑

(𝑥,𝑦) ∈𝐷𝑒𝑥𝑡
L(𝑀′ (𝑥), 𝑦), where 𝐻 represents

the hypothesis space of possible models and L measures the dis-
crepancy between outputs.

2.2 Extraction Attack Process
The LLM extraction process involves three key phases: query gen-
eration, response collection, and surrogate model training. In query
generation, adversaries design prompts that effectively probe the
model’s capabilities across multiple domains. During response col-
lection, these queries are submitted to the target model through its
API service, and outputs are recorded for training data.

The surrogate model training phase leverages collected input-
output pairs to train a model that mimics the target LLM. This
may involve fine-tuning a smaller pre-trained model, distilling
knowledge into a more compact architecture, or training from
scratch. The training process must address challenges specific to
language modeling, including handling variable-length sequences
and replicating the specific characteristics of the target model. The
adversary’s ultimate goal is to develop a model 𝑓 ′

𝜙
(·) that closely

approximates the target model 𝑓𝜃 (·).

3 Taxonomy
Figure 2 presents our taxonomy of model extraction attacks and de-
fenses for LLMs.We categorizeMEA attacks against LLMs into three
categories: functionality extraction targeting model behavior repli-
cation, training data extraction recovering training examples, and
prompt-targeted attacks stealing valuable prompts. Defense mech-
anisms are similarly organized: model protection strategies secure
architecture and outputs, data privacy protection safeguards train-
ing data, and prompt protection protects private-owned prompts
and monitors queries. For evaluation, we identify metrics covering
attack effectiveness and defense performance.

6228

A Survey on Model Extraction Attacks and Defenses for
Large Language Models KDD ’25, August 3–7, 2025, Toronto, ON, Canada

LLM Extraction

Attack

Functionality Extraction

API-based KD Birch et al. [5], Carlini et al. [6], Krishna et al. [33]

Direct API Querying Chen et al. [8], He et al. [21], Xu et al. [77], Yao et al. [85]

Parameter Recovery Li et al. [35], Liu et al. [43], Nazari et al. [48]

Training Data Extraction
Prompt-based Data Recovery Carlini et al. [7], Huang et al. [24], Wang et al. [68]

Private Text Reconstruction Dai et al. [11], Parikh et al. [50], Yang et al. [83]

Prompt-targeted Attacks
Prompt Stealing Hui et al. [26], Sha and Zhang [61], Yang et al. [82]

Prompt Reconstruction Jiang et al. [29], Xu et al. [76], Zhang et al. [87]

Defense

Model Protection
Architectural Defense Li et al. [37, 38]

Output Control Pang et al. [49], Wang and Cheng [69]

Data Privacy Protection
Training Data Security Feng and Tramèr [17], Patil et al. [51]

Output Sanitization Li et al. [36], Wang et al. [73]

Prompt Protection
Direct Prompt Protection He et al. [22], Kim et al. [32]

Query Monitoring Wang et al. [73]

Evaluation Measure

Attack Effectiveness
Functional Similarity Carlini et al. [6], Krishna et al. [33]

Data Recovery Rate Huang et al. [24], Sha and Zhang [61]

Defense Performance
Security Metrics Li et al. [37], Pang et al. [49], Wang et al. [73]

Utility Metrics He et al. [22], Li et al. [38], Wang et al. [73]

Figure 2: A Taxonomy of Model Extraction Attacks & Defenses on Large Language Models.

4 Model Extraction Attacks
Model extraction attacks against LLMs present significant threats
to intellectual property, and user privacy. This section details three
primary attack types: Model Functionality Extraction, Training Data
Extraction, and Prompt-targeted Attacks.

4.1 Model Functionality Extraction
Model functionality extraction attacks aim to replicate a target
LLM’s capabilities through black-box query interactions. Given
a target language model 𝑀 : 𝑋 → 𝑌 , the adversary collects a
dataset 𝐷𝑒𝑥𝑡 = {(𝑥𝑖 , 𝑀 (𝑥𝑖)) |𝑥𝑖 ∼ 𝑋, 1 ≤ 𝑖 ≤ 𝑁 } through 𝑁 queries,
constrained by budget 𝐵. They then train a surrogate model

𝑀′ = arg min
𝑀 ′∈H

∑︁
(𝑥,𝑦) ∈𝐷𝑒𝑥𝑡

L(𝑀′ (𝑥), 𝑦), (1)

where L measures output discrepancy. Model functionality extrac-
tion attacks are categorized into three types: API-based knowledge
distillation, direct API querying, and parameter/architecture recovery.
API-based knowledge distillation systematically transfers the over-
all functionality of a target LLM by querying it with a broad and
diverse set of inputs to create a comprehensive dataset of input-
output pairs. This dataset is then used to train a surrogate LLM
that replicates the target LLM’s behavior. In contrast, direct API
querying focuses on crafting specific prompts to extract particular
behaviors or capabilities from the model, often targeting narrow
functionalities or specific response patterns. Parameter/architecture

recovery differs from both by attempting to reverse-engineer inter-
nal components, such as weights.

4.1.1 API-based Knowledge Distillation. API-based knowledge dis-
tillation attacks leverage authorized access to target LLMs through
their public interfaces to systematically transfer knowledge to an
attacker-controlled model. Unlike traditional knowledge distillation
requiring direct access to model parameters, these attacks operate
purely through input-output interactions. Krishna et al. [33] demon-
strated the feasibility of model extraction against BERT-based APIs,
which required only query access to create functional clones with
competitive performance. Their approach revealed a fundamental
vulnerability: as commercial models standardize on transformer
architectures, the technical barriers to model extraction diminish
dramatically. Birch et al. [5] proposed amodel leeching attack specif-
ically targeting LLMs that achieved high functional similarity with
limited computational resources. Most concerning, Carlini et al. [6]
successfully demonstrated extraction attacks against production-
scale language models, which showed that even billion-parameter
commercial systems remain vulnerable. Their approach requires no
insider access, which highlights a widening asymmetry between
the immense resources required to develop frontier models and the
relatively modest investment needed to steal their capabilities. The
core insight is that knowledge distillation attacks become practical
as the architecture gap between commercial models narrows.

4.1.2 Direct API Querying. Direct API querying attacks use care-
fully designed prompts to efficiently extract model capabilities by

6229

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Kaixiang Zhao et al.

analyzing the model’s responses. Yao et al. [85] established early
foundations by analyzing vulnerabilities in MLaaS systems. Their
work showed that significant model functionality could be extracted
even with limited queries. This vulnerability has increased with
modern LLMs, as demonstrated by Krishna et al. [33], who showed
that strategic querying can rapidly approximate the functionality
of BERT-based models. He et al. [21] further proved that model
functionality can be extracted, and the resulting clone exhibits
similar vulnerability to adversarial examples. This suggests that
fundamental behavioral characteristics transfer during extraction.
Chen et al. [8] expanded this research by demonstrating that BERT-
based APIs are vulnerable to dual-purpose attacks, which simul-
taneously extract model functionality and user attributes. These
findings compound the security implications of extraction attacks.
Modern API-based attacks are distinguished by their increasing
query efficiency. Early techniques required millions of queries, but
newer methods use information-theoretic approaches to identify
high-value prompts that reveal maximum model behavior with
minimal interaction. Xu et al. [77] highlighted this efficiency trend
with their imitation attack, which enables students to surpass teach-
ers through optimized query strategies. This evolution presents a
concerning trend. As attack efficiency improves, detection becomes
more difficult, creating a security gap where model functionality
can be extracted before defenses are engaged.

4.1.3 Parameter/Architecture Recovery. Parameter and architec-
ture recovery attacks are among the most technically challenging
forms of model extraction. These attacks aim to reverse-engineer
specific model components, such as weights or structural designs,
rather than replicate behavior. They are particularly concerning for
edge-deployed models, such as those hosted on local devices like
smartphones or IoT hardware, where adversaries may have physical
access. Li et al. [35] provided theoretical foundations for gradient
leakage in transformer architectures. Their work demonstrates
that attention mechanisms leak more information than traditional
neural networks. Nazari et al. [48] exploited this vulnerability in
practical attacks. They presented a fingerprinting methodology
that reveals critical architectural details of edge-deployed LLMs.
Liu et al. [43] showed that even self-supervised learning encoders
can be stolen, which compromises the foundational components
of modern language models. Transformer-based LLMs, despite
their complexity, exhibit structure-revealing patterns during infer-
ence. Self-attention mechanisms expose architectural information
through output behavior, which can be systematically probed and
analyzed. Complete parameter recovery remains impractical for
billion-parameter models. However, partial recovery of key compo-
nents creates vulnerabilities that enable targeted attacks or provide
competitive advantages. This vulnerability increases in distributed
computing environments, where adversaries can exploit expanded
access to model components, as highlighted by Zhao et al. [92].

4.2 Training Data Extraction
Training data extraction attacks aim to recover specific data points
from a model’s training dataset, which exploits the model’s ten-
dency to memorize and reproduce examples from its training data
[7]. These attacks are considered a form of model extraction be-
cause recovering the training data constitutes a direct extraction

of potentially sensitive and private information from the model.
The training data is the source of the model’s learned patterns and
behaviors. Given a model 𝑀 trained on dataset 𝐷𝑡𝑟𝑎𝑖𝑛 , an adver-
sary crafts prompts 𝑃 = {𝑝1, ..., 𝑝𝑁 } with budget |𝑃 | ≤ 𝐵 to extract
training data

𝐸 (𝑀) = {𝑑 ∈ 𝐷𝑡𝑟𝑎𝑖𝑛 : ∃𝑝 ∈ 𝑃 s.t. sim(𝑀 (𝑝), 𝑑) > 𝜏}, (2)

where sim(·, ·) measures similarity and 𝜏 is a threshold. We catego-
rize training data extraction attacks into two types: prompt-based
data recovery and private text reconstruction. Prompt-based data
recovery focuses on retrieving memorized training examples using
carefully crafted prompts, which target specific data patterns such
as PII or rare text formats. In contrast, private text reconstruction
goes beyond verbatim extraction by inferring and reconstructing
sensitive information through techniques like activation inversion
and canary extraction.

4.2.1 Prompt-based Data Recovery. Prompt-based data recovery
attacks exploit LLMs’ tendency to memorize training examples,
which allows specific prompts to retrieve memorized data. Carlini
et al. [7] demonstrated the practical feasibility of extracting exact
training examples from GPT-2, which showed that models memo-
rize and can be induced to reproduce specific sequences from their
training data. Their work established that the success of such extrac-
tions increases with model size and complexity. This indicates that
more advanced models may unintentionally increase privacy risks.
Zhang et al. [91] refined this approach with their ETHICIST system,
which uses loss-smoothed soft prompting and calibrated confidence
estimation to improve the efficiency of targeting specific types of
training data. Huang et al. [24] specifically investigated personal in-
formation leakage, which revealed that pre-trained LLMs frequently
memorize and expose personally identifiable information (PII) when
properly prompted. Their findings suggest that uniquely formatted
data patterns, such as email addresses and phone numbers, are par-
ticularly vulnerable to extraction. This creates a direct privacy risk
for individuals whose information appeared in the training data.
Wang et al. [68] further reinforced this vulnerability by developing
more precise extraction techniques that can distinguish between
memorized and generated content. Average memorization rates
may appear low in aggregate measurements. However, specific
types of data, such as unique, rare, or unusually formatted text, are
disproportionately memorized and more vulnerable to extraction.
This creates a practical privacy risk with significant implications
for data protection and regulatory compliance.

4.2.2 Private Text Reconstruction. Private text reconstruction at-
tacks go beyond extracting verbatim examples, which recover sensi-
tive information through inference and reconstruction techniques.
Zhang et al. [88] demonstrated “Text Revealer," which successfully
reconstructs private text from transformer models by exploiting
their self-attention mechanisms. This work showed that internal
model states contain recoverable private information. Yang et al.
[83] extended this concept to code models, which revealed that
specialized domains exhibit distinct patterns for memorization that
can be exploited for precise extraction. Parikh et al. [50] introduced
canary extraction, which showed that models memorize and leak
specific inserted data patterns at rates that correlate with training

6230

A Survey on Model Extraction Attacks and Defenses for
Large Language Models KDD ’25, August 3–7, 2025, Toronto, ON, Canada

exposure. This technique evaluates memorization risks by analyz-
ing how easily models reproduce strategically inserted markers.
Dai et al. [11] demonstrated that activation inversion attacks can
reconstruct training data in decentralized training environments,
which highlights how internal model representations can be ex-
ploited to recover private information. Early research demonstrated
that extraction was possible in certain scenarios. Newer techniques
employ principled approaches, which target specific data types with
high precision. This evolution suggests that privacy protections
must advance beyond preventing obvious memorization to address
subtle statistical patterns that enable reconstruction. As Gerasi-
menko and Namiot [18] argue in their analysis of extraction risks,
these threats require reconsideration of how language models are
deployed, particularly in domains handling sensitive information.

4.3 Prompt-targeted Attacks
Prompt-targeted attacks target valuable prompts used to guide
LLM behavior. Given a model𝑀 and a private-owned prompt 𝑃∗,
an adversary with query access to𝑀 (𝑃∗, 𝑥𝑖) for inputs 𝑥𝑖 aims to
reconstruct a similar prompt

𝑃 = argmax
𝑃

{sim(𝑃, 𝑃∗) : sim(𝑀 (𝑃, 𝑥), 𝑀 (𝑃∗, 𝑥)) > 𝜏,∀𝑥 ∈ 𝑋𝑡𝑒𝑠𝑡 },
(3)

where sim(·, ·) measures similarity and 𝑋𝑡𝑒𝑠𝑡 is a validation set. We
categorize prompt-targeted attacks into two types: prompt stealing
and prompt reconstruction. Prompt stealing focuses on extracting
carefully engineered prompts, such as system instructions, which
represent significant commercial assets. In contrast, prompt re-
construction aims to recover instruction patterns and few-shot
examples by analyzing model outputs, which retain traces of their
prompting context.

4.3.1 Prompt Stealing. Prompt stealing attacks target the intellec-
tual property embedded in carefully engineered prompts, which
represent significant commercial assets in LLM applications. Sha
and Zhang [61] pioneered research into systematic prompt steal-
ing, which demonstrated that prompts could be extracted through
strategic interactions with LLM applications. Their work showed
that as models becomemore capable, the value increasingly shifts to
prompting strategies, which creates new intellectual property vul-
nerabilities. Yang et al. [82] extended this work with PRSA (Prompt
Stealing Attacks), which showed that even complex system prompts
could be reconstructed with limited interaction by exploiting model
responses to carefully designed queries. Hui et al. [26] demon-
strated PLeak attacks, which reveal that commercial applications
using LLMs frequently leak their underlying prompts through in-
consistent output filtering. These vulnerabilities can be exploited
even in production systems. Liang et al. [39] investigated the funda-
mental mechanisms of prompt leakage in customized LLMs, which
identified architectural vulnerabilities that enable extraction. Their
work revealed that prompts encoded as system instructions leave
detectable patterns in model responses, which facilitate reconstruc-
tion. Prompt stealing represents an economic threat rather than
merely a technical vulnerability. Businesses increasingly invest in
prompt engineering to differentiate their AI offerings. Prompt theft
provides a low-cost mechanism to appropriate competitive advan-
tages. This dynamic creates a strategic tension where the most

valuable prompts also become the most attractive targets for ex-
traction. This may undermine incentives for innovation in prompt
engineering and specialized model development.

4.3.2 Prompt Reconstruction. Prompt reconstruction attacks fo-
cus on recovering the instruction patterns and few-shot examples,
which are used to specialize models for specific tasks and potentially
compromise both intellectual property and security boundaries.
Zhang et al. [87] demonstrated techniques for inverting LLM out-
puts to extract the prompts that generated them, which showed that
responses contain sufficient information to reconstruct significant
portions of input prompts. This work revealed that model outputs
inherently retain traces of their prompting context, which creates
fundamental information leakage. Xu et al. [76] introduced instruc-
tional fingerprinting of LLMs, which revealed that models retain de-
tectable patterns from their instruction tuning that can be analyzed
to reconstruct training processes. This research highlights how
instruction tuning creates behavioral patterns that persist through
inference. These patterns can potentially compromise the privacy
of tuning data. Jiang et al. [29] presented an advanced approach for
dynamic command generation in LLM tool-learning systems, which
showed that instruction patterns can be systematically extracted
and exploited. Mehrotra et al. [47] further developed this concept
with their “Tree of Attacks" methodology, which systematically
explores variations in prompt space to reconstruct effective instruc-
tion patterns. Prompt reconstruction research reveals that LLMs
unintentionally encode aspects of their prompting history into their
responses. This creates an information leakage channel where care-
ful analysis of outputs can reveal the prompting techniques used
to elicit them. This vulnerability undermines attempts to create
secure boundaries between system instructions and user-facing
functionality.It poses risks to the intellectual property of commer-
cial prompts and the security measures designed to protect them. As
LLMs increasingly rely on sophisticated prompting for alignment
and safety, this vulnerability raises concerns about the robustness
of current security approaches and the potential for adversaries to
systematically compromise key model safety features.

5 Model Extraction Defenses
Defending against model extraction attacks requires a approach that
addresses vulnerabilities at different levels of model deployment
and operation. This section examines defense strategies organized
into three categories: Model Protection, Data Privacy Protection, and
Prompt Protection.

5.1 Model Protection
Model protection implements defensive mechanisms to prevent
unauthorized model extraction or functionality replication. Given a
model𝑀 , these defenses aim to create a protected version𝑀′ that
maximizes legitimate utility while minimizing extraction success

𝑀′ = arg max
𝑀 ′∈M

{𝑈 (𝑀′, 𝑋𝑙𝑒𝑔) − 𝜆𝐸 (𝑀′, 𝑋𝑎𝑑𝑣)}, (4)

where 𝑈 measures utility for legitimate inputs 𝑋𝑙𝑒𝑔 , 𝐸 measures
extraction success for adversarial inputs 𝑋𝑎𝑑𝑣 , and 𝜆 balances the
trade-off. We categorize model protection mechanisms into two
types: architectural defenses and output control. Architectural de-
fenses modify the LLM’s internal structure, such as embedding

6231

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Kaixiang Zhao et al.

watermarks or altering attention mechanisms, to prevent unautho-
rized extraction. In contrast, output control strategies manipulate
LLM responses to reduce extraction risks without altering the un-
derlying architecture.

5.1.1 Architectural Defense. Architectural defense mechanisms in-
tegrate security features directly into the model’s structure, which
prevents unauthorized extraction. Li et al. [37] proposed TransLink-
Guard, which safeguards transformer models in edge deployments
bymanipulating attentionmechanisms to embedwatermarks, which
resist extraction and maintain performance. This approach demon-
strates that architectural defenses can be implementedwithminimal
computational overhead, which is critical for resource-constrained
edge devices. Li et al. [38] extended this concept with CoreGuard,
which protects foundational capabilities through structural modi-
fications that make extraction attempts produce degraded model
clones. The key insight from these approaches is that effective
architectural defenses must target the specific mechanisms that
are exploited during extraction rather than applying general se-
curity principles. Transformer-based models present unique vul-
nerabilities because their self-attention mechanisms inadvertently
expose architectural information during inference. By strategically
altering these attention patterns, defenders can create asymmetric
advantages, which allow legitimate users to experience minimal
performance impact while extractors receive functionally compro-
mised knowledge. However, these approaches often require signifi-
cant modifications to existing model architectures. This limits their
applicability to newly developed models and makes retrofitting
protection onto existing deployments challenging.

5.1.2 Output Control. Strategies to control model responses focus
on reducing the risk of unauthorized data extraction by manipulat-
ing outputs, which avoids modifying the underlying architecture.
Wang and Cheng [69] introduced GuardEmb, which implements
watermarking techniques that adapt to usage for embedding ser-
vices. This technique alters response patterns in ways that are
detectable by service providers but difficult for attackers to avoid.
Pang et al. [49] developed ModelShield, which uses watermark-
ing methods that adjust dynamically to provide robust protection
against extraction attacks. This approach strategically perturbs re-
sponses while maintaining high utility for legitimate users. These
techniques demonstrate that controlled output manipulation can
create barriers to extraction with minimal performance impact. The
fundamental insight is that strategies to control model responses
offer deployment flexibility compared to architectural approaches,
which allows them to be implemented as external layers added to
the model’s API without modifying model internals. This advantage
enables retrofitting protection onto existing deployed models and
allows for dynamic adjustment of protection levels based on threat
assessments. The challenge remains in balancing the degree of re-
sponse alteration. Insufficient changes fail to prevent extraction,
while excessive modification compromises legitimate user experi-
ence. As extraction techniques grow more sophisticated, strategies
to control model responses must evolve into adaptive methods,
which dynamically calibrate protection based on usage patterns
and potential extraction signals.

5.2 Data Privacy Protection
Data privacy protection mechanisms aim to prevent extraction of
private information from languagemodels. Given amodel𝑀 trained
on dataset 𝐷 containing private information 𝑃 ⊂ 𝐷 , these defenses
create a protected model 𝑀′ that minimizes privacy leakage while
preserving utility:

𝑀′ = arg min
𝑀 ′∈M

{𝐿(𝑀′, 𝑃) + 𝜆D(𝑀′, 𝑀)}, (5)

where 𝐿 measures privacy leakage, D measures model utility de-
viation, and 𝜆 balances the trade-off. We categorize data privacy
protection mechanisms into two types: training data security and
output sanitization. Training data security focuses on preventing
sensitive information from being memorized during training or re-
moving it after exposure, using techniques like differential privacy
or selective knowledge removal. In contrast, output sanitization
modifies or filters LLM responses to prevent private information
leakage during inference.

5.2.1 Training Data Security. Methods to secure training data aim
to prevent the extraction of sensitive information, which is embed-
ded in model parameters during training. Patil et al. [51] investi-
gated whether sensitive information could be deleted from LLMs
after training. They evaluated various defense objectives against
extraction attacks and found that removing specific knowledge can
mitigate vulnerabilities while preserving general model capabilities.
Their work demonstrates that protecting training data requires pre-
ventive measures during training, which must be complemented by
corrective measures after potential exposure. The key insight is that
securing training data increasingly requires targeted protection of
specific information types. Blanket protection approaches are often
less effective. While traditional differential privacy techniques ap-
ply uniform noise to all training signals, emerging research shows
that protecting specific information categories achieves better re-
sults in balancing privacy and utility. However, the fundamental
challenge remains: models inherently memorize training examples
as part of their learning process. This makes complete prevention
of training data extraction theoretically difficult. This creates an
ongoing tension between learning effectiveness and privacy protec-
tion, which drives research into novel training methods that limit
memorization while maintaining learning capacity.

5.2.2 Output Sanitization. Output sanitization focuses on modi-
fying or filtering model responses, which prevents the leakage of
private information. Wang et al. [73] proposed Self-Guard, which
empowers language models to detect and sanitize their own out-
puts. It uses self-monitoring mechanisms, which filter potentially
sensitive information before returning responses. This approach
demonstrates that models can be trained to recognize and sup-
press private information in their own generations, which creates
an additional protection layer without external filtering systems.
The critical insight is that output sanitization operates on a funda-
mentally different principle than simple content blocking. Rather
than applying static rules, effective sanitization must adapt filtering
based on contextual information sensitivity. This requires models
to develop the ability to understand the implications of generated
information and its privacy risks, which represents a higher-order
capability beyond basic content generation. The challenge remains

6232

A Survey on Model Extraction Attacks and Defenses for
Large Language Models KDD ’25, August 3–7, 2025, Toronto, ON, Canada

in developing sanitization approaches, which maintain content
coherence and utility while removing sensitive elements. This is
particularly difficult in contexts where private information forms
the central subject of legitimate queries.

5.3 Prompt Protection
Prompt protection mechanisms safeguard private prompts and in-
struction patterns, which represent valuable intellectual property.
Given a prompt 𝑃 that an organization wishes to protect, these
defenses implement safeguards, which maximize detection of unau-
thorized use and minimize impact on legitimate functionality:

arg max
𝐷∈D

{TPR(𝐷, 𝑃,𝑋𝑎𝑑𝑣) − 𝜆Impact(𝐷, 𝑃,𝑋𝑙𝑒𝑔)}, (6)

where TPR measures true positive rate of detecting unauthorized
prompt use from adversarial queries 𝑋𝑎𝑑𝑣 , Impact measures the
effect on legitimate queries 𝑋𝑙𝑒𝑔 , and 𝜆 balances security and util-
ity. We categorize prompt protection mechanisms into two types:
direct prompt protection and query monitoring. Direct prompt pro-
tection focuses on safeguarding private prompts and instruction
patterns through techniques like watermarking and obfuscation,
which prevent unauthorized use and detect derivative works. In
contrast, query monitoring systems analyze user interactions to
identify suspicious behaviors indicative of extraction attempts.

5.3.1 Direct Prompt Protection. This mechanism protects private
prompts and instruction patterns, which represent valuable intel-
lectual property. He et al. [22] introduced CATER, a conditional
watermarking system, which protects intellectual property in text
generation APIs by embedding subtle markers that identify prompts
and maintain generation quality. Kim et al. [32] proposed detailed
protection strategies for LLM environments, which use prompt
protection techniques to prevent unauthorized access to system
instructions. These approaches demonstrate that prompt protec-
tion must balance detection capabilities with generation quality to
ensure effective protection without degrading user experience. The
key insight is that prompt protection has become an emerging pri-
ority in the LLM ecosystem as commercial value increasingly shifts
from model weights to prompting techniques. As businesses invest
substantial resources in developing specialized prompts for specific
applications, the economic incentive for prompt theft grows pro-
portionally. Protection mechanisms must therefore prevent direct
copying. They must also detect derivative works, which preserve
the functionality of the original prompts while modifying their
wording, structure, or formatting. This creates a conceptual parallel
to traditional software protection, where both code and functional-
ity require safeguarding against unauthorized reproduction.

5.3.2 Query Monitoring. Systems to monitor user queries detect
and prevent extraction attempts by analyzing user queries and
behaviors, which reveal suspicious activity. Wang et al. [73] demon-
strated that self-monitoring approaches can detect suspicious query
patterns, which indicate extraction attempts and enable early de-
fensive actions. These systems work by identifying unexpected
patterns in user queries, which may suggest extraction attempts,
or by recognizing known behaviors associated with extraction at-
tacks. The key insight is that extraction attacks often show distinct

behaviors that differ from legitimate usage. These behaviors in-
clude systematically exploring model boundaries, using unusual
input distributions, or repeatedly testing specific capabilities. Query
monitoring establishes typical patterns of legitimate user behavior,
which allow it to flag potential extraction attempts for further inves-
tigation or response. However, the challenge lies in distinguishing
sophisticated extraction attempts from legitimate but unusual us-
age. This becomes particularly difficult as attackers adapt their
techniques to mimic normal user behavior. This creates an ongo-
ing dynamic, which requires monitoring systems to continuously
evolve to detect increasingly subtle extraction attempts.

6 Evaluation Metrics
Evaluating model extraction attacks and defenses requires specific
evaluation criteria, which measure both extraction success and de-
fense effectiveness. Table 1 summarizes the effectiveness of defense
mechanisms against various attack types.

6.1 Attack Effectiveness
Functional Similarity. This metric assesses how closely an ex-
tracted model replicates the behavior of the target LLM, which
focuses on capability transfer rather than exact parameter recovery.
Functional similarity includes several metrics. Agreement rate mea-
sures the percentage of cases where extracted and target models
produce equivalent outputs given identical inputs [6]. Behavioral
consistency evaluates how reliably an extracted model reproduces
specific patterns of the target model [77]. Task-specific performance
correlation quantifies alignment between extracted and target mod-
els on standardized benchmarks [33]. Perplexity similarity provides
a continuous measure of functional extraction success by compar-
ing cross-perplexity between models. This metric is particularly
valuable when evaluating extraction against large generative mod-
els, which produce responses that make exact matching impractical.
Data Recovery Rate. This metric quantifies an attack’s success
in extracting sensitive or structured information, which is embed-
ded within a target model. It encompasses several sub-metrics that
evaluate different aspects of recovery success. Training data extrac-
tion success measures the percentage of training examples that are
successfully recovered from a model’s memorized content [7]. Pre-
cision and recall of extracted data evaluate both the accuracy and
comprehensiveness of recovered information, which is particularly
important when extracting structured data such as personally iden-
tifiable information (PII) [24]. Private information exposure rate
measures how effectively an attack extracts specifically targeted
sensitive information, such as private user data or confidential
records [91]. Prompt recovery accuracy evaluates how accurately
an attack reconstructs system prompts, which is assessed by mea-
suring both semantic similarity and functional equivalence between
the original and recovered prompts [61]. These sub-metrics provide
a comprehensive evaluation of an attack’s ability to recover differ-
ent types of information embedded within a model, highlighting
the diverse risks posed by model extraction attacks.

6.2 Defense Performance
Security Metrics. These metrics evaluate how effectively defense
mechanisms reduce the success of extraction attacks. They include

6233

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Kaixiang Zhao et al.

Table 1: Effectiveness of Defense Mechanisms Against Different Model Extraction Attack Types.

Defense Mechanism Functionality Extraction Training Data Extraction Prompt-targeted Attacks
API-based KD Direct API Parameter Prompt-targeted Private Text Prompt Prompt

Querying Recovery Recovery Reconstruction Stealing Reconstruction

Architectural Defense [1] High Medium High Low Low Minimal Minimal
Output Control [2] High High Low Medium Medium Low Low

Training Data Security [3] Low Minimal Minimal High High Minimal Minimal
Output Sanitization [4] Low Low Minimal High High Low Low
Prompt Protection [5] Minimal Low Minimal Minimal Minimal High High
Query Monitoring [6] Medium High Low Medium Medium Medium Medium
Effectiveness Levels: High (dark green) - Highly effective; Medium (light green) - Moderately effective; Low (yellow) - Limited effectiveness; Minimal (gray) - Minimal or no effectiveness.

[1] Li et al. [37, 38] [2]Wang and Cheng [69], Pang et al. [49] [3] Feng and Tramèr [17], Patil et al. [51]

[4] Li et al. [36], Wang et al. [73] [5] He et al. [22], Kim et al. [32] [6]Wang et al. [73]

attack prevention rate, which quantifies the reduction in extrac-
tion success when defensive measures are deployed [37]. Query
detection accuracy measures a defense system’s ability to identify
malicious query patterns, which indicate extraction attempts [73].
Extraction cost increase quantifies the additional computational
and query resources that attackers must expend when defensive
measures are in place [49]. Watermark robustness measures how
well ownership signals persist in extracted models, which enables
the detection of unauthorized clones [69].
Utility Metrics. These metrics evaluate how defense mechanisms
affect the model’s ability to perform its intended tasks. They in-
clude performance preservation, which measures the degree to
which defensive measures maintain original model capabilities [38].
Response quality preservation quantifies changes in generation
quality, which occur when defensive measures are applied [22].
Computational overhead assesses the additional processing burden,
which is introduced by defensive measures [73]. False positive rate
measures how frequently legitimate queries are incorrectly flagged
or degraded, which occurs due to defensive measures [32]. Utility
assessment enables practitioners to select defense strategies that
provide adequate protection. At the same time, it ensures that the
core value proposition of their deployed models is preserved.

7 Limitations and Future Directions
Extraction Attack Perspectives. Current attempts to replicate
model functionality face challenges in deployment due to access
restrictions and high computational requirements for proprietary
models. Most attacks target isolated aspects of a model, which
limits their comprehensiveness and adaptability to defenses. Future
research should focus on combining multiple attack techniques
to overcome specific defenses and optimizing query efficiency to
reduce costs and avoid query restrictions.
DefenseMechanismAdvancements. Existing defenses face chal-
lenges in deployment and effectiveness. Structural defenses require
significant modifications, which limits their applicability to de-
ployed systems, while output manipulation methods struggle to
balance protection with generation quality. Most defenses lack for-
mal security assurances and rely on empirical evaluation. Future
defense research should prioritize defenses that can be applied to
existing models without requiring structural changes or retraining.

8 Related Work
Several surveys have explored various dimensions of security and
privacy challenges for large language models. Comprehensive sur-
veys like those by Das et al. [12] and Wang et al. [70] provide broad
overviews of LLM security and privacy challenges, which include
multiple types of threats and vulnerabilities. Yao et al. [84] orga-
nize their analysis into “the good” (beneficial security applications),
“the bad” (offensive uses), and “the ugly” (inherent vulnerabilities),
which provides a balanced perspective on LLMs’ security impli-
cations. In contrast, other surveys focus on specific attack types
or scenarios. Zhao et al. [92] analyze attempts to replicate model
functionality in distributed computing with some coverage of LLMs.
Mathew [46] specifically examines attacks that manipulate model
behavior using malicious prompts and their defenses. Esmradi et al.
[15] survey implementation techniques and mitigation strategies
for various attacks. Some surveys emphasize particular dimensions
of LLM security. Liu et al. [41] concentrate on societal and ethi-
cal consequences of LLM security, which focus more on societal
impacts than technical mechanisms. Ma et al. [44] provide a safety-
oriented perspective. Cui et al. [10] offer a more technically focused
examination of recent attack and defense approaches. Our survey
differs from these works by providing a systematic taxonomy of
model extraction attacks specifically for LLMs. It examines the
unique vulnerabilities of transformer-based architectures and of-
fers a detailed analysis of extraction methods, such as recovering
data used to train the model and prompt extraction, which exploit
the distinctive characteristics of large language models.

9 Conclusion
This survey provides a structured analysis of attempts to replicate
model functionality and the mechanisms to prevent them, which
are critical for LLM security. We present a taxonomy, which cat-
egorizes attack types and defense mechanisms. Our framework
includes evaluation metrics, which highlight the balance between
security measures and model usability. We identify current limita-
tions and research gaps, particularly in combining multiple attack
techniques and establishing formal assurances of defense effective-
ness. Finally, this work offers a structured foundation for developing
robust protection strategies, which are essential for LLMs as critical
commercial infrastructure.

6234

A Survey on Model Extraction Attacks and Defenses for
Large Language Models KDD ’25, August 3–7, 2025, Toronto, ON, Canada

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[2] Francisco Aguilera-Martínez and Fernando Berzal. 2025. LLM Security: Vulnera-
bilities, Attacks, Defenses, and Countermeasures. arXiv preprint arXiv:2505.01177
(2025).

[3] Yadagiri Annepaka and Partha Pakray. 2024. Large language models: A survey
of their development, capabilities, and applications. Knowledge and Information
Systems (2024), 1–56.

[4] Anahita Baninajjar, Kamran Hosseini, Ahmed Rezine, and Amir Aminifar. 2024.
Verified relative safety margins for neural network twins. arXiv preprint
arXiv:2409.16726 (2024).

[5] Lewis Birch, William Hackett, Stefan Trawicki, Neeraj Suri, and Peter Garraghan.
2023. Model leeching: An extraction attack targeting llms. arXiv preprint
arXiv:2309.10544 (2023).

[6] Nicholas Carlini, Daniel Paleka, Krishnamurthy Dvijotham, Thomas Steinke,
Jonathan Hayase, A. Feder Cooper, Katherine Lee, Matthew Jagielski, Milad Nasr,
Arthur Conmy, Itay Yona, Eric Wallace, David Rolnick, and Florian Tram‘er. 2024.
Stealing Part of a Production Language Model. arXiv preprint arXiv:2403.06634
(2024). https://arxiv.org/abs/2403.06634

[7] Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-
Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Úlfar Erlingsson,
Alina Oprea, and Colin Raffel. 2021. Extracting Training Data from Large Lan-
guage Models. In 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, 2633–2650.

[8] Chen Chen, Xuanli He, Lingjuan Lyu, and Fangzhao Wu. 2021. Killing one
bird with two stones: model extraction and attribute inference attacks against
bert-based apis. arXiv preprint arXiv:2105.10909 (2021).

[9] Zhan Cheng, Bolin Shen, Tianming Sha, Yuan Gao, Shibo Li, and Yushun Dong.
2025. ATOM: A Framework of Detecting Query-Based Model Extraction Attacks
for Graph Neural Networks. arXiv preprint arXiv:2503.16693 (2025).

[10] Jing Cui, Yishi Xu, Zhewei Huang, Shuchang Zhou, Jianbin Jiao, and Junge Zhang.
2024. Recent advances in attack and defense approaches of large language models.
arXiv preprint arXiv:2409.03274 (2024).

[11] Chenxi Dai, Lin Lu, and Pan Zhou. 2025. Stealing Training Data from Large
Language Models in Decentralized Training through Activation Inversion Attack.
arXiv preprint arXiv:2502.16086 (2025).

[12] Badhan Chandra Das, M Hadi Amini, and Yanzhao Wu. 2025. Security and
privacy challenges of large language models: A survey. Comput. Surveys 57, 6
(2025), 1–39.

[13] Gunika Dhingra, Saumil Sood, Zeba Mohsin Wase, Arshdeep Bahga, and Vijay K
Madisetti. 2024. Protecting LLMs against Privacy Attacks While Preserving
Utility. Journal of Information Security 15, 4 (2024), 448–473.

[14] Yi Dong, Ronghui Mu, Yanghao Zhang, Siqi Sun, Tianle Zhang, Changshun Wu,
Gaojie Jin, Yi Qi, Jinwei Hu, Jie Meng, et al. 2024. Safeguarding large language
models: A survey. arXiv preprint arXiv:2406.02622 (2024).

[15] Aysan Esmradi, Daniel Wankit Yip, and Chun Fai Chan. 2023. A comprehensive
survey of attack techniques, implementation, and mitigation strategies in large
language models. In International Conference on Ubiquitous Security. Springer,
76–95.

[16] Luyang Fang, Xiaowei Yu, Jiazhang Cai, Yongkai Chen, Shushan Wu, Zhengliang
Liu, Zhenyuan Yang, Haoran Lu, Xilin Gong, Yufang Liu, et al. 2025. Knowledge
Distillation and Dataset Distillation of Large Language Models: Emerging Trends,
Challenges, and Future Directions. arXiv preprint arXiv:2504.14772 (2025).

[17] Shanglun Feng and Florian Tramèr. 2024. Privacy backdoors: stealing data with
corrupted pretrained models. arXiv preprint arXiv:2404.00473 (2024).

[18] Denis V Gerasimenko and Dmitry Namiot. 2024. Extracting Training Data: Risks
and solutions in the context of LLM security. International Journal of Open
Information Technologies 12, 11 (2024), 9–19.

[19] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1:
Incentivizing reasoning capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948 (2025).

[20] Danny Halawi, Alexander Wei, Eric Wallace, Tony T Wang, Nika Haghtalab, and
Jacob Steinhardt. 2024. Covert malicious finetuning: Challenges in safeguarding
llm adaptation. arXiv preprint arXiv:2406.20053 (2024).

[21] Xuanli He, Lingjuan Lyu, Qiongkai Xu, and Lichao Sun. 2021. Model extrac-
tion and adversarial transferability, your BERT is vulnerable! arXiv preprint
arXiv:2103.10013 (2021).

[22] Xuanli He, Qiongkai Xu, Yi Zeng, Lingjuan Lyu, Fangzhao Wu, Jiwei Li, and
Ruoxi Jia. 2022. Cater: Intellectual property protection on text generation apis
via conditional watermarks. Advances in Neural Information Processing Systems
35 (2022), 5431–5445.

[23] Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa
Fujii, Alexander Ratner, Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. 2023.

Distilling step-by-step! outperforming larger language models with less training
data and smaller model sizes. arXiv preprint arXiv:2305.02301 (2023).

[24] Jie Huang, Hanyin Shao, and Kevin Chen-Chuan Chang. 2022. Are large pre-
trained language models leaking your personal information? arXiv preprint
arXiv:2205.12628 (2022).

[25] Zhen Huang, Haoyang Zou, Xuefeng Li, Yixiu Liu, Yuxiang Zheng, Ethan Chern,
Shijie Xia, Yiwei Qin, Weizhe Yuan, and Pengfei Liu. 2024. O1 Replication
Journey–Part 2: Surpassing O1-preview through Simple Distillation, Big Progress
or Bitter Lesson? arXiv preprint arXiv:2411.16489 (2024).

[26] Bo Hui, Haolin Yuan, Neil Gong, Philippe Burlina, and Yinzhi Cao. 2024. Pleak:
Prompt leaking attacks against large language model applications. In Proceedings
of the 2024 on ACM SIGSAC Conference on Computer and Communications Security.
3600–3614.

[27] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett
Witchel. 2018. Chiron: Privacy-preserving machine learning as a service. arXiv
preprint arXiv:1803.05961 (2018).

[28] Yoichi Ishibashi and Hidetoshi Shimodaira. 2023. Knowledge sanitization of large
language models. arXiv preprint arXiv:2309.11852 (2023).

[29] Ziyou Jiang, Mingyang Li, Guowei Yang, Junjie Wang, Yuekai Huang, Zhiyuan
Chang, and Qing Wang. 2025. Mimicking the Familiar: Dynamic Command
Generation for Information Theft Attacks in LLM Tool-Learning System. arXiv
preprint arXiv:2502.11358 (2025).

[30] Manish Kesarwani, Bhaskar Mukhoty, Vijay Arya, and Sameep Mehta. 2018.
Model extraction warning in MLaaS paradigm. In Proceedings of the 34th annual
computer security applications conference. 371–380.

[31] Hanjoo Kim, Minkyu Kim, Dongjoo Seo, Jinwoong Kim, Heungseok Park, Soeun
Park, Hyunwoo Jo, KyungHyun Kim, Youngil Yang, Youngkwan Kim, et al. 2018.
Nsml: Meet the mlaas platform with a real-world case study. arXiv preprint
arXiv:1810.09957 (2018).

[32] Minjae Kim, Taehyeong Kwon, Kibeom Shim, and Beonghoon Kim. 2024. Pro-
tection of LLM Environment Using Prompt Security. In 2024 15th International
Conference on Information and Communication Technology Convergence (ICTC).
IEEE, 1715–1719.

[33] Kalpesh Krishna, Gaurav Singh Tomar, Ankur P Parikh, Nicolas Papernot, and
Mohit Iyyer. 2020. Thieves on Sesame Street! Model Extraction of BERT-based
APIs. In International Conference on Learning Representations. https://openreview.
net/forum?id=Byl5NREFDr

[34] Sunbowen Lee, Junting Zhou, Chang Ao, Kaige Li, Xinrun Du, Sirui He, Haihong
Wu, Tianci Liu, Jiaheng Liu, Hamid Alinejad-Rokny, Min Yang, Yitao Liang,
Zhoufutu Wen, and Shiwen Ni. 2025. Quantification of Large Language Model
Distillation. arXiv:2501.12619

[35] Chenyang Li, Zhao Song, Weixin Wang, and Chiwun Yang. 2023. A theoretical
insight into attack and defense of gradient leakage in transformer. arXiv preprint
arXiv:2311.13624 (2023).

[36] Qinbin Li, Junyuan Hong, Chulin Xie, Jeffrey Tan, Rachel Xin, Junyi Hou, Xavier
Yin, Zhun Wang, Dan Hendrycks, Zhangyang Wang, et al. 2024. Llm-pbe: As-
sessing data privacy in large language models. arXiv preprint arXiv:2408.12787
(2024).

[37] Qinfeng Li, Zhiqiang Shen, Zhenghan Qin, Yangfan Xie, Xuhong Zhang, Tianyu
Du, Sheng Cheng, Xun Wang, and Jianwei Yin. 2024. TransLinkGuard: Safe-
guarding Transformer Models Against Model Stealing in Edge Deployment. In
Proceedings of the 32nd ACM International Conference on Multimedia. 3479–3488.

[38] Qinfeng Li, Yangfan Xie, Tianyu Du, Zhiqiang Shen, Zhenghan Qin, Hao Peng,
Xinkui Zhao, Xianwei Zhu, Jianwei Yin, and Xuhong Zhang. 2024. CoreGuard:
Safeguarding Foundational Capabilities of LLMs Against Model Stealing in Edge
Deployment. arXiv preprint arXiv:2410.13903 (2024).

[39] Zi Liang, Haibo Hu, Qingqing Ye, Yaxin Xiao, and Haoyang Li. 2024. Why Are My
Prompts Leaked? Unraveling Prompt Extraction Threats in Customized Large
Language Models. arXiv preprint arXiv:2408.02416 (2024).

[40] Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming Hu, Xi Zhang, Lijie Wen,
Irwin King, Hui Xiong, and Philip Yu. 2024. A survey of text watermarking in
the era of large language models. Comput. Surveys 57, 2 (2024), 1–36.

[41] Feng Liu, Jiaqi Jiang, Yating Lu, Zhanyi Huang, and Jiuming Jiang. 2025. The
ethical security of large language models: A systematic review. Frontiers of
Engineering Management (2025), 1–13.

[42] Jiaheng Liu, Chenchen Zhang, Jinyang Guo, Yuanxing Zhang, Haoran Que, Ken
Deng, Jie Liu, Ge Zhang, Yanan Wu, Congnan Liu, et al. 2024. Ddk: Distilling
domain knowledge for efficient large language models. Advances in Neural
Information Processing Systems 37 (2024), 98297–98319.

[43] Yupei Liu, Jinyuan Jia, Hongbin Liu, and Neil Zhenqiang Gong. 2022. Stolenen-
coder: stealing pre-trained encoders in self-supervised learning. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications Security.
2115–2128.

[44] Xingjun Ma, Yifeng Gao, Yixu Wang, Ruofan Wang, Xin Wang, Ye Sun, Yifan
Ding, Hengyuan Xu, Yunhao Chen, Yunhan Zhao, et al. 2025. Safety at Scale: A
Comprehensive Survey of Large Model Safety. arXiv preprint arXiv:2502.05206
(2025).

6235

https://arxiv.org/abs/2403.06634
https://openreview.net/forum?id=Byl5NREFDr
https://openreview.net/forum?id=Byl5NREFDr
https://arxiv.org/abs/2501.12619

KDD ’25, August 3–7, 2025, Toronto, ON, Canada Kaixiang Zhao et al.

[45] Loïc Maréchal. 2024. The Flow of Investments in the LLM Space. In Large
Language Models in Cybersecurity: Threats, Exposure and Mitigation. Springer
Nature Switzerland Cham, 129–135.

[46] Eleena Mathew. 2024. Enhancing Security in Large Language Models: A Compre-
hensive Review of Prompt Injection Attacks and Defenses. Authorea Preprints
(2024).

[47] Anay Mehrotra, Manolis Zampetakis, Paul Kassianik, Blaine Nelson, Hyrum
Anderson, Yaron Singer, and Amin Karbasi. 2024. Tree of attacks: Jailbreaking
black-box llms automatically. Advances in Neural Information Processing Systems
37 (2024), 61065–61105.

[48] Najmeh Nazari, Furi Xiang, Chongzhou Fang, Hosein Mohammadi Makrani,
Aditya Puri, Kartik Patwari, Hossein Sayadi, Setareh Rafatirad, Chen-Nee Chuah,
and Houman Homayoun. 2024. LLM-FIN: Large Language Models Fingerprint-
ing Attack on Edge Devices. In 2024 25th International Symposium on Quality
Electronic Design (ISQED). IEEE, 1–6.

[49] Kaiyi Pang, Tao Qi, ChuhanWu, Minhao Bai, Minghu Jiang, and Yongfeng Huang.
2025. ModelShield: Adaptive and Robust Watermark against Model Extraction
Attack. IEEE Transactions on Information Forensics and Security (2025).

[50] Rahil Parikh, Christophe Dupuy, and Rahul Gupta. 2022. Canary extraction in
natural language understanding models. arXiv preprint arXiv:2203.13920 (2022).

[51] Vaidehi Patil, Peter Hase, and Mohit Bansal. 2023. Can sensitive information
be deleted from llms? objectives for defending against extraction attacks. arXiv
preprint arXiv:2309.17410 (2023).

[52] Tianyu Peng and Jiajun Zhang. 2024. Enhancing Knowledge Distillation of Large
Language Models through Efficient Multi-Modal Distribution Alignment. arXiv
preprint arXiv:2409.12545 (2024).

[53] Fábio Perez and Ian Ribeiro. 2022. Ignore previous prompt: Attack techniques
for language models. arXiv preprint arXiv:2211.09527 (2022).

[54] Robert Philipp, Andreas Mladenow, Christine Strauss, and Alexander Völz. 2020.
Machine learning as a service: Challenges in research and applications. In Proceed-
ings of the 22nd International Conference on Information Integration andWeb-based
Applications & Services. 396–406.

[55] Yiwei Qin, Xuefeng Li, Haoyang Zou, Yixiu Liu, Shijie Xia, Zhen Huang, Yixin
Ye, Weizhe Yuan, Hector Liu, Yuanzhi Li, et al. 2024. O1 Replication Journey: A
Strategic Progress Report–Part 1. arXiv preprint arXiv:2410.18982 (2024).

[56] Adnan Siraj Rakin, MdHafizul IslamChowdhuryy, Fan Yao, andDeliang Fan. 2022.
Deepsteal: Advanced model extractions leveraging efficient weight stealing in
memories. In 2022 IEEE symposium on security and privacy (SP). IEEE, 1157–1174.

[57] Vishal Rathod, Seyedsina Nabavirazavi, Samira Zad, and Sundararaja Sitharama
Iyengar. 2025. Privacy and security challenges in large language models. In
2025 IEEE 15th Annual Computing and Communication Workshop and Conference
(CCWC). IEEE, 00746–00752.

[58] Robert Nikolai Reith, Thomas Schneider, and Oleksandr Tkachenko. 2019. Effi-
ciently stealing your machine learning models. In Proceedings of the 18th ACM
Workshop on Privacy in the Electronic Society. 198–210.

[59] Mauro Ribeiro, Katarina Grolinger, andMiriamAMCapretz. 2015. Mlaas:Machine
learning as a service. In 2015 IEEE 14th international conference on machine
learning and applications (ICMLA). IEEE, 896–902.

[60] Goldman Sachs. 2023. AI investment forecast to approach $200 billion globally
by 2025. Artificial intelligence outlooks–01 AUG (2023).

[61] Zeyang Sha and Yang Zhang. 2024. Prompt Stealing Attacks Against Large
Language Models. arXiv preprint arXiv:2402.12959 (2024).

[62] Xinyue Shen, Yiting Qu, Michael Backes, and Yang Zhang. 2024. Prompt Stealing
Attacks Against {Text-to-Image} Generation Models. In 33rd USENIX Security
Symposium (USENIX Security 24). 5823–5840.

[63] Anup Shirgaonkar, Nikhil Pandey, Nazmiye Ceren Abay, Tolga Aktas, and Vijay
Aski. 2024. Knowledge Distillation Using Frontier Open-source LLMs: Gen-
eralizability and the Role of Synthetic Data. arXiv preprint arXiv:2410.18588
(2024).

[64] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui
Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican,
et al. 2023. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805 (2023).

[65] Stephen Burabari Tete. 2024. Threatmodelling and risk analysis for large language
model (llm)-powered applications. arXiv preprint arXiv:2406.11007 (2024).

[66] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
2016. Stealing machine learning models via prediction {APIs}. In 25th USENIX
security symposium (USENIX Security 16). 601–618.

[67] Anvesh Rao Vijjini, Somnath Basu Roy Chowdhury, and Snigdha Chaturvedi.
2024. Exploring safety-utility trade-offs in personalized language models. arXiv
preprint arXiv:2406.11107 (2024).

[68] Jeffrey G Wang, Jason Wang, Marvin Li, and Seth Neel. 2024. Pandora’s White-
Box: Precise Training Data Detection and Extraction in Large Language Models.
arXiv preprint arXiv:2402.17012 (2024).

[69] Liaoyaqi Wang and Minhao Cheng. 2024. GuardEmb: Dynamic Watermark for
Safeguarding Large Language Model Embedding Service Against Model Stealing
Attack. In Findings of the Association for Computational Linguistics: EMNLP 2024.
7518–7534.

[70] ShangWang, Tianqing Zhu, Bo Liu, Ming Ding, Xu Guo, Dayong Ye,Wanlei Zhou,
and Philip S Yu. 2024. Unique security and privacy threats of large language
model: A comprehensive survey. arXiv preprint arXiv:2406.07973 (2024).

[71] XinyiWang, Antonis Antoniades, Yanai Elazar, Alfonso Amayuelas, Alon Albalak,
Kexun Zhang, and William Yang Wang. 2025. Generalization v.s. Memorization:
Tracing LanguageModels’ Capabilities Back to PretrainingData. In The Thirteenth
International Conference on Learning Representations. https://openreview.net/
forum?id=IQxBDLmVpT

[72] Yu Wang, Cailing Cai, Zhihua Xiao, and Peifung E Lam. 2025. LLM Access Shield:
Domain-Specific LLM Framework for Privacy Policy Compliance. arXiv preprint
arXiv:2505.17145 (2025).

[73] Zezhong Wang, Fangkai Yang, Lu Wang, Pu Zhao, Hongru Wang, Liang Chen,
Qingwei Lin, and Kam-Fai Wong. 2023. Self-guard: Empower the llm to safeguard
itself. arXiv preprint arXiv:2310.15851 (2023).

[74] Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. 2023. Jailbroken: How
does llm safety training fail? Advances in Neural Information Processing Systems
36 (2023), 80079–80110.

[75] Fangzhou Wu, Ning Zhang, Somesh Jha, Patrick McDaniel, and Chaowei Xiao.
2024. A new era in llm security: Exploring security concerns in real-world
llm-based systems. arXiv preprint arXiv:2402.18649 (2024).

[76] Jiashu Xu, Fei Wang, Mingyu Derek Ma, Pang Wei Koh, Chaowei Xiao, and
Muhao Chen. 2024. Instructional fingerprinting of large language models. arXiv
preprint arXiv:2401.12255 (2024).

[77] Qiongkai Xu, Xuanli He, Lingjuan Lyu, Lizhen Qu, and Gholamreza Haffari.
2021. Student surpasses teacher: Imitation attack for black-box NLP APIs. arXiv
preprint arXiv:2108.13873 (2021).

[78] Wenrui Xu and Keshab K Parhi. 2025. A Survey of Attacks on Large Language
Models. arXiv preprint arXiv:2505.12567 (2025).

[79] Biwei Yan, Kun Li, Minghui Xu, Yueyan Dong, Yue Zhang, Zhaochun Ren, and
Xiuzhen Cheng. 2024. On protecting the data privacy of large language models
(llms): A survey. arXiv preprint arXiv:2403.05156 (2024).

[80] Mingke Yang, Yuqi Chen, Yi Liu, and Ling Shi. 2024. DistillSeq: A Framework
for Safety Alignment Testing in Large Language Models using Knowledge Dis-
tillation. In Proceedings of the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis. 578–589.

[81] Wenkai Yang, Yankai Lin, Jie Zhou, and Ji-Rong Wen. 2025. Distilling Rule-based
Knowledge into Large Language Models. In Proceedings of the 31st International
Conference on Computational Linguistics. 913–932.

[82] Yong Yang, Changjiang Li, Yi Jiang, Xi Chen, Haoyu Wang, Xuhong Zhang,
Zonghui Wang, and Shouling Ji. 2024. PRSA: PRompt Stealing Attacks against
large language models. arXiv preprint arXiv:2402.19200 (2024).

[83] Zhou Yang, Zhipeng Zhao, Chenyu Wang, Jieke Shi, Dongsun Kim, Donggyun
Han, and David Lo. 2024. Unveiling memorization in code models. In Proceedings
of the IEEE/ACM 46th International Conference on Software Engineering. 1–13.

[84] Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. 2024.
A survey on large language model (llm) security and privacy: The good, the bad,
and the ugly. High-Confidence Computing (2024), 100211.

[85] Yuanshun Yao, Zhujun Xiao, Bolun Wang, Bimal Viswanath, Haitao Zheng, and
Ben Y Zhao. 2017. Complexity vs. performance: empirical analysis of machine
learning as a service. In Proceedings of the 2017 Internet Measurement Conference.
384–397.

[86] Yizhen Yuan, Rui Kong, Yuanchun Li, and Yunxin Liu. 2024. Wip: An on-device
llm-based approach to query privacy protection. In Proceedings of the Workshop
on Edge and Mobile Foundation Models. 7–9.

[87] Collin Zhang, John X Morris, and Vitaly Shmatikov. 2024. Extracting prompts by
inverting llm outputs. arXiv preprint arXiv:2405.15012 (2024).

[88] Ruisi Zhang, Seira Hidano, and Farinaz Koushanfar. 2022. Text revealer: Private
text reconstruction via model inversion attacks against transformers. arXiv
preprint arXiv:2209.10505 (2022).

[89] Ruisi Zhang, Shehzeen Samarah Hussain, Paarth Neekhara, and Farinaz Koushan-
far. 2024. {REMARK-LLM}: A robust and efficient watermarking framework for
generative large language models. In 33rd USENIX Security Symposium (USENIX
Security 24). 1813–1830.

[90] Yuehan Zhang, Peizhuo Lv, Yinpeng Liu, Yongqiang Ma, Wei Lu, Xiaofeng Wang,
Xiaozhong Liu, and Jiawei Liu. 2024. PersonaMark: Personalized LLMwatermark-
ing for model protection and user attribution. arXiv preprint arXiv:2409.09739
(2024).

[91] Zhexin Zhang, Jiaxin Wen, and Minlie Huang. 2023. Ethicist: Targeted training
data extraction through loss smoothed soft prompting and calibrated confidence
estimation. arXiv preprint arXiv:2307.04401 (2023).

[92] Kaixiang Zhao, Lincan Li, Kaize Ding, Neil Zhenqiang Gong, Yue Zhao, and
Yushun Dong. 2025. A Survey of Model Extraction Attacks and Defenses in
Distributed Computing Environments. arXiv preprint arXiv:2502.16065 (2025).

[93] Zhengyue Zhao, Xiaogeng Liu, Somesh Jha, PatrickMcDaniel, Bo Li, and Chaowei
Xiao. [n. d.]. Can Watermarks be Used to Detect LLM IP Infringement For Free?.
In The Thirteenth International Conference on Learning Representations.

6236

https://openreview.net/forum?id=IQxBDLmVpT
https://openreview.net/forum?id=IQxBDLmVpT

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Model Extraction Basics
	2.2 Extraction Attack Process

	3 Taxonomy
	4 Model Extraction Attacks
	4.1 Model Functionality Extraction
	4.2 Training Data Extraction
	4.3 Prompt-targeted Attacks

	5 Model Extraction Defenses
	5.1 Model Protection
	5.2 Data Privacy Protection
	5.3 Prompt Protection

	6 Evaluation Metrics
	6.1 Attack Effectiveness
	6.2 Defense Performance

	7 Limitations and Future Directions
	8 Related Work
	9 Conclusion
	References

