Martingale Posterior Neural Networks for Fast
Sequential Decision Making

Gerardo Duran-Martin! Leandro Sanchez-Betancourt'-2

Alvaro Cartea’’2 Kevin Murphy?
I Oxford-Man Institute of Quantitative Finance
2 Mathematical Institute, University of Oxford
3Google Deepmind

gerardo.duran-martin@eng.ox.ac.uk
{leandro.sanchezbetancourt,alvaro.cartea}t@maths.ox.ac.uk
kpmurphy@google . com

Abstract

We introduce scalable algorithms for online learning of neural network parameters
and Bayesian sequential decision making. Unlike classical Bayesian neural net-
works, which induce predictive uncertainty through a posterior over model parame-
ters, our methods adopt a predictive-first perspective based on martingale posteriors.
In particular, we work directly with the one-step-ahead posterior predictive, which
we parameterize with a neural network and update sequentially with incoming
observations. This decouples Bayesian decision-making from parameter-space
inference: we sample from the posterior predictive for decision making, and update
the parameters of the posterior predictive via fast, frequentist Kalman-filter-like
recursions. Our algorithms operate in a fully online, replay-free setting, providing
principled uncertainty quantification without costly posterior sampling. Empir-
ically, they achieve competitive performance—speed trade-offs in non-stationary
contextual bandits and Bayesian optimization, offering 10—100 times faster infer-
ence than classical Thompson sampling while maintaining comparable or superior
decision performance.

1 Introduction

In various sequential decision-making problems, such as Bayesian optimization and contextual
bandits, uncertainty quantification and efficient belief updates are essential for balancing exploration
and exploitation. A prominent Bayesian approach is Thompson sampling (TS) [52], which samples
from the posterior over model parameters and evaluates the corresponding predictive function (e.g.,
reward or surrogate) for decision-making.

Various works combine Bayesian uncertainty with the expressiveness of neural networks for sequential
decision making [5, 51]. These methods, often called Bayesian neural networks (BNNs), typically
approximate the posterior over model parameters (e.g., via variational inference) and then use this
posterior for downstream tasks. However, BNNs often rely on misspecified priors and likelihoods [33],
which often degrade predictive performance [60] and result in slower inference than non-Bayesian
alternatives [35].

These limitations are especially problematic in online settings where updates and decisions must
be made quickly, such as in recommender systems, adaptive control, financial forecasting, and
large-scale Bayesian optimization [55, 43, 45, 6, 59].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

To address these problems, we present a class of algorithms for Bayesian sequential decision making
inspired by the predictive-first philosophy of the martingale posterior framework [20, 26]. Our
approach operates in a fully online setting: the one-step-ahead posterior predictive is parameterized
by a neural network, updated directly from real observations via frequentist Kalman filter-style
recursions, and sampled once per step for decision making. This avoids the need for costly posterior
inference, while still supporting uncertainty and sampling-based sequential decision making.

The parameters defining the predictive density are updated with a single-pass frequentist Kalman
filter-style methods, which resemble online natural gradient steps [48] and require no replay buffer
(copies of past observations, which one typically uses for multiple inner-iterations). We explore
three structured covariance strategies: LRKF applies low-rank updates to all layers; HiLoFi applies a
full-rank update to the last layer and a low-rank update to the hidden layers; LoLoFi applies low-rank
updates to both. HiLoFi and LoLoFi are inspired by last-layer Bayesian methods [25], and offer
different tradeoffs between computational efficiency and expressiveness.

Decision making is performed by sampling directly from the posterior predictive, resulting in
10 to 100 times faster inference than that of classical TS, even when compared with structured
posteriors that use diagonal plus low-rank covariances [8]. Our algorithms scale to million-parameter
networks, maintain constant-time updates, and operate in fully online, streaming-compatible settings.
In addition, our methodology supports any acquisition strategy, such as classical TS or expected
improvement.

In summary, our probabilistic method for training neural networks enjoys the following properties:
(1) efficient closed-form updates (no Monte Carlo sampling required); (ii) sample efficiency through
low-rank Kalman filter-like updates which do not require the specification of a posterior density; (iii)
closed-form uncertainty-aware predictions via the posterior predictive.

We evaluate the performance of our methods across a range of sequential decision-making tasks.
In non-stationary neural contextual bandits, our methods achieve the highest performance at the
lowest computational cost compared to that of baselines. In stationary settings such as Bayesian
optimization, our approach matches the performance of replay-buffer methods while achieving
Pareto-efficient tradeoffs between runtime and performance. Our code is available at https://
github.com/gerdm/martingale-posterior-neural-networks.

A complete summary of the notation used throughout the paper is in Appendix A.

2 Problem statement

We consider a sequential-decision-making agent that at time ¢ observes a context-action pair x; =
(ct, a;) with context ¢; € RP< (possibly empty) and action a; € A C RP«. The environment returns
a reward (or observation) according to

Y ~ Penv(-|@e), yr € RPv, (1

which depends only on the context-action pair ;. We use the notation y; when the outcome is scalar
(Dy = 1) and y; when it is vector-valued (D, > 1).

This formulation covers, e.g., Bayesian optimization (c; empty and a, the query location), multi-
armed bandits (c; empty and a; the chosen arm), and contextual bandits (¢; non-empty and a;
the chosen arm). It also serves as a proxy representation for multi-armed bandits by letting the
components of y; encode per-arm signals or auxiliary outcomes.

We write D; = (x4, y:) for a datapoint and Dy.; = {D;, ..., D;} for the dataset. Here, we assume
that peny is unknown, but we approximate it through the observation model
ye = f(Or, 1) + ey, (2)

with e; a zero-mean random vector with covariance matrix R; € ME: (R), f aneural network, and
0, € RP¢ unknown time-varying model parameters.

The agent maintains a belief state b, that summarizes its knowledge of the environment after observing
D;.+. This belief defines a parametric approximation to the one-step-ahead posterior predictive

Do, (Yit1 | Ter1) = D(Yeg1 | Trg1, Drie)- 3)

https://github.com/gerdm/martingale-posterior-neural-networks
https://github.com/gerdm/martingale-posterior-neural-networks

Our objective is to maintain b, via efficient, single-pass frequentist updates and to use the predictive
Db, (Y+1 | Te41) for probabilistic, sample-based sequential decision making. In this sense, we
combine frequentist recursive parameter estimation with Bayesian decision making via the posterior
predictive.

3 Background

3.1 Tools for sequential decision making

A central challenge in sequential decision making is the exploration-exploitation tradeoff, where an
agent balances whether to use its current knowledge of the environment (exploitation) or to acquire
new information to improve future decisions (exploration) [3].

For example, when solving Bayesian neural contextual bandit problems [51] with the classical
Thompson sampling (TS) algorithm [52], an agent samples a parameter vector from the posterior
distribution (or an approximation [50]), evaluates the reward function under this sampled parameter
for each action, and selects the action with the highest sampled reward.

Here, we propose a novel approach that avoids sampling from (high-dimensional) parameter posteriors
often found in Bayesian neural networks. Instead, we work directly with the posterior predictive
distribution defined by the current belief state b;. For each candidate action, we sample a possible
outcome from (3) and then choose the action with the highest sampled reward. The belief b; is
subsequently updated via frequentist recursions (Section 3.2).

Table 1 highlights the key differences between our predictive sampling approach and classical TS.
The essential distinction is whether uncertainty is represented in parameter space (TS) or directly in
outcome space (our approach). Algorithm 1 shows our predictive sampling procedure for contextual

Step Predictive sampling (Our approach) Classical TS

Sample Posterior predictive at each action Posterior over model parameters

Evaluate N/A Sampled parameters on reward function
Select action Argmax over sampled rewards Argmax over sampled rewards

Get reward Yt+1 ~ Penv (- | To41) Yt+1 ~ Ponv (* | Tt41)

Update belief Frequentist update (e.g., Algorithm 2) Bayesian posterior update over parameters

Table 1: Comparison between Bayesian predictive sampling (our approach) and classical Thompson
sampling. Differences highlighted in bold.

bandits. At each decision-making step, the agent samples rewards from the predictive distribution
for each action, selects the action with the highest sampled reward, observes the reward from the
environment, and updates its belief state.

Algorithm 1 Predictive sampling for sequential decision making in contextual bandits.

Require: b; // belief state obtained at time ¢
Require: c;11 // context
Require: py(-|x) // posterior predictive density parameterized by b
1: foralla € Ado

2 T (Ct+1, a)

3 'gt,a ~ pbt(' | :i:)

4: end for
5: Qi1 <~ argmax,c 4 Qi+1,a
6
7
8
9

Y 2 (Ct+1, (e PEN}

D Y41 ~ Penv (- | @i41) // observe outcome

: bip1 < Update(by, yiq1, t41) // e.g, Algorithm 2
: Return (b;y1,y:4+1) // belief and reward

3.2 Extended Kalman filtering for online learning and sequential decision making

To maintain and update the belief state b,, we adapt ideas from the frequentist perspective of the
extended Kalman filter (EKF). Here, by = (6, 3¢), O,y = Ay y1.4, Ay = argming E[|6; —

A y1.4||3] is the best linear unbiased predictor (BLUP) of 6, and X; = Var(6; — 0,);) is the
error-variance-covariance (EVC) matrix of the estimate. The initial belief state by = (8|, 2o) is
given.

Next, we partition the neural network parameters into last-layer weights and hidden-layer weights:
0, = (£, hy), with £, € RP2 (last layer) and h; € RP*» (hidden layers) so that Ot = (Leje, hgpe),
and f (€, hy, i) = L] ¢(xt, hy) € R, where ¢(x4, hy) is the hidden-layer feature map of the neural
network.

To obtain closed-form updates, we linearize the neural network around the previous parameter
estimate 6;_y);—1 = (£_14—1,h¢—1)¢—1), and make a random-walk assumption for the model

parameters 8; = 0;_1 + u,, with Var(u;) = Q; € MB: (R). This assumption prevents uncertainty
collapse, adaptation in non-stationary environments, and numerical stability (see e.g., [46] or Section
2.6.4in [13]).

With the above assumptions, we obtain the linearized state-space model

Bt = Bt,1 + Uy, (4)
Ye = f(l—1je—15 Pe—1je—1, Te) + Ly(£ — £i_1ji—1) + H,(h — hi_1ji-1) + e, (5
where e; is a zero-mean random variable with Varle;] = R; € ME: R), L, =

vif(etfl\tflahtfl\tfhwt) € Mix2(R), and ﬁt = vhf(etflhtflaht71|t715$t) are the Jaco-
bians of the neural network w.r.t. the last and hidden layers respectively.

Updates. The state-space model defined by (4)-(5) allows for recursive estimation of b; via Kalman-
like updates. See Appendix B for details.

Posterior predictive model. At each timestep the one-step-ahead posterior predictive induced by
the state-space model (4)-(5), given the belief state b; and under the assumption p(e;) = N (e; |
07 Rt) is

Po, (Y41 | Te41) = N |y f(Ht‘t,:ctH), jtﬂ > jtTH + R, , (6)
~———— ~—~
epistemic aleatoric

where J; = [f,t I:It] . Here, the covariance of the posterior predictive decomposes into epistemic
uncertainty (from parameter uncertainty under the linearization) and aleatoric uncertainty (from
observation noise R;). The condition R; € MJJSI (R) ensures that (6) defines a proper Gaussian
density.

3.3 Martingale posteriors

Our notion of Bayesian uncertainty is inspired by the martingale posterior framework [20], which
interprets Bayesian uncertainty through missing data [26]. In the original setting, one imagines
imputing an infinite sequence of future observations; statistics computed on these extended datasets
form a martingale, and under mild conditions they converge.

However, in sequential decision making, however, given the context-action pair x;,1, the only
missing data, is the next observation y,; from the environment. In our case, uncertainty is quantified
to guide decisions: y;1 (or a partial observation of it, in the bandit setting) is always revealed before
the next step. Thus, rather than simulating an infinite sequence of future steps, we focus entirely on
the one-step-ahead posterior predictive pp, (Y41 | Tt41)-

4 Method

The standard EKF strategy for online learning presented in Section 3.2 does not scale to large neural
networks because the memory cost is O(Dg?) and the compute cost is O(Dg*). A number of
approaches have been proposed to tackle this issue (see Section 6 for details). Our method leverages
the frequentist perspective of filtering to derive low-rank updates and the Bayesian interpretation of
filtering to make sequential decisions through the posterior predictive.

4.1 Algorithm

Consider the linearized model (5), with initial conditions
E[Eo] = £0|07 E[ho] = h0|0, Var(ﬂo) = 2[70, Var(ho) = Cg CQ, (7)

for known Co € Ma,, x p,, (R), hojo € RP~, S0 € MEF(R), and £o)p € RP2. Next, assume that

for t > 1, the last layer parameters £;.; and the hidden layer parameters h;.; follow the dynamics
e =L 1+ ugy, hi =hi_1 +upy, ()

where ug 1.+ and up, 1.+ are zero-mean independent noise variables with covariance matrices Qg =

qeIp, and Qp: = qn.+Ip,, wWith gey > 0 and g+ > 0. Our method maintains a belief state for

~1/2
the state-space model represented by by = (£, by, EZ,/t , C¢), where £;; € RP% is the estimate
for model parameters in the last layer, hy; € RP* is the estimate for model parameters in the

£1/2
hidden layers, Etil € ME; (R) is the Cholesky EVC factor for the covariance of the last layer, and
C; € Mg, xp,, (R) is the low-rank EVC factor for the hidden layers.

Updates. Given b;_1, the updated 8, = (£, ht|t) follows directly from the EKF equations
which takes the form 6;; = 6;_,;_ + K;€;, where €, = y; — gy, is the error or innovation term,
and K is the gain matrix. Because of the block-diagonal assumption, it can be shown that K is
decoupled into last-layer-only and a hidden-layers-only submatrices.

Next, applying the EKF EVC update to b;_ yields the dense matrix ¥; € ./\/l};e (R) which couples

the effects from the last and hidden layers. To obtain a block-diagonal matrix with components
~1/2
(El,/t ,Ct), we consider a two-stage approximation. The first stage replaces 3; with a surrogate

covariance matrix 3, that avoids the interaction between the hidden layer parameters and the synthetic
dynamics gp,;; the second stage approximates the surrogate matrix with the best block-diagonal
approximation whose first block (for last-layer parameters) are of rank D, and the second block
(for hidden-layer parameters) are rank-dy,. Finally, to maintain numerical stability and low-memory
updates, we track the Cholesky factor for the last layer and a low-rank factor for the hidden layers,

~1/2 ~1/2
ie., Et/ = diag(Cy, X e,/t). In this sense, estimation of the factors for the last-layer and the hidden
layer follows the sequence
- A ~1/2 . 2 1/2
Et — Et — Et — Et = dlag(Ct, El,t)
Algorithm 2 shows a single step of HiLoFi. The derivation is in Appendix D.1.

The following proposition shows the upper bound of the the per-step error incurred by HiLoFi.

Proposition 4.1 (Covariance approximation error). At time t, the per-step approximation error of
HiLoF4 under the linearized SSM (5) is bounded by

Dp,
||2t\t - Et\tHF S qh,t Eh,surr + ql,t El,surr + Z)\i + QHK[’thK;”tH%, (9)
k=dp+1
where Ep surr = (2| KnHellp + [|Kn Hel[2), Eggure = (T~ Ke Le) (T - K Le)T|
{)\k}kD;‘th are smallest (Dp, — dp,) eigenvalues of ;.

F, and

Remark 4.2. Proposition 4.1 shows that the per-step error in the HiLoFi approximation is bounded by:
(i) the neglected terms by each surrogate matrix, (ii) the low-rank approximation for the covariance
of the hidden layers, and (iii) the cross-terms from the blocks in the off-diagonal Note, however,
that the bound does not account for error due to linearization of the neural network. One could
minimize the above lower bound by setting gn; = ge+ = 0. However, this may result in lower
per-step performance. See Appendix G.1.2 for an example of the main sources of error. See Appendix
E.4 for a proof.

Posterior predictive model. After every update, the posterior predictive model used for sequential
decision making is
Do, (Y1 | Tep1) =N (yt | F (8o, by, @eg1), L1 B L+ Hep B H) + Rt+1) :
(10)

Algorithm 2 Single update step of HiLoFi. The notation Qr (B, ..., B\) denotes the Cholesky factor-
ization of the matrix Zszl B] By, where By, is an upper-triangular Cholesky factor; see Appendix C.1 for
details. The function P4(A1,..., Ax) returns a d X D matrix which is the best rank-d approximation of the
matrix Zszl AJ Ay; see Appendix C.2 for details.

Require: R; // measurement variance

Require: (ge,t, qn,:) // dynamics covariance for last layer and hidden layers

Require: (y:, ®:) // observation and context-action pair

Require: b;_1 = (et_l‘t_l,ht_m_l,ﬁ:ﬁfil,ct,l) // previous belief
// predict step
1: Qt — f(ft71\t717ht71|t71750t)
2 I:t = vlf(etflhtfh hy_1)4—1,)
3: Hy = vhf(et—l\tfh ht71|t717 $t)
// innovation (one-step-ahead error) and Cholesky innovation variance
4. €t < Yt — :’;t
5 Si/Q =Qr (2113,/*‘271]:&rv \/qT’tf,L Ci I:IL \/WI:IL Ri/2> ’
// gain for hidden layers
6: V. < S; /28, 7/?H,
7: K,Tm —~VniCi1C]_, +qn,t Vi
// gain for last layer
D Ve« 8,28 T2LL,
9: Kzt — Vet e -1+ qet Ve
// mean update step
10: ht\t < htfl‘tfl + Kh,tet
11: £y < £€i_10—1 + Ko e
// EVC low-rank and Cholesky update step
12: Ct < Py an (cH (I —Kn, ﬂt)T , Rtl/ZK}m)

~1/2 ~1/2 SNT
13: 8 + on (z:eﬁ,l, (I Ko, Lt) , Ri”KL)

o]

14: Return b, = (em,hm,ﬁ:iff,ct) // updated belief

The computational complexity of HiLoFi is O(Dyg (Dg+ Dy)?+ Dy, (dp + Dyy)?). A full breakdown
of the computational complexity and its relationship to other methods is in Appendix D.2.

Variants. Whenever the output layer or the input to the last layer is high dimensional, we perform a
low-rank approximation to the last-layer to reduce computational costs. We call this variant LoLoF1i.

Its computational complexity is O(De?’ + thhZ). See Appendix F.1 for details.

A purely low-rank version of our method, which we call LRKF, is discussed in Appendix F.2. This
method uses a single low rank covariance matrix approximation for all parameters in the neural
network. An error analysis of LRKF in the linear setting is presented in Appendix F.2.1. In the
experiments, we find that this approach performs worse than that of HiLoF1i, which is not surprising.
It also has lower performance than LoLoFi (at least on the contextual bandit problem in section 5.2),
presumably because modeling the last layer separately allows us to use a different subspace for the
low rank approximation of the output layer weights.

S Experiments

In this section, we evaluate our method. First, we consider a one-dimensional example “in-between”
uncertainty, to illustrate the behavior of the method. We then compare its performance to that of other
methods across the following sequential decision-making tasks:

(I) MNIST for classification as a bandit problem: This is an online high-dimensional classifi-
cation problem, which we study as a contextual bandit problem.

(II) Recommender systems: This is a challenging real-world problem with non-stationary data.
Here, tackling exploration-exploitation tradeoff is key.

(II) Bayesian optimization: The goal of this task is to find the maximum of an unknown
blackbox function g : [0,1]P= — R. This is a static inference problem where sample
efficiency and uncertainty quantification are crucial.

For each of the above tasks, we assess the various methods on predictive performance and wall-
clock time. All experiments were run on a TPU v4-8. An additional experiment demonstrating the
scalability of LRKF to multi-million-parameter neural networks for online classification is provided in
Appendix G.2.

We consider the following variants of our framework. High-rank low-rank filter (HiLoFi): Our
main method that uses full rank for last layer and low rank for hidden layers. Low-rank low-rank
filter (LoLoF1i): A version of our method that uses low-rank matrices for last and hidden layers. We
only consider LoLoF1i in task (II), due to the relatively large dimension of the last layer. Low-rank
square-root Kalman Filter (LRKF): This is a special case of our method, described in Appendix F.2,
that uses a single low-rank covariance for all the parameters. This illustrates the gains from modeling
the final layer separately.

As existing baselines, we consider the following. Diagonal plus low-rank precision (LoFi) [8]:
a fully online method that models the precision matrix using a low-rank plus diagonal matrix, and
uses the same linearization scheme as us. Gaussian processes (GP) [62]: a standard approach to
modeling predictive uncertainty. We only include GPs in the low-dimensional tasks in (III) because
of scalability limitations. Variational Bayesian last layer (VBLL) [5]: a partially Bayesian method
that requires access to the full dataset (or a replay buffer), and performs multiple optimization
steps per update. See Appendix F.3 for details. Online variational Bayesian last-layer (OnVBLL):
a straightforward modification of the VBLL method with a first-in-first-out (FIFO) buffer and no
regularization. Last-layer Laplace approximation with FIFO buffer (LLL) [11]: a method that uses
a Laplace approximation on the last layer, with a FIFO replay buffer and multiple inner updates per
time step. Unless otherwise stated, we train the parameters of the neural network with the AdamW
optimization algorithm [44].

5.1 In-between uncertainty

Problem description. In this experiment, we test the ability of HiLoF1i to capture the in-between
uncertainty [21] after a single pass of the data. This concept refers to how well a model captures
uncertainty in regions of input space that lie between, or away from, observed data. Intuitively, we
expect uncertainty to be higher in such unexplored areas. This behavior is important for Bayesian
decision-making problems for effictive balancing of exploration and exploitation. We consider the
one-dimensional dataset introduced in [58].

Model. We use an MLP with 4 hidden layers and 128 units per layer, and we employ an ELU
activation function.

Results. Figure | shows the evolution of the posterior predictive mean and the posterior predictive
variance as a function of the number of seen observations. We see that HiLoFi behaves in an
intuitively sensible way, showing more uncertainty away from the data, just like a Gaussian process.
See Appendix G.5 for the performance of other methods (specifically LRKF and VBLL) on this problem,
as well an ablation study that illustrates the effect of changing rank.

5.2 MNIST

Problem description. We consider the MNIST contextual bandit task introduced by [49], where
the agent is presented with an image and must choose one of ten possible classes as an action, and
then gets a binary feedback, based on whether its prediction was correct or not; we refer to this as the
incomplete information case. An additional experiment on online classification is in Appendix G.1.1.

Model. The predictive model (for the 10 label logits or the per-action rewards) is represented using
a modified LeNet5 CNN architecture [39] with ELU activation function.

num. obs =1 i num. obs =5 i num. obs = 10

12:\/ \/

{
{

-10

10- num. obs = 15 ~ num. obs = 30 _ num. obs =45

0 W W] W
-10 - - - . . .

10- num. obs = 50 ~num. obs = 100 _ . num. obs = 120
-10

05 00 05 05 00 05 -05 00 05
Figure 1: In-between uncertainty induced by HiLoFi as a function of the processed observations.

Exploration Methods. We consider two exploration strategies: Classical TS and our proposed
predictive-sampling (PS) as outlined in Table 1. Additional results comparison TS, PS, and e-greedy
are in Appendix G.1.3.

Inference methods. We compare LLL, LRKF, LoFi, and HiLoFi. For LLL, we use the online
last-layer variant from [1 1], without hyperparameter re-optimization at each timestep. Choice for
hyperparameters are detailed in Appendix G.1.3.

Bandit results. Figure 2 shows the average cumulative reward over 10 runs of the contextual bandit
version of MNIST. We observe that the top three performing methods are HiLoFi, LoLoFi, and
LRKF. This outcome is expected because HiLoFi employs a full-rank covariance matrix in the last
layer, which is better than a low-rank approximation of the covariance matrix associated with the last
layer (LoLoF1i), or a low-rank covariance to model all dependencies across layers (LRKF). For further
results showing regret and comparison using e-greedy, see Appendix G.1.3.

0.8
— HiLoFi-pBayes

LoLoFi-pBayes
— LRKF-pBayes
— LoFi-pBayes
=+ LoFi-TS

LLL-pBayes

LLL-TS

N o
S o
L L

average reward

I
N
L

T T T T T T T
0 5000 10000 15000 20000 25000 30000 35000 40000
num. observations

Figure 2: Cumulative average reward for the bandit MNIST problem.

Next, Table 5.2 reports the average cumulative reward and total runtime (over 10 trials) for each
method, comparing posterior predictive sampling (pBayes) with Thompson sampling (TS). Overall,

Agent Reward (pBayes) Reward (TS) Time (pBayes) Time (TS)

HiLoFi 31,167.7 - 8.44 -
LoLoFi 30,038.5 - 3.67 -
LRKF 28,354.9 - 2.51 -
LoFi 23,184.5 23,304.3 4.76 38.90
LLL 13,922.3 7,201.9 1.36 191.55

Table 2: Performance comparison of Bayesian decision-making strategies: posterior predictive
sampling (pBayes) vs. Thompson sampling (TS). Rewards are cumulative and averaged over 10 runs;
time is in minutes.

pBayes is consistently faster across all methods. For the two agents where both approaches are
applicable (LoFi and LLL), the average cumulative reward is nearly identical for LoFi, while pBayes
clearly outperforms TS for LLL. However, TS incurs a much higher runtime due to the need to
sample repeatedly from the high-dimensional posterior over model parameters, whereas pBayes
only requires sampling in the comparatively low-dimensional outcome space (one dimension per

arm/class). Finally, as expected, HiLoFi achieves the best performance, followed by LoLoFi and
then LRKF. This performance hierarchy comes at a cost in runtime: HiLoF1i is slower than LoLoF1i,
which in turn is slower than LRKF.

5.3 Recommender systems

Problem description. We study the performance of the methods on the Kuairec dataset of [22],
which is derived from a real-world, non-stationary, video recommender system. This dataset is used
to study non-stationary contextual bandits in [65].

Dataset. 'We group rows in the dataset (for a given user) in blocks of the 10 next videos that the user
saw. For the features, we consider the log(1 + z) transform of like count, share count, play count,
comment count, complete play count, follow count, reply comment count, and download count. For
the target variable, we use the log(1 +) transform of the watch ratio [0, co).

Model. The reward model is a neural network with an embedding layer (one per video/arm), and a
dense layer for all features. We join the embedding layer and the dense layer, and we then consider a
three-hidden-layer neural network (50 units per layer, ELU activations), and linear output unit.

Algorithm. We perform sequential Bayesian inference using the relevant method, and then use TS
to choose the action at each step (see Section 3.1). The choice of hyperparameters is in G.3.

Results. Figure 3 shows the average daily reward (left panel) and the running time of each method
(right panel). We observe that HiLoFi has the highest average daily reward with second lowest
running time. On average, LRKF and LoFi have similar performance, however, LoFi has a higher
running time. Next, VBLL has higher average daily reward than OnVBLL, but it is slower. For an
in-depth analysis of the results see Appendix G.3.

°© —_—
<4 :
%12 8 £
> [}
< 1.0 8 £
o o o g b
(9] o
= £
o o c
o 0.8 c
> 2
© [e] (o]
o o ¢ 0
T . T T 10° 4
i < [ot 4 4 T v T o 3 3
3 A S 3] g g & K| 3 2 2
T 3 E > = 3 > >
o

Figure 3: Recommender system results. Left: average daily reward. Right: rur?ning time.

5.4 Bayesian optimization

Problem description. Following [5], we evaluate the competing methods on classical Bayesian
optimization (BO) tasks, where the goal is to maximize an unknown function g : [0, 1]P= — R with
a surrogate model trained sequentially on past observations.

Model. We employ a three-layer MLP (180 units per layer, ELU activations) as the surrogate for all
neural-based methods. For the GP baseline, we use a Matérn-5/2 kernel with lengthscale 0.1 and a
20-point buffer to reduce computational cost. While GP performs better when its hyperparameters are
tuned during training [28], this incurs much higher computational costs, so we do not pursue it here.
The choice of hyperparameters is detailed in Appendix G.4.

Datasets. We consider seven benchmark functions commonly used in BO [5]: Ackley (2D, 5D,
10D, 50D), Branin (2D), Hartmann (6D), and DrawNN (50D and 200D). These span a range of
dimensionalities and multi-modalities, and are standard in evaluating global optimal performance. For
all methods, except for DrawNN, we sample a function from the posterior predictive and evaluate it
on a fixed set of candidate points generated using a Sobol sequence [54] to find its maximum. Instead,
for Drawnn functions, we use projected gradient descent, implemented with the Jaxopt library [4], to
optimize the sampled function directly over the continuous domain [0, 1].

Algorithm. We perform sequential Bayesian inference using the relevant method, and then choose
the next query point at each step using TS (see Section 3.1). Figure 12 in the Appendix shows the
results using the expected improvement algorithm [29].

Results. Figure 4 (left) shows the final best value on the vertical axis (higher is better), and the
amount of run time on the horizontal axis (lower is better). The number of steps for each dataset are
in the x-axis in Figure 11 in Appendix G.4. Figure 4 (right) shows the tradeoff between performance
(measured by rank) and compute time. Our method is on the Pareto frontier for a range of tradeoffs
between time and performance; furthermore, across tasks, the performance and compute time of
HiLoFi dominates (better performance and less compute time) those from competing methods
except from VBLL (higher performance) and LRKF (lower compute time). Thus, HiLoFi offers strong
tradeoffs between compute time and performance. For further analyses and results see Appendix G.4.

® HiloFi GP loFi ® LRKF @ VBLL ® OnVBLL @ LLL
Ackley?2 Ackley5 Ackleyl10 Ackley50 time performance
—2{i® [6-o___° A -8.6{" 7
-541 ~7.0 1
P v S : AN L e 6l
574 51 e e
> ' —8.8 1
—7 -7.5 L4 ¥
-6 1® 711 i i 54 2
L 1] ‘ LY} | | . g
10! 10! 102 10t 10% 10t 102 4 5
Branin Hartmann Nndraw50 Nndraw200 E
¢ ® PR R —— I ie® ® 3 x
EX-E 20! 201 g0 - o &
8 501! ® ! 1000 4 - -~ 21
> e 1.511 1009 1
759 |® i o i 14
\ e 500 1 :
10! 10t 10t 2x10! 10! 102 2 4 6
time time time time

Figure 4: Left panel: Performance across all BO benchmark functions. For time, lower is better. For
performance, higher is better. The dashed lines correspond to the results for our method, so methods
that are above and to the left are better. Right panel: Time versus performance tradeoff plots.

6 Related work

We briefly review deterministic approaches for approximate online parameter inference. Several
methods maintain diagonal plus low-rank (DLR) structures for efficient covariance updates, including
L-RVGA [36], SLANG [47], and LoFi [8]. Low-rank Kalman filtering has also been explored
in state-space models [53], though with stronger restrictions on the rank relative to measurement
dimension. Beyond low-rank, FOO-VB [64] exploits Kronecker-structured approximations, while
offline methods explore similar ideas for scaling BNNs [41, 56, 34]. Another direction builds on
the lottery ticket hypothesis [42, 38], restricting learning to sparse or low-dimensional subspaces.
Examples include the subspace neural bandit [15] and PULSE [7], which pre-train projection matrices
offline before online adaptation.

7 Conclusion and future work

We introduced a predictive-first approach for efficient online training of neural networks, based on
linearization and structured low-rank approximations of error covariances. Our three variants achieve
strong performance-runtime trade-offs, with HiLoFi particularly effective in high-dimensional, non-
stationary settings. Limitations include the lack of fixed-lag smoothing, sensitivity to linearization
and outliers [14, 37], and reliance on hyperparameters. Future work includes extending our approach
to fully-online reinforcement learning [18].

We view our contributions as primarily methodological, with no particular ethical concerns.

Acknowledgements

We thank the TPU Research Cloud program for providing the compute resources used in our
experiments, and James Harrison for helpful comments.

10

References

[1] Luca Arnaboldi, Yatin Dandi, Florent Krzakala, Luca Pesce, and Ludovic Stephan. Repetita
iuvant: Data repetition allows sgd to learn high-dimensional multi-index functions. arXiv
preprint arXiv:2405.15459, 2024.

[2] Gianluca Bencomo, Jake Snell, and Thomas L Griffiths. Implicit maximum a posteriori filtering
via adaptive optimization. In The Tivelfth International Conference on Learning Representations,
2024.

[3] Oded Berger-Tal, Jonathan Nathan, Ehud Meron, and David Saltz. The exploration-exploitation
dilemma: a multidisciplinary framework. PloS one, 9(4):¢95693, 2014.

[4] Mathieu Blondel, Quentin Berthet, Marco Cuturi, Roy Frostig, Stephan Hoyer, Felipe Llinares-
Lépez, Fabian Pedregosa, and Jean-Philippe Vert. Efficient and modular implicit differentiation.
arXiv preprint arXiv:2105.15183, 2021.

[5] Paul Brunzema, Mikkel Jordahn, John Willes, Sebastian Trimpe, Jasper Snoek, and James
Harrison. Bayesian optimization via continual variational last layer training. arXiv preprint
arXiv:2412.09477, 2024.

[6] Alvaro Cartea, Faycal Drissi, and Pierre Osselin. Bandits for algorithmic trading with signals.
Available at SSRN 4484004, 2023.

[7] Alvaro Cartea, Gerardo Duran-Martin, and Leandro Sénchez-Betancourt. Detecting toxic flow.
arXiv preprint arXiv:2312.05827, 2023.

[8] Peter G. Chang, Gerardo Durdn-Martin, Alex Shestopaloff, Matt Jones, and Kevin Patrick
Murphy. Low-rank extended Kalman filtering for online learning of neural networks from
streaming data. In Sarath Chandar, Razvan Pascanu, Hanie Sedghi, and Doina Precup, editors,
Proceedings of The 2nd Conference on Lifelong Learning Agents, volume 232 of Proceedings
of Machine Learning Research, pages 1025-1071. PMLR, 22-25 Aug 2023.

[9] Yatin Dandi, Emanuele Troiani, Luca Arnaboldi, Luca Pesce, Lenka Zdeborov4, and Florent
Krzakala. The benefits of reusing batches for gradient descent in two-layer networks: Breaking
the curse of information and leap exponents. arXiv preprint arXiv:2402.03220, 2024.

[10] Achiya Dax. Low-rank positive approximants of symmetric matrices. Advances in Linear
Algebra & Matrix Theory, 4(3):172-185, 2014.

[11] Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer,
and Philipp Hennig. Laplace redux-effortless Bayesian deep learning. Advances in neural
information processing systems, 34:20089-20103, 2021.

[12] DeepMind, Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter
Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Claudio
Fantacci, Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel, Shaobo
Hou, Steven Kapturowski, Thomas Keck, Turii Kemaev, Michael King, Markus Kunesch, Lena
Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios, John
Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Laurent Sartran, Rosalia Schneider,
Eren Sezener, Stephen Spencer, Srivatsan Srinivasan, Milo§ Stanojevi¢, Wojciech Stokowiec,
Luyu Wang, Guangyao Zhou, and Fabio Viola. The DeepMind JAX Ecosystem, 2020. URL:
http://github.com/google-deepmind.

[13] Gerardo Duran-Martin. Adaptive, robust and scalable bayesian filtering for online learning.
arXiv preprint arXiv:2505.07267, 2025.

[14] Gerardo Duran-Martin, Matias Altamirano, Alex Shestopaloff, Leandro Sanchez-Betancourt,
Jeremias Knoblauch, Matt Jones, Francois-Xavier Briol, and Kevin Patrick Murphy. Outlier-
robust Kalman filtering through generalised Bayes. In International Conference on Machine
Learning, pages 12138-12171. PMLR, 2024.

11

http://github.com/google-deepmind

[15] Gerardo Duran-Martin, Aleyna Kara, and Kevin Murphy. Efficient online Bayesian inference
for neural bandits. In International conference on artificial intelligence and statistics, pages
6002-6021. PMLR, 2022.

[16] Gerardo Duran-Martin, Leandro Sdnchez-Betancourt, Alexander Y Shestopaloff, and Kevin
Murphy. A unifying framework for generalised bayesian online learning in non-stationary
environments. Transactions on Machine Learning Research, 2025.

[17] Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank.
Psychometrika, 1(3):211-218, 1936.

[18] Mohamed Elsayed, Gautham Vasan, and A Rupam Mahmood. Streaming deep reinforcement
learning finally works. arXiv preprint arXiv:2410.14606, 2024.

[19] Randall L Eubank. A Kalman filter primer. Chapman and Hall/CRC, 2005.

[20] Edwin Fong, Chris Holmes, and Stephen G Walker. Martingale posterior distributions. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 85(5):1357-1391, 2023.

[21] Andrew YK Foong, Yingzhen Li, José Miguel Herndndez-Lobato, and Richard E Turner.
’in-between’ uncertainty in Bayesian neural networks. arXiv preprint arXiv:1906.11537, 2019.

[22] Chongming Gao, Shijun Li, Wenqiang Lei, Jiawei Chen, Biao Li, Peng Jiang, Xiangnan He,
Jiaxin Mao, and Tat-Seng Chua. Kuairec: A fully-observed dataset and insights for evaluating
recommender systems. In Proceedings of the 31st ACM International Conference on Information
& Knowledge Management, CIKM 22, page 540-550, 2022.

[23] Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

[24] Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor
optimization. In International Conference on Machine Learning, pages 1842—1850. PMLR,
2018.

[25] James Harrison, John Willes, and Jasper Snoek. Variational bayesian last layers. arXiv preprint
arXiv:2404.11599, 2024.

[26] Chris C Holmes and Stephen G Walker. Statistical inference with exchangeability and martin-
gales. Philosophical Transactions of the Royal Society A, 381(2247):20220143, 2023.

[27] Jeffrey Humpherys, Preston Redd, and Jeremy West. A fresh look at the Kalman filter. SIAM
review, 54(4):801-823, 2012.

[28] Carl Hvarfner, Erik Orm Hellsten, and Luigi Nardi. Vanilla Bayesian optimization performs
great in high dimensions. arXiv preprint arXiv:2402.02229, 2024.

[29] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of
expensive black-box functions. Journal of Global optimization, 13:455-492, 1998.

[30] Matt Jones, Peter Chang, and Kevin P Murphy. Bayesian online natural gradient (bong).
Advances in Neural Information Processing Systems, 37:131104-131153, 2024.

[31] Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and
Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL.:
https://kellerjordan.github.io/posts/muon/.

[32] Mohammad Emtiyaz Khan and Havard Rue. The Bayesian learning rule. Journal of Machine
Learning Research, 24(281):1-46, 2023.

[33] Jeremias Knoblauch, Jack Jewson, and Theodoros Damoulas. An optimization-centric view on

bayes’ rule: Reviewing and generalizing variational inference. Journal of Machine Learning
Research, 23(132):1-109, 2022.

[34] Agustinus Kristiadi, Runa Eschenhagen, and Philipp Hennig. Posterior refinement improves
sample efficiency in bayesian neural networks. Advances in Neural Information Processing
Systems, 35:30333-30346, 2022.

12

https://kellerjordan.github.io/posts/muon/

[35] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. Advances in neural information
processing systems, 30, 2017.

[36] Marc Lambert, Silvere Bonnabel, and Francis Bach. The limited-memory recursive variational
Gaussian approximation (l-rvga). Statistics and Computing, 33(3):70, 2023.

[37] William Laplante, Matias Altamirano, Andrew Duncan, Jeremias Knoblauch, and Francois-
Xavier Briol. Robust and conjugate spatio-temporal gaussian processes. arXiv preprint
arXiv:2502.02450, 2025.

[38] Brett W. Larsen, Stanislav Fort, Nic Becker, and Surya Ganguli. How many degrees of
freedom do we need to train deep networks: a loss landscape perspective. arXiv preprint
arXiv:2107.05802, 2022.

[39] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

[40] Jason D Lee, Kazusato Oko, Taiji Suzuki, and Denny Wu. Neural network learns low-
dimensional polynomials with sgd near the information-theoretic limit. Advances in Neural
Information Processing Systems, 37:58716-58756, 2024.

[41] Jongseok Lee, Matthias Humt, Jianxiang Feng, and Rudolph Triebel. Estimating model
uncertainty of neural networks in sparse information form. In International Conference on
Machine Learning, pages 5702-5713. PMLR, 2020.

[42] Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic
dimension of objective landscapes. arXiv preprint arXiv:1804.08838, 2018.

[43] Zhuoran Liu, Leqi Zou, Xuan Zou, Caihua Wang, Biao Zhang, Da Tang, Bolin Zhu, Yijie
Zhu, Peng Wu, Ke Wang, et al. Monolith: real time recommendation system with collisionless
embedding table. arXiv preprint arXiv:2209.07663, 2022.

[44] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2019.

[45] Thomas M McDonald, Lucas Maystre, Mounia Lalmas, Daniel Russo, and Kamil Ciosek.
Impatient bandits: Optimizing recommendations for the long-term without delay. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 1687—
1697, 2023.

[46] Raman Mehra. Approaches to adaptive filtering. IEEE Transactions on automatic control,
17(5):693-698, 2003.

[47] Aaron Mishkin, Frederik Kunstner, Didrik Nielsen, Mark Schmidt, and Mohammad Emtiyaz
Khan. Slang: Fast structured covariance approximations for Bayesian deep learning with natural
gradient. Advances in neural information processing systems, 31, 2018.

[48] Yann Ollivier. Online natural gradient as a Kalman filter. Electronic Journal of Statistics,
12(2):2930 — 2961, 2018.

[49] Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva,
Katrina McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh, et al. Behaviour suite for
reinforcement learning. arXiv preprint arXiv:1908.03568, 2019.

[50] My Phan, Yasin Abbasi-Yadkori, and Justin Domke. Thompson sampling with approximate
inference. In NIPS, August 2019. URL: https://papers.nips.cc/paper/2019/file/
£3507289c£dc8c9ae93£4098111a13f9-Paper . pdf.

[51] Carlos Riquelme, George Tucker, and Jasper Snoek. Deep Bayesian bandits showdown: An
empirical comparison of Bayesian deep networks for Thompson sampling. arXiv preprint
arXiv:1802.09127, 2018.

[52] Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial
on Thompson sampling. Foundations and Trends® in Machine Learning, 11(1):1-96, 2018.

13

https://papers.nips.cc/paper/2019/file/f3507289cfdc8c9ae93f4098111a13f9-Paper.pdf
https://papers.nips.cc/paper/2019/file/f3507289cfdc8c9ae93f4098111a13f9-Paper.pdf

[53] Jonathan Schmidt, Philipp Hennig, Jorg Nick, and Filip Tronarp. The rank-reduced Kalman
filter: Approximate dynamical-low-rank filtering in high dimensions. Advances in Neural
Information Processing Systems, 36:61364—-61376, 2023.

[54] Madeline E. Scyphers, Justine E.C. Missik, Haley Kujawa, Joel A. Paulson, and Gil Bohrer.
Bayesian optimization for anything (BOA): An open-source framework for accessible, user-
friendly bayesian optimization. 182:106191.

[55] Weiwei Shen, Jun Wang, Yu-Gang Jiang, and Hongyuan Zha. Portfolio choices with orthogonal
bandit learning. In IJCAI, volume 15, pages 974-980, 2015.

[56] Marcin Tomczak, Siddharth Swaroop, and Richard Turner. Efficient low rank gaussian varia-
tional inference for neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 4610—
4622. Curran Associates, Inc., 2020. URL: https://proceedings.neurips.cc/paper_
files/paper/2020/file/310cc7caba76a446£85c1a0d641ba96d-Paper.pdf.

[57] Kevin Tracy. A square-root Kalman filter using only qr decompositions. arXiv preprint
arXiv:2208.06452, 2022.

[58] Joost Van Amersfoort, Lewis Smith, Andrew Jesson, Oscar Key, and Yarin Gal. On fea-
ture collapse and deep kernel learning for single forward pass uncertainty. arXiv preprint
arXiv:2102.11409, 2021.

[59] Harrison Waldon, Faycal Drissi, Yannick Limmer, Uljad Berdica, Jakob Nicolaus Foerster, and
Alvaro Cartea. Dare: The deep adaptive regulator for control of uncertain continuous-time
systems. In ICML 2024 Workshop: Foundations of Reinforcement Learning and Control—
Connections and Perspectives, 2024.

[60] Florian Wenzel, Kevin Roth, Bastiaan Veeling, Jakub Swiatkowski, Linh Tran, Stephan Mandt,
Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How good is the
bayes posterior in deep neural networks really? In International Conference on Machine
Learning, pages 10248-10259. PMLR, 2020.

[61] Jing Xu, Jiaye Teng, Yang Yuan, and Andrew Yao. Towards data-algorithm dependent general-
ization: a case study on overparameterized linear regression. Advances in Neural Information
Processing Systems, 36:79698-79733, 2023.

[62] Zhitong Xu, Haitao Wang, Jeff M Phillips, and Shandian Zhe. Standard Gaussian process
is all you need for high-dimensional Bayesian optimization. In The Thirteenth International
Conference on Learning Representations, 2024.

[63] Renato Zanetti and Kyle J DeMars. Joseph formulation of unscented and quadrature filters with
application to consider states. Journal of Guidance, Control, and Dynamics, 36(6):1860-1864,
2013.

[64] Chen Zeno, Itay Golan, Elad Hoffer, and Daniel Soudry. Task-agnostic continual learning using
online variational bayes with fixed-point updates. Neural Computation, 33(11):3139-3177,
2021.

[65] Zheqing Zhu, Yueyang Liu, Xu Kuang, and Benjamin Van Roy. Non-stationary contextual
bandit learning via neural predictive ensemble sampling. arXiv preprint arXiv:2310.07786,
2023.

14

https://proceedings.neurips.cc/paper_files/paper/2020/file/310cc7ca5a76a446f85c1a0d641ba96d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/310cc7ca5a76a446f85c1a0d641ba96d-Paper.pdf

Appendix

A

B

Notation
Extended Kalman filtering for online learning

Linear algebra results
C.1 Sum of Cholesky matrices i i ittt i

C.2 Singular value decomposition given sum of low-rank-matrices

HiLoFi— further details
D.1 Derivation of HILOF1 o o v v e e e e e e e e e e

D.2 Computational complexity oo e e e e e

Proofs

E.1 Proof of PropositionD.1 o oo
E.2 Proof of PropositionD.2 L
E.3 Proof of Proposition D.3 e
E.4 Proof of Proposition4.1. L

Further algorithms

F1 LoLoFi e e e e e e e e e e e e e
F2 Low-rank Kalman filter (LRKF) i it it e e e e e e
F.3 Replay-buffer variational Bayesian last layer (OnVBLL)

Additional experiments

G.1 Online classification and sequential decision making on the MNIST dataset

G.2 Online classification using LRKF on the CIFAR-10 dataset
G.3 Bandits as recommendation systems ool
G.4 Bayesian optimization i vt e e e e e e e e e e e e e

G.5 In-between uncertainty o v vt i it e e e

15

16

17

18
18
19

21
21
22

22
22
23
24
26

26
26
26
31

A Notation

Symbol Description

[~ 1]2 {2 norm.

Il 1l7 Frobenius norm.

Dy,D, €N Dimension of observations / inputs.

Dyn,Ds € N Number of parameters for the hidden layer / last layer.

D¢ = Dp + Dy Total number of neural network parameters.

N(xz|m,S) Multivariate Gaussian density evaluated at with mean m and
covariance matrix S.

Penv (Y |) Unknown data-generating process for y conditioned on @

po(y|x) Posterior predictive model for y, conditioned on @, and param-
eterized by b.

M xn(R) Space of m-by-n real-valued matrices.

MET(R) Space of m-dimensional positive definite (pd) matrices.

M (R) Space of m-dimensional positive semidefinite (psd) matrices.

Ip D-dimensional identity matrix.

st/2 Upper-triangular Cholesky decomposition of the pd matrix S.

Ty = (Ct,az)
Yt eR

Yt € RPw
Di = (z+, yt)

we = (U1,...,u)
D1t = (D17 R >Dt)

Inputs with context ¢; € RP¢ (possibly empty) and action
a; € AC RPa,

Scalar measurements, rewards, or observations obtained at
timestep t.

Measurements, rewards, or observations obtained at timestep .
Datapoint at time ¢.

Time-ordered collection of vectors uy, € RP».

Dataset at time t.

£ e RPe
h € RPr
0 = (¢,h) € RPe

f(8,x) = f(£,h,x) € RPv

Last layer parameters.

Hidden layer parameters.

Collection of all neural network parameters.

Neural network output with parameters 6 and inputs .

e; © RDy
U € RDB
qe.t >0
gt >0
Ut e € RDZ

Ut h S RDh

Zero-mean noise with covariance R; € Mj{,: (R).

Zero-mean dynamics noise with variance Q; € MES (R).
Last-layer dynamics.

Hidden-layer dynamics.

Zero-mean dynamics noise of last layer parameters with vari-
ance ge,: Ip,.

Zero-mean dynamics noise of hidden-layer parameters with
variance gn,¢ Ip,, .

Et‘t 6 RDe
ht|t E RDh

0. = (Lye, hype) € RPe
th = Var(0; — 6,;)

3¢

275 = arg minE:rank(E):d Hit‘t -3

C: € Maxp(R)

Frequentist estimate for £; given D1 .¢.

Frequentist estimate for h; given Dj.¢.

Frequentist estimate for 8, given D1.;.

Error variance-covariance matrix.

Algorithm-dependent surrogate covariance matrix to ;.

Best rank-d approximation to the surrogate covariance matrix
t.
Rectangular matrix (d x D) matrix such that C] C, = 3,

I:zt+1 = sz(et\u htlta thrl)
Hi = vhf(eﬂta ht\n wt+1)

Jacobian of neural network w.r.t parameters in last layer.
Jacobian of neural network w.r.t. parameter in hidden layers.

Or(B1,...,Bk)

Pd(Ah .. .,AK) S MdXD(R)

pd,+a,(A17 . .,AK) S deD(R)

Cholesky factorization of 31 | B] By, where each By, is an
upper-triangular Cholesky factor (see Appendix C.1).

Best rank-d approximation of 25:1 AT Ay, with Ay €
Ma, «p(R), di < D.

Best rank-d approximation of Zszl AT Ay +alp,witha >
0 (see Appendix C.2).

16

B Extended Kalman filtering for online learning

Here, we explain in more detail the background of the EKF for online learning presented in Section
3.2. To make this section self-contained, we repeat parts of the material introduced in that section. Let
us assume that y; = £] ¢(x¢, hy) + e, where e; is a zero-mean random variable with observation

covariance R; € MJB: (R). Given a starting vector 8y, we assume that model parameters 6; =
(£, h;) € RPe and observations y; € RPv evolve according to the state-space model
0, =60;_1+ uy,
t t—1 t (an
yr = f(0r, 1) + ey,

where u; € RP¢ is a zero-mean random vector with known dynamics covariance Q; € MEG (R),
and e; € RPv is a zero-mean random vector with known observation covariance R; € MBZ‘ (R).
As before, we assume Cov(6g, e;) = 0 forall t € N and Cov(uy, ex) = 0forall ¢,k € N.

We now consider a first-order approximation of f around 6;_1;_1, that is,

Y = f(Or_1pi—1, 1) + J; (6, — 0 _111-1) + e, (12)
where 6, 1,1 = [¢[_,,; hl . ,]" is given, and J, = [L, H,] with L, =
Vef(li—1ji—1, hi_1pp—1,) and Hy = Vi f(€ 11, hy_1pi—1, ®t).

Following a frequentist approach to the Kalman filter [27] and given the starting latent random vector
000 := 6o, we seek to obtain sequential updates for the best (L?) linear estimate of the expected
value of 6; given data y;.,. We formalize this in the following proposition.

Proposition B.1. Let k,t € N and let y,, 0; follow the SSM (12). The solution to the optimization
problem
arg max E[||6; — Ay1:k|\§] , (13)
AEM(Dy+Dy)x(k Dy)(R)

is the matrix A:‘ i given by
At*lk = Cov(0:, y1.k) Var(ylzk)_l. (14)
The best linear unbiased predictor (BLUP) for model parameters 0., given observations yi ., is
0t|k = A:\k Y1k, (15)
and the error variance covariance (EVC) matrix is defined as
3k = Var(0;) — A}, Var(yi.x) A;Tk. (16)

Proposition B.2. Under the SSM (12), the BLUP and the EVC can be written in the form of Kalman
filtering predict and update equations. Here, the predict equations are

et\tfl = atfl\tflv

ipe—1 = -1 + Qq, an
and the update equations are
0, = 0y +~Kt €, N (18)
S =T -KiJy) By (I -K J)T + K, RyK],
with
€ = Yt — f(et—l\t—la xy),
K=, 37 S, (19)

St = jt2t|t71 jg’ + Rt.

Proof. The proof follows from the linear form of (12), Lemmas 2.1 to 2.3, and Theorem 4.2 in [19].
O

17

Remark B.3. The update equations in (18) are recursive and characterize estimate of the unknown
latent state and the estimated error estimation through the first two moments. Furthermore, the update
for the covariance in (18) is in Joseph form [63] and is known to be numerically stable. In our method,
we leverage these two facts to target a low-rank EVC through a second-step optimization that has
numerically-stable updates.

Corollary B.4 (Kalman filter as a Bayesian posterior). Assume a Gaussian density for the initial
parameters p(0y) = N (8¢ | 6oj0, Zojo) and for the noise term p(e;) = N (e; |0, R;). The BLUP
0y; and the EVC 3|, are the parameters of the Gaussian that characterize the posterior of model
parameters 0, given y1.;, more precisely,

p(Oc | y1:e) = N(6: | 0yje, Ze). (20)
As a consequence, the posterior predictive for the next observation in the sequence is
(Yt | Y14-1) = /N (yt | F(Or—1j—1, @) + To (0 — Oyy_1), Rt) p(0; | Dy:4—1)d6,

=Nyt | f(Or—1jt—1, 1), TS J7 + Ry).

2

C Linear algebra results

C.1 Sum of Cholesky matrices

Here, we generalize the result found in [57] to any set of K > 2 matrices, which we use to derive the
method LRKF, HiLoFi, and LoLoFi.

Proposition C.1 (QR of sum of Cholesky matrices). Let A; fori € {1,2,...,I} be a collection of

(D x D) positive definite matrices and let Ai/ % be the upper-triangular Cholesky decomposition of
A,;. Let M be the stacked (D I x D) matrix given by

A2
Al
M= 2. (22)
NG
It follows that
I
RTR=) A,;. (23)

i=1
where R is R component in the QR decomposition of M.

Proof. We see that
I

M™M = Z A;. (24)
i=1
Consider the QR decomposition of M
M = QR, (25)
with Q an orthogonal matrix and R and upper-triangular matrix.
Then,
I
> A =M"TM=R"Q"QR=RTR. (26)

i=1
As a consequence, we note that the square root of the matrix A; + - - - + A is the upper-triangular
matrix in the QR decomposition of M.

Remark In what follows, we denote the result of obtaining the R matrix of the QR decomposition
of the row-stacked matrices A;/Q fori e {1,...,1} by

Qr(Al2 .. A}, Q27)

18

C.2 Singular value decomposition given sum of low-rank-matrices

Proposition C.2 (SVD of sum of low-rank matrices). Let A; fori € {1,2,...,N} be M5 (R)
positive semi-definite matrices such that A; = WZT W,, where W,; € R¥™*P and d < D. The best
rank-d approximation of the sum is

I
d AT, (28)
=N

where J = S.; VT € R¥™*P 'S, ; are the top d singular values and V contains the right singular
vectors of the stacked (d N x D) matrix given by

W,
W,
N=| . |. (29)
Wy
Proof. Let A, fori € {1,2,..., N} be M},"(R) matrices with A; = W] W,;, W, € R¥*P and
d < D. Form the matrix N given by

Wi
N=| |=UsVrT, (30)
Wy
where U S VT is its full singular value decomposition, with U € RANXdAN ' § c RANXD and
V € RP*D Then

N N

> A=) WIW;=N'N

=1 =1
= (USVHT(USVT) (31
=VSTUTUSVT
=VS2VT,

Hence), A; has eigenvectors V and eigenvalues given by the diagonal entries of S2. By the
symmetric-matrix form of the Eckart—Young theorem [17, 10], its best rank-d approximation in
Frobenius norm is

V diag(o?,...,03,0,...) VT. (32)
Writing S.4 = diag(o, . ..,04) € R4*P, one checks
V diag(0?,...,0%,0,...) VT = (S, VT)' (S, VT) = JTJ, (33)
where 8 VT € RiXD
S.g:= (iiClag (o1, .. ,O’;) , 4
and {0y} are the singular vectors of Zi:;l A,. O

Takeaway. Proposition C.2 shows that to form the best rank-d approximation of Zil A,; one does
not need to assemble or carry out the SVD of the full D x D sum. Instead, one stacks the low-rank

factors into
W,

N=| : | eREN*D (35)
Wy

and compute a reduced SVD (or symmetric eigendecomposition) of the small (dN) x (dN) Gram
matrix NN . This costs

O((dN)?D + (dN)3) ~ O(d*N?D) when dN < D, (36)

19

versus the O(D?) required for a full SVD on the D x D sum. Moreover, memory and computation
scale with d and dN rather than with the large dimension D because all operations involve only the
(dN) x D matrix N and the d x D factor J.

In what follows, we denote the result of obtaining the best rank-d approximation matrix of the SVD
decomposition of the row-stacked matrices Wl1 % fori € {1,...,N} by

Pa(W1,...,Wy). 37)

Corollary C.3. If the sum of matrices is of the form

N
Z A, +alp (38)
n=1

with a > 0, then the best rank-d approximation is of the form

N
S Ap+alp~IT, Ty, (39)

n=1

where
Jig=Si+q VT € RP,

. (40)
S.d+q := diag (\/O‘% —|—q7...,\/o§ —|—q) ,

and {o} }¢_, are the top-d singular values ofzgzl A,

Proof. From (31) in Proposition C.2 we obtain

N
ST A +al=VS*VT +al =V (S?+alp) VI = VS, VT, (41)
i=1
where
S?, = diag(o} +a,...,0% +a). (42)
Let
S+a:diag(\/a%—ka,...,q/o’%—ka), (43)
then
N
A,=VSi VT
n=1 (44)
— (VS4aVT)T (VS,,VT)
=J1, I a
O

Takeaway. If the sum of matrices can be written as the sum of multiplied low-rank factors plus an
additional identity matrix times a constant, then, computation of the best rank d-matrix in low-rank
factor can be obtained by performing SVD over the low-rank factors and modifying the singular
values to include the term a.

In what follows, we denote the result of obtaining the best rank-d approximation matrix of the

SVD decomposition of the row-stacked matrices Wz1 % fori € {1,..., N} plus an identity times a
real-valued number a > 0 as

Pa+a(W1,...,Wpy). (45)

20

D HiLoFi— further details

D.1 Derivation of HiLoFi

Consider the linearized model

Yi = f(gt—1|t—1a ht—1|t—1a xy) + Ly (€ — Et—l\t—l) + I:It(ht - ht—1|t—1) + e, (46)
where £;_1|;_1 and h;_;;_ are given.

We start the algorithm by initialising the beliefs about the last layer parameters £ and the hidden layer
parameters h. We set

E[€o] = €0, Elho] = hoo, Var(€y) = g0, Var(hg) = CJ Co, (47)

for known Co € Mg, xp,, (R), hojg € RP», 2 € MET(R), and £y € RP2. Next, we assume
that for ¢t > 1, the latent last layer parameters £;.; and the hidden layer parameters h.; follow the
dynamics

by =41+ ugy, hy=hi_1 +upg, (48)

where uy 1.+ and up 1. are zero-mean independent noise variables' with dynamics covariance
matrices Var(yg’t) = Qe € /\/125/Z (R) and Var(uh:t) =Qu: € /\/lj{,h (R). For simplicity and
to exploit efficient linear algebra techniques for belief updates, we assume Qg = g¢+Ip, and
Qh,t = gn,tIp, . A simple choice is to set Qp; = OI to avoid forgetting past data; see e.g., [16].

Proposition D.1 (Predict step). With the SSM assumption (48), the approximate covariance
Var(€;_1 — £y_1j4—1) = g1 and the approximate covariance Var(h;_1 — hy_i_1) =
C]_, C;_1, the predict step becomes

hii—1 =hi_qjt-1, Lijp—1 =4 _1)t-1, “9)
e tjp—1 = 24,t—1 +qetIp,, Xhyie—1 = Cl_,Ci1+qni1Ip,.

The proof of Proposition D.1 is in Appendix E.1.
Proposition D.2 (Variance of the innovation). The upper Cholesky decomposition of innovation

variance takes the form

Al/
Si/2 — Op (2z

)

2~ ~ ~ ~
L L Vaei LY, Coa B, i B Ry (50)
where f;t and I:It are defined in Section 3.2.

The proof of Proposition D.2 is in Appendix E.2.

Next, our update step for the BLUP resembles an EKF update, while the EVC update approximates a
block-diagonal covariance: the last layer block is full-rank, and the hidden layer blocks are low-rank.
To maintain numerical stability and low-memory updates, we track the Cholesky factor for the last
layer and a low-rank factor for the hidden layers. The Cholesky factor is taken from a surrogate matrix
that avoids computing a full M p, « p,(R) matrix by neglecting the artificial dynamics covariance
ge,t- The low-rank component for hidden layers is approximated via a two-step process: (i) a fast
surrogate predicted covariance, and (ii) a rank Dy, projection error. Like the Cholesky factor, the
surrogate covariance in (i) reduces the computational cost of dynamics noise, which does not reflect
the system’s true dynamics. However, we retain some information from the dynamics noise to update
all hidden layer parameters. Step (ii) enables a fast update rule, crucial for overparameterized neural
networks [38]. We detail this step in the following proposition.

Proposition D.3 (Kalman gain, update BLUP, and update EVC). Define the gain matrices

szt =V4:Ci-1Cl_| + qntVhy, Kz,t =V si—1+ et Ve, (51
where Vi, ; = St_l/2 St_T/2 I:It7 and Vg = 8;1/2 St_T/2 L,. The updated BLUP for the last
layer parameters and hidden layer parameters are

hyt=hi_ 11 + Knirer, Lyp=4Li_1i-1 + Ko €. (52)

Ye., Cov(tue,i, un,;) = 0foralli,j € {1,...,T}.

21

The approximate posterior covariance f]t‘t is the best block-diagonal approximation (in Frobenius
norm) of the surrogate matrix 3, given by

K, ,L.)$ CKy)T — T T
(Ipy, —Kg L)t 1(Ip, —Kpg 1 Li)T —Kg ;R K, i Kg,tRf,Kh’_t
Kp tReKG | (Ip,, ~Kr,tH)C]_1Cy_1(Ip, ~Kp (AT —Kp (ReK] +ap 1 Ip, |’

that has full rank for the last layer and rank dy, for the hidden layer. This results in a Cholesky factor
for the last-layer covariance given by

~1/2 ~1/2 -
Yot = Qr (El,t—l(l — K Ly)T, Rz/zKlTi,t) ’ (53)
and a low-rank factor for the hidden layers given by

Ct = Pantan (Coma(T - KnaH)T, RYPK],) (54)
The proof is in Appendix E.3.

D.2 Computational complexity

We now compare the computational complexity of the algorithms we employ. Recall that Dy, Dy,
and D, are the number of parameters in the last layer, hidden layers, and the size of the output layer,
respectively. As before, Dg = Dy + Dy,. The dimensions dg, dp,, with dp < Dy and dp, < Dp,, are
the low-dimensional subspaces for the last and hidden layers, respectively, and d = dy + dp,.

The computational complexity of our algorithm when using full-rank in the last layer is O(Dg (Dg +
Dy)? + Dy (dp, + Dy)?). For low-dimensional outputs, this is O(Dg® + Dpdy?). For high-
dimensional outputs, we may choose to use a low-rank approximation for the last layer (which we
call LoLoF1i) this reduces the cost to O(Dy (dg + Dy)? + Dy, (dn, + Dyy)?), which is linear in Dg
The primary computational bottlenecks in our method are the calculations for the Kalman gain of
the hidden and last layers, with costs O(2 Dp, Dyg) and O(2 Dy Dyz) respectively. This efficiency

arises because Si /% s upper triangular, allowing the system S; /2 Si /2 = J for V to be solved in
O(2 Dy, D) as opposed to O(Dp, D,,*). Additionally, approximating the covariance matrix via
truncated SVD incurs a cost of O(Dp, (dp, + Dy)? + (dp, + Dy)? + dp, (dp + Dy) Dp), as detailed
in Figure 8.6.1 in [23]. Finally, the corresponding cost for the last layer is O(Dg (D¢ + Dy)?).

Among related methods, the closest to ours in terms of computational costs are variational Bayes
approaches such as the Slang method [47], the L-RVGA method [36], and the LoFi method [8].
In particular, LoFi uses the linearized Gaussian updates (similar to the ones in this paper), but
approximates the precision matrix using a diagonal-plus-low rank (DLR) form. The appeal for DLR
precision matrices is twofold. First, they enable the application of the Woodbury identity, leading to a
predict step of cost O(Dg d + d*) and an update step of O(Dg (d + Dy,)?) = O(Dyg (d + Dy)? +
Dy, (d+ Dy)?). Second, incorporating positive diagonal terms ensures the matrix is positive definite,
so that a valid posterior Gaussian density is defined.

Although HiLoFi and LoFi have the same asymptotic complexity, LoFi incurs additional practical
overhead due to three key operations absent in HiLoFi: (1) the inversion of a (d + D,,) rectangular
matrix, (2) the inversion of a d rectangular matrix, and (3) the Cholesky decomposition of a d
rectangular matrix. These operations increase the actual per-step computational time, which in our
example, scales at about one second per additional rank. This behaviour is shown in the empirical
comparison across HiLoFi, LRKF, and LoF1i in the online classification setting (Figure 6, Appendix
G.1).

E Proofs

E.1 Proof of Proposition D.1

Proof. Following Proposition B.2, the predicted mean takes the form

t—1lt—1

L 14—
9t\t71 = 6t71|t71 = {ht 1t 1] . (55)

22

Next, the predicted posterior covariance takes the form

o1 = 11 + Qe (56)
where
g1
= Var(etfl - 0t71|t71)
B Var(€y—1 — £y_1j4—1) Cov(€y—1 —€_1j—1,ht—1 — hy_1i—1)
Cov(hi—1 —hy_1jp—1,€i-1 — £i_1}¢—1) Var(h;—1 — hy_1j4—1).
i1
= COV(Etfl - £t711jt717 hi1— ht71|t71)
COV(ht—l - htfl\tfhztfl - £t71|t71) W, W
(57)
Next,
COV(et—l - Zt—l\t—la hy 1 — ht—1|t—1)
= COV(Et—la ht—l)
t—1 t—1
= Cov (Eo + Z Ug -, ho + Z uh77>
=1 T=1 (58)
t—1 t—1 t—1 —1
= COV(E(), ho) + Z COV(£07 'U'hﬂ') + Z COV('LL&T, ho) + Z Z COV(’U,LT, uh7T/)
T=1 T=1 T=171/=1
= 07
which follows from the assumptions about the SSM. Then
Et71|t71 = diag(zl,tfl\tfla CLl Ci). (59)
and
31 = 141 +
tt—1 t—1i—1 1+ Qe 60)

= diag(Xgs—1t-1 + q¢Ip,, C{_, Ci—1 + qnIp,).

Given that 34 ;_|;_ is approximated at ¢ — 1 through 2@7,5,1 and X, ;14— is approximated at
t — 1 through C] C;, we obtain

-1, ~ Ber—1 + qelp,,

T (61)
Yit-1,n 2 C_ 1 Cio1 +qnlp,.

E.2 Proof of Proposition D.2

Proof. By definition of y; and Proposition B.2, the innovation takes the form

€ =Yt — f(et—1|t—17 ht—1|t—1awt)
=Ji(0: — 6y 1) + e (62)
=L (6 - Liji—1) + H, (h, — hiji—1) + e

23

Next, the variance of the innovation is
S: = Var(e)
= Var (it (8 — Lye—1) + Hy (hy — hyp_q) + et)
= L; Var(¢, — £,;_1)L] + H, Var(h; — hy;_1)H] + Var(e;)
=L Zps 1 L] + H X0 H] + Ry
=L, 3, L] 4+ ¢, L, L] + H, C] C;H] + ¢, ,H, H] + R,

5./ ©9
£t—1
LT
s a/2 B _ : _ /2 \/QZ,t~t
= |L Ee,t—l \V qe.t Lt H Ct—l VAh,t Ht RT Ct—l I:IT
\/q“/LtT
R!/2
— Sz’/2 Si/Q
with
812 = Qn (T} LT, Vaei LT, Coa HY, an BT, Ry?). (64)
O
E.3 Proof of Proposition D.3
Proof. First, by Proposition B.2, the Kalman gain matrix is given by
K=, ,J]S; " (65)

Next, following Proposition D.1 and Proposition D.2, we rewrite the Kalman gain as

. L t
K; = diag(Xg;—1 C]_; Ci—1) [ﬁtj S; !

. L;S;*
= diag(Xg¢—1 C{_; Ci—1) [IJIZ St_l}
¢
o (66)
_ | Beap—1 L Sy

- [CtT1 Ci1 Ly Stl]
_ | Key
= x|

Ky, — (L*lL‘TIZ))T
et =Ly "Ly "Ly g1

where

o . (67
Kp. = (L; L TH, Wt_1WtT_1) .

From the above and Proposition D.1 the updated covariance matrix takes the form
Soe = (=K Je) By (I~ KeJ)T + K R K], (68)

where ~
I-K;J;
_ [, 0 Keel 17 7
= - 02 IDh:l — |:Kh7t:| [Lt Ht]
1p, 0] _[KeiLy KeoH, (69)
|0 Ip, Kn:L: Kp:H;

1p, — Kg,tflt Ke,tI:It ~ }
Ky Ly Ip, —Kn:H |’

24

the predicted error covariance 3, is

e t)t—1 0
Sy = |0 70
tlt—1 |: 0 Eh,t\t—l) (70)
and
Ke,: T T
K, R/ K] = |:Kh,’t R, [Ke,t Kh,t]
- , a
_ [Kei Ry Kl%t Ket R Ky
Kh,t R, K“ Kh,t R K.frb,t .
Thus,
DI
_ [p, —Ke 1 L)Sp 4o 1(Ip, —Ket L)T + Ke Re K], } Ke i Re K],
- Kp Rt Ky, (Ip, —Kn,t H)Zp i 1(Ipy, —KpH)T +Kp Re K] |°
(72)

Next, we consider the following surrogate covariance matrix which modifies the second block-
diagonal entry

2t|t =
(Ip, —KetL)Tp 11111 (Ip, K L) T+Kg RyK] Ke Rk,
Kp R¢K], (Ip, —Kn,H,)C]_,Ci1(Ip, —Kn, H)T+Kn RK], ,+an,iIp,,
(73)
It then follows that
2
. . . ~ b 0
et Dt = arg min e — { OZ »
¢, Shirank(Sh)=d hlllg (74)

= argmin [|Zes — ZelF 4 1Zhs — Sallp + 2| Kea R K] 17,
3¢, Xp:rank(Xh)=d

with
il,t = (Ip, —Kg;]:t)ze,t—lﬁ—l(ID[— Koy ftt)T + Ke: Ry Kzt,

. . - (75)
Yht=~Ap, —Kn:H)C] Cio1(Ip, — Kp:Hy)T + Kp Ry KIL,t + qn.dp,, -
Then, ﬁ]g,t = EN]“ and ﬁ]h,t is given by the first dj, principal components of XNI;W.

Next, we find the update rule for the Cholesky and low-rank factors. First, the EVC for the last layer
takes the form

~ ~ ~ \T
e = (1-KeaLi) Seop (T-KeeLe) +Keo RiK],

~ ~ T
= (1= KoL) Seyer (T- Koo L)+ Koo RYRIK],

(76)
_ = (T-Ke L)'
= |:(I — Ke,t Lt) Ez,/til‘tfl K&t R2/2:| l,t‘t—l 1/2) £t Lt 7
R, Ky,
so that 12 ;
Seh = Qn (B0, (T-KeaLe) RYKE). (77)
Then, the EVC covariance for the hidden layers (lower right block-diagonal) is
- - N
She= (1-Kn, 1) CL, Coy (T-KngHy)' + Ky RIPRYK], + an I,
N
C,_ (1 “ K. H)
_ t—1 h,t Hg +anaIp, (78)

(1w ory rmr] [()
Rt/ KIL,t

= étT C:+ Gn,t1p,, -

25

Finally, by Corollary C.3, the best rank-d low-rank factor is

~\T
Ct = Py, +qn., (Ct—l (I —Khp,t Ht)) Ri/QK;;,,t) € M(ay, +D,)xDn (R). (79)
So that A
3t =CJCs. (80)
]

E.4 Proof of Proposition 4.1

Proof. We seek to bound

120 = Zepele- 81)
Following the arguments from Proposition F.3, we obtain
12 — ﬁ)t\tHF <[z~ it\t e+ |l itlt - ﬁ:tlt e, (82)

where
~ ~ ~ ~ \T
Eourr = ant (2/Kn Fille + [KnFLE) + qeo ||(T-Keo L) (T-KeoLe) | 83)

and
Eproj = | Xht — CI Cillr + 2| Ke: R K [lp (84)

Given that C] C; is the best rank-d approximation of > h.t it follows from a similar derivation to
(107) that

Dy,
IShe—CTCille = | Y. A, (85)
k=dp+1
where {)\k}kD:hdh 41 are bottom (Dy, — dp,) eigenvalues of 3. O

F Further algorithms

F.1 LoLoFi

Algorithm 3 shows a single step of LoLoFi. The low-rank factor for last layers Cp g € My, % p,(R)
and the low-rank factor for the hidden layers Cp, o € Mg, « p,, (R) are chosen at initialization.

F.2 Low-rank Kalman filter (LRKF)

Inspired by [57], we derive a novel version of the low-rank Kalman filter which is (i) more com-
putationally efficient, (ii) simple to implement, and (iii) provably optimal (in terms of Frobenius
norm). We call this the LRKF method. Instead of keeping track of 3, or Sy, we keep track of a

low-rank factor for the covariance, and compute the Cholesky factor for the innovation variance Si /2,
Algorithm 4 summarizes the predict and update steps for LRKF. Next we turn to the derivation.
We assume the model parameters € and the observations y follow
0,=60;_1+u
t t—1 ts (8 6)
y: = H; 0, + ey,

where Var(e;) = Ry is known and H is the known projection matrix. Both, e; and u, are zero-mean
random vectors.

In the Kalman filter update equations, the so-called posterior mean and covariances are given by

e =y + Ko (ye —9e),

87
Et = Var(@t - /’l't)’ ()

26

Algorithm 3 Single step of LoLoF1i for online learning for ¢ > 1.

Require: R; // measurement variance
Require: (g ¢, g +) dynamics covariance for last layer and hidden layers
Require: (y;,x;) // observation and input
Require: b;_; = (’et—l\t—lvht—l\t—la Ce—1, Ch,t—l) // previous belief
// predict step
g J—ijp—1, he—1j—1,)
2 Ly = Vef(—1jt-1, he—1)t-1, Tt)
3: Hy = Vi f(l_1)i—1, hi_1pi—1, Tt)
// innovation(one-step-ahead error) and Cholesky innovation variance
4 €Y — Yy
5. 82« op (c,z,t_1 L], @i LT, Cny 1 HY, /any H], Rtl/z) :
// gain for hidden layers
6: Vo« S; /28, 7°H,
7. Ky ViiCri-1CL, | +qnit Vhy
// gain for last layer
Ve, « S;%8, %L,
Kj, < Ve Zose1+det Veu
10: Ky, < Vg Cor-1Cp, | +qet Ve
// mean update step
1 hye <= hy 11 + Kp i€
12: £y < £y 101 + Kot
// low-rank updates

. F T 1/2¢-1
13: Cet < Piytge, | Cep—1 (I-KeiLi) Ry KZ,t)

. 7\ 1/2¢eT
14: Cpt < Py, ,+qn (Ch)t,1 (I —Khn Ht) ; Ry Kh,t)
15: Return bt = (£t|t7 ht|t7 Cl,ta Ch,t)

o ®

where p is given,

Yy =H, Hijp—1 = H, Hy_1)¢—1,
K, = Cov(6,,€;)Var(e;) ' = -1 HS; !,

€ =y —Hypyy_q, (88)
S; =H; 3,1 Hf + Ry,
Rt = Var(et).

The memory requirements of the posterior covariance is O(D?), with D number of parameters. This
makes it unfeasible to store for moderately-sized neural networks.

Thus, to reduce the computational cost, we maintain the best rank d approximation of the covariance
matrix by

2t|t ~ WtT W;, (39)
where W; € R%*P is the best rank-d approximation to X; (in a Frobenius norm sense). Furthermore,
to maintain a numerically stable method, we work with the Cholesky of the innovation variance. In

effect, this is a variant square-root low-rank Kalman filter method. We explain the details of this
method below.

The predict step equations are given by

Byjg—1 = M1, (90)
-1 = Cl,Ci1+ ¢l 1)

27

Proposition F.1 (Kalman gain and innovations). The variance S; of the innovation is
S, =H; X1 H +R;
=H,(C]_,Ci_1 +¢I)H] + R,
=H,C{C,H] +¢HH] + R,
C,HT 92)
2 T
= |H,C] gH, R} @%t

= s7/%s,/%,

with Si/Q given by
S: = Qr(C,H], Vg H] , R;?), (93)

where Qg returns the R matrix from the QR decomposition row-stacked arguments and Rt1 /2 is the
upper-triangular Cholesky decomposition of R. The Kalman gain is given by

K, =3, 1HS;!
= (S; ' He Zypp)” (94)
=(S;'S;TH,; (C]_,Ci—1 +a:1p,))"
Proposition F.2 (Update step). The updated mean is
By = tye—1 + Ki(ye — 90). 95)

The update covariance 3, approximated through a two-step procedure: first, a surrogate covariance
that ignores the cross-term effect of Ky H, on the artificial noise covariance q;, and second, a best
rank-d approximation (in Frobenious norm) to the surrogate matrix takes the low-rank form

3. = CI Cy, (96)

with
C, =P, (CH (I-K,H,)", Ri/QKg) € Maxp, (R), 97)

the low-rank (rectangular decomposition) matrix.

Proof. The updated covariance mean follows directly from (18).

The updated covariance is

S =01-KH) S, (I-KH) +K RK]
(I-K,H,) (CI_, Ci1 +¢:1p,) I-K.H)" + K, R]*R,/’K]
(I-K,H,) (CI_,Ci 1 +q1p,) I-K/H)" +K,R]>R,/*K]
[

Cio1 I-K,Hy)T

I—Kth Ct 1 KtRT/2j| |: :|+qt (I—Kth) (I—Kth)T.

- R, K]
(98)
Next, we consider the surrogate EVC matrix
- Cio1 I-K,H))T
_ /2 t—1 ¢ Hy
3 {(I K. H;) C[_, K:R] } [R§/2Kg. + qiIp, 99)
=C] C, + ¢Ip,,
where
~ C I-K.H
Ci = [" 1f({mK$ o } € R4, (100)
t

Next, the best rank-d matrix is

28

. - 2
3, = argmin HEthH
F

Srank(2)=d
= argmin [€7€,+aTp, - 2H2 (101)
S:rank(X)=d F
=C/ Cy,
where
Ci = Pura, (Ct_1 1-K,H,)T, R}/ng) € Mayp, (R) (102)

is the best d-dimensional low-rank matrix given the stacked matrices C; and the dynamics covariance
qt-
O

Proposition E.3. The per-step error induced by the approximation of the covariance at time t is
bounded by

De
10 — Bepelle < a0 QUK H e+ 1K E) + | S 22, (103)
k=d+1

where {)‘k}kDid+1 are the bottom (Dg — d) eigenvalues of 3.

Proof. We seek to bound

IS0 = Sapelle, (104)
where 3, is given by (98) and 2t|t is given by (101). We first note that
e — ﬁ]tlt = (2 - §~3t|t> + (iﬂt - 2t|t>) (105)
where 2t|t is the surrogate covariance matrix (99). Then,
B4 = Begelle < 12— Sepelle + | Seje — Sepe e (106)
=E =E .

The norm for Ey,;,; follows directly from the definition of the low-rank approximation. Let US VT
be the SVD decomposition of itlt and let US.4; 'V be the SVD decomposition of ﬁ)“t. Here,
S = diag(A1,...,Ap,) and S.; = diag(A1, ..., Aq,0,...,0) are the singular values (eigenvalues)
of the matrices it“ and 2t|t respectively, ordered in descending order. Then,
[Eprojllr = [USVT = US4 VT|p
=[[U(S —8S.4) VT|[r

= \/TH[(U (8 ~ 8.0) V1) (U (S ~ S.0) VT)T]
= /Tr[U (S —S.y) VIV (S — S.4) UT]

= /Ti[(S — S.a) VIV (S — S.q) UTU] (107)
=/ Te[(S - S.0)°]
Do
— Z)\i’
k=d+1

where {\, 129, 1 are the bottom (Dg — d) eigenvalues of 3.
Next, an upper bound for the norm Ey,,;, is as follows
”EsurrHF = ||2t\t - Z~:t\tHF
= ||Qt (I - Ky Ht) (I -K; Ht) —qt I||F
= q ||(K¢ Hy) (K, Hy)T — (K¢ He) — (K Hy)T[p
< (K¢ Hy)ll3 + 2K, He[p) -

(108)

29

Algorithm 4 Predict and update steps in the low-rank Kalman filter (LRKF)

Require: R; // measurement variance

Require: ¢; // dynamics covariance

Require: (y;,z:) // observation and input

Require: b;_1 = (p,_1,Ci—1) // previous belief
// predict step

1: ’gt — h(Gt,wt)

2: H; < Voh(p,_q,xt)
// innovation and (Cholesky) innovation variance

3 €Y — Y

4: 8}"% « Qp(C, H], /5 H,, R;?)
// gain matrix

5.V, S; /28, 7?H,

6: Kl < V,C,_1C]_, +¢V,// lou-rank update
// mean and low-rank factor updates

7: My < py_q + K e

8: Cy« Py (CH (I-K,H,)T, R,}/QKJ)
9: Return b; = (u,, C;) // updated belief

F.2.1 Error analysis for LRKF

Below, we analyze the single-step error incurred by LRKF without dynamics in the model parameters

and scalar linear model, i.e., ; = 0; 1 = ... = 0 and y; = 07 z; + e; with Var[e;] = r2.

Proposition F.4. Consider the linear model
yr = 0Txy + ey,
where e, is zero-mean with Var|ey] = 2, and let 3;_ = Var(0 — 0,_y;_,). Let 3,1 denote the
rank-d covariance used by LRKF, and define
Vo= min{thZt_lact, sc{f]t_lxt} +7r2 (> 0), € = Y — BtT_llt_lsct.
Then the one-step difference between the BLUP (full-rank update) and the rank-d LRKF update
satisfies
. 1 01(2i—1) ||]|3
164 = Buula < leloan (B ol (£ + PR,
t t

Here 01(%¢-1) > -+ > op(X¢_1) are the singular values of 3;_1, 6, is the BLUP, and ét‘t is the
rank-d LRKF estimate.

(109)

In this setting, the surrogate covariance introduced by LRKF is unnecessary, and 3, = CJC, reduces
to the best rank-d approximation of the EVC matrix ¥;_; = Var(@ — 6,_1;,_1). As Proposition
F.4 shows, a single step of LRKF deviates from the dense (i.e., full-KF) update by a factor governed
entirely by the rank truncation. At time ¢, the residual €;, the maximum eigenvalue o1 (2¢_1), and
the feature x; are all fixed. Consequently, the only way to tighten the bound and reduce the gap to
the full update is to increase the chosen rank d.

Proof. We first note that
Ot = 011 + Ky ey,

]) (110)
0t = 0 _1—1 + Ky ey,
with
K, = % Sy =2l By @y + 12,
5 ¢ (111)
K, = 7t§1 wt, Sy = x] S+
t

30

Then A
Yi1xt Y1y

Kt—Kt: - =
S.
@t . ? (112)
t—1 — 24¢—1) Tt - 1 1
= Ef - — = .
S, + 24 1wt(5t St)
Thus,
. X S -3)z . 1 1
|9tt9tt2||(Kth)€t||2§|€t|< B Bevm e e(g -2))
t 9 t St 2
@D (1I1)
(113)

Bound for (1).

(B — 3 1)@y
Sy

[>y Py EA < Tar1(Zi1) [[24l2

9 |St| Vt

where we used Eckart—Young—Mirsky [17] and | S| > v, := min{e] 312y, & 312} + 12 >
0.

Bound for (IT). Since

11 | i — S| _ |2 (B2 — B 1)a | < lll3 121 =]
St St |St St| |St St| a 7152 7
we obtain
A 2131 -2 3, 3 >N
(II) < ”21&—1”2 ||-’Bt||2 ||wt||2 ” t t 1”2 o || t 1”2 ||wt||20d+1(t 1)

|-
W7 7
Since ||2¢_1||2 = 01(4_1), this becomes

o1(Bi-1) |23 0as1(Be-1)

I <
() = VE

Plugging the bounds for (I) and (IT) into (113) yields

. 1 o1(B) [Jzl3
1841 = Ouelle < ler| oara(Be-1) [l (W ¢ AFe) s 72)),
: i

as claimed. O
F.3 Replay-buffer variational Bayesian last layer (OnVBLL)
The VBLL method has explicit posterior predictive

py|L,h, 2. R) =N (y|€T¢(h,x+), £Tp(h,x) X(h,x)TL+R).

Building on [25, 5], we observe that for any given ¢(£) = N (£| £, %), a lower-bound for the marginal
log-likelihood of a single datapoint is given by

logp(yt | L, h, R) >]Eq(Z) [logp(yt | wtvzv ha R)]
=105 (3| €76(h, @), R) — Jo(h, @)D o(hx) Tx (R™) (114
— —L,(6,h,R,).

Following [33, 32, 30] a generalized posterior with loss function L is given by

@8, h,R,X) x ¢:—1(€,h, R, X) exp(—L:(¢, h, R, X)). (115)

31

Estimation of the posterior mean (MAP filtering) involves estimating

£y, hi, Ry, 3y = argmax ¢, (¢, h, R, 3) (116)
£h.R,Z
which can be done implicitly through adaptive optimization methods as shown in [2]. Next, to improve
the performance, we consider a replay-buffer which has been shown to be much more efficient than
doing fully-online SGD [1, 9, 40]. This assumption breaks with the fully-online assumption, but it is
a good contender in sequential decision making problems in stationary environments.

G Additional experiments

G.1 Online classification and sequential decision making on the MNIST dataset

The results in Section 5.2 consider the LeNet5 convolutional neural network (CNN) architecture
[39]. In this architecture, the last layer is 80-dimensional and the output layer is 10-dimensional,
which corresponds to each of the 10 possible classes. Applying HiLoF1i in this setting would need the
storage and update of an 800 x 800 covariance matrix and 800-dimensional mean vector. Sequential
update of the Cholesky representation of this covariance matrix, although feasible, takes most of the
computational cost in a single step of HiLoFi. Given this, here we consider LoLoF1i to offset the
computational cost of the layer layer. Another reason to prefer LoLoFi over HiLoF1i in this setting
is that the rank of the last layer is 800-dimensional, whereas the rank for the hidden layers is 50
dimensional. This corresponds to an overparametrized linear regression, which has been shown to
have some pathologies in the offline setting [61].

As a simpler baseline, which does not model uncertainty, we consider Muon (muon) [31], which a
special case of the Shampoo optimizer [24]. This is a quasi second-order optimization method that is
scalable and shows strong empirical performance. We use the implementation in the Optax library
[12]. Unlike the other methods, it only computes a point estimate, so we cannot use it for computing
the posterior predictive. We use this method for the e-greedy bandit in Appendix G.1.3 and as an
additional choice of optimizer in Section G.1.1.

G.1.1 Online classification on the MNIST dataset

In this experiment, we consider the problem online learning and classification on the MNIST dataset
using the LeNet5 CNN. We use the optimizers detailed in Section 5.2. We take the data D;. with
T = 60,000 and D; = (x4, y;), where x; is a (28 x 28 x 1) array and y; € {0,1}'? a one-hot-
encoded vector such that (y;); = 1 if a; represents the digit ¢ and 0 otherwise. At every timestep
t =1,...,T each agent is presented the image x; which it has to classify. A predicted classification
is made through the prediction y;; 1 = f(py);—1, T¢) with g,y = E[6; | D1.4—1] and then updates
its beliefs given the (true) reward y;.

Having the BLUP over parameters 8y, = E[0;|D;.;_1], the linearized model has mean and
variance

m(0;, ;) = softmax(f(6;,x)),
my = m(0y—1,) + Vem(0y,—1,)(0 — my;_y1), (117)
5; = diag(m(Oy¢—1, xt)) + M (01, @) M(Oy—1,)" +elp,.

This moment-matched linearization corresponds, in the Bayesian setting, to a Gaussian likelihood
whose first and second moments match that of a Multinomial distribution. This representation was
introduced in the context of online learning in [48].

In (117), diag(wv) is a function that takes as input the vector v € R™ and outputs a diagonal matrix
with entries diag(v); ; = v; §(¢ — j), and the term £ > 0 is a small constant that ensures non-zero
variance.

Online learning results. Figure 5 shows the 5000-step rolling mean of the one-step-ahead classifi-
cation outcome (one for correct, zero for incorrect) using the various learning algorithms. We observe
that there is no clear difference between the methods. This shows that one can tackle this complete
information problem without needing to model uncertainty. This is not the case in the incomplete
information case that we study in any of the experiments presented in Section 5.

32

— HiLoFi
> 0.95 - LoLF)Fi
® — LoFi
§ — LRKF
g 0.90 ~ — Adamw
< — Muon
E

0.85
10000 20000 30000 40000 50000 60000
num. obs

Figure 5: Rolling one-step-ahead accuracy for the MNIST dataset.

Figure 6 shows the one-step-ahead accuracy of the last 10,000 images and the running time of
processing all 60, 000 images for HiLoFi, LoLoFi, LRKF, and LoFi as a function of their rank. For
LoLoFi, we fix the rank of the last layer to be 50 and vary the rank of the hidden layers. We observe

0.985 -
100 A “M'—-'—'—'.—.
0980 1 g 807 ¢ HiLoFi »
O =)
o > e LRKF
0 = ® LoFi
0.975 z
& S ® LolLoFi
fus 40 .
0.970 -l
0 20 40 60 80 100 0 20 40 60 80 100
rank rank

Figure 6: Results of MNIST for online classification. Left panel: accuracy as a function of rank.
Right panel: running time as a function of rank.

that for low-ranks up to dimension 20, LoF1i is faster than both LoLoFi and LRKF. However, the
running time of LoFi increases much more rapidly (as a function of rank) than either LoLoFi and
LRKF. This is a consequence of the computational costs associated with points (1,2,3) in Appendix
D.2. Next, we observe that the running time of LoLoF1i is sightly above LRKF for varying rank; this is
because of the double approximation of the covariance matrix: one for the hidden layers and another
one for the last layer. Finally, we observe that HiLoFi is the method with highest computational cost
in this experiment. This is due the high-dimensionality of the last-layer, relative to the rest of the
methods.

Lastly, we observe that all methods increase their performance as a function of rank, albeit marginally.
The method that most benefit from an increase in performance in HiLoFi. We hypothesize that this is
due to the total rank of the hidden layer, relative to the rank of the last layer, which in this experiment
is 800.

G.1.2 Error analysis for LRKF

The top panel of Figure 7 shows the rolling mean for the two sources of approximation error in
the covariance matrix for the LRKF method (detailed in Proposition F.3), as well as the rolling one-
step-ahead accuracy. We observe that, on average, both sources of error decrease over time and the
accuacy of LRKF improves over time. Here, the only sources of error are the surrogate error and
the low-rank error. This is because LRKF does not distinguish between last-layer and hidden-layer
parameters.

33

« 0.015 _ 0.0330
e e
o &
9 0.010 A ~ 0.0325
© C
sy o
£ Z
§ 0.005 A 3 0.0320 A
0 20000 40000 60000 0 20000 40000 60000

0.98 A

0.95 —— LRKF
=¥oln
ue
23 0.90 1
=V
§ ©

0.85 A

10000 20000 30000 40000 50000 60000
num. steps

Figure 7: Top: upper bound error for the surrogate error and the low-rank approximation. Bottom:
5, 000-step rolling one-step-ahead accuracy for the MNIST dataset.

G.1.3 MNIST as multi-armed bandit

Here, we present further results from Section 5.2 More precisely, we study the multi-armed bandit
approach to solving the MNIST classification problem.

Choice of hyperparameters. The hyperparameters for this experiment were chosen as follows:
For Adamw and muon (used in e-greedy and in conjunction with LLL), we use a learning rate of
10~%, and € = 0.05 For Adamw, we take 5 inner iterations and a buffer size of one and for muon, we
take 1 inner iteration and a buffer size of one. Next, HiLoFi considers a rank of 50 for the hidden
parameters, we take gp ; = 107% and ¢, = 1075. The initial covariances > h,0 and 3¢ o are both
initialized as identity times a factor of 101, Similarly, LoLoF1i is initialized as with HiLoF1i, but
with rank in the last-layer to be 100. For LRKF, we consider a rank of 50, ¥ is initialized as the
identity matrix, and ¢, = 1076, Finally, for LoFi, we also considered rank 50; then, following the
experiments in [8], we considered the initial covariance to be al, with a = exp(—8) (this corresponds
to low-rank comprised of a matrix of zeros and diagonal terms, all set to a); lastly, the dynamics
covariance is ¢; = 0.

All initial model parameters from the neural network are shared across methods and trials.

Regret analysis. Below, we present results considering regret. Here, the reward is either 1, if the
classification is done correctly and 0 otherwise. Let y; € {0, 1} be the reward obtained at time ¢, and
Yy, be the value of arm a. Then the regret obtain at time ¢ is given by

t t

Z(m(?xyﬂa - yT) =t— Z Yr.

T=1 T=1

Figure 8 shows the average regret (across 10 trials) for HiLoFi, LoLoFi, LRKF, LoFi, and LLL.
Here, we consider e-greedy variants for HiLoFi, LoLoFi, and LRKF. Next, TS with LLL and Adamw
optimizer is denoted adamw-TS, TS with LLL and muon optimizer is denoted muon-TS. e-greedy
with Adamw optimizer is the denoted adamw-eps, and e-greedy with muon optimizer is denoted
muon-eps.

Time-regret analysis. Figure 9 shows the total running time to run the ten trials in the x-axis, the
regret around one-standard deviation in the y-axis. We observe Adamw and muon are the methods
with lowest performance and lowest relative cumulative reward for either e-greedy or TS using LLL.
Next, we observe that LRKF is faster than LoLoFi, and LoLoFi is faster than HiLoFi. This result

34

FLoRES-eps — LoFi-pBayes
" 300001 — HilLoFi-pBayes LoFi-TS
g FLORESLite-eps adamw-eps
9 20000 4 LoLoFi-pBayes — adamw-pBayes
N _ LRKF-eps adamw-TS
g 10000 4 / — LRKF-pBayes muon-eps
; /://:——’——/”_l LoFi-eps
04~
0 SOIOO 10600 15600 20600 ZS(I)OO 30600 35600 40000

num. observations

Figure 8: Total running time for experiments (z-axis) versus average regret across ten trials (y-axis).

35000 A
agent
30000 4 ® HiloFi
LoLoFi
5 25000 A ® LRKF
asf 20000 4 ® LoFi
= ! ! adamw
15000 A L4 muon
o . sampling
10000 A o, ® eps
102 10° 10° PS
time (s) TS

Figure 9: Total running time for experiments (z-axis) versus mean relative cumulative reward
(y-axis).

is expected and is explained in Appendix D.2. We also observe that LoFi with e-greedy matches
LoLoFi with PS in time; however, LoLoFi has lower regret. We conjecture that this result is due to
the explicit modeling of the last layer done for LoLoF1i.

Finally, we observe that for all methods, e-greedy is faster than TS. This is because e-greedy only
requires the evaluation of the posterior predictive mean, whereas TS samples from the posterior
predictive, which in turn requires building the posterior predictive covariance shown in (10).

G.2 Online classification using LRKF on the CIFAR-10 dataset

In this Section, we study the ability of LRKF to scale to million-dimensional parameters for online
classification on the CIFAR-10 dataset. We consider two VGG-style convolutional networks of
different capacity. Both follow the pattern of stacked 3 x 3 convolutions, ELU activations. We
summarize the architectures below We follow a similar setup as that of Appendix G.1.1. We take

Model Conv Blocks Dense Layers Params

VGG 64 x 2 — 128 x 2 — 256 256 — 256 1.7M
VGG+Block 64 x 2 — 128 x 2 — 256 — 512 X 2 256 — 256 4.

Table 3: Summary of the two VGG-style architectures used in our experiments. “C' X n”” denotes n
convolutional layers with C' channels.

the data Dy, with T' = 10,000 and D; = (¢, y:), where x is a (32 x 32 x 3)-dimensional array
and y; € {0,1}'° a one-hot encoded vector such that y;. At every timestept = 1,...,T each agent
is presented the image x; which it has to classify. A predicted classification is made through the
prediction Y11 = f(Hye—1,@¢) With py,_y = E[0; | D1.4—1] and then updates its beliefs given
the (true) reward y;. Updates are done as outlined in Appendix G.1.1.

35

Table 4 shows the one-step-ahead accuracy for LRKF for ranks 1, 5, and 10. These results show

Model LRKF-1 LRKF-5 LRKF-10
VGG (1.7M) 0.3355 0.3384 0.3379
VGG+Block (4.7M) 0.3129 0.3141 0.3148

AdamW (baseline) VGG: 0.3442 VGG+Block: 0.3097

Table 4: Online classification results on CIFAR-10 using LRKF with varying ranks (1, 5, 10),
compared against AdamW baselines. Lower values are better.

that LRKF scales reliably to multi-million parameter networks while maintaining stable performance
across different low-rank configurations. This highlights the broader applicability of our approach
(including HiLoFi and LoLoF1i) to large-scale architectures in vision and related domains where
sequential decision making is needed.

G.3 Bandits as recommendation systems

Further results from Section 5.3

Choice of hyperparameters. In this experiment, all agents shared a rank of 20. The choice of
hyperparameters for LLL, LoFi, VBLL, and OnVBLL were chosen following analysis of performance on
the first 10, 000 observations of the datasets. In particular, we tried Bayesian optimization techniques,
but found that manual tuning of hyperparameters on the first 10, 000 observations yielded higher
overall performance.

For OnVBLL, we considered a buffer size of 10, a regularization weight of 1.0, and 50 inner iterations.
For VBLL, we considered a buffer size of 1000, a regularization weight of 102, and 100 inner
iterations.

Next, for HiLoFi, we take qp s = q¢,; = 0.0 and set the initial covariances to be the identity. Next,
for LRKF, we take ¢; = 0 and identity matrix as initial covariance.

Further results. Figure 10 shows the daily cumulative reward for all methods. To produce this plot,
we sum the cumulative rewards for all users at the end of each day and then perform a cumulative sum
over the end-of-day reward. We observe that HiLoFi obtains the highest daily cumulative reward.

Scaled daily cumulative reward

25 -
—— HiLoFi —— LoFi
LLL OnVBLL
201 —— LRKF VBLL
15 -
10 -
5 -
O -
06 13 20 27 03 10 17 24 31
Aug Sep
2020

Figure 10: Daily cumulative reward.

The method with second highest daily cumulative reward is LRKF, closely followed by LoFi and
VBLL. However, as shown in Figure 3. LRKF is more than an order of magnitude faster than VBLL.

36

From Figure 10 and Figure 10, we observe that the top performing methods in this experiment are
HiLoFi and LRKF. However, LRKF is slightly faster than HiLoF1i relative to all other methods.

G.4 Bayesian optimization

Further results from Section 5.4

Choice of hyperparameters. We fix hyperparameters across methods to ensure fairness and
reproducibility. For rank-based methods, we use a rank of 50. Methods requiring buffers (e.g., LLL,
OnVBLL) use a FIFO replay buffer of size 20, with 50 inner iterations per update. VBLL uses the full
dataset and 100 iterations per step.

Where applicable, aleatoric uncertainty is discarded (R; = 0) to isolate epistemic effects. We consider
equal learning rates across optimizer-based methods (e.g., LLL, OnVBLL) at 10~%. In filtering-based
methods (e.g., HiLoFi, LoF1i), this learning rate corresponds to the initial hidden-layer covariance;
we set the final-layer prior variance to 1, emphasising epistemic modelling in the output layer.
Hyperparameters for VBLL (Wishart scale, regularization weight) follow prior work [5].

Per-step results. Figure 11 shows the median performance and the interquartile range of the best
value found by each method for all test datasets. We observe that VBLL, OnVBLL, and HiLoFi

— HilLoFi — GP — LoFi — LRKF — VBLL — OnVBLL — LLL
Ackley?2 Ackley5 Ackleyl0 Ackley50
-4 -8.40
=21 —6.51
° : -8.55]
2 7.0
g -7 -8.70
o —6
o —7.51 —8.85 1
el -8
_8.01 ~9.00 7
T T T T T T T T T T T T T T T T T T T T
0 10 20 30 40 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
x10! Branin Hartmann x102 Nndraw50 x103 Nndraw200
01 241 1.5 1
1.24
o -1
ER 161 oo
= 21 '
g 081 0.6
Qo -3
0.0 1 0.3 1
0 10 20 30 40 0 10 20 30 40 0 50 100 150 200 0 150 300 450 600
num. observations num. observations num. observations num. observations

Figure 11: Bayesian optimization benchmark on stationary environments.

are among the top performers for all datasets. Next, LLL is the least performant method for the
low-dimensional datasets, but among the top performers for Nndraw50 and the top perfomer in
Nndraw200.

Next, Figure 12 shows the median performance and the interquartile range of the best value found by
each method for all test datasets using expected improvement.

G.4.1 NN Draw

Here, we provide further results for the performance of HiLoFi and LRKF for the Bayesian optimiza-
tion problem on the DrawNN dataset.

Figure 13 reports the best value found over the course of the optimization as a function of iteration,
for different ranks. We observe that increasing the rank generally improves performance, with higher
ranks yielding sharper improvements early in the search that compound into stronger final results.
This comes with a trade-off between computational cost and the ability to capture uncertainty more
effectively, as illustrated in Table 5, which reports the final performance and running time across
ranks. We observe that both performance and running time generally increase with rank.

37

— HiloFi GP — LoFi — LRKF — VBLL — OnVBLL — LLL

Ackley?2 Ackley5 Ackleyl0 Ackley50
21 - 6.5
g _, =57 ’ —8.70 1
g _41
5 —61 701
2 61 —8.85 4
7] -71 —7.54
I .
< -8 —8] | 1-9.00
—8.0 1
0 10 20 30 40 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
%101 Branin Hartmann x101 Nndraw50 x103 Nndraw200
0 2.5
4
o -1 2.0 1.00 1
E 21 075
© 1 . 4
; -2 1.5 r
] 01 0.50 1
2 _3 1.0 1
-2 0.25 4 —
0 10 20 30 40 0 10 20 30 40 0 50 100 150 200 0 150 300 450 600
num. observations num. observations num. observations num. observations

Figure 12: Bayesian optimization benchmark on stationary environments. Query points are chosen
using expected improvement.

NN Draw 200 — HiLoFi

Rank
1200 —— 001 — 26.67s
— 010 —37.77s
| — 0502955
1000 - 7 | — 100 —34.53s
- 150 — 42.79s
200 — 53.06s

best value

100 200 300 400 500 600
iteration

0

Figure 13: Solid lines show the median best value over 20 runs, and shaded regions denote the
interquartile range.

Finally, Figure 14 shows the best value obtained during optimization as a function of the number
of observations, for different ranks using LRKF. Compared to HiLoF1i, LRKF requires substantially
higher ranks to achieve similar median performance. For instance, performance is comparable at
rank 300 for LRKF (73s) and rank 200 for HiLoFi (under 50s). This demonstrates that explicitly
modeling the last layer in full rank, as done in HiLoF1i, yields a more favorable accuracy—efficiency
trade-off.

G.5 In-between uncertainty

In this experiment, we test the ability of HiLoF1i to capture the in-between uncertainty [21] after a
single pass of the data. We consider the one-dimensional dataset introduced in [58] (Figure 1). For
this experiment, we consider a four hidden-layer MLP with 128 units per layer and ELU activation
function.

Result for HiLoFi. We take qp,: = ge+ = 0, initial covariances for last and hidden layers to be

identity times 1/2, and R; = 0.0, which corresponds to having no aleatoric uncertainty in the data
generating process.

38

Rank Time (s) Final ypes

1 26.226 656.558
10 38.4492 630.556
20 28.8612 670.913
50 30.6409 684.009

100 34.5302 782.205
110 35.1504 774.416
120 39.2540 807.298
130 38.2288 846.218
140 39.1417 848.219
150 40.7939 864.806
160 42.1907 911.116
170 44.5485 900.566
180 45.5640 864.260
190 47.1553 911.262
200 48.2127 921.062

Table 5: Performance metrics across different low-rank configurations.

NN Draw 200 — LRKF

Rank
1200 4 —— 001 — 19.69s
—— 010 — 19.76s
—— 050 — 20.26s
1000 —— 100 — 23.82s
150 — 26.11s
200 — 29.23s

800

600 ‘,’_’_r/_/_l_/_/_/

200 e ——

0 100 200 300 400 500 600
iteration

best value

Figure 14: Bayesian optimization on the NNDraw dataset using LRKF. Solid lines show the median
best value over 20 runs, and shaded regions denote the interquartile range.

Figure 15 shows the posterior predicted mean surrounded by the two-standard deviation posterior
predictive for various ranks in the hidden layer.

We observe that a rank of 1 is not able to capture any uncertainty around the region with no
observations; however, as we increase the rank, we observe that the posterior predictive becomes less
and less confident about the true value of the mean on regions without data.

Next, Figure 16 shows the evolution of the posterior predictive mean and the posterior predictive
variance as a function of the number of seen observations.

We observe that the uncertainty around the posterior predictive mean is wide (covering the limit
from —10 to 10) and starts to decrease after 10 observations. By 30 observations, the uncertainty is
narrower over regions where data has been observed, and by 120 observations, most of the posterior
predictive uncertainty is on regions where no data has been observed.

Result for LRKF We repeat the experiment above for LRKF. Figure 17 shows the posterior predicted
mean surrounded by the two-standard deviation posterior predictive for various ranks. In contrast to
HiLoFi, we observe that LRKF requires a much higher rank to capture a reasonable level of in-between
uncertainty. The panel for rank 10 is empty because the posterior predictive (with R; = 0) is psd, so
it is not defined.

39

rank=1 rank=5 rank=10
10—, " '1, - i}
ey e |

rank=20 rank=50 rank=100

;
%

?
i
€

-0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5

Figure 15: In-between uncertainty of the posterior predictive induced by HiLoF1i as a function of
rank.

10- num. obs =1) num. obs =5] num. obs = 10
_10 T T T T T T T T T

10- num. obs = 15) num. obs = 30] num. obs = 45

0 1 W b W 1 W
_10 T T T T T T T T T

10- num. obs = 50 _ num. obs =100 ~ hum. obs =120

0 W | W 1 W
_10 T T T T T T T T T

-0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5

Figure 16: In-between uncertainty of the posterior predictive induced by HiLoF1i as a function of
seen observations.

An important distinction between LRKF and HiLoFi is the HiLoFi considers a full-rank covariance
matrix in the last layer. Despite this, LRKF with rank 200 (which shows some notion of uncertainty)
requires around 3 times more coefficients in the covariance than HiLoFi with rank 50 in the hidden
layers.

We show the evolution of the posterior predictive mean and variance with rank 200 of LRKF as a
function of seen observations in Figure 18.

We see that the evolution of the posterior predictive resembles that of HiLoF1i, but at the cost of 3
times more number of coefficients in the covariance.

Result for VBLL. We contrast the result of HiLoFi with the offline VBLL method. For VBLL, the
data is presented all at once and we perform full-batch gradient descent using Adamw with learning
rate 1073, Figure 19 shows the posterior predictive mean and two standard deviations around the
posterior mean, as well as the loss curve for various epochs.

We observe that VBLL takes around 10* epochs to converge, whereas HiLoFi takes only one. We
emphasize that each epoch in VBLL considers all datapoints at once, so the gradient update is more
informative, whereas for HiLoFi, the method only gets to observe the data once and in a sequence.

40

0- rank=10) rank=20 rank=50
01 "N Ve "KC\ M
0 T T T T T T T T T
o- rank=100] rank=200 rank=500
0 T T T T T T T T T
-0.5 0.0 0.5 -0.5 00 05 -0.5 0.0 05
X X X

Figure 17: In-between uncertainty of the posterior predictive induced by LRKF as a function of rank.

10~

-10

num. obs =1

[\

num. obs = 5

LN

num. obs = 10

10 -
0

num. obs = 15

num. obs = 30

s

-10

10 -

-10

num. obs = 50

~aTNAN

num. obs = 100

GV AW

num. obs = 120

AN e

T T T

-0.5 0.0 0.5

T T T

-0.5 0.0 0.5

T T T

-0.5 0.0 0.5

Figure 18: In-between uncertainty of the posterior predictive induced by LRKF as a function of seen
observations.

This highlights the efficiency of our method to produce approximate posterior predictives that can be
used online.

41

posterior predictive loss

=
o

{

epochs
1

|
=

102 i

10

epochs
100

O OO O cO O ©co o oo o
:Ii :li

epochs

A

102 i

|
=

-1 T T T T T T T r
o 107 102
o
qg)_g _// 101-\/"/\/\,\
—% T T T , T T T T
0 1 104
538 10?4
88 01 ST N ool
©~ _10 | . . 01, . | . .
-0.5 0.0 0.5 100 10?1 102 103 104
X num. epochs

Figure 19: In-between uncertainty of the posterior predictive induced by VBLL as a function of
number of epochs.

42

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The frequentist and Bayesian approaches to filtering are introduced in Section
3.2 and detailed in Appendix B. Our method and its assumptions are detailed in Section
4. Mathematical proofs of our claism are collected in Appendix E. Experiments and
comparisons to other methods validating the experimental claims are provided in Section 5.
The motivation and contribution for our method is provided in Section 1.

Guidelines:

¢ The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations of the method are discussed in Section 7.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

43

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The main assumptions of the methods we introduced are detailed in Section 3.2
and Appendix B. The proof of Proposition D.1 is in Appendix E.1, the proof of Proposition
D.2 is in Appendix E.2, the proof of Proposition D.3 is in Appendix E.3, and the proof of
Proposition 4.1 is in Appendix E.4. Further propositions and proofs for the LRKF are stated
and proved in Appendix F.2.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: To facilitate reproducibility of the methods we present, Algorithm 4 details
LRKF, Algorithm 2 details HiLoFi, and Algorithm 3 details LoLoFi. The experiments are
detailed in Section 5, which mentions the dataset and the neural architecture used. Further
information (such as hyperparameter selection) for all experiments is detailed in Appendix
G. Furthermore, we provide code to reproduce the results in the anonymized link in the
introduction.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

44

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All our datasets are open source and available at the mentioned sources in
Section 5. Preprocessing of the data is detailed in Section 5 and Appendix G. Detailed
pseudocode for the methods we introduce are detailed in Algorithm 4 for LRKF, Algorithm
2 for HiLoF1i, and Algorithm 3 for LoLoFi. Furthermore, we provide code to reproduce the
results in the anonymized link in the introduction.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The training and test details are in Section 5 and Appendix G.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

45

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars are reported and explained for all experiments in Section 5 and
Appendix G. For the experiment in Section 5.2, suitable error bars are deferred to Figure 9
in Appendix G.1.3 as including them in the main figure would have made it overly cluttered
and difficult to interpret.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute workers are detailed in Section 5. An estimate of the running time to
replicate the results with the compute used are provided in Section 5.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed the NeurIPS Code of Ethics, and the research
conducted in the paper conforms, in every respect, with these guidelines.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

46

https://neurips.cc/public/EthicsGuidelines

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Potential societal impacts are acknowledged in Section 7.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The methods developed in this paper are general-purpose tools for online
learning and sequential decision-making. We do not believe they pose a high risk of misuse,
and therefore no specific safeguards were necessary.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

47

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used, whether code, data, or models have been properly cited in the
main text.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Assets are detailed in the introduction of the main text. We include all details
to reproduce our methods and the licence is provided within the code. Consent was not
required.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper did not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

48

paperswithcode.com/datasets

15.

16.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper did not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

49

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Problem statement
	Background
	Tools for sequential decision making
	Extended Kalman filtering for online learning and sequential decision making
	Martingale posteriors

	Method
	Algorithm

	Experiments
	In-between uncertainty
	MNIST
	Recommender systems
	Bayesian optimization

	Related work
	Conclusion and future work
	Notation
	Extended Kalman filtering for online learning
	Linear algebra results
	Sum of Cholesky matrices
	Singular value decomposition given sum of low-rank-matrices

	HiLoFi— further details
	Derivation of HiLoFi
	Computational complexity

	Proofs
	Proof of Proposition D.1
	Proof of Proposition D.2
	Proof of Proposition D.3
	Proof of Proposition 4.1

	Further algorithms
	LoLoFi
	Low-rank Kalman filter (LRKF)
	Error analysis for LRKF

	Replay-buffer variational Bayesian last layer (OnVBLL)

	Additional experiments
	Online classification and sequential decision making on the MNIST dataset
	Online classification on the MNIST dataset
	Error analysis for LRKF
	MNIST as multi-armed bandit

	Online classification using LRKF on the CIFAR-10 dataset
	Bandits as recommendation systems
	Bayesian optimization
	NN Draw

	In-between uncertainty

