
Differentially Private Bias-Term Fine-tuning of Foundation Models

Zhiqi Bu 1 Yu-xiang Wang 1 2 Sheng Zha 1 George Karypis 1

Abstract
We study the problem of differentially private
(DP) fine-tuning of large pre-trained models – a
recent privacy-preserving approach suitable for
solving downstream tasks with sensitive data. Ex-
isting work has demonstrated that high accuracy
is possible under strong privacy constraint, yet
requires significant computational overhead or
modifications to the network architecture. We pro-
pose differentially private bias-term fine-tuning
(DP-BiTFiT), which matches the state-of-the-art
accuracy for DP algorithms and the efficiency
of the standard BiTFiT. DP-BiTFiT is model ag-
nostic (not modifying the network architecture),
parameter efficient (only training about 0.1% of
the parameters), and computation efficient (al-
most removing the overhead caused by DP, in
both the time and space complexity). On a wide
range of tasks, DP-BiTFiT is 2 ∼ 30× faster
and uses 2 ∼ 8× less memory than DP full fine-
tuning, even faster than the standard full fine-
tuning. This amazing efficiency enables us to con-
duct DP fine-tuning on language and vision tasks
with long-sequence texts and high-resolution im-
ages, which were computationally difficult using
existing methods. We open-source our code at
FastDP (https://github.com/awslabs/
fast-differential-privacy).

1 Introduction
Fine-tuning large pre-trained neural networks is one of the
most critical technique in deep learning, yielding strong
performance in a variety of domains (Pan & Yang, 2009;
Kenton & Toutanova, 2019; Goyal et al., 2017). Among
different methods, full fine-tuning is the most prevalent one,
which trains all the model parameters on the downstream
tasks and achieves high accuracy within a small number of

1Amazon AI 2University of California, San Diego. Correspon-
dence to: Zhiqi Bu <zhiqibu@amazon.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

training epochs. However, full fine-tuning on large mod-
els, from hundreds of millions (He et al., 2016; Chen et al.,
2016) to billions of parameters (Brown et al., 2020), can
be burdensome in terms of the computation and the deploy-
ment, since a full copy of fine-tuned model parameters is
needed for each task.

To alleviate this issue, the parameter efficient fine-tuning
only trains a substantially small portion of the model pa-
rameters, in contrast to the full fine-tuning. At a high level,
the parameter efficient fine-tuning methods can be divided
into two categories. ⟨1⟩Model-aware methods, meaning a
relatively small number of parameters are introduced into
the neural network architecture and only the new parameters
are optimized. Examples include LoRA (Hu et al., 2021),
Adapter (Houlsby et al., 2019), and Compacter (Mahabadi
et al., 2021). ⟨2⟩ Model-agnostic methods, meaning that
only a subset of existing parameters are trainable. Examples
include training only the output linear layer (linear probing,
(Kornblith et al., 2019)), only the layer normalization layer
(Houlsby et al., 2019) and bias-term fine-tuning (BiTFiT)
(Zaken et al., 2022). We illustrate the differences as follows:
W0,b0 are the pre-trained weights and biases, ˆ indicates
trainable parameters, and θ is the additional parameters.

f(x;W0,b0)︸ ︷︷ ︸
pre-trained model

→

f(x;Ŵ, b̂) full fine-tuning
f(x;W0,b0, θ̂) model-aware
f(x;W0, b̂) bias-term only

Empirically, these parameter efficient fine-tuning methods
have achieved high accuracy that is comparable to full fine-
tuning in the standard non-private setting. For instance,
linear probing of ResNet (He et al., 2016) and Vision Trans-
former (ViT, (Dosovitskiy et al., 2020)) achieves 80% accu-
racy on the ImageNet dataset (Sun et al., 2017; Kornblith
et al., 2019); LoRA and BiTFiT of RoBERTa (Liu et al.,
2019) and BERT (Kenton & Toutanova, 2019) achieve about
94% on SST2 and on average 85% across the General Lan-
guage Understanding Evaluation (GLUE) datasets (He et al.,
2021; Hu et al., 2021). In addition, parameter efficient meth-
ods are faster than full fine-tuning and save the communica-
tion cost significantly in distributed learning.

Parallel to these developments, the success of deep learning
models relies on the availability of large datasets, which
may contain sensitive information to be protected rigorously.

1

https://github.com/awslabs/fast-differential-privacy
https://github.com/awslabs/fast-differential-privacy

Differentially Private Bias-Term Fine-tuning of Foundation Models

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Fine-tuned parameters (%)

87.0

87.5

88.0

88.5

89.0

89.5

90.0

Te
st

 a
cc

ur
ac

y
(%

)
full (non-DP)

DP full (GhostClip/Opacus)

BiTFiT (non-DP)

DP-BiTFiT DP LoRA DP Adapter
DP Compacter

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Fine-tuned parameters (%)

0

25

50

75

100

125

150

175

200

Th
ro

ug
hp

ut

full (non-DP)

DP full (GhostClip)
DP full (Opacus)

BiTFiT (non-DP)
DP-BiTFiT DP LoRA

DP Adapter

DP Compacter

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Fine-tuned parameters (%)

15

20

25

30

35

40

M
em

or
y

(G
B)

full (non-DP)

DP full (GhostClip)

DP full (Opacus)

BiTFiT (non-DP)
DP-BiTFiT

DP LoRA

DP Adapter

DP Compacter

Figure 1: Performance of different fine-tuning methods on MNLI dataset with RoBERTa-large. DP-BiTFiT is one of the
most accurate (below DP LoRA marginally), fastest (only slower than DP Adapter), and memory efficient (outperforming
others substantially by 3×) DP methods.

This privacy issue is well-known for neural networks can be
vulnerable to privacy attacks: membership information can
be leaked from the purchase records via Google and Amazon
online services (Shokri et al., 2017); sensitive texts can
be reconstructed by specifically designed prefix on GPT2
(Carlini et al., 2021) and so can images in CIFAR10 and
MNIST (Haim et al., 2022). To protect against such privacy
risks, the standard technique is differential privacy (DP,
formally stated in Definition 2.1) which randomizes the
standard optimizers via the private gradient in Equation (1).

A recent line of work has extensively studied the DP fine-
tuning in both computer vision and language tasks, often
achieving less than 3% accuracy drop across different set-
tings via full fine-tuning (De et al., 2022; Li et al., 2021;
Bu et al., 2022b;a), linear probing (Mehta et al., 2022),
LoRA, Adapter, or Compacter (Yu et al., 2021a). In fact,
fine-tuning or pre-training from large dataset is considered
necessary in the DP deep learning literature. As a mat-
ter of fact, full fine-tuning DP-GPT2 only achieves 24.2
BLEU score (ϵ = 8) on E2E dataset if randomly initialized
(Li et al., 2021), in starking contrast to 63.2 BLEU if pre-
trained; similarly, state-of-the-art (SOTA) DP accuracy on
ImageNet is 48% (ϵ = 10) without pre-training (Kurakin
et al., 2022) but 86.7% accuracy if pre-trained (De et al.,
2022). Specifically, parameter efficient DP fine-tuning has
empirically demonstrated strong accuracy (see our Table 3)
with 3 ∼ 4× memory saving and 2 ∼ 3× speedup com-
pared to DP full fine-tuning by Opacus (c.f. Figure 3 and Yu
et al., 2021a, Table 3). Although previous works have shed
light on various DP fine-tuning methods, we are the first to
study DP-BiTFiT specifically and to show two distinctive
advantages of it.

Firstly, DP-BiTFiT is model-agnostic and remains its pa-
rameter efficiency around 0.1% across models by Table 1.
While linear probing is also model-agnostic, the parameter
efficiency can be as high as 8% in ResNet50. Other meth-
ods like LoRA, Adapter and Compacter are architecture-
dependent and possibly parameter inefficient, making them
difficult to directly apply on arbitrary neural networks:
LoRA and Adapter may need to train more than 12% on

BART-large (Lewis et al., 2020) to achieve high accuracy
by He et al. (2021, Figure 1& 4).

Secondly, DP-BiTFiT is computationally efficient, almost as
much as the standard BiTFiT and significantly more efficient
than DP full fine-tuning, particularly with large models and
high-dimensional input data. For examples of DP full fine-
tuning, Li et al. (2021) have reported 2 ∼ 4× slowdown on
large language models for four advanced private codebases
and up to 5× memory overhead, compared to the standard
fine-tuning; even on small networks, 11 codebases across
Tensorflow, JAX, and Pytorch have demonstrated 0.2 ∼ 5×
slowdown and 3 ∼ 100× reduction in maximum batch
size in Subramani et al. (2021). See more discussion in
Section 3.3.

Algorithm 1 DP Bias-Term Fine-Tuning (BiTFiT)
Parameters: l-th layer’s bias bl, subsampling probability
p, number of iterations T , number of layers L, noise scale
σ, clipping threshold R, clipping factor Ci (if no clipping
then Ci = 1).

1: for iteration t = 1, · · · , T do
2: Subsample a batch Bt ⊆ {1, . . . , n} from training

set with probability p
3: for layer l ∈ L,L− 1, · · · , 1 do
4: Get output gradient ∂L

∂sl

5: Compute per-example gradient and its norm:

6: ∂Li

∂bl
= ∂L

∂sl,i

⊤
1 =⇒ ∥∂Li

∂bl
∥2F

7: Aggregate grad norms: ∥∂Li

∂b ∥
2
F =

∑
l ∥

∂Li

∂bl
∥2F

8: Compute clipping factor: Ci = C(∥∂Li

∂b ∥F ;R)

9: Compute sum of clipped gradients G =
∑

i Ci
∂Li

∂b

10: Add Gaussian noise G = G+ σR · N (0, I)

11: Descend on bias terms with G by SGD/Adam/...

Contributions. We develop DP-BiTFiT, a fine-tuning
method that is model-agnostic, accurate, privacy-preserving,
parameter efficient, and computationally efficient.

2

Differentially Private Bias-Term Fine-tuning of Foundation Models

1. Algorithmically, we propose the Differentially Private
Bias-Term Fine-Tuning (DP-BiTFiT) in Algorithm 1
that is highly accurate under DP constraint, on par with
SOTA in Section 4 and even outperforming fully fine-
tuned GPT2-large.

2. DP-BiTFiT is model-agnostic1 and only optimizes 0.1%
of the model parameters on BERT, RoBERTa, GPT2,
ViT, ResNet, and so on (see Table 1). Thus DP-BiTFiT is
one of the most parameter efficient fine-tuning methods
among DP LoRA, Adapter, last-layer, etc.

3. We design a computationally efficient implementation
of DP-BiTFiT, whose time and space complexity is al-
most the same as the standard non-DP BiTFiT, while
being faster than non-DP full fine-tuning and other DP
fine-tuning (see Figure 1). This advantage is analyzed
in Table 2, and demonstrated via the substantial speedup
and memory-saving in Figure 3 and Figure 4.

4. DP-BiTFiT is a unique algorithm in that the compu-
tation overhead is independent of the feature dimen-
sion T 2 (see red texts in Table 2). This is due to the
activation-free forward pass that only happens in the
no-weight training3 unlike LoRA. In Figure 1, although
DP-BiTFiT optimizes a similar number of parameters
to DP LoRA or Compacter, its memory efficiency is
dominating. Therefore, DP-BiTFiT enjoys a special
advantage on long-sequence texts and high-resolution
images (see Figure 3).

Novelty. At a glance, our results may appear to be incremen-
tal as we are merely adding differential privacy to an existing
method (BiTFiT) through a standard mechanism (DP-SGD).
This is not true! Computationally, our implementation of
DP-BiTFiT is distinct and orthogonal to existing DP al-
gorithms such as GhostClip (Li et al., 2021)4, in that DP-
BiTFiT exploits the special structures in the forward and
backward passes (see the simplicity of computation graph in
Figure 2), hence removing the computational and memory
overhead in DP-SGD (see the independence of T in Table 2),
which is unavoidable in other methods.

1In Section 4, DP-BiTFiT is applicable to all model architec-
tures tested, unlike LoRA (mostly only applies to transformers)
and last-layer training (mostly only works on vision models).

2The computation overhead to get the per-sample weight gra-
dient norm is linear (by instantiating per-sample gradints) or
quadratic in T (if using the ghost norm trick (Goodfellow, 2015;
Li et al., 2021)), for DP full and any other PEFT.

3We distinguish the weight training and bias training in Sec-
tion 2 using the chain rules. Note that activation-free means
memory-saving, which is not leveraged by DP full, LoRA, Adapter,
Compacter, etc.

4Ghost clipping (GhostClip) is an algebraic technique that only
works on weight gradients because it manipulates the activation
tensors at O(BT 2) cost. This is too expensive for high-dimension
features, hence not applicable to the bias gradients.

Our main contributions also include

• The complexity analysis of DP parameter-efficient fine-
tuning (PEFT) in Table 2 and Table 7. This was a miss-
ing piece in previous DP and non-DP PEFT literature
(including the BiTFiT paper) and significantly helpful
in determining the benefit of applying different PEFT
methods. Specifically, we leverage the complexity anal-
ysis to rigorously show that the complexity saving of
DP-BiTFiT is 50% compared to the full fine-tuning,
and to reveal the unique benefit of DP-BiTFiT on high-
dimension data.

• The engineering effort: at the time of writing this paper,
none of existing codebases including GhostClip and
Opacus remove the forward hooks, because no analysis
has established that only BiTFiT can be activation-free,
not LoRA/Adapter/Compactor or full fine-tuning. Our
algorithm enables DP-BiTFiT by one line of code5.

2 Preliminaries
Fine-tuning methods. Fine-tuning, i.e. training a model on
a large dataset for a sufficiently long time, and then continu-
ing to train (or transferring) onto the downstream datasets,
is the standard paradigm to achieve high accuracy in both
the standard and the DP regimes. In DP deep learning, the
pre-training takes place on a public dataset using regular
optimizers like SGD, and the fine-tuning takes place on a
private dataset which requires privacy protection, using DP
optimizers like DP-SGD in Section 2.

In a long line of research, various fine-tuning methods have
been proposed. One of the most popular method is the
full fine-tuning, which simply runs gradient descents on all
trainable weights and biases, thus can be inefficient when
the model is large. To improve the efficiency, Li & Liang
(2021) proposes the prefix tuning that only optimizes the
prompts or the input layer activation (Lester et al., 2021;
Liu et al., 2021). However, as pointed out in Hu et al. (2021)
and Li et al. (2021), the prefix tuning can be difficult to
optimize and thus sub-optimal on large models. Another
approach is to reduce the number of trainable parameters.
For example, LoRA (Hu et al., 2021), Adapter (Houlsby
et al., 2019; Rebuffi et al., 2017; Pfeiffer et al., 2021; Rücklé
et al., 2021; Lin et al., 2020) and Compacter (Mahabadi
et al., 2021) insert small ‘adapter’ layers (usually 1-10%
of total parameters) between existing layers, and only the
newly added adapters are optimized. We describe the forms
and complexity of LoRA and Adapter in Appendix C.

In addition to the aforementioned methods, BiTFiT is a
5In Pytorch, DP-BiTFiT can be enabled within our codebase

by [param.requires grad (0) for name,param in
model.named parameters() if ’bias’ in name].

3

Differentially Private Bias-Term Fine-tuning of Foundation Models

special parameter-efficient method that rivals the full fine-
tuning (Zaken et al., 2022; Cai et al., 2020; He et al., 2021).
Firstly, BiTFiT optimizes a subset of original parameters
– the bias terms, which usually constitute less than 1/1000
of all parameters as demonstrated in Table 1. Therefore,
BiTFiT can be readily deployed to any network in a model-
agnostic manner. Secondly, BiTFiT is fundamentally differ-
ent to other parameter efficient methods such as LoRA, since
the bias gradients are computed differently than the weight
gradients on the computation graph. We will elaborate on
this in Equation (3).

Deep learning with differential privacy. We recall the
classic (ϵ, δ)-DP, under which we train deep neural networks
with provably privacy guarantees.

Definition 2.1 ((Dwork et al., 2006)). A randomized algo-
rithm M is (ε, δ)-differentially private if, for any two neigh-
boring datasets S, S′ that differ by one datapoint and for any
event E, we have P[M(S) ∈ E] ⩽ eεP [M (S′) ∈ E] + δ.

In deep learning, DP can be achieved through applying an
off-the-shelf optimizer (SGD or Adam) with a privately
released stochastic gradient in place of the regular

∑
i gi.

The private stochastic gradient is computed by first getting
a minibatch I via Poisson sampling, then compute

Private gradient:
∑
i∈I

gi · C(∥gi∥;R) + σR · N (0, I) (1)

where C is any function6 R+ → R subject to C(x) ≤ R/x,
gi is the i-th per-sample gradient, R is the clipping thresh-
old, and σ is the noise multiplier. The private gradient is
guaranteed to be DP through the sampled-Gaussian mecha-
nism and the associated tight privacy accounting to compose
over the iterations (see, e.g., Abadi et al., 2016; Wang et al.,
2019; Mironov et al., 2019; Koskela et al., 2020; Bu et al.,
2020; Gopi et al., 2021, and the references therein.).

Backward propagation. We briefly introduce the back-
propagation, which reveals a simple yet important difference
between the gradients of weights and those of biases. We
consider a linear layer, indexed as the l-th layer, with weight
Wl ∈ Rd×p and bias as bl ∈ Rp. We leave the derivation
of other layers such as normalization and convolution in
Appendix A.1. We denote the mini-batched input of this
layer as al ∈ RB×T×d and the immediate output as sl ∈
RB×T×p, where B is the batch size and T is the feature
dimension7: al+1 = ϕ(sl), sl = alWl + bl. Here ϕ is

6Examples of gradient clipping include but not limited to
Abadi’s clipping min(R/∥gi∥, 1) (Abadi et al., 2016) and au-
tomatic clipping (AUTO-S) R/(∥gi∥ + 0.01) (Bu et al., 2022b;
Yang et al., 2022).

7In sequential data such as text, T is the sequence length;
in vision data, T is the product of input dimensions (e.g. for
images, T is the product of height and width). We refer to a
high-dimensional input when T is large.

any non-parametric inter-layer operation, e.g. the non-linear
activation (like ReLU), pooling, padding, and so on.

We write L =
∑n

i=1 Li as the total loss and Li as the
per-sample loss of the i-th sample. During a standard back-
propagation of L layers, the chain rule keeps track of the
output gradient at each layer in a just-in-time fashion:

∂L
∂sl

=
∂L
∂aL

◦ ∂aL

∂sL−1
· ∂sL−1

∂aL−1
◦ · · · ∂al+1

∂sl

=
∂L

∂sl+1
Wl+1 ◦ ϕ′(sl).

(2)

Here ◦ is the Hadamard product and · is the matrix product.
This output gradient ∂L

∂sl
is used to compute per-sample

gradient of weights and biases,

∂Li

∂Wl

⊤
=

∑
j

∂Li

∂sl,j

⊤ ∂sl,j
∂Wl

=
∂L
∂sl,i

⊤
al,i,

∂Li

∂bl

⊤
=

∑
j

∂Li

∂sl,j

⊤ ∂sl,j
∂bl

=
∂L
∂sl,i

⊤
1.

(3)

Notably, the weight gradient needs the activation tensor
al to compute an expensive O(BTpd) tensor multiplica-
tion. Memory-wise, {al}l across all layers is very costly
to store (taking more than 95% memory across VGG,
ResNet, DenseNet, RoBERTa, etc. by Jain et al. (2020,
Figure 3)). In sharp contrast, the computation of bias gra-
dient does not need al, and the multiplication with 1 in
Equation (3) is actually a cheap O(BTp) summation on
∂L
∂sl

: B × T × p→ B × p.

Forward propagation and the hook. During the for-
ward propagation, all Pytorch-based codebases for DP algo-
rithms such as Private Transformers, Opacus, FastGradClip,
Private-Vision, and others (Yu et al., 2021a; Bu et al., 2023)
register the forward hooks to extract the activation tensors
{al}l of all layers from the computation graph, where al is
computed and stored. Hence, the majority of memory bur-
den is on the activation that grows extremely large for huge
models like GPT3 (Brown et al., 2020) with 175B parame-
ters: the activation tensors consume more than 3600GB of
memory while the parameters and gradients only consume
300GB (Rajbhandari et al., 2020). On one hand, this issue
can be alleviated by the activation recomputation or check-
pointing technique (Chen et al., 2016; Jain et al., 2020),
whose memory cost reduces from O(L) to O(

√
L) with an

extra 33% slowdown. Alternatively, we note that the activa-
tion tensors are not necessary in the forward propagation, if
we only optimize the bias terms.

3 Differentially private Bias-Term
Fine-Tuning

We propose DP-BiTFiT, to privately train only the bias
terms in a neural network by combining Equation (3) and

4

Differentially Private Bias-Term Fine-tuning of Foundation Models

Figure 2: Back-propagation for DP (red&black) and non-DP (black) algorithms. Note that the bias gradient uses a much
simpler computation graph than the weight gradient, rendering DP-BiTFiT easy-to-implement and efficient-to-compute.
Left: full fine-tuning with GhostClip (ghost clipping; (Goodfellow, 2015; Li et al., 2021; Bu et al., 2022a)). Upper right: full
fine-tuning with Opacus (Yousefpour et al., 2021). Lower right: DP-BiTFiT.

Equation (1). We use shaded lines to represent the additional
DP operations in Algorithm 1, and add DP-related variables
and operations in red in the computation graph by Figure 2.

Implementation-wise, DP-BiTFiT is different from all exist-
ing DP algorithms (including full, LoRA, Adapter, etc.) that
optimize weights, since it does not apply a Pytorch forward
hook to store the activation al for all layers. We provide
the implementation details of DP-BiTFiT in Appendix B.
To give a concrete example, we apply DP-BiTFiT to the
RoBERTa-large model on QQP dataset, following the same
setting as Li et al. (2021) and using one 40GB A100 GPU.
This is the most time-consuming text classification task in
our work, taking 119 minutes per epoch for a training batch
size 20 using the fastest DP full fine-tuning implementation
– GhostClip (Li et al., 2021). To conduct a simple ablation
study, setting all weights to not require gradients (but for-
ward hooks are still operating) reduces the training time by
50% to to 80 minutes; removing the forward hooks further
reduces the training time by 30% to 63 minutes; finally, us-
ing the maximum batch size allowed by the memory-saving
DP-BiTFiT reduces to 43 minutes.

3.1 Parameter efficiency

DP-BiTFiT enjoys exactly the same parameter efficiency
as the standard BiTFiT, training merely about 0.1% of the
total parameters in large models. We demonstrate that DP-

BiTFiT is one of the most parameter-efficient fine-tuning
through a list of models in Table 1.

Dataset Model # of params % of bias

ImageNet

VGG16 138M 0.009
ResNet18 11.7M 0.043
ResNet50 25.6M 0.113

ViT-small-patch16 21.7M 0.238
ViT-base-patch16 85.8M 0.120
ViT-large-patch16 303M 0.090

E2E
GPT2-small 124M 0.082

GPT2-medium 355M 0.076
GPT2-large 774M 0.066

GLUE RoBERTa-base 125M 0.083
RoBERTa-large 355M 0.077

Table 1: Parameter efficiency of (DP) BiTFiT. Extended
results on more models are in Table 11.

An advantage of this parameter efficiency is reflected in
the computation efficiency, given that most parameters do
not require gradients to be computed: we show in Table 2
and Section 3.3 that DP-BiTFiT is much more efficient than
full fine-tuning (DP and even non-DP). Additionally, the
parameter efficiency also translates to the communication
efficiency in the distributed learning. For example, the 64-
bit communication cost of DP full fine-tuning is 64MD
where M is number of worker and D is total number of
parameters, which can be reduced 1000× by DP-BiTFiT.

5

Differentially Private Bias-Term Fine-tuning of Foundation Models

Table 2: Per-layer time and space complexity (measured by float-point operations) of training on weights (full and LoRA,
Adapter; rank= 16 as in (Yu et al., 2021a)) and biases. Only bias training’s overhead is free of T . ‘+’ means additional
overhead to non-DP training, and ‘⟨⟩’ means between two values. The layer index l is omitted for simplicity.

forward weight training bias training
&output grad non-DP(full) Opacus(full) GhostClip(full) Book-Keeping(full) DP(LoRA) DP(Adapter) non-DP DP (ours)

Time
complexity 4BTpd 2BTpd

+2BTpd +2BTpd
O(T) ≈ 0 +32BT (p+ d) +64BTp BTp +3Bp

+2BT 2(p+ d)
Space

complexity
pd+

BT (p+ d)
BT (p+ d) +Bpd +2BT 2 +min{2BT 2, 2Bpd} +16B(p+ d) +32Bp p +Bp

back-prop 1 1 2 1 1 or 2 1 or 2 1 1
storing activation ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

3.2 Complexity of weight and bias training

We present in Table 2 the complexity of DP training on
weights and biases, for one layer mapping B × Tl × dl to
B × Tl × pl. To elaborate on Footnote 7, for text data, Tl is
the sequence length, dl is input dimension, and pl is output
dimension; for image data and specially in a convolution
layer, Tl is height times width, dl is the input channels
times kernel sizes, pl is the output channels (c.f. Bu et al.,
2022a, Section 2.3). Notice that the total complexity of
training a network is summed across all layers, e.g. the
time complexity of standard full training is 6B

∑
l Tlpldl,

DP full fine-tuning is over 8B
∑

l Tlpldl, and DP-BiTFiT
is about 4B

∑
l Tlpldl. Therefore, our complexity analysis

indicates that DP-BiTFiT is 6/4 = 1.5× faster than non-
private full fine-tuning and over 8/4 = 2× faster than DP
full fine-tuning.

Here, the DP weight training (full fine-tuning or any other
PEFT) uses three efficient implementations that are equiva-
lent mathematically but have different complexity: Opacus
(Yousefpour et al., 2021), GhostClip (Goodfellow, 2015; Li
et al., 2021), and MixGhostClip (Bu et al., 2022a). The first
two implementations are illustrated in Figure 2, of which
MixGhostClip is a hybridization that reduces to GhostClip
when T is small. These implementations have been thor-
oughly analyzed in Appendix C of (Bu et al., 2022a) and
we take the complexity result from Bu et al. (2022a, Table
1). For the complexity of bias training in Table 2, it suffices
to analyze Line 5 of Algorithm 1. We leave the details in
Appendix C, where we also apply the complexity analysis
of weight training beyond full fine-tuning, including DP
LoRA and DP Adapter for the first time.

3.3 Scalability of DP algorithms

By Table 2, we observe that DP training on weights can
be memory costly, especially when the models are large
and the data is high-dimensional. As an example of the
large modelling issue, Li et al. (2021) shows that Opacus
cannot fit even a single datapoint into a 16GB GPU using
GPT2-large (Radford et al.) with 774M parameters, due to
its O(B

∑
l pldl) space complexity where the number of

parameters is
∑

l pldl; for high-dimensional data, Ghost-
Clip cannot fit a single 400 × 400 image into the same

GPU using ResNet18 with 11.7M parameters, due to its
O(B

∑
l T

2
l) space complexity. Although MixGhostClip

(Bu et al., 2022a; 2023) significantly alleviates the mem-
ory issue in both cases, the computational overhead from
DP training may still be a concern when the dimension is
extremely high (c.f. Bu et al., 2022a, Figure 4). In sharp
contrast, DP-BiTFiT is amazingly scalable since its compu-
tational overhead is negligible and independent of T (though
the total complexity is still linear in T).

3.3.1 EFFICIENCY V.S. FEATURE DIMENSION

100 200 300 400 500
Input dimension T

5

10

15

20

25

30

M
em

or
y

(G
B)

100 200 300 400 500
Input dimension T

200

400

600

800

1000

Ti
m

e
(s

ec
) p

er
 e

po
ch

non-DP BiTFiT
DP BiTFiT
non-DP full
Opacus
(Mix)GhostClip

50^2 100^2 128^2 150^2 200^2
Input dimension T

0

20

40

60

80

M
em

or
y

(G
B)

non-DP BiTFiT
DP BiTFiT
non-DP full
Opacus
GhostClip
MixedGhostClip

50^2 100^2 128^2 150^2 200^2
Input dimension T

20

40

60

80

100

120

140
Ti

m
e

(s
ec

) p
er

 e
po

ch

Figure 3: Memory and speed by different fine-tuning meth-
ods. Top two: SST2 dataset (sequence length T ; MixGhost-
Clip is equivalent to GhostClip for this small T), RoBERTa-
base and batch size 20. Bottom two: 50000 images of√
T ×
√
T pixels, ResNet50 and batch size 200.

To empirically evaluate the computation efficiency of DP
fine-tuning methods, we measure the time and GPU memory
for a fixed batch size. We depict the high-dimensional data
issue in Figure 3, in which the memory saving and speedup
by DP-BiTFiT is substantial. We expect to observe greater
efficiency advantage of DP-BiTFiT on higher dimensional
data, e.g. in document-level language tasks with T ≈ 20000
by Beltagy et al. (2020), and in high-resolution image tasks,
such as 1024× 1024 CelebA-HQ (Karras et al., 2018) and
Flickr-Faces-HQ (Karras et al., 2019) where T can be of
order 105 in the convolution layers.

6

Differentially Private Bias-Term Fine-tuning of Foundation Models

0 100 200 300 400
Maximum throughput of DP-BiTFiT

0

100

200

300

400
M

ax
im

um
 th

ro
ug

hp
ut

 o
f a

lg
or

ith
m

s
non-DP BiTFiT
DP-BiTFiT
non-DP full
Opacus
GhostClip

0 25 50 75 100 125 150 175 200
Maximum batch size of DP-BiTFiT

0

25

50

75

100

125

150

175

200

M
ax

im
um

 b
at

ch
 si

ze
 o

f a
lg

or
ith

m
s

non-DP BiTFiT
DP-BiTFiT
non-DP full
Opacus
GhostClip

0 20 40 60 80 100 120 140 160
Maximum throughput of DP-BiTFiT

0

25

50

75

100

125

150

M
ax

im
um

 th
ro

ug
hp

ut
 o

f a
lg

or
ith

m
s

non-DP BiTFiT
DP-BiTFiT
non-DP full
Opacus
GhostClip
MixGhostClip

0 20 40 60 80
Maximum batch size of DP-BiTFiT

0

20

40

60

80

M
ax

im
um

 b
at

ch
 si

ze
 o

f a
lg

or
ith

m
s

non-DP BiTFiT
DP-BiTFiT
non-DP full
Opacus
GhostClip
MixGhostClip

Figure 4: Maximum throughput and batch size by differ-
ent fine-tuning methods. Each model is represented by
one column, which sorts the model size in decreasing or-
der from left to right. Top two: E2E dataset with GPT2-
small/medium/large (MixGhostClip is equivalent to Ghost-
Clip for this small T). Bottom two: 50000 images of
512× 512 pixels with ResNet 50/101/152.

3.3.2 EFFICIENCY V.S. MODEL SIZE

To stress-test the computation efficiency of DP-BiTFiT with
large models, we apply the maximum batch size with re-
spect to each fine-tuning method, instead of using a fixed one
across different methods. Therefore, DP-BiTFiT can further
leverage its memory efficiency to achieve the best through-
put. Here we consider a setting of high-dimensional data
(T = 5122) but small ResNet (11.7 ∼ 58.2M parameters)
and the other setting of low-dimensional data (T = 100)
but large GPT2 (125 ∼ 774M parameters).

3.4 Applicability of DP-BiTFiT

Some model architectures, such as LLAMA (Touvron et al.,
2023a;b; Chowdhery et al., 2023) and the convolutional
layers followed by batch normalization (He et al., 2016),
may not contain any bias terms, hence DP-BiTFiT (and
its non-DP counter-part) is either not directly applicable
or less performant. We propose DP-BiTFiT-Add, which
adds zero or randomly initialized bias terms to the layers
and then applies DP-BiTFiT. Such initialization does not af-
fect the pre-trained utility, but enlarges the parameter space
and thus allows better performance after fine-tuning. As a
concrete example, we experiment with ResNet18 (no bias
in all convolutional layers) on CelebA for the multi-label
classification task, under the same setting as Table 6. The
accuracy boosts from 86.9% of DP-BiTFiT to 87.3% of
DP-BiTFiT-Add, compared to 88.4% of the full fine-tuning.

Note that DP-BiTFiT-Add is still activation-free and highly
parameter-efficient: DP-BiTFiT-Add trains less than 0.1%
parameters on ResNet18, and only 0.03% parameters on
LLAMA2-7B.

4 Experiments
We now test the accuracy of DP-BiTFiT on natural language
and computer vision tasks, with the settings in Appendix D.
For DP full fine-tuning algorithms, we use GhostClip (Li
et al., 2021) on texts, and MixedGhostClip (Bu et al., 2022a)
on images, which achieve SOTA efficiency and accuracy on
these datasets respectively. We compute ϵ using a conversion
from RDP though tighter privacy accountants in Section 2
are feasible. And we observe that, in all experiments with
or without DP, the optimal learning rate for BiTFiT is larger
than that for full fine-tuning.

Table 3: Accuracy of fine-tuning methods with RoBERTa, under ϵ = 8. More non-private fine-tuning results (similar to
here) can be found in (Yu et al., 2021a; Hu et al., 2021; Zaken et al., 2022). Note that linear probing of RoBERTa-base only
gets 87.2% on SST2 and 77.3% on QNLI.

Full RGP Adapter LoRA BiTFiT Compacter
(Li et al., 2021) (Yu et al., 2021a) (Yu et al., 2021a) (Yu et al., 2021a) Ours (Yu et al., 2021a)

Additional params to networks ✗ ✗ ✓ ✓ ✗ ✓

Forward caching activations ✓ ✓ ✓ ✓ ✗ ✓

RoBERTa-base (125M)
% of trainable params 100% 100% 1.4% 0.94% 0.083% 0.055%

standard DP DP DP standard DP standard DP DP
Accuracy SST2 94.5 92.1 91.6 92.5 95.1 92.2 93.5 92.4 92.3
Accuracy QNLI 91.4 87.9 87.2 87.5 93.3 87.3 87.3 86.9 85.1
Accuracy QQP 87.3 86.1 85.5 85.6 90.8 85.7 86.1 85.6 84.7

Accuracy MNLI-m 85.9 83.2 80.1 83.4 87.5 83.5 83.4 82.9 82.6
RoBERTa-large (355M)

% of trainable params 100% 100% 1.4% 0.94% 0.077% 0.053%
standard DP DP DP standard DP standard DP DP

Accuracy SST2 96.2 93.8 93.0 93.9 96.2 95.3 95.5 94.5 94.2
Accuracy QNLI 93.6 91.1 90.0 90.7 94.9 90.8 92.2 91.1 90.2
Accuracy QQP 87.9 87.5 86.7 86.3 91.6 87.4 87.9 86.9 86.2

Accuracy MNLI-m 90.3 87.0 86.1 87.7 90.6 87.8 89.3 88.3 87.5

7

Differentially Private Bias-Term Fine-tuning of Foundation Models

Table 4: Performance of fine-tuning methods with GPT2, under ϵ = 8. LoRA and prefix results are documented in Li et al.
(2021). Best performance in each model is in bold text. DP-BiTFiT is comparable to DP full, especially on larger models.

Model Fine-tuning % of params Privacy Perplexity↓ BLEU↑ ROGUE-L↑ NIST↑ METEOR↑ CIDEr↑

GPT2-small
(124M)

full 100% standard 2.91 69.46 71.36 8.78 0.46 2.42
DP (ϵ = 8) 2.33 63.60 67.07 7.71 0.40 1.94

LoRA — standard — 69.68 71.71 8.82 0.46 2.49
DP (ϵ = 8) — 63.39 67.53 7.45 0.41 1.95

prefix — standard — 68.85 70.81 8.72 0.45 2.35
DP (ϵ = 8) — 49.26 60.73 5.53 0.36 1.57

BiTFiT 0.082% standard 3.19 64.46 63.67 4.25 0.36 1.36
DP (ϵ = 8) 2.89 60.56 64.96 6.14 0.37 1.62

GPT2-medium
(355M)

full 100% standard 2.08 68.50 71.46 8.63 0.45 2.14
DP (ϵ = 8) 2.25 64.22 67.53 8.17 0.42 2.08

BiTFiT 0.076% standard 2.85 64.48 67.81 8.50 0.43 2.11
DP (ϵ = 8) 2.67 61.02 66.13 7.18 0.39 1.80

GPT2-large
(774M)

full 100% standard 1.79 66.84 70.38 8.73 0.46 2.36
DP (ϵ = 8) 2.26 64.64 68.97 8.30 0.42 2.16

BiTFiT 0.066% standard 2.79 65.79 67.61 8.55 0.43 2.21
DP (ϵ = 8) 2.59 65.21 67.88 8.43 0.42 2.15

4.1 Text classification

We experiment on MNLI-m(mismatch) (Williams et al.,
2018), QQP (Iyer et al., 2017), QNLI (Rajpurkar et al.,
2016), and SST2 datasets (Socher et al., 2013). Competitive
algorithms include reparameterized gradient perturbation
(RGP, (Yu et al., 2021c)), LoRA, Adapter and Compacter
(Yu et al., 2021a). We use the same setup as Li et al. (2021)
on RoBERTa models with text-infiling, only increasing the
learning rate for DP-BiTFiT. Additional results under a
stronger privacy guarantee ϵ = 3 can be found in Table 12.

In Table 3, DP-BiTFiT is highly parameter efficiency and
accurate compared with other DP fine-tuning. As indicated
by Figure 1 and Figure 3, over 2× speedup and over 3×
memory saving is observed, when switching from DP full
fine-tuning to DP-BiTFiT.

Remark 4.1. It is encouraging to observe that the gap be-
tween the full fine-tuning and BiTFiT, with or without DP,
tends to decrease as the model size increases. For instance
on QNLI, this gap without privacy reduces from 4.1% to
1.4%, and with privacy reduces from 1.4% to 0.1%. This
scaling pattern is consistently observed on different tasks,
e.g. in Table 4 and Table 6.

4.2 Natural Language Generation

We compare DP-BiTFiT with DP LoRA, full fine-tuning,
and prefix tuning (Li & Liang, 2021) on E2E dataset (Dusek
et al., 2020), in order to train GPT2 that generates texts
to evaluate a restaurant. The performance measures are
BLEU (Papineni et al., 2002), ROGUE-L (Lin, 2004), NIST
(Sadjadi et al., 2018), METEOR (Banerjee & Lavie, 2005),
CIDEr (Vedantam et al., 2015) and perplexity. We use the
same setup as Bu et al. (2022b) with automatic clipping,
only increasing the learning rate for DP-BiTFiT. More re-

sults under a stronger privacy guarantee ϵ = 3 can be found
in Table 13.

In Table 4, DP-BiTFiT has shown strong performance, even
outperforming DP full fine-tuning on GPT2-large, as well
as both the computation and parameter efficiency (see Fig-
ure 4). Similar to Remark 4.1, the gap of BLEU score
between DP-BiTFiT and DP full fine-tuning reduces from
-3.06/-3.20 (GPT2-small/medium) to +0.57 (GPT2-large),
as the model size increases. We refer to Table 13 for a more
significant pattern when ϵ = 3.

Table 5: Accuracy of DP ViT-large on CIFAR, 3 epochs.
CIFAR10 DP last-layer DP-BiTFiT DP full
ϵ = 1 98.4 98.9 98.9
ϵ = 2 98.6 99.0 98.9
ϵ = 4 98.6 99.0 99.0
ϵ = 8 98.7 99.0 99.0

CIFAR100 DP last-layer DP-BiTFiT DP full
ϵ = 1 86.2 90.2 87.7
ϵ = 2 87.3 91.2 90.1
ϵ = 4 88.1 91.8 91.0
ϵ = 8 88.8 92.3 91.3

1.0 1.5 2.0 2.5 3.0
Epochs

65

70

75

80

85

90

Te
st

 a
cc

ur
ac

y
(

=
2)

last-layer
BiTFiT
full

Figure 5: Accuracy of DP ViT-large on CIFAR100.

8

Differentially Private Bias-Term Fine-tuning of Foundation Models

Table 6: Accuracy of DP fine-tuning methods on CIFAR10 and CelebA. More results under different ϵ and network
architectures can be found in Appendix E.3.

Dataset Model Fine-tuning Accuracy

CIFAR10
(ϵ = 2, δ =1e-5)

(Yu et al., 2021b) ResNet152 (GEP) last-layer 94.8
(Tramer & Boneh, 2020) SIMCLRv2 last-layer 92.7

(De et al., 2022) Wide-ResNet28 last-layer 93.6
Wide-ResNet28 full 95.4

(Bu et al., 2022a)
crossvit-base-240 full 96.1
vit-base-patch16 full 97.4
vit-large-patch16 full 98.9

Ours
crossvit-base-240 BiTFiT 95.7
vit-base-patch16 BiTFiT 97.7
vit-large-patch16 BiTFiT 99.0

CelebA [Smiling]
(ϵ = 8, δ =5e-6)

(Bu et al., 2022b) ResNet9 full 91.08

Ours
ResNet18 full 91.02
ResNet18 BiTFiT 88.17
ResNet18 last-layer 66.15

CelebA [Male]
(ϵ = 8, δ =5e-6)

(Bu et al., 2022b) ResNet9 full 95.70

Ours
ResNet18 full 95.15
ResNet18 BiTFiT 92.29
ResNet18 last-layer 78.70

CelebA [Multi-label]
(ϵ = 8, δ =5e-6)

(Bu et al., 2022b) ResNet9 full 87.58

Ours
ResNet18 full 88.38
ResNet18 BiTFiT 86.87
ResNet18 last-layer 83.67

4.3 Image classification

We further experiment on CIFAR10/CIFAR100 (32×32 pix-
els, resized to 224×224) and CelebA (218×178 pixels, not
resized; results in Table 16 and Table 6) after pre-training
on ImageNet (224 × 224 pixels). For these downstream
datasets (e.g. CIFAR10 has only 10 classes), the number of
classes is different than that in ImageNet, which has 1000
classes. Consequently, the classification head of the pre-
trained model is re-placed by random initialization. There-
fore, our DP-BiTFiT is applied on top of the last-layer train-
ing, but the number of trainable parameter remains ≈ 0.1%
of the model parameters. For instance, ViT-large has 303M
parameters, of which 282k are biases and the weight of last
layer contains ≈ 100k, depending on the number of classes
in the downstram task.

We observe that DP-BiTFiT enjoys 1.5× speedup for trans-
formers and ResNet in Table 16, and that DP-BiTFiT per-
forms on par with full fine-tuning in Tables 5, 6, 14 and 15,
e.g. achieving state-of-the-art 99.0% accuracy on CIFAR10
and 91.2% on CIFAR100 at ϵ = 2. Our observation holds
across various models (especially on transformers), privacy
budgets, and datasets. However, DP-BiTFiT needs extra
attention for convolutional neural networks (CNN) as we
elaborate in Appendix A.2.

5 Discussion
In this work, we study DP-BiTFiT to privately train the bias
terms of neural networks. The highlight of DP-BiTFiT is
the accuracy, the parameter efficiency and the computation
efficiency, which is realized by not forward caching the
activation tensors, and not back-propagating the gradient of
weights. This unique mechanism allows DP-BiTFiT to be as
fast and memory-saving as its non-private counterpart, thus
particularly suitable for large models and/or high-dimension
data on which the full fine-tuning can be costly.

While we have studied DP-BiTFiT as a standalone method,
it is promising to combine it with other methods, such
as prefix-based tuning and weights-based fine-tuning.
For instance, one can fine-tune DP LoRA+BiTFiT, via
f(x;W0, b̂, θ̂) to obtain even better performance8. We
readily offer such flexible combination in our codebase,
which automatically implements any DP algorithms in the
backend.

8In fact, this has been acknowledged in the non-DP LoRA (Hu
et al., 2021): ”Training bias vectors in tandem with LoRA might
be a cost-efficient way to squeeze out extra task performance”.

9

https://github.com/microsoft/LoRA
https://github.com/microsoft/LoRA

Differentially Private Bias-Term Fine-tuning of Foundation Models

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learning
with differential privacy. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications
security, pp. 308–318, 2016.

Banerjee, S. and Lavie, A. METEOR: An automatic met-
ric for MT evaluation with improved correlation with
human judgments. In Proceedings of the ACL Work-
shop on Intrinsic and Extrinsic Evaluation Measures for
Machine Translation and/or Summarization, pp. 65–72,
Ann Arbor, Michigan, June 2005. Association for Com-
putational Linguistics. URL https://www.aclweb.
org/anthology/W05-0909.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Bu, Z., Dong, J., Long, Q., and Su, W. J. Deep learning
with gaussian differential privacy. Harvard data science
review, 2020(23), 2020.

Bu, Z., Mao, J., and Xu, S. Scalable and efficient training
of large convolutional neural networks with differential
privacy. arXiv preprint arXiv:2205.10683, 2022a.

Bu, Z., Wang, Y.-X., Zha, S., and Karypis, G. Automatic
clipping: Differentially private deep learning made easier
and stronger. arXiv preprint arXiv:2206.07136, 2022b.

Bu, Z., Wang, Y.-X., Zha, S., and Karypis, G. Differentially
private optimization on large model at small cost. In
International Conference on Machine Learning, pp. 3192–
3218. PMLR, 2023.

Cai, H., Gan, C., Zhu, L., and Han, S. Tinytl: Reduce
memory, not parameters for efficient on-device learning.
Advances in Neural Information Processing Systems, 33:
11285–11297, 2020.

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-
Voss, A., Lee, K., Roberts, A., Brown, T., Song, D.,

Erlingsson, U., et al. Extracting training data from large
language models. In 30th USENIX Security Symposium
(USENIX Security 21), pp. 2633–2650, 2021.

Chen, T., Xu, B., Zhang, C., and Guestrin, C. Training
deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174, 2016.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research,
24(240):1–113, 2023.

De, S., Berrada, L., Hayes, J., Smith, S. L., and Balle, B. Un-
locking high-accuracy differentially private image classi-
fication through scale. arXiv preprint arXiv:2204.13650,
2022.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. In
International Conference on Learning Representations,
2020.

Dusek, O., Novikova, J., and Rieser, V. Evaluating the State-
of-the-Art of End-to-End Natural Language Generation:
The E2E NLG Challenge. Computer Speech & Language,
59:123–156, January 2020. doi: 10.1016/j.csl.2019.06.
009.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. Calibrat-
ing noise to sensitivity in private data analysis. In Theory
of cryptography conference, pp. 265–284. Springer, 2006.

Goodfellow, I. Efficient per-example gradient computations.
arXiv preprint arXiv:1510.01799, 2015.

Gopi, S., Lee, Y. T., and Wutschitz, L. Numerical composi-
tion of differential privacy. Advances in Neural Informa-
tion Processing Systems, 34, 2021.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and
He, K. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Haim, N., Vardi, G., Yehudai, G., Shamir, O., and Irani, M.
Reconstructing training data from trained neural networks.
arXiv preprint arXiv:2206.07758, 2022.

He, J., Zhou, C., Ma, X., Berg-Kirkpatrick, T., and Neubig,
G. Towards a unified view of parameter-efficient trans-
fer learning. In International Conference on Learning
Representations, 2021.

10

https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909

Differentially Private Bias-Term Fine-tuning of Foundation Models

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp.
2790–2799. PMLR, 2019.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Iyer, S., Dandekar, N., and Csernai, K.
First quora dataset release: Question pairs,
2017. URL https://data.quora.com/
First-Quora-Dataset-Release-Question-Pairs.

Jain, P., Jain, A., Nrusimha, A., Gholami, A., Abbeel, P.,
Gonzalez, J., Keutzer, K., and Stoica, I. Checkmate:
Breaking the memory wall with optimal tensor remateri-
alization. Proceedings of Machine Learning and Systems,
2:497–511, 2020.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. Progres-
sive growing of gans for improved quality, stability, and
variation. In International Conference on Learning Rep-
resentations, 2018.

Karras, T., Laine, S., and Aila, T. A style-based generator
architecture for generative adversarial networks. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 4401–4410, 2019.

Kenton, J. D. M.-W. C. and Toutanova, L. K. Bert: Pre-
training of deep bidirectional transformers for language
understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Kornblith, S., Shlens, J., and Le, Q. V. Do better imagenet
models transfer better? In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pp. 2661–2671, 2019.

Koskela, A., Jälkö, J., and Honkela, A. Computing tight
differential privacy guarantees using fft. In International
Conference on Artificial Intelligence and Statistics, pp.
2560–2569. PMLR, 2020.

Kurakin, A., Chien, S., Song, S., Geambasu, R., Terzis, A.,
and Thakurta, A. Toward training at imagenet scale with
differential privacy. arXiv preprint arXiv:2201.12328,
2022.

Lee, J. and Kifer, D. Scaling up differentially private deep
learning with fast per-example gradient clipping. arXiv
preprint arXiv:2009.03106, 2020.

Lester, B., Al-Rfou, R., and Constant, N. The power of scale
for parameter-efficient prompt tuning. In Proceedings of
the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 3045–3059, 2021.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mo-
hamed, A., Levy, O., Stoyanov, V., and Zettlemoyer, L.
Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pp. 7871–7880,
2020.

Lhoest, Q., Villanova del Moral, A., Jernite, Y., Thakur,
A., von Platen, P., Patil, S., Chaumond, J., Drame, M.,
Plu, J., Tunstall, L., Davison, J., Sasko, M., Chhablani,
G., Malik, B., Brandeis, S., Le Scao, T., Sanh, V., Xu,
C., Patry, N., McMillan-Major, A., Schmid, P., Gugger,
S., Delangue, C., Matussière, T., Debut, L., Bekman, S.,
Cistac, P., Goehringer, T., Mustar, V., Lagunas, F., Rush,
A., and Wolf, T. Datasets: A community library for
natural language processing. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 175–184, Online
and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. URL https:
//aclanthology.org/2021.emnlp-demo.21.

Li, X., Tramer, F., Liang, P., and Hashimoto, T. Large lan-
guage models can be strong differentially private learners.
arXiv preprint arXiv:2110.05679, 2021.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continuous
prompts for generation. arXiv preprint arXiv:2101.00190,
2021.

Lin, C.-Y. ROUGE: A package for automatic evalua-
tion of summaries. In Text Summarization Branches
Out, pp. 74–81, Barcelona, Spain, July 2004. Asso-
ciation for Computational Linguistics. URL https:
//www.aclweb.org/anthology/W04-1013.

Lin, Z., Madotto, A., and Fung, P. Exploring versatile gen-
erative language model via parameter-efficient transfer
learning. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pp. 441–459, 2020.

Liu, X., Zheng, Y., Du, Z., Ding, M., Qian, Y., Yang,
Z., and Tang, J. Gpt understands, too. arXiv preprint
arXiv:2103.10385, 2021.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.

11

https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://aclanthology.org/2021.emnlp-demo.21
https://aclanthology.org/2021.emnlp-demo.21
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013

Differentially Private Bias-Term Fine-tuning of Foundation Models

Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

Mahabadi, R. K., Henderson, J., and Ruder, S. Compacter:
Efficient low-rank hypercomplex adapter layers. arXiv
preprint arXiv:2106.04647, 2021.

Mehta, H., Thakurta, A., Kurakin, A., and Cutkosky, A.
Large scale transfer learning for differentially private
image classification. arXiv preprint arXiv:2205.02973,
2022.

Mironov, I., Talwar, K., and Zhang, L. Rényi differential pri-
vacy of the sampled gaussian mechanism. arXiv preprint
arXiv:1908.10530, 2019. URL http://arxiv.org/
abs/1908.10530.

Pan, S. J. and Yang, Q. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):
1345–1359, 2009.

Papineni, K., Roukos, S., Ward, T., and jing Zhu, W. Bleu:
a method for automatic evaluation of machine translation.
pp. 311–318, 2002.

Pfeiffer, J., Kamath, A., Rücklé, A., Cho, K., and Gurevych,
I. Adapterfusion: Non-destructive task composition for
transfer learning. In 16th Conference of the European
Chapter of the Associationfor Computational Linguistics,
EACL 2021, pp. 487–503. Association for Computational
Linguistics (ACL), 2021.

Polyak, B. T. and Juditsky, A. B. Acceleration of stochastic
approximation by averaging. SIAM journal on control
and optimization, 30(4):838–855, 1992.

Qiao, S., Wang, H., Liu, C., Shen, W., and Yuille, A. Micro-
batch training with batch-channel normalization and
weight standardization. arXiv preprint arXiv:1903.10520,
2019.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners.

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. Zero:
Memory optimizations toward training trillion parameter
models. In SC20: International Conference for High Per-
formance Computing, Networking, Storage and Analysis,
pp. 1–16. IEEE, 2020.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. Squad:
100,000+ questions for machine comprehension of text.
arXiv preprint arXiv:1606.05250, 2016.

Rebuffi, S.-A., Bilen, H., and Vedaldi, A. Learning multiple
visual domains with residual adapters. Advances in neural
information processing systems, 30, 2017.

Rücklé, A., Geigle, G., Glockner, M., Beck, T., Pfeiffer,
J., Reimers, N., and Gurevych, I. Adapterdrop: On the
efficiency of adapters in transformers. In Proceedings of
the 2021 Conference on Empirical Methods in Natural
Language Processing, pp. 7930–7946, 2021.

Sadjadi, S. O., Kheyrkhah, T., Tong, A., Greenberg, C. S.,
Reynolds, D. A., Singer, E., Mason, L. P., Hernandez-
Cordero, J., et al. The 2017 nist language recognition
evaluation. In Odyssey, pp. 82–89, 2018.

Shokri, R., Stronati, M., Song, C., and Shmatikov, V. Mem-
bership inference attacks against machine learning mod-
els. In 2017 IEEE symposium on security and privacy
(SP), pp. 3–18. IEEE, 2017.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 conference on empirical methods
in natural language processing, pp. 1631–1642, 2013.

Subramani, P., Vadivelu, N., and Kamath, G. Enabling
fast differentially private sgd via just-in-time compila-
tion and vectorization. Advances in Neural Information
Processing Systems, 34, 2021.

Sun, C., Shrivastava, A., Singh, S., and Gupta, A. Revisiting
unreasonable effectiveness of data in deep learning era.
In Proceedings of the IEEE international conference on
computer vision, pp. 843–852, 2017.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

Tramer, F. and Boneh, D. Differentially private learning
needs better features (or much more data). arXiv preprint
arXiv:2011.11660, 2020.

Vedantam, R., Lawrence Zitnick, C., and Parikh, D. Cider:
Consensus-based image description evaluation. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pp. 4566–4575, 2015.

Wang, Y.-X., Balle, B., and Kasiviswanathan, S. P. Subsam-
pled rényi differential privacy and analytical moments
accountant. In International Conference on Artificial
Intelligence and Statistics, pp. 1226–1235. PMLR, 2019.

12

http://arxiv.org/abs/1908.10530
http://arxiv.org/abs/1908.10530

Differentially Private Bias-Term Fine-tuning of Foundation Models

Williams, A., Nangia, N., and Bowman, S. A broad-
coverage challenge corpus for sentence understanding
through inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pp. 1112–1122. As-
sociation for Computational Linguistics, 2018. URL
http://aclweb.org/anthology/N18-1101.

Yang, X., Zhang, H., Chen, W., and Liu, T.-Y. Nor-
malized/clipped sgd with perturbation for differen-
tially private non-convex optimization. arXiv preprint
arXiv:2206.13033, 2022.

Yousefpour, A., Shilov, I., Sablayrolles, A., Testuggine, D.,
Prasad, K., Malek, M., Nguyen, J., Ghosh, S., Bharadwaj,
A., Zhao, J., Cormode, G., and Mironov, I. Opacus: User-
friendly differential privacy library in PyTorch. arXiv
preprint arXiv:2109.12298, 2021.

Yu, D., Naik, S., Backurs, A., Gopi, S., Inan, H. A., Ka-
math, G., Kulkarni, J., Lee, Y. T., Manoel, A., Wutschitz,
L., et al. Differentially private fine-tuning of language
models. arXiv preprint arXiv:2110.06500, 2021a.

Yu, D., Zhang, H., Chen, W., and Liu, T.-Y. Do not let
privacy overbill utility: Gradient embedding perturba-
tion for private learning. In International Conference
on Learning Representations, 2021b. URL https:
//openreview.net/forum?id=7aogOj_VYO0.

Yu, D., Zhang, H., Chen, W., Yin, J., and Liu, T.-Y. Large
scale private learning via low-rank reparametrization.
In International Conference on Machine Learning, pp.
12208–12218. PMLR, 2021c.

Zaken, E. B., Goldberg, Y., and Ravfogel, S. Bitfit: Sim-
ple parameter-efficient fine-tuning for transformer-based
masked language-models. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 1–9, 2022.

13

http://aclweb.org/anthology/N18-1101
https://openreview.net/forum?id=7aogOj_VYO0
https://openreview.net/forum?id=7aogOj_VYO0

Differentially Private Bias-Term Fine-tuning of Foundation Models

A Detailed analysis

A.1 Back-propagation

We rigorously analyze the neural network represented in Section 2: for sample index i ∈ [B],

al+1,i︸ ︷︷ ︸
RT×d′

= ϕ(sl,i︸︷︷︸
RT×p

), sl,i = al,i︸︷︷︸
RT×d

Wl︸︷︷︸
Rd×p

+ 1︸︷︷︸
RT×1

· bl︸︷︷︸
R1×p

, (4)

Then the per-sample weight gradient is given by the chain rule as

∂Li

∂Wl

⊤
=

∑
j

∂Li

∂sl,j

⊤ ∂sl,j
∂Wl

=
∂Li

∂sl,i

⊤ ∂sl,i
∂Wl

=
∂Li

∂sl,i

⊤
al,i =

∂L
∂sl,i

⊤
al,i

in which the second equality holds when there is no parameter sharing (so that each per-sample loss only depends on i-th
input and output). The last equality holds for the same reason.

Similarly, we have the per-sample bias gradient as

∂Li

∂bl

⊤
=

∑
j

∂Li

∂sl,j

⊤ ∂sl,j
∂bl

=
∂Li

∂sl,i

⊤ ∂sl,i
∂bl

=
∂Li

∂sl,i

⊤
1 =

∂L
∂sl,i

⊤
1.

We additionally demonstrate that bias gradient is independent of the input al, on the convolution (1d/2d/3d) and the
normalization layers. For the convolution, sl is the inversely folded output and al is the unfolded input, then the forward
pass is the same as that of linear layer in Equation (4). Notice that T is the product of hidden feature dimension (c.f.
(Bu et al., 2022a)), which depends on the padding, kernel sizes, strides, etc. For the batch, layer, group, and instance
normalization, the forward pass is

sl,i =
al,i − E(al)√

Var(al) + 0.00001
·Wl + 1 · bl

which can be analyzed similarly to that of Equation (4).

A.2 Making BiTFiT work with convolutional neural networks

Most (non-transformer) vision models use convolution layers and batch normalization during their standard non-DP training,
which is problematic for DP training in general, especially for DP-BiTFiT. We take ResNet (He et al., 2016) as a concrete
example.

Firstly, it is well-known that DP training does not support batch normalization, because the mean and standard deviation are
computed based on samples (c.f. https://opacus.ai/tutorials/guide_to_module_validator). There-
fore, in DP training, ResNet-BN (with batch normalization) is modified to a different achitecture ResNet-GN (replaced by
group normalization, e.g. (Abadi et al., 2016)). Put differently, ResNet is different in DP and non-DP training and sometimes
the comparison may be unfair. This makes vision transformers favorable because they use layer normalization so that the
architecures do not require modification when switching to DP regime.

Secondly, the convolution layers usually do not contain bias terms when followed by batch normaliza-
tion. This is the case in packages like tensorflow.keras, torchvision, timm, and in models like ResNet,
ResNext, DenseNet, etc. The reason of not having bias terms is that the batch normalization per-
forms mean subtraction, which make the biases ineffective (see https://discuss.pytorch.org/t/
no-bias-in-the-pretrianed-state-dictionary-of-resnet18/153263/2). In words, ResNet-
BN(with bias)=ResNet-BN(no bias), but ResNet-GN(with bias)̸=ResNet-GN(no bias).

Consequences Consider two networks, ResNet(no bias) with bias-less convolution and ResNet(with bias). In full fine-
tuning, we are training all 100 layers of both ResNets and they are equivalent under batch normalization; but in DP-BiTFiT,
we are essentially not training ResNet(no bias), maybe except the classification head.

14

https://opacus.ai/tutorials/guide_to_module_validator
https://discuss.pytorch.org/t/no-bias-in-the-pretrianed-state-dictionary-of-resnet18/153263/2
https://discuss.pytorch.org/t/no-bias-in-the-pretrianed-state-dictionary-of-resnet18/153263/2

Differentially Private Bias-Term Fine-tuning of Foundation Models

A.2.1 WALK-AROUND 1

To walk around, we can manually re-write the convolution layers in CNNs, which is technically troublesome and has to be
done in a case-by-case manner. For example, in (Bu et al., 2022b), ResNet9 was implemented with bias in the convolution
layers. This walk-around can improve the performance of DP-BiTFiT significantly (because all layers are trainable now)
without sacrificing the training efficiency.

A.2.2 WALK-AROUND 2

Alternatively, we can leverage a two-phase training to interpolate between full fine-tuning and BiTFiT. We introduce the
two-phase training, denoted as X+BiTFiT, which firstly applies DP full fine-tuning for X epochs then DP-BiTFiT for the
rest of training. Hence, X+BiTFiT becomes DP full fine-tuning when X equals total epochs, and reduces to DP-BiTFiT
when X = 0. Empirically speaking, it suffices to use X ≤ 2 to achieve comparable accuracy to full fine-tuning, while
still enjoying some speedup. The effectiveness of two-phase training is verified in Appendix E.3. 1+BiTFiT outperforms
previous SOTA by DP full fine-tuning (Bu et al., 2022a) that used BEiT-large: CIFAR10 97.1% → 98.8%; CIFAR100
86.2%→ 88.7%, under ϵ = 2. 2+BiTFiT is comparable to previous SOTA, 87.05/87.58%→ 86.54/86.71% on CelebA in
Table 16, under ϵ = 3/8 respectively.

As a concrete example, our experiments on CIFAR10 shows that while training ViT-tiny with DP-BiTFiT only achieves
82.6% accuracy, the two-phase training that applies DP full fine-tuning for a single epoch boosts the accuracy to 92.6%.
This boost is even more effective on CIFAR100, where DP-BiTFiT achieves 12% accuracy but the two-phase training gives
63%. A number of experiments can be found in Appendix E.3.

B Implementation of DP-BiTFiT
In this section we describe the implementation of DP-BiTFiT, which only uses Pytorch backward hook but not the forward
hook, and thus is different from existing packages such as FastGradClip (Lee & Kifer, 2020), Opacus (Yousefpour et al.,
2021), Private Transformers (Li et al., 2021), Private CNN (Bu et al., 2022a). Notice that in these packages, the forward
hook is used to store the activation tensor al for all layers, which incurs huge memory burden as discussed in Section 2.

The Pytorch backward hook is a function, to be registered on a torch Module (or a layer in the neural network), that will be
executed in the backward propagation. The backward hook automatically extracts the input gradient ∂L

∂al
and the output

gradient ∂L
∂sl

of the layer.

In DP-BiTFiT, we call register backward hook to register a backward hook for Line 5 of Algorithm 1. An example
for a linear layer: RB×T×d → RB×T×p looks like

def hook(linear_layer, grad_input, grad_output):
linear_layer.bias.grad_sample = grad_output.sum(dim=1)
linear_layer.bias.norm_sample = linear_layer.bias.grad_sample.norm(2,dim=1)

Here the attribute norm sample stores the per-sample gradient norm
∥∥∥∂Li

∂bl

∥∥∥
F

, and the attribute grad sample stores the

RB×p per-sample gradient of bias.

Then the implementation of DP-BiTFiT for one iteration looks like

output=model(input)
loss=F.cross_entropy()(output,label)
torch.autograd.grad(loss,biases)
all_layer_norm_sample = torch.stack([param.norm_sample for param in biases],dim=0).norm(2, dim=0)
clipping_factor=1/(all_layer_norm_sample+0.01)
for layer in model.modules():

layer.bias.grad=torch.einsum("i,i...->...", clipping_factor,layer.bias.grad_sample)
optimizer.step()
optimizer.zero_grad()

where biases is the collection of all bias terms in all layers.

15

https://pytorch.org/tutorials/beginner/former_torchies/nnft_tutorial.html

Differentially Private Bias-Term Fine-tuning of Foundation Models

C Complexity analysis
We provide more details on analyzing the time and space complexity. The analysis for full fine-tuning has been presented
in Appendix C of (Bu et al., 2022a). At high level, the major components of time complexity is from the matrix/tensor
multiplication, for example, if a layer takes in al ∈ RB×T×d and multiply with its Wl ∈ Rd×p, the time complexity
would be 2BTdp for this forward pass, and the back-propagation roughly takes 2 times the time complexity, leading to
(2 + 4) = 6BTdp complexity. In some DP algorithms, like GhostClip, the back-propagation is done twice, hence it’s
roughly (2 + 4 + 4) = 10BTdp.

This analysis is adapted here for the parameter efficient fine-tuning: for example, Adapter (Houlsby et al., 2019) uses two
matrices Wdown ∈ Rp×r,Wup ∈ Rr×p that constitute

x←− x+ GeLU(x ·Wdown)Wup

Hence the complexity, in comparison to full-finetuning, changes by replacing d→ 2r.

LoRA (Hu et al., 2021) also uses two matrices Wdown ∈ Rd×r,Wup ∈ Rr×p that constitute

x←− x ·W + x ·WdownWup

Hence the complexity, in comparison to full fine-tuning, changes by replacing pd→ r(p+ d).

Table 7: Per-layer time and space complexity of training on weights (full and parameter efficient fine-tuning) and biases. ‘+’
means additional overhead to non-DP training.

forward weight training bias training
&output grad non-DP DP full (Opacus) DP LoRA DP Adapter non-DP DP (ours)

Time
complexity 4BTpd 2BTpd +2BTpd +2BT (pr + dr) +4BTpr BTp +3Bp

Space
complexity pd+BTd BT (p+ d) +Bpd +B(pr + dr) +2Bpr p +Bp

back-prop 1 1 1 1 1 1
forward hook ✗ ✓ ✓ ✓ ✗ ✗

For per-sample bias gradient clipping, we need ∂Li

∂bl

⊤
= ∂L

∂sl,i

⊤
1 in Equation (3), which consists of the per-sample gradient

instantiation (i.e. summation along the feature dimension, from RTp → Rp, ∂L
∂sl,i

→ ∂Li

∂bl
), and computing the per-sample

gradient norm (i.e. taking the square at each index and summing all indices). Here each operation in italic takes Bp time
complexity, meaning the total time complexity is 3Bp, but the space complexity is Bp if operated in-place.

D Experiment details

D.1 Language tasks

Throughout this work, the text datasets are processed and loaded from Huggingface (Lhoest et al., 2021). We follow the
same setup as (Li et al., 2021; Bu et al., 2022b), such as δ = 0.5/sample size. The full fine-tuning is implemented by Private
Transformers codebase, version 0.2.0 (i.e. GhostClip algorithm (Li et al., 2021)).

For text classification, we experiment on four datasets: MNLI(m), the matched splits from Multi-Genre Natural Language
Inference Corpus; QQP, the Quora Question Pairs2 dataset; QNLI The Stanford Question Answering dataset; SST2 The
Stanford Sentiment Treebank dataset.

To give a fair comparison, we use the same optimizer as in (Li et al., 2021), i.e. DP-Adam with Abadi’s clipping.

For E2E generation task, we experiment GPT2 models using the same optimizer as in (Bu et al., 2022b), using DP-AdamW
with automatic clipping.

16

https://github.com/lxuechen/private-transformers
https://github.com/lxuechen/private-transformers

Differentially Private Bias-Term Fine-tuning of Foundation Models

Table 8: Hyperparameters of text classification in Table 3 and Table 12, using RoBERTa (base/large).

Dataset MNLI QQP QNLI SST2
epoch 18 18 6 3

batch size 6000 6000 2000 1000
clipping threshold R 0.1

DP learning rate full 5e-4 / BiTFiT 5e-3
non-DP learning rate full 5e-5 / BiTFiT 1e-3
max sequence length 256

Table 9: Hyperparameters of E2E generation task in Table 4 and Table 13, using GPT2.

Model GPT2-small GPT2-medium GPT2-large
epoch 10

batch size 1024
DP learning rate (full) 2e-3 2e-3 2e-3

non-DP learning rate (full) 2e-4 1e-4 1e-4
DP learning rate (BiTFiT) 1e-2

non-DP learning rate (BiTFiT) 2e-3
learning rate decay No

max sequence length 100

D.2 Image tasks

We give the experiments settings for image classification. For CIFAR10 and CIFAR100, we use the same setting as (Bu
et al., 2022a), e.g. 5 epochs for CrossViT, 3 epochs for ViT and BEiT-large. For CelebA, we use the same setting as (Bu
et al., 2022b), e.g. 10 epochs.

We use DP-Adam with Abadi’s clipping. We do not apply tricks such as random data augmentation, weight standardization
(Qiao et al., 2019), or parameter averaging (Polyak & Juditsky, 1992). Our experiments are heavily based on Private CNN
(i.e. MixGhostClip algorithm (Bu et al., 2022a)) and TIMM codebases.

Table 10: Hyperparameters of image classification task in Section 4.3,Table 14,Table 15,Table 16.

Dataset CIFAR10 CIFAR10 CIFAR100 CelebA
Model CrossViT ViT-large ViT-large ResNet18
epoch 5 3 3 10

batch size 1000 1000 1000 500
clipping threshold 0.1

DP learning rate (full) 1e-3 5e-4 5e-4 1e-3
DP learning rate (BiTFiT) 5e-3 5e-3 5e-3 8e-3

learning rate decay No
normalizing data Yes Yes Yes No

17

https://github.com/woodyx218/private_CNN
https://github.com/rwightman/pytorch-image-models

Differentially Private Bias-Term Fine-tuning of Foundation Models

E Additional tables and figures

E.1 Parameter efficiency of DP-BiTFiT

Table 11: Parameter efficiency of (DP) BiTFiT on various models.

Model Number of params % of params
VGG11 133M 0.009
VGG16 138M 0.009
VGG19 144M 0.010

ResNet18 11.7M 0.043
ResNet34 21.8M 0.044
ResNet50 25.6M 0.113

ResNet101 44.5M 0.121
ResNet152 60.2M 0.127

wide resnet50 2 68.9M 0.051
wide resnet101 2 126.9M 0.055

convnext base 88.6M 0.148
convnext large 197.8M 0.099

ViT-small-patch16 22.0M 0.238
ViT-base-patch16 86.6M 0.120
ViT-large-patch16 304M 0.090

beit base patch16 224 86.5M 0.088
deit base patch16 224 86.4M 0.120

GPT2-small 124M 0.082
GPT2-medium 355M 0.076

GPT2-large 774M 0.066
RoBERTa-base 125M 0.083
RoBERTa-large 355M 0.077

BERT-base-uncased 109M 0.094
BERT-large-uncased 335M 0.081

BART-large 406M 0.082
longformer-base-4096 149M 0.088
longformer-large-4096 435M 0.080

E.2 More results on DP-BiTFiT and language tasks

18

Differentially Private Bias-Term Fine-tuning of Foundation Models

Table 12: Accuracy of full fine-tuning and BiTFiT with RoBERTa, under different per-sample clipping functions (indicated
as subscript, Abadi (Abadi et al., 2016) and AUTO-S (Bu et al., 2022b)). Same setting as Appendix D.

full (Li et al., 2021; Bu et al., 2022b) BiTFiT (ours)
RoBERTa-base

standard DPAbadi DPAUTO DPAbadi DPAUTO standard DPAbadi DPAUTO DPAbadi DPAUTO
ϵ =∞ ϵ = 8 ϵ = 8 ϵ = 3 ϵ = 3 ϵ =∞ ϵ = 8 ϵ = 8 ϵ = 3 ϵ = 3

Accuracy SST2 94.5 92.1 92.4 91.9 92.3 93.5 92.4 92.4 92.2 92.2
Accuracy QNLI 91.4 87.9 87.9 87.4 86.9 87.3 86.9 87.0 86.4 86.4
Accuracy QQP 87.3 86.1 86.6 85.6 85.8 86.1 85.6 85.9 84.8 85.0

Accuracy MNLI-m 85.9 83.2 83.8 82.5 83.2 83.4 82.9 83.2 82.5 82.7
RoBERTa-large

standard DPAbadi DPAUTO DPAbadi DPAUTO standard DPAbadi DPAUTO DPAbadi DPAUTO
ϵ =∞ ϵ = 8 ϵ = 8 ϵ = 3 ϵ = 3 ϵ =∞ ϵ = 8 ϵ = 8 ϵ = 3 ϵ = 3

Accuracy SST2 96.2 93.8 94.6 93.0 93.9 95.5 94.5 94.7 94.5 94.6
Accuracy QNLI 93.6 91.1 91.5 90.8 91.0 92.2 91.1 91.3 90.7 90.8
Accuracy QQP 87.9 86.9 87.5 86.6 86.8 87.9 86.9 87.1 86.6 86.7

Accuracy MNLI-m 90.3 87.0 87.1 86.4 86.3 89.3 88.3 88.4 87.2 87.8

Table 13: Accuracy of fine-tuning with GPT2 on E2E dataset. LoRA and prefix results are taken from (Li et al., 2021).
Same setting as Appendix D.

Model Fine-tuning % of params Privacy↓ Perplexity↓ BLEU↑ ROGUE-L↑ NIST↑ METEOR↑ CIDEr↑

GPT2-small
(124M)

full 100% standard 2.91 69.46 71.36 8.78 0.46 2.42
DP (ϵ = 8) 2.33 63.60 67.07 7.71 0.40 1.94
DP (ϵ = 3) 2.36 61.34 65.87 7.07 0.39 1.80

LoRA — standard — 69.68 71.71 8.82 0.46 2.49
DP (ϵ = 8) — 63.39 67.53 7.45 0.41 1.95
DP (ϵ = 3) — 58.15 65.77 5.46 0.37 1.58

prefix — standard — 68.85 70.81 8.72 0.45 2.35
DP (ϵ = 8) — 49.26 60.73 5.53 0.36 1.57
DP (ϵ = 3) — 47.77 58.96 5.25 0.36 1.51

BiTFiT 0.082% standard 3.19 64.46 63.67 4.25 0.36 1.36
DP (ϵ = 8) 2.89 60.56 64.96 6.14 0.37 1.62
DP (ϵ = 3) 3.00 54.78 63.55 4.78 0.34 1.31

GPT2-medium
(355M)

full 100% standard 2.08 68.50 71.46 8.63 0.45 2.14
DP (ϵ = 8) 2.25 64.22 67.53 8.17 0.42 2.08
DP (ϵ = 3) 2.62 63.85 67.07 7.11 0.39 1.75

BiTFiT 0.076% standard 2.85 64.48 67.81 8.50 0.43 2.11
DP (ϵ = 8) 2.67 61.02 66.13 7.18 0.39 1.80
DP (ϵ = 3) 2.67 57.11 66.16 5.07 0.37 1.47

GPT2-large
(774M)

full 100% standard 1.79 66.84 70.38 8.73 0.46 2.36
DP (ϵ = 8) 2.26 64.64 68.97 8.30 0.42 2.16
DP (ϵ = 3) 2.65 64.18 67.86 7.94 0.40 2.01

BiTFiT 0.066% standard 2.79 65.79 67.61 8.55 0.43 2.21
DP (ϵ = 8) 2.59 65.21 67.88 8.43 0.42 2.15
DP (ϵ = 3) 2.61 65.18 67.90 8.34 0.42 2.12

E.3 More results on two-phase training

Here X+BiTFiT does not train last layer, i.e. the classification head is randomized before full fine-tuning happens.

19

Differentially Private Bias-Term Fine-tuning of Foundation Models

Table 14: Accuracy of two-phase fine-tuning on CIFAR10. Same setting as Appendix D.2. BEiT-large uses DP full
fine-tuning learning rate 5e-4, DP-BiTFiT learning rate 5e-3. Others use DP full fine-tuning learning rate 1e-3, DP-BiTFiT
learning rate 5e-3.

CIFAR10
Model Privacy 0+BiTFiT 1+BiTFiT 2+BiTFiT DP full

beit large patch16 224 ϵ = 1 11.7 98.2 97.9 97.2
ϵ = 2 10.0 98.3 98.0 97.3
ϵ = 4 13.8 98.2 98.0 97.5
ϵ = 8 10.1 98.5 98.0 97.8

beit base patch16 224 ϵ = 1 10.0 96.6 96.0 95.4
ϵ = 2 10.7 97.1 96.4 96.0
ϵ = 4 14.0 97.2 96.6 96.2
ϵ = 8 10.0 97.2 96.5 96.3

deit base patch16 224 ϵ = 1 78.2 94.4 95.2 95.4
ϵ = 2 75.0 95.4 95.2 95.6
ϵ = 4 72.9 95.8 95.9 96.0
ϵ = 8 71.2 96.1 96.0 96.3

crossvit base 240 ϵ = 1 74.3 92.4 94.3 95.2
ϵ = 2 80.4 93.6 95.0 95.3
ϵ = 4 81.0 94.9 95.8 95.7
ϵ = 8 78.2 94.8 95.8 96.2

vit large patch16 224 ϵ = 1 89.7 98.9 98.7 98.9
ϵ = 2 90.6 98.8 98.9 98.9
ϵ = 4 93.2 98.9 98.8 99.0
ϵ = 8 93.9 99.0 98.9 99.0

vit base patch16 224 ϵ = 1 86.7 95.2 97.0 96.8
ϵ = 2 89.3 97.7 97.1 97.1
ϵ = 4 88.3 97.7 97.2 97.2
ϵ = 8 88.7 97.6 97.2 97.4

20

Differentially Private Bias-Term Fine-tuning of Foundation Models

Table 15: Accuracy of two-phase fine-tuning on CIFAR100. Same setting as Appendix D.2. BEiT-large uses DP full
fine-tuning learning rate 5e-4, DP-BiTFiT learning rate 5e-3. Others use DP full fine-tuning learning rate 1e-3, DP-BiTFiT
learning rate 5e-3.

CIFAR100
Model Privacy 0+BiTFiT 1+BiTFiT 2+BiTFiT DP full

beit large patch16 224 ϵ = 1 1.0 86.9 87.8 87.0
ϵ = 2 1.0 88.7 89.3 88.7
ϵ = 4 1.0 89.7 89.7 89.6
ϵ = 8 1.0 90.3 90.7 90.0

beit base patch16 224 ϵ = 1 1.0 81.4 82.2 80.9
ϵ = 2 1.0 83.4 83.4 83.1
ϵ = 4 1.0 84.6 85.1 84.8
ϵ = 8 1.0 84.9 85.6 85.2

deit base patch16 224 ϵ = 1 10.9 49.1 65.9 69.1
ϵ = 2 13.6 58.1 71.5 74.3
ϵ = 4 15.7 64.5 73.9 77.1
ϵ = 8 16.6 69.7 75.7 77.9

crossvit base 240 ϵ = 1 12.2 49.2 61.7 67.6
ϵ = 2 12.3 56.8 65.3 71.6
ϵ = 4 17.2 61.6 70.4 73.1
ϵ = 8 20.9 63.4 72.8 74.2

vit large patch16 224 ϵ = 1 14.0 73.5 86.0 87.7
ϵ = 2 19.4 82.4 89.0 90.1
ϵ = 4 24.3 87.5 89.9 91.0
ϵ = 8 23.9 89.0 90.7 91.3

vit base patch16 224 ϵ = 1 16.0 64.3 79.5 83.9
ϵ = 2 22.9 77.0 83.8 85.5
ϵ = 4 21.2 83.0 85.2 87.2
ϵ = 8 26.2 83.8 86.5 87.1

21

Differentially Private Bias-Term Fine-tuning of Foundation Models

Table 16: Accuracy on CelebA dataset with settings in Appendix D.2 from one run. DP full fine-tuning is implemented with
the most efficient MixGhostClip algorithm (Bu et al., 2022a). We observe that linear probing (LP) only gives 83.67% at
ϵ = 8. *Note the accuracy is based on timm<=0.6.5 and may change for a different version.

Attributes 0+BiTFiT 1+BiTFiT 2+BiTFiT DP full DP-BiTFiT(LP) 0+BiTFiT 1+BiTFiT 2+BiTFiT DP full DP-BiTFiT(LP)
ϵ = 3 ϵ = 8

5 o Clock Shadow 90.01 90.01 90.14 91.32 90.35 90.01 90.01 90.51 91.64 90.97
Arched Eyebrows 71.56 73.12 76.01 77.33 75.41 71.56 73.74 75.49 78.82 76.49

Attractive 68.71 73.98 75.99 79.22 74.96 69.70 73.61 76.20 78.08 7523
Bags Under Eyes 79.74 79.76 81.27 81.73 81.14 79.74 79.74 80.69 82.62 8172

Bald 97.88 97.88 97.88 97.93 97.93 97.88 97.88 97.88 97.91 9790
Bangs 84.43 84.43 84.80 94.06 90.85 84.43 84.44 86.51 94.22 92.34

Big Lips 67.30 67.30 67.30 67.78 67.42 67.30 67.30 67.29 68.34 67.65
Big Nose 78.80 78.95 80.08 81.19 79.96 78.80 78.92 79.23 81.86 80.28

Black Hair 72.84 74.86 82.37 85.84 81.48 73.02 78.71 83.33 86.47 82.38
Blond Hair 89.54 93.00 93.28 94.17 93.03 89.13 92.62 93.88 94.34 93.51

Blurry 94.94 94.94 94.94 95.05 95.21 94.94 94.94 94.96 95.10 95.34
Brown Hair 82.03 82.02 82.87 85.44 82.68 82.03 82.37 83.49 85.04 82.88

Bushy Eyebrows 87.05 87.05 87.21 88.26 87.11 87.05 87.05 87.15 89.02 87.22
Chubby 94.70 94.70 94.70 94.84 94.57 94.70 94.70 94.70 94.78 94.47

Double Chin 95.43 95.43 95.43 95.49 95.34 95.43 95.43 95.43 95.39 95.26
Eyeglasses 93.54 93.54 93.54 94.30 94.77 93.54 93.54 93.54 95.85 96.32

Goatee 95.42 95.42 95.42 95.96 95.41 95.42 95.42 95.42 95.89 95.55
Gray Hair 96.81 96.81 96.85 97.44 96.78 96.81 96.81 97.12 97.45 96.59

Heavy Makeup 76.51 82.76 85.71 88.48 83.73 77.22 83.03 85.86 89.05 84.70
High Cheekbones 62.13 68.20 81.63 83.77 76.91 61.43 67.27 81.33 84.20 79.42

Male 80.37 88.47 91.52 94.73 89.92 82.04 88.52 92.14 95.19 90.69
Mouth Slightly Open 54.03 59.32 77.61 86.75 74.20 55.26 60.70 79.42 90.24 77.53

Mustache 96.13 96.13 96.13 96.10 96.06 96.13 96.13 96.13 96.12 95.98
Narrow Eyes 85.13 85.13 85.13 85.14 85.15 85.13 85.13 85.13 85.16 85.13

No Beard 85.37 85.87 87.56 92.94 88.33 85.37 85.88 88.59 93.59 89.81
Oval Face 70.44 70.94 71.50 73.11 71.51 70.44 71.48 71.92 71.77 71.25
Pale Skin 95.79 95.79 95.79 95.79 95.76 95.79 95.79 95.79 95.79 95.73

Pointy Nose 71.43 71.51 71.63 71.89 71.40 71.43 71.47 71.77 72.87 72.11
Receding Hairline 91.51 91.51 91.51 91.59 91.40 91.51 91.51 91.51 91.61 91.39

Rosy Cheeks 92.83 92.83 92.86 93.07 92.75 92.87 92.83 92.86 93.33 92.99
Sideburns 95.36 95.36 95.36 96.44 95.55 95.36 95.36 95.36 96.63 95.79
Smiling 60.07 66.32 85.85 89.34 79.99 58.92 65.97 85.55 89.11 82.82

Straight Hair 79.01 79.01 79.02 79.65 79.22 79.01 79.01 79.13 78.60 79.47
Wavy Hair 71.24 73.09 76.22 77.35 77.98 70.86 73.62 77.11 72.73 78.90

Wearing Earrings 79.34 79.34 80.37 83.24 81.54 79.34 79.34 80.71 84.36 82.65
Wearing Hat 95.80 95.80 95.80 96.01 95.95 95.80 95.80 95.80 97.02 96.63

Wearing Lipstick 80.61 87.90 89.81 91.59 87.54 80.35 87.20 89.56 91.94 88.16
Wearing Necklace 86.21 86.21 86.21 86.21 86.16 86.21 86.21 86.21 86.21 86.12
Wearing Necktie 92.99 92.99 93.03 93.58 93.61 92.99 92.99 93.11 93.57 94.13

Young 75.71 79.33 81.23 83.69 80.57 75.71 78.52 80.66 83.11 80.93
Average 82.97 84.42 86.54 88.20 86.25 83.01 84.52 86.71 88.38 86.87

Total time 10:30 12:02 13:34 25:50 10:30 10:30 12:02 13:34 25:50 10:30

E.4 Hyperparameter tuning for DP-BiTFiT

We demonstrate that employing DP-BiTFiT does not complicate the learning rate tuning, when compared to the full
fine-tuning.

Table 17: Test accuracy on SST2 under ϵ = 8, using DP-Adam with AUTO-S clipping.

DP-BiTFiT DP full non-DP full
learning rate 5e-4 1e-3 2e-3 5e-3 1e-2 1e-4 2e-4 5e-4 1e-3 1e-5 2e-5 5e-5 1e-4

RoBERTa-base 90.94 91.28 91.74 92.43 90.94 91.51 91.97 92.43 91.28 93.92 94.38 94.49 93.35
RoBERTa-large 94.38 95.07 94.38 94.50 94.04 94.84 94.72 94.61 92.66 95.76 96.21 96.21 95.99

22

