
Under review as submission to TMLR

Automatic Selection of the Nugget for Linear System Solves
in Machine Learning

Anonymous authors
Paper under double-blind review

Abstract

Rapid prototyping of algorithms is a critical step in modern machine learning. Most al-
gorithms exploit linear algebra, creating a need for lightweight numerical routines which –
while potentially sub-optimal for the task at hand – can be rapidly implemented. For the
numerical solution of ill-conditioned linear systems of equations, the standard solution for
prototyping is Tikhonov-regularised inversion using a nugget. However, selection of the size
of nugget is often difficult, and the use of data-adaptive procedures precludes automatic dif-
ferentiation, introducing instabilities into end-to-end training. Further, while data-adaptive
procedures perform multiple linear solves to select the size of nugget, only the result of one
such solve is returned, which we argue is wasteful. This paper aims to resolve the above
difficulties, presenting autonugget; a Python package for automatic and stable numerical
solution of linear systems suitable for rapid prototyping, and fully compatible with auto-
matic differentiation using JAX. A distinguishing feature of autonugget is the ability to
combine multiple linear solves using Richardson extrapolation, improving in accuracy over
approximations based on a single nugget.

1 Introduction

Consider the problem of numerically solving Ax = b for x ∈ Rd. It will be assumed that A is a symmetric
positive definite matrix, but that A is (possibly severely) ill-conditioned. This problem is ubiquitous in
applied machine learning and, for the purpose of rapid prototyping, the most widely-used method is Tikhonov
regularisation:

xσ := (A + σI)−1b, σ ≥ 0, (1)

where xσ → x in exact arithmetic as the regularisation parameter σ → 0. The regularisation parameter
σ is referred to as a nugget. For sufficiently regular matrices A, such as positive semi-definite matrices,
the condition of A + σI improves monotonically as σ is increased. In practice, one usually takes σ to be
just large enough that a numerical approximation x̂σ to xσ can be obtained to a required level of precision
using a direct method (e.g. LU-factorisation). The popularity of Tikhonov-regularisation for prototyping
of algorithms is due to the simplicity with which it can be implemented, and the presence of only a single
degree of freedom to be selected. For subsequent code optimisation, one would typically upgrade from a
Tikhonov-regularised direct method to a more scalable or sophisticated linear algebra routine, such as a
preconditioned iterative method (Trefethen and Bau, 2022), though we note that Tikhonov regularisation
often forms a component of these routines, e.g. in constructing preconditioners (Cutajar et al., 2016) and in
certain Krylov subspace methods (Gazzola et al., 2015).

The aim of this paper is to address three key issues that arise in applications of Tikhonov regularisation in
combination with a direct method:

1. Size of the nugget: The critical minimum value σ⋆ of σ at which xσ can be stably computed (i.e.
as x̂σ) will be unknown in general, and will depend sensitively on the actual values in A and b.

1

Under review as submission to TMLR

0.0 1e-10 σ? 1e-08 1e-07 1e-06 1e-05σ?

σ

0.995

1.000

1.005

1.010

1.015

1.020

1.025

1.030

x1 x2 x3x1 x2 x3

xi x̂σ Training data Polynomial fit

Figure 1: Illustration of autonugget: Here we plot numerical approximations x̂σ to xσ as the nugget σ is
varied (to aid in visualisation, only the first three coordinates are displayed). The numerical approximations
were obtained using linalg.solve in numpy (Harris et al., 2020), a direct method based on LU factorisation.
There is a critical value σ⋆ (shaded) below which x̂σ fails to reliably approximate xσ. On the other hand,
reliable calculations can be performed when σ ≥ σ⋆, and extrapolation of these reliable data can even provide
a better approximation to x compared to x̂σ⋆

.

2. End-to-end training: Data-adaptive choices of σ, for example based on the condition number of
A + σI remaining below a specified threshold, are typically incompatible with automatic differentia-
tion with respect to any variables θ contained in A ≡ Aθ and b ≡ bθ. This precludes straight-forward
end-to-end training of machine learning algorithms via gradient descent.

3. Data-efficiency: While data-adaptive procedures perform multiple linear solves to select the size
of nugget, only the result of one such solve is returned, which we argue is wasteful.

To resolve these difficulties we present autonugget; a Python package for hassle-free stable numerical solu-
tion of linear systems, fully compatible with automatic differentiation using JAX (Bradbury et al., 2018). To
address data-efficiency, we explore the benefit of combining multiple linear solves corresponding to nuggets
Σ = {σi}n

i=1 using Richardson extrapolation, which enables autonugget to improve in accuracy over ap-
proximations based on a single nugget. Automatic selection of Σ is performed by letting Σ = hΣref for
some reference set Σref and selecting h to (approximately) balance the error due to extrapolation with the
error due to numerical solution of (1). The autonugget package is described in Section 3 and illustrated in
Figure 1. Empirical evidence in support is presented in Section 4.

1.1 Related Work

The fundamental importance of linear algebra ensures (1) has been theoretically and empirically well-studied.
On the other hand, we argue that there is an important gap at the interface of theory and practice with
respect to existing work:

Machine Learning The role of σ is often conflated in applied machine learning, on the one hand being a
‘nuisance’ parameter that one would ideally want to be small, while on the other hand serving as a ‘regulariser’
that affects downstream performance on a particular task. From this perspective, σ is often folded into the
hyper-parameters of a machine learning algorithm and tuned end-to-end. Similarly, amortised approaches,
which aim to learn a mapping from the inputs of the machine learning task to an appropriate value for σ, have
been pursued (Chung and Español, 2017; Alberti et al., 2021; De Vito et al., 2022). However, both approaches
represent a (possibly substantial) increase in the overall training cost. Further, there are important situations
where one seeks the exact solution x of (1) as σ → 0; for instance in regression applications, where Tikhonov
regularisation can lead to predictions that are under-confident (Andrianakis and Challenor, 2012). Guidance

2

Under review as submission to TMLR

on the practical choice of σ is then limited; in our experience, manual choices based on the (in)sensitivity
of the downstream output are often used. As a data-adaptive alternative, one can select σ large enough
that the condition number of A + σI remains below a specified threshold1; however, the introduction of
conditional expressions can introduce an incompatibility with automatic differentiation, which can preclude
gradient-based training. On a different note, the potential to accelerate computation in machine learning
using the classical idea of Richardson extrapolation is receiving renewed attention (Bach, 2021; Oates et al.,
2025) and its potential to accelerate linear algebra computations in modern machine learning has yet to be
explored.

Numerical Analysis Numerical linear algebra is well-developed and the concepts that we discuss in this
work are not novel. For instance, the theoretical application of Richardson extrapolation in the setting of
Tikhonov regularisation was discussed as far back as Groetsch and King (1979); Thomas King and Chilling-
worth (1979). Theoretical insight into the data-adaptive selection of σ can be found in the works of Gfrerer
(1987); Engl (1987); Liu (2013). The topic has fallen out of fashion in numerical analysis as attention has
turned to designing bespoke algorithms for particular problems, often with applications to partial differential
equations in mind (Mardal and Winther, 2011; Kunoth et al., 2018). However, the sustained popularity of
Tikhonov regularisation as a prototyping tool in modern machine learning suggests the time is right to return
to this subject. In particular, there is a strong demand for a differentiable software implementation that can
automate the selection of σ, which the numerical analysis community have to-date not provided.

2 Methodology

This section presents autonugget. The premise is that there is typically a critical value σ⋆ such that the
numerical approximation x̂σ to xσ fails to be reliable for all σ < σ⋆. If one was able to estimate σ⋆, then one
could generate data x̂σ from the regime σ ≥ σ⋆ and attempt to extrapolate these reliable data to predict
the σ → 0 limit (c.f. Figure 1). This amounts to an application of Richardson extrapolation, as explained
in Section 2.1, and we prove that this enables convergence acceleration in Section 2.2. The problem of
identifying σ⋆ is deferred to Section 2.3.

Notation Let x ∈ Rd and A ∈ Rd×d. The following norms will be used: ∥x∥∞ := max{|xi|}d
i=1, ∥x∥2 :=

(
∑

x2
i)1/2, and ∥A∥op := sup∥x∥2=1 ∥Ax∥2. The minimum and maximum eigenvalues of A are denoted

λmin(A) and λmax(A), and the condition number is denoted κ(A) := λmax(A)/λmin(A). The set of real-
valued functions on a set S ⊂ R whose derivatives up to order r are continuous is denoted Cr(S,R). For
f ∈ Cr(S,R) and S ⊂ R bounded, let ∥f∥∞ := sups∈S |f(s)| and ∥f∥∞,Σ := sup{f(σ)}σ∈Σ for Σ ⊂ S.
Further, for a linear functional Π on C0(S,R), the operator norm

∥Π∥op := sup
0̸=f∈C0(S,R)

|Π(f)|
∥f∥∞

(2)

will be used.

2.1 Extrapolation Estimator

Richardson extrapolation (Richardson, 1911) is a classical idea from numerical analysis, whose potential
in modern machine learning and statistics is only beginning to be appreciated (Bach, 2021; Oates et al.,
2025). In brief, the idea is to construct polynomial approximations of the coordinate maps σ 7→ [xσ]i and to
extrapolate the fitted polynomial to σ = 0. Since in practice we only have access to numerical approximations
x̂σ, we aim to work with data for which σ ≥ σmin so that we can substitute xσ with a reliable approximation
x̂σ produced using a direct method.

1The condition number κ(A) of a non-singular matrix A is defined as the ratio λmax(A)/λmin(A) of the largest and smallest
eigenvalues of A; a smaller condition number is often associated with improved accuracy and/or faster convergence of numerical
methods (Trefethen and Bau, 2022).

3

Under review as submission to TMLR

Let P := span{p1, . . . , pm} where each pi : [0, ∞) → R is a polynomial. For the purposes of this paper the
constant function is always an element of P. Given a set Σ = {σi}n

i=1, the Vandermonde matrix is denoted

V(Σ) :=

 p1(σ1) . . . pm(σ1)
...

...
p1(σn) . . . pm(σn)

 .

In the case where m and n are equal, the Vandermonde determinant is denoted VDM(Σ) = det(V(Σ)).
The set Σ is called P-unisolvent if VDM(Σ) ̸= 0. Assuming Σ is P-unisolvent, we can approximate x using
polynomial extrapolation applied coordinatewise to the training dataset.
Definition 1 (Extrapolation Estimator). Let f : [0, ∞) → Rd. Let fn ∈ Pd interpolate f (coordinatewise)
on Σ = {σi}n

i=1. Then fn(0) is called an extrapolation estimator of f(0) ∈ Rd.

The extrapolation estimator fn(0) exists and is unique provided that Σ is P-unisolvent. In this paper
f(σ) = xσ. The idea in autonugget is to estimate f(0) using an extrapolation approach. To accomplish
this we distinguish between the extrapolator fn, based on exact solutions to the linear system, xσ, and the
extrapolator f̂n based on approximations x̂σ. We focus on determining a set Σ which balances the tension
between accuracy of the approximations x̂σ, which is improved for large σ, and accuracy of the extrapolator
f(0) which is improved for small σ. The computational cost of the extrapolation estimator is n times that of
a single linear solve, since polynomial interpolation requires negligible overhead. Typically n will be small,
e.g. n ∈ {2, 3, 4}, so that the overall computational cost of autonugget is of the same order as a single
application of a direct method.

2.2 Analysis in Exact Arithmetic

To understand the benefit of extrapolation we begin by analysing the error of extrapolation applied to exact
data xσ; the case where numerical approximation of xσ is taken into account is deferred to Section 2.3.

Let ℓi(·; Σ) denote the Lagrange polynomials, defined as the elements of P for which ℓi(σj ; Σ) = δi,j . These
can be computed as

ℓi(σ; Σ) = VDM({σ} ∪ (Σ \ {σi}))
VDM(Σ) .

The Lebesgue function of Σ is denoted

λ(σ; Σ) =
n∑

i=1
|ℓi(σ; Σ)|. (3)

The following result, which we prove in Section A.2, indicates the potential benefit from extrapolation in
this context:
Theorem 1 (Extrapolation error bound). Let f(σ) = (A + σI)−1b where A is a symmetric positive definite
matrix. Let P = span{1, σ, . . . , σn−1}. Let Σref = {σi}n

i=1 be P-unisolvent. Let fh
n ∈ Pd interpolate f

(coordinatewise) on Σh = {hσi}n
i=1 for h ∈ (0, 1]. Then

∥f(0) − fh
n (0)∥∞︸ ︷︷ ︸

extrapolation error

≤ (1 + λ(0; Σref))σn
maxλmin(A)−(n+1)∥b∥2︸ ︷︷ ︸

constant in h

hn︸ ︷︷ ︸
acceleration

,

where σmax := max{σi}n
i=1.

To interpret Theorem 1 one should consider h to be varying and n to be fixed. The extrapolation error is
then seen to converge at a rate O(hn), where the n nuggets that are used to generate the dataset are each
of size O(h). As a sanity check, for the case of a single linear solve and no extrapolation, the map σ 7→ xσ is
continuous and the error x − xhσ is indeed O(h). Theorem 1 thus shows that the convergence rate (in h) is

4

Under review as submission to TMLR

strictly improved when n ≥ 2 data are used. There is of course also a trade-off, in terms of the n-dependent
constants appearing in the bound2 and in terms of the computational cost3.

In practice however we do not have access to xσ, only to a approximation x̂σ obtained via the numerical
solution of (1). Care is needed when using polynomial extrapolation applied to noisy data, because numerical
errors can be amplified by higher-order terms in the polynomial. Understanding the trade-off between
convergence acceleration and stability in finite precision arithmetic is the focus of Section 2.3.

2.3 Analysis in Finite Precision Arithmetic

To understand the practical performance of the extrapolation estimator we will characterise the estimator as
a projection of the data-generating function, and then analyse how the projection is affected when the input
data are corrupted. As before, we consider a polynomial basis P and a collection Σ = {σi}n

i=1. Denote the
projection

ΠΣ : C0([0, σmax],Rd) → Rd

f 7→ fn(0),

where fn(0) is the extrapolation estimator of f(0) based on P and Σ (cf. Definition 1). Note that ΠΣ[f] can
be defined for any function f , including f̂ , but one cannot hope to extrapolate a function that is discontinuous
at 0.

Recall that we cannot exactly evaluate f(σ) = xσ, but rather we obtain f̂(σ) = x̂σ where the error x̂σ − xσ

can be large when σ is small. The extrapolation estimator applied to f̂ , which we seek to analyse, is then
ΠΣ[f̂]. For any norm ∥ · ∥, the total error can be decomposed as

∥f(0) − ΠΣ[f̂]∥︸ ︷︷ ︸
actual error

≤ ∥f(0) − ΠΣ[f]∥︸ ︷︷ ︸
extrapolation error

+ ∥ΠΣ[f] − ΠΣ[f̂]∥︸ ︷︷ ︸
numerical error

. (4)

As before we fix a reference design Σref = {σi}n
i=1 and consider Σh = {hσi}n

i=1 for h ∈ (0, 1]. From Theorem 1
we have a bound on the extrapolation error term in (4). For the numerical error term we have the following
bound, whose proof is contained in Section A.3:
Theorem 2 (Numerical error bound). In the setting of Theorem 1,

∥ΠΣh
[f] − ΠΣh

[f̂]∥∞︸ ︷︷ ︸
numerical error

≤ λ(0; Σref)∥f − f̂∥∞,Σh
.

The result is intuitively clear; since the extrapolation estimator is a projection and projections are linear
maps, the error in the extrapolation estimator is linear in the numerical error f − f̂ associated to the dataset.
The magnitude of ∥f − f̂∥∞,Σh

is typically determined by ∥f(hσmin)− f̂(hσmin)∥∞ where σmin is the smallest
element of Σref . Further, for direct solvers the magnitude of the relative error is typically determined by the
product of machine precision and the condition number (Weiss et al., 1986):

∥f(hσmin) − f̂(hσmin)∥∞

∥f(hσmin)∥∞
⪅ ϵMPκ(A + hσminI) (5)

where ϵMP is the machine precision (e.g. typically double precision; 10−16). Combining these observations,
we obtain

∥ΠΣh
[f] − ΠΣh

[f̂]∥∞︸ ︷︷ ︸
numerical error

⪅ λ(0; Σref)ϵMPκ(A + hσminI)∥f(hσmin)∥∞ (6)

2For carefully chosen Σ (e.g. Chebyshev nodes) the Lebesgue constant λ(0, Σ) grows as O(log(n)), so the main concern is
the term (hσmax)nλmin(A)−(n+1).

3The computational complexity is O(n), but if one has access to n parallel processors the computational time becomes O(1).

5

Under review as submission to TMLR

and to arrive at a practical upper-bound we use

∥f(hσmin)∥∞ ≈ ∥f(0)∥∞ ⪅ λmin(A)−1∥b∥2 (7)

Combining Theorems 1 and 2 and Equations (6) and (7) as in (4) we obtain a practically-relevant overall
error bound which can be used to select h, as explained next.

2.4 Selecting h

The aim now is to select h for which the bound obtained from (4) and Theorems 1 and 2 and their subse-
quent discussion is minimised. Specifically, we seek to balance the size of the the numerical error and the
extrapolation error, i.e.

(1 + λ(0; Σref))σn
maxλmin(A)−(n+1)∥b∥2hn = λ(0; Σref)ϵMPκ(A + hσminI)λmin(A)−1∥b∥2

and to this end we propose to use the value of h for which

κ(A + hσminI)
hn

= (1 + λ(0; Σref))
λ(0; Σref)

σn
max

λmin(A)nϵMP
(8)

The left hand side of (8) is monotonic in h, diverging as h → 0 and vanishing as h → ∞, and thus there
exists a unique solution h⋆ to (8). For well-conditioned A, (8) implies that

h⋆ ∝ (ϵMPκ(A))1/n λmin(A)
σmax

≍ ϵ
1/n
MP , (9)

where we have treated the Lebesgue functions as constants in the proportionality statement. Conversely, for
near-singular A we have κ(A + hσminI) ≍ λmax(A)/(hσmin) and thus an analogous calculation based on (8)
implies that

h⋆ ≍ ϵ
1/(n+1)
MP . (10)

As expected, (10) is larger than (9) in general, indicating that for near-singular A a larger nugget is required.
More interestingly, we see that extrapolation with a larger number n of data enables larger nuggets to be
used; i.e. extrapolation can confer additional numerical stability, as well as accuracy, by enabling the size
of the nuggets to be increased. Typical instances of the minimum critical size of nugget σ⋆ = h⋆σmin are
depicted in Figure 2.

Calculating the minimum eigenvalue of A is typically as hard as solving the linear system itself, but for a
symmetric positive definite matrix M the smallest eigenvalue can be approximated based on the identity

λmin(M)−1 = ∥M−1∥op = ∥M∥−1
op = sup

∥v∥2=1
∥Mv∥−1

2

and substituting the supremum for a maximum over a finite set. For autonugget we used min{100, 0.1d}
vectors v randomly sampled from standard normal distribution, though more sophisticated methods are
available in certain settings (Drmač, 2006; Ye, 2018).

3 The autonugget Package

A Python implementation of autonugget can be installed from https://anonymous.4open.science/r/
autonugget-FE4C. For standard usage, suitable for rapid prototyping, one simply replaces the conventional
direct method, e.g.

x = np.linalg.solve(A,b) (11)

with
x = autonugget(A,b)

6

https://anonymous.4open.science/r/autonugget-FE4C
https://anonymous.4open.science/r/autonugget-FE4C

Under review as submission to TMLR

10−15 10−13 10−11 10−9 10−7 10−5 10−3

σ

10−6

10−4

10−2

100

102

104

‖x
−
x̂
σ
‖ 2

σ
?

:
n

=
5

σ
?

:
n

=
2

` = 50

10−15 10−13 10−11 10−9 10−7 10−5 10−3

σ

10−6

10−4

10−2

100

102

104

σ
?

:
n

=
5

σ
?

:
n

=
2

` = 100

Figure 2: Identification of the critical value σ⋆, below which x̂σ fails to be a reliable approximation to xσ,
using the approach proposed in Section 2.4. Here the matrix A was a Gram matrix associated to a kernel
with length-scale ℓ; larger values of ℓ are associated with A being more ill-conditioned. The numerical
approximations were obtained using linalg.solve in numpy, a direct method based on LU factorisation.
Our estimator σ⋆ is subject to slight fluctuations owing to the stochastic minimum eigenvalue approximation,
but it always appears to be slightly risk-averse, favouring slightly larger nuggets than are strictly needed,
which we view as a desirable property of the method.

where default settings of autonugget are used. The reference design Σref can optionally be specified, as
described in Section B. For simplicity we set Σref = {2jσmin : 0 ≤ j ≤ m} where m is user-specified (defaults
to m = 1), since such geometric grids are known to be well-suited to polynomial extrapolation (Liem and
Shih, 1995).

A distinguishing feature of autonugget is that it is JAX-compatible, enabling end-to-end training of machine
learning algorithms, as will now be explained. In a slight overloading of notation, suppose that xθ denotes the
solution of the linear system defined by A ≡ Aθ and b ≡ bθ, where Aθ and bθ depend smoothly on parameters
θ ∈ Rp. This situation occurs routinely in kernel methods, for example (Rasmussen and Williams, 2006). It
can then be useful to compute gradients ∇θxθ, but automatic differentiation through linear solvers can be
non-trivial, for instance when logical termination criteria are used. To address this point, we employ calculus
to see that

∇θxθ = −A−1
θ (∇θAθ)A−1

θ bθ + A−1
θ (∇θbθ) (12)

which can be recursively computed with three distinct calls to autonugget. This calculation is implemented
as a custom forward differentiation rule for JAX within autonugget. This enables automatic selection of
appropriate nuggets independently for each of the three linear systems in (12) that must be numerically
solved, in contrast to naïve differentiation through autonugget for which no such protection would be
provided.

4 Empirical Assessment

This section presents an empirical assessment of autonugget, reporting results across a spectrum of linear
systems from well-conditioned to ill-conditioned. Our baselines and assessment protocol are laid out in
Section 4.1. The accuracy of approximations to both the solution (Section 4.2) and derivatives of the
solution (Section 4.3) are examined, and the practical benefit of autonugget is demonstrated in Section 4.4.

4.1 Baselines

Since our use-case is rapid prototyping, we do not compare against numerical methods that are optimised for
specific tasks where additional problem structure can be exploited. Rather, we compare autonugget with
the following generic baselines (which do not employ extrapolation):

7

Under review as submission to TMLR

• LU: The standard numpy solver (11), which is based on LU decomposition, with no nugget.

• LU-fix: As LU but with (arbitrary) fixed nugget at single precision; σ = ϵsing = 10−8.

• LU-cond: As LU but with a nugget σ chosen just large enough that κ(A + σI) < ϵ−1
sing = 108.

• LU-adapt: As LU but with a nugget σ = σ⋆ as in Section 2.4.

• CG: The conjugate gradient method (Hestenes et al., 1952) with scipy implementation, with default
relative tolerance of 10−5.

• LSTSQ: Least squares solution (i.e. pseudoinverse), implemented using numpy.

JAX versions of LU, LU-fix, CG, LSTSQ are used for derivate computations.

To automatically generate a set of test problems we consider Gram matrices A associated to a positive
definite kernel k : R×R → R and a (fixed) collection of uniformly spaced distinct nodes {zi}d

i=1 ⊂ R, so that
Ai,j = k(zi, zj) for all i, j ∈ {1, . . . , d}. Specifically, we take k(z, z′) = exp(−(z − z′)2/ℓ2), unless specified
otherwise, since for this kernel changes in the length-scale ℓ strongly affect the condition of A (larger ℓ is
associated with larger κ(A)). Again, we emphasise that for any particular set of test problem one can design
bespoke numerical methods (indeed, numerical methods for kernel matrices are well-studied, see Section 1.2
of Schafer et al., 2021, for a recent review); our interest is specifically in generic methods which are agnostic
to any special structure present in A.

4.2 Solver Accuracy

To test solver accuracy we fix the solution vector x to be the vector 1 whose entries are each 1, and set
b = Ax. Given an approximate solution x̂ produced by a numerical method, the error is quantified as
∥x̂ − x∥2.

Figure 3 shows log of relative error with respect to autonugget, computed as the ratio of error of the
method to the error in autonugget. The positive values (in blue) indicate that autonugget out-performed
the baseline method. It can be seen that autonugget performs far better than LU for most of the linear
systems considered, especially the ill-conditioned systems (i.e. large length-scale ℓ). autonugget also out-
performed CG (with the default tolerance used) and LSTSQ, albeit to a lesser extent. More importantly,
observe that LU-fix performed worse than autonugget on both well-conditioned systems (where the nugget
is too large, introducing a bias) and ill-conditioned systems (where the nugget is too small, meaning that
insufficient regularisation is provided); this clearly illustrates the need for adaptive selection of a nugget.
However, the LU-adapt baseline was also out-performed by autonugget; this demonstrates the additional
accuracy that comes from the extrapolation functionality of autonugget.

For the experiments we report in the main text we employed extrapolation based on n = 2 linear solves (i.e.
linear extrapolation) as a default within autonugget. As ablation studies, this experiment was repeated for
(a) a different choice of kernel (Fig. 6), (b) set of non-kernel type matrices (??) and (c) different numbers
of data n for extrapolation (Fig. 8), with results contained in the Supplement. Improved accuracy was
observed in some cases with n > 2, but we found the benefit was not substantial enough to merit the
additional computational cost as a default. To show randomised eigenvalue approximation did not affect
conclusions, we show Fig. 3 computed with a different seed in Fig. 9.

4.3 Derivative Accuracy

For the second set of experiments we sought to evaluate the accuracy with which the derivative of the
solution of the linear system was computed. For this purpose we consider a parametrised linear system
A ≡ Aθ, b ≡ bθ, where to enable an analytically tractable gold-standard we employed a simple dependence
on the parameter θ as A = θÃ and b = b̃ for a fixed Ã and b̃. As such, the true derivative is ∇θxθ = − x

θ .
Given a numerical approximation ∇x̂θ to the derivative ∇xθ, the error was quantified using ∥∇x̂θ −∇xθ∥2/d,
where we have normalised for the dimension d to make comparison more straightforward.

8

Under review as submission to TMLR

1e+1

2e+1

5e+1

1e+2

2e+2

5e+2

1e+3

S
iz

e
o
f

th
e

m
a
tr

ix

LU LU-fix LU-cond

1e-2 1e+0 1e+2 1e+4

length-scale

1e+1

2e+1

5e+1

1e+2

2e+2

5e+2

1e+3

S
iz

e
o
f

th
e

m
a
tr

ix

LU-adapt

1e-2 1e+0 1e+2 1e+4

length-scale

CG

1e-2 1e+0 1e+2 1e+4

length-scale

LSTSQ

−15

−10

−5

0

5

10

15

lo
g
(r

el
a
ti

v
e

er
ro

r)

Figure 3: Solver accuracy assessment. Here we compared autonugget to our baselines, varying the dimension
d of the matrix and the length-scale ℓ of the kernel. The logarithm of the error relative to autonugget is
reported; blue indicates that autonugget out-performed the baseline method. [Alternative versions of this
figure are included in the Supplement for (a) a different choice of kernel (Fig. 6), and (b) different polynomial
orders for extrapolation (Fig. 8).]

Figure 4 compares the accuracy of derivatives obtained from autonugget to automatic differentiation through
other baselines using JAX. It can be seen that LU performed worst; we attribute this to the absence of any
appropriate regularisation during the three linear system solves that are required when automatic differen-
tiation is performed. LU-cond and LU-adapt performed much better than LU, but were still out-performed
by autonugget when the length-scale is large and the linear-system is severely ill-conditioned. autonugget
also performed better than the other baselines, as similar to the solvers in the previous section, with the
difference being more pronounced due to multiple linear solves involved in the derivative calculation.

4.4 Application to GP Regression

Finally, we test autonugget in a quasi-realistic setting where rapid prototyping might be required; a hy-
perparameter optimisation problem for a Gaussian process (GP) regression task. As both a model and a
data-generating process we took a centred GP with the squared exponential kernel and generated (noiseless)
data on a regular grid of 5×5 points in [0, 1]2. For data generation we used a kernel with length-scale ℓ = 50.
The task is to infer a suitable length-scale ℓ from the dataset by using leave one out cross-validation based
on the predictive root-mean squared error. Since the true length-scale is much larger than the domain on
which data were generated, such optimisation requires working with kernel matrices which, despite being
small, are severely ill-conditioned (Lin et al., 2024). For optimisation we consider a gradient-descent method
with adaptive step-sizes computed from backtracking line-search (Nocedal and Wright, 2006). Taking the
gradient of the cross-validation loss requires differentiating the solution of a linear system involving the kernel
matrix; as in Section 4.3 we compare autonugget to automatic differentiation through either LU or LU-fix
using JAX.

9

Under review as submission to TMLR

Figure 4: Derivative accuracy assessment. Here we compare autonugget to the derivative computed using
JAX applied to the baselines LU and LU-fix, varying the dimension d of the matrix and the length-scale ℓ
of the kernel. The logarithm of the (dimension normalised) error relative to autonugget is reported; blue
indicates that autonugget out-performed the baseline method.

Figure 5 shows a clear advantage to using autonugget in this setting. Indeed, the loss function computed
using autonugget has a clear minimum around the true length-scale ℓ = 50, and the accurate gradient
calculation ensures rapid convergence of the optimisation method. In contrast, the loss function computed
using LU is non-smooth (due to the lack of any Tikhonov regularisation) and the optimiser diverges to a
pathologically large value of ℓ. LU-fix (i.e. the use of a fixed-size nugget across all length-scales, a common
approach in rapid prototyping) confers stable optimisation, but the optimiser converges to a value for the
length-scale that is far too small. This occurs due to the bias introduced by the nugget, which encourages
the data to be (incorrectly) explained as “noise” instead of signal. While LU-cond and LU-adapt managed to
converge to appropriate length-scales in this experiment, it can be seen that their computed cross-validation
loss increases as the length-scale is increased; this is incorrect, because the cross validation loss should become
constant as ℓ → ∞. This increase is an artefact of an increasing amount of regularisation being applied in
LU-cond and LU-adapt as the increasing length-scale ℓ increases the condition number of the associated
linear systems. In contrast, the constant tail behaviour of the cross-validation loss is correctly captured by
autonugget.

5 Discussion

Numerical linear algebra is critical to accelerating computations in machine learning, for instance in kernel
methods (Rudi et al., 2017), GPs (Chen et al., 2025), and deep learning (Sato et al., 2024). Yet sophisticated
numerical methods are not the first port-of-call during methodological development. Motivated by the
lack of a tuning-free, automatic differentiation-compatible routine to solve ill-conditioned linear systems of
equations, we introduced autonugget. A distinguishing feature of autonugget is its use of extrapolation
to gain accuracy beyond the critical value of σ at which explosive behaviour is encountered in solution

10

Under review as submission to TMLR

50 100 150 200

length-scale

5e-05

1e-04

2e-04

lo
ss

fu
n

ct
io

n
autonugget

0 5000 10000

length-scale

0e+00

2e-01

5e-01

8e-01

LU

50 100 150 200

length-scale

0e+00

3e-05

5e-05

8e-05

LU-fix

50 100 150 200

length-scale

5e-06

1e-05

lo
ss

fu
n

ct
io

n

CG

50 100 150 200

length-scale

1e-04

1e-04

2e-04

2e-04

LU-cond

50 100 150 200

length-scale

1e-04

2e-04

2e-04

LU-adapt

50 100 150 200

length-scale

2e-07

4e-07

lo
ss

fu
n

ct
io

n

LSTSQ

loss function optimiser path optimum `

Figure 5: Application to a Gaussian process regression task. A gradient-based optimiser was applied to the
cross-validation loss function described in Section 4.4, with evaluations of the loss function and its gradients
performed using either autonugget or one of the baselines described in Section 4.1.

using a direct method. An empirical assessment supported the use of autonugget as a general-purpose tool
for solving linear systems of equations specified by symmetric positive definite matrices, which are widely
encountered in machine learning.

The use cases of autonugget are limited to matrices that can be stored in memory, but for prototyping
applications this is often sufficient. A possible direction for future work is to incorporate probabilistic error
bars for the extrapolated solution, for instance by replacing polynomial extrapolation with a statistical
regression model (Oates et al., 2025).

References
Giovanni S Alberti, Ernesto De Vito, Matti Lassas, Luca Ratti, and Matteo Santacesaria. Learning the

optimal Tikhonov regularizer for inverse problems. Advances in Neural Information Processing Systems,
34:25205–25216, 2021.

Ioannis Andrianakis and Peter G Challenor. The effect of the nugget on Gaussian process emulators of
computer models. Computational Statistics & Data Analysis, 56(12):4215–4228, 2012.

Francis Bach. On the effectiveness of Richardson extrapolation in data science. SIAM Journal on Mathe-
matics of Data Science, 3(4):1251–1277, 2021.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: Com-
posable transformations of Python+NumPy programs, 2018. URL http://github.com/jax-ml/jax.

11

http://github.com/jax-ml/jax

Under review as submission to TMLR

Yifan Chen, Houman Owhadi, and Florian Schäfer. Sparse Cholesky factorization for solving nonlinear PDEs
via Gaussian processes. Mathematics of Computation, 94(353):1235–1280, 2025.

Julianne Chung and Malena I Español. Learning regularization parameters for general-form Tikhonov.
Inverse Problems, 33(7):074004, 2017.

Kurt Cutajar, Michael Osborne, John Cunningham, and Maurizio Filippone. Preconditioning kernel matri-
ces. In International Conference on Machine Learning, pages 2529–2538. PMLR, 2016.

Ernesto De Vito, Massimo Fornasier, and Valeriya Naumova. A machine learning approach to optimal
Tikhonov regularization I: Affine manifolds. Analysis and Applications, 20(02):353–400, 2022.

Zlatko Drmač. Computing eigenvalues and singular values to high relative accuracy. In Handbook of Linear
Algebra, pages 46–1. Chapman and Hall/CRC, 2006.

Heinz W Engl. On the choice of the regularization parameter for iterated Tikhonov regularization of ill-posed
problems. Journal of Approximation Theory, 49(1):55–63, 1987.

Silvia Gazzola, Paolo Novati, Maria Rosaria Russo, et al. On Krylov projection methods and Tikhonov
regularization. Electronic Transactions on Numerical Analysis, 44(1):83–123, 2015.

Helmut Gfrerer. An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of
ill-posed problems leading to optimal convergence rates. Mathematics of Computation, 49(180):507–522,
1987.

CW Groetsch and JT King. Extrapolation and the method of regularization for generalized inverses. Journal
of Approximation Theory, 25(3):233–247, 1979.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Courna-
peau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan
Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Ab-
basi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature, 585(7825):
357–362, 2020.

Magnus R Hestenes, Eduard Stiefel, et al. Methods of conjugate gradients for solving linear systems. Journal
of Research of the National Bureau of Standards, 49(6):409–436, 1952.

Angela Kunoth, Tom Lyche, Giancarlo Sangalli, Stefano Serra-Capizzano, Carla Manni, and Hendrik
Speleers. Splines and PDEs: From approximation theory to numerical linear algebra. Springer, 2018.

Chin Bo Liem and Tsimin Shih. The Splitting Extrapolation Method: A New Technique In Numerical Solution
Of Multidimensional Problems. World Scientific, 1995.

Jihao Andreas Lin, Shreyas Padhy, Bruno Mlodozeniec, Javier Antorán, and José Miguel Hernández-Lobato.
Improving linear system solvers for hyperparameter optimisation in iterative Gaussian processes. Advances
in Neural Information Processing Systems, 37:15460–15496, 2024.

Chein-Shan Liu. A dynamical Tikhonov regularization for solving ill-posed linear algebraic systems. Acta
Applicandae Mathematicae, 123(1):285–307, 2013.

Kent-Andre Mardal and Ragnar Winther. Preconditioning discretizations of systems of partial differential
equations. Numerical Linear Algebra with Applications, 18(1):1–40, 2011.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2nd edition, 2006.

Chris J Oates, Toni Karvonen, Aretha L Teckentrup, Marina Strocchi, and Steven A Niederer. Probabilistic
Richardson extrapolation. Journal of the Royal Statistical Society Series B: Statistical Methodology, 87
(2):457–479, 2025.

12

Under review as submission to TMLR

Carl Edward Rasmussen and Christopher KI Williams. Gaussian Processes for Machine Learning. MIT
Press Cambridge, MA, 2006.

Lewis Fry Richardson. The approximate arithmetical solution by finite differences of physical problems
involving differential equations, with an application to the stresses in a masonry dam. Philosophical
Transactions of the Royal Society of London, Series A, 210(459-470):307–357, 1911.

Alessandro Rudi, Luigi Carratino, and Lorenzo Rosasco. FALKON: An optimal large scale kernel method.
Advances in Neural Information Processing Systems, 30, 2017.

Naoki Sato, Koshiro Izumi, and Hideaki Iiduka. Scaled conjugate gradient method for nonconvex optimiza-
tion in deep neural networks. Journal of Machine Learning Research, 25(395):1–37, 2024.

Florian Schafer, Timothy John Sullivan, and Houman Owhadi. Compression, inversion, and approximate
PCA of dense kernel matrices at near-linear computational complexity. Multiscale Modeling & Simulation,
19(2):688–730, 2021.

J Thomas King and David Chillingworth. Approximation of generalized inverses by iterated regularization.
Numerical Functional Analysis and Optimization, 1(5):499–513, 1979.

Lloyd N Trefethen and David Bau. Numerical Linear Algebra. SIAM, 2022.

N Weiss, GW Wasilkowski, H Woźniakowski, and M Shub. Average condition number for solving linear
equations. Linear Algebra and Its Applications, 83:79–102, 1986.

Qiang Ye. Accurate inverses for computing eigenvalues of extremely ill-conditioned matrices and differential
operators. Mathematics of Computation, 87(309):237–259, 2018.

13

Appendices

Section A contains proofs for all theoretical results appearing in the main text. Section B contains docu-
mentation for autonugget. Section C reports additional experimental results, along with full details for the
experiment that were performed.

A Proofs

Section A.1 contains preliminary results which will be required to prove Theorem 1 and Theorem 2. Theo-
rem 1 is proven in Section A.2, while Theorem 2 is proven in Section A.3.

A.1 Preliminary Results

For convenience we introduce the shorthand ∥f∥∞,σmax := ∥f∥∞,[0,σmax] = supσ∈[0,σmax] |f(σ)| on
C0([0, σmax],R). Further, following the same notation used in Section 2.3 of the main text, let

ΠΣ : C0([0, σmax],R) → R
f 7→ fn(0)

where fn denotes the interpolating polynomial (in P) of f on Σ.
Proposition 1 (Polynomial extrapolation error). Let f ∈ C0([0, σmax],R). Let Σ be P-unisolvent and let
fn ∈ Pd interpolate f on Σ. Then

|f(0) − fn(0)| ≤ (1 + λ(0; Σ)) inf
p∈P

∥f − p∥∞,σmax .

Proof of Proposition 1. Let p⋆ attain the infimum. Then by the triangle inequality, and the fact that ΠΣ is
a projection,

|f(0) − fn(0)| ≤ |f(0) − p⋆(0)| + |p⋆(0) − fn(0)|
= |f(0) − p⋆(0)| + |ΠΣ(p⋆) − ΠΣ(f)|
= |f(0) − p⋆(0)| + |ΠΣ(p⋆ − f)|
≤ ∥p⋆ − f∥∞,σmax + ∥ΠΣ∥op∥p⋆ − f∥∞,σmax = (1 + ∥ΠΣ∥op)∥p⋆ − f∥∞,σmax

and the result follows from

∥ΠΣ∥op = sup
g ̸=0

|ΠΣ(g)|
∥g∥∞,σmax

= sup
g ̸=0

|
∑n

i=1 g(σi)ℓi(0; Σ)|
∥g∥∞,σmax

(13)

since the right hand side of (13) is at most λ(0; Σ).

The following result establishes convergence acceleration for Richardson extrapolation:
Proposition 2 (Convergence acceleration in general). Let f ∈ C0([0, σmax],R) and assume that there exist
coefficients βi for which the residual

R(σ) = f(σ) −
m∑

i=1
βipi(σ) (14)

vanishes as σ → 0. Let Σref be P-unisolvent. Let Σh = {hσi}n
i=1 for h ∈ (0, 1]. Let fh

n ∈ Pd interpolate f
on Σh. Then

|fh
n (0) − f(0)|︸ ︷︷ ︸

extrapolation error

≤ (1 + λ(0; Σref))︸ ︷︷ ︸
constant in h

∥R∥∞,hσmax .

Under review as submission to TMLR

In other words, if f admits a Taylor expansion at σ = 0 and P contains more than just the leading constant
term in this Taylor expansion, then fh

n (0) converges faster than the original f(σ), for any σ ∈ Σh, as h → 0.

Proof of Proposition 2. Note that fh
n exists and is unique by the assumption that Σref is P-unisolvent, which

implies also that Σh is P-unisolvent.

From Proposition 1,

|f(0) − fh
n (0)| ≤ (1 + λ(0; Σh)) inf

p∈P
∥f − p∥∞,hσmax .

Since λ(0; Σh) = λ(0; Σref) for all h > 0, we have that

|f(0) − fh
n (0)| ≤ (1 + λ(0; Σref)) inf

p∈P
∥f − p∥∞,hσmax .

The first term is constant in h. For the second term,

inf
p∈P

∥f − p∥∞,hσmax ≤

∥∥∥∥∥f −
m∑

i=1
βipi

∥∥∥∥∥
∞,hσmax

= ∥R∥∞,hσmax ,

completing the argument.

A.2 Proof of Theorem 1

Proof of Theorem 1. Let fi denote the ith coordinate of f . Since fi ∈ C∞([0, σmax],R), from the mean value
theorem the Taylor expansion of fi at σ = 0 with residual

Ri(σ) = fi(σ) −
n∑

i=1
βiσ

i−1

satisfies
|Ri(σ)| ≤ σn

n! sup
σ̃∈[0,σ]

|f (n)
i (σ̃)|.

From calculus

f
(n)
i (σ) = (−1)n(n!)[(A + σI)−(n+1)b]i,

so, using a spectral bound,

|Ri(σ)| ≤ σn sup
σ̃∈[0,σ]

|[(A + σ̃I)−(n+1)b]i|

≤ σn sup
σ̃∈[0,σ]

λmin(A + σ̃I)−(n+1)∥b∥2

=⇒ ∥R(σ)∥∞ ≤ σn sup
σ̃∈[0,σ]

λmin(A + σ̃I)−(n+1)∥b∥2.

Since A ≺ A + σI, we have λmin(A) ≤ λmin(A + σI), and

∥R(σ)∥∞ ≤ σnλmin(A)−(n+1)∥b∥2.

Finally,

sup
σ∈[0,hσmax]

∥R(σ)∥∞ ≤ (hσmax)nλmin(A)−(n+1)∥b∥2.

From Proposition 2 we have the result.

15

Under review as submission to TMLR

A.3 Proof of Theorem 2

Proof of Theorem 2. From the definition of the operator norm in (2),

∥ΠΣh
[g] − ΠΣh

[ĝ]∥∞ ≤ ∥ΠΣh
∥op∥g − ĝ∥∞ (15)

for all g, ĝ ∈ C0([0, σmax],R). Since ΠΣh
[f] and ΠΣh

[f̂] depend on f and f̂ only at the inputs Σh, we can
take an infimum on both sides of (15) over all continuous g (resp. ĝ) that agree with f(σ) (resp. f̂(σ)) for
all σ ∈ Σh, to obtain

∥ΠΣh
[f] − ΠΣh

[f̂]∥∞ ≤ ∥ΠΣh
∥op∥f − f̂∥∞,Σh

.

Recall that σmax := max{σi}n
i=1. Using the shorthand introduced in Section A.1, the result follows from the

same argument used to establish (13):

∥ΠΣh
∥op := sup

g ̸=0

|ΠΣh
(g)|

∥g∥∞,σmax

= sup
g ̸=0

|
∑n

i=1 g(σi)ℓi(0; Σh)|
∥g∥∞,σmax

and the fact that the right hand side of (13) is at most λ(0; Σh) which in turn is equal to λ(0; Σref).

B Documentation for autonugget

The autonugget package can be installed from https://anonymous.4open.science/r/autonugget-FE4C.
This mainly implements the function autonugget as described below:

autonugget(A, b, m=1, mode = ‘adapt’, extrap = True, JAX_enabled = False, sigma_star =
None, Sigma_ref = None)

This function computes the solution of the system Ax = b using autonugget. This function is compatible
with differentiation using JAX.

Parameters

A: array like, shape (d, d)
d × d matrix

b: array like, shape {(d,), (d, k)}
d dimensional vector

m: int; optional
desired degree of the polynomial

mode: str; default: ‘adapt’
method to choose the nugget; should be one of ‘adapt’ or ‘cond’

extrap: bool; default: True
use extrapolation to calculate the approximate solution

JAX_enabled: bool; default: False
switch to True to use custom forward differentiation from JAX

sigma_star: float; optional
value of the nugget

Sigma_ref: list; optional
reference design to choose sigma_star

Returns

x: array like, shape {(d,), (d, k)}
approximate solution to the system Ax = b. Returned shape is same as shape of b.

16

https://anonymous.4open.science/r/autonugget-FE4C

Under review as submission to TMLR

1e+1

2e+1

5e+1

1e+2

2e+2

5e+2

1e+3

S
iz

e
o
f

th
e

m
a
tr

ix

LU LU-fix LU-cond

1e-2 1e+0 1e+2 1e+4

length-scale

1e+1

2e+1

5e+1

1e+2

2e+2

5e+2

1e+3

S
iz

e
o
f

th
e

m
a
tr

ix

LU-adapt

1e-2 1e+0 1e+2 1e+4

length-scale

CG

1e-2 1e+0 1e+2 1e+4

length-scale

LSTSQ

−15

−10

−5

0

5

10

15

lo
g
(r

el
a
ti

v
e

er
ro

r)

Figure 6: Results on the Matérn kernel matrices. Here we compare autonugget to our baselines, varying
the dimension d of the matrix and the length-scale ℓ of the kernel.

C Additional Experimental Results

C.1 Additional results from Section 4

C.2 autonugget-cond

Along with the strategy explained in Section 2.4, the autonugget package provides an alternative strategy
to choose σ⋆ - by choosing the smallest σ such that the condition number of (A + σI) does not exceed 108

— as a computationally cheaper alternative which only involves the calculation of condition numbers and
avoids the stochastic minimum eigenvalue computations. Figs. 10 and 11 reproduce the results of Figs. 3
to 6 and 8 using autonugget-cond in place of autonugget.

Fig. 10 suggests that autonugget-cond performs slightly better than autonugget for better conditioned
linear systems, but autonugget outperforms autonugget-cond in highly ill-conditioned matrices, leading us
to favour autonugget. Fig. 11 shows autonugget-cond results in a smoother loss function, but both the
methods converge to very close optimum ℓ.

17

Under review as submission to TMLR

1e+1

2e+1

5e+1

1e+2

2e+2

5e+2

1e+3

S
iz

e
o
f

th
e

m
a
tr

ix

LU LU-fix LU-cond

1e+2 1e+4 1e+6 1e+8

Maximum eigenvalue

1e+1

2e+1

5e+1

1e+2

2e+2

5e+2

1e+3

S
iz

e
o
f

th
e

m
a
tr

ix

LU-adapt

1e+2 1e+4 1e+6 1e+8

Maximum eigenvalue

CG

1e+2 1e+4 1e+6 1e+8

Maximum eigenvalue

LSTSQ

−15

−10

−5

0

5

10

15

lo
g
(r

el
a
ti

v
e

er
ro

r)

Figure 7: Results on non-kernel type matrices. Here we compared autonugget to our baselines, for
a set of positive definite matrices generated as a product of UDU⊤, where U is an orthogonal ma-
trix drawn from a Haar measure, and D is a diagonal matrix of eigenvalues drawn randomly from
U(0.01, maximum eigenvalues). This ensures that the matrices are ill-conditioned as the maximum eigen-
value increases. We can see that autonugget performs almost the same as LU, due to the matrices still
being well-conditioned, even for an condition number of ≈ 1010. autonugget performs better than LU-fix
for better conditioned matrices, due to the fixed nugget being too large. autonugget performs much better
than CG as well, possibly due to the default tolerance being too high for such matrices.

18

Under review as submission to TMLR

Figure 8: Results on the squared exponential kernel matrices, comparing solutions with no extrapolation
and extrapolation using different degree polynomials.

19

Under review as submission to TMLR

1e+1

2e+1

5e+1

1e+2

2e+2

5e+2

1e+3

S
iz

e
o
f

th
e

m
a
tr

ix

LU LU-fix LU-cond

1e-2 1e+0 1e+2 1e+4

length-scale

1e+1

2e+1

5e+1

1e+2

2e+2

5e+2

1e+3

S
iz

e
o
f

th
e

m
a
tr

ix

LU-adapt

1e-2 1e+0 1e+2 1e+4

length-scale

CG

1e-2 1e+0 1e+2 1e+4

length-scale

LSTSQ

−15

−10

−5

0

5

10

15

lo
g
(r

el
a
ti

v
e

er
ro

r)

Figure 9: Fig. 3 computed with a different seed. This shows that the results are robust to stochasticity in
the minimum eigenvalue computation.

20

Under review as submission to TMLR

1e-2 1e+0 1e+2 1e+4

1e+1

2e+1

5e+1

1e+2

2e+2

5e+2

1e+3

S
iz

e
o
f

th
e

m
a
tr

ix

Squared exponential kernel

1e-2 1e+0 1e+2 1e+4

Matern kernel

1e-2 1e+0 1e+2 1e+4

Derivative accuracy

1e-2 1e+0 1e+2 1e+4

length-scale

1e+1

2e+1

5e+1

1e+2

2e+2

5e+2

1e+3

S
iz

e
o
f

th
e

m
a
tr

ix

n = 2

1e-2 1e+0 1e+2 1e+4

length-scale

n = 5

1e-2 1e+0 1e+2 1e+4

length-scale

n = 10

−4

−2

0

2

4

lo
g
(r

el
a
ti

v
e

er
ro

r)

Figure 10: Accuracy assessment of autonugget-cond. Here we compared autonugget-cond to autonugget,
in the settings described in Sections 4.2 and 4.3. The logarithm of the error relative to autonugget is
reported.

25 50 75 100 125 150 175 200

length-scale

2.0e-05

4.0e-05

6.0e-05

8.0e-05

1.0e-04

1.2e-04

1.4e-04

1.6e-04

lo
ss

fu
n

ct
io

n

autonugget

25 50 75 100 125 150 175 200

length-scale

2.0e-05

4.0e-05

6.0e-05

8.0e-05

1.0e-04

1.2e-04

1.4e-04

1.6e-04
autonugget-cond

loss function optimiser path optimum `loss function optimiser path optimum `

Figure 11: Comparison of autonugget-cond with autonugget for the problem in Section 4.4.

21

	Introduction
	Related Work

	Methodology
	Extrapolation Estimator
	Analysis in Exact Arithmetic
	Analysis in Finite Precision Arithmetic
	Selecting h

	The autonugget Package
	Empirical Assessment
	Baselines
	Solver Accuracy
	Derivative Accuracy
	Application to GP Regression

	Discussion
	Proofs
	Preliminary Results
	Proof of cor: extrap error
	Proof of thm: num er

	Documentation for autonugget
	Additional Experimental Results
	Additional results from sec: experiments
	autonugget-cond

