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Abstract

A Schrödinger bridge establishes a dynamic transport map between two target distributions
via a reference process, simultaneously solving an associated entropic optimal transport
problem. We consider the setting where samples from the target distributions are available,
and the reference diffusion process admits tractable dynamics. We thus introduce Coupled
Bridge Matching (BM2), a simple non-iterative approach for learning Schrödinger bridges
with neural networks. A preliminary theoretical analysis of the convergence properties of
BM2 is carried out, supported by numerical experiments that demonstrate the effectiveness
of our proposal.

1 Introduction

The Schrödinger bridge problem seeks a process, the Schrödinger bridge, with prescribed initial and terminal
distributions, such that the distribution of the Schrödinger bridge minimizes the Kullback-Leibler (KL)
divergence to the distribution of a reference process. Schrödinger bridges play a central role in measure
transport theory (Marzouk et al., 2016). Notably, it is known that the initial-terminal distribution of a
Schrödinger bridge provides a solution to a corresponding entropic optimal transport problem (Peyré & Cuturi,
2020). Schrödinger bridges thus provide an effective framework for finding an alignment between samples
from two target distributions. Furthermore, diffusion-based generative models (Ho et al., 2020; Song et al.,
2021) can be interpreted as solving trivial instances of the Schrödinger bridge problem (Peluchetti, 2023).
Consequently, Schrödinger bridges offer a more general approach to contemporary generative applications.

We consider the setting where samples are readily available from both target distributions, and where the
reference process is a diffusion process solution to a stochastic differential equation (SDE). We thus introduce
Coupled Bridge Matching (BM2), a novel methodology aimed at computing the Schrödinger bridge given
the reference SDE and samples from the two marginal distributions of interest. BM2 builds upon Bridge
Matching (BM), introduced1 by Peluchetti (2021). Our approach advances recent contributions by Peluchetti
(2023); Shi et al. (2023) by removing the need to solve a sequence of optimization problems. A neural network
is employed to jointly learn a forward drift function and a backward drift function corresponding to the
forward and backward dynamics of a Schrödinger bridge. BM2 achieves several key desiderata:

(i) non-iterative: training is conducted through standard stochastic gradient descent within a single
optimization loop;

(ii) exact: the idealized version of BM2 yields the target Schrödinger bridge without approximations; the
only sources of error involved in its practical implementation are the neural network approximation
error and the discretization error due to sampling the learned SDE;

(iii) efficient gradient: the gradient of the loss function with respect to neural network parameters depends
solely on few random variables sampled at the current optimization step;

(iv) simple loss: the loss function avoids derivative terms with respect to neural network inputs and does
not impose hard constraints (such as conservative vector field requirements) on the neural network
approximator.

1Peluchetti (2021) used the term “Diffusion Bridge Mixture-Matching Transport” (DBMT), but we follow Shi et al. (2023) in
using the sleeker nomenclature “Bridge Matching” for this transport.
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These features collectively enhance the efficiency and applicability of BM2 in solving Schrödinger bridge
problems. Training is robust, as it does not depend on hyperparameters that are typically challenging to set
without time-consuming pilot runs, such as the number of training steps per optimization iteration (i) or
the level of approximation (ii). Moreover, the memory requirements are modest due to (iii). Finally, the
implementation is straightforward (i, iv), as illustrated in Algorithms 1 and 2 and in the annotated PyTorch
code of Listing 1.

Content: This paper is structured as follows. In Section 2, we formally introduce the Schrödinger bridge
problem with associated reference process dynamics. Section 3 reviews Bridge Matching, while Section 4
introduces Coupled Bridge Matching, discussing its theoretical properties and implementation aspects.
Numerical experiments are presented in Section 5, followed by a discussion of related works in Section 6.
Section 7 concludes the paper. For clarity, a more general formulation of BM2 is deferred to Appendix A, all
proofs to Appendix B, an additional numerical experiment to Appendix C, and code listings to Appendix D.

Notation and Assumptions: To enhance accessibility, we refrain from discussing the more technical aspects
related to the Schrödinger bridge problem in its path measure formulation. The excellent treaties of Léonard
(2014b;a) and Bortoli et al. (2021, Appendices D, H) already serve this goal. We denote distributions with
uppercase letters and their corresponding (Lebesgue) densities with lowercase letters. All stochastic processes
considered are d-dimensional, continuous, and defined on the unit time interval [0, 1]. For a stochastic
process X with distribution P (denoted X ∼ P ), we use subscripts to specify marginal distributions, joint
distributions, and conditional distributions of P . Pt: marginal distribution of Xt at time t, with density
pt; P0,1: initial-terminal joint distribution of (X0, X1); P|0: distribution of X given its initial value X0.
Superscripts indicate a distribution P ’s dependency on another distribution Z, as in PZ , or a sequence
of distributions, as in P (i), i ≥ 1. For a d-dimensional distribution Q0, we define the stochastic process
mixture distribution Q0P|0 as: (Q0P|0)(X ∈ ·) :=

∫
P|0(X ∈ ·|x0)Q0(dx0). From a generative perspective,

X ∼ Q0P|0 is obtained by sampling X0 ∼ Q0 and then X ∼ P|0( · |X0) conditionally on X0. The marginal-
conditional decomposition of P over its initial value is thus P = P0P|0. Similarly, for a d×d-dimensional
joint distribution Q0,1, we define Q0,1P|0,1 such that X ∼ Q0,1P|0,1 is obtained by sampling (X0, X1) ∼ Q0,1
and then X ∼ P|0,1( · |X0, X1) conditionally on X0 and X1. Time is always indexed on a common forward
timescale, on which all stochastic processes’ distributions are defined. The dynamics of a diffusion process
X ∼ P can be formulated in both forward and backward time directions, through corresponding forward and
backward SDEs. In backward SDEs, t decreases from 1 to 0 (dt is negative), which is denoted by t ∈ [1, 0].
All Brownian motions are independent. Unless otherwise noted, each diffusion process is a Markov diffusion
process which is a (weak) solution to an associated SDE.

2 Problem Setting

2.1 Schrödinger Bridges and Entropic Optimal Transport

For two target d-dimensional distributions Ψ0 and Ψ1, and a reference stochastic process distribution R, the
dynamic Schrödinger bridge (SB) problem seeks to find

SΨ0,Ψ1,R := arg min
P ∈P(Ψ0,Ψ1)

KL(P ∥R), (1)

where KL( · ∥ ·) is the KL divergence and P(Ψ0,Ψ1) is the class of distributions of stochastic processes
having initial distribution Ψ0 and terminal distribution Ψ1. We narrow down (1) to the case where R is the
distribution of a diffusion process. In this case, under suitable conditions (Léonard, 2014b), (1) admits a
unique solution which is also a diffusion process. From this point forward, Ψ0, Ψ1 and R are considered fixed.
For brevity, we will thus denote the Schrödinger bridge SΨ0,Ψ1,R simply as S, and apply the same notation
convention to any distribution dependent on these variables.

The forward and backward dynamics of X ∼ S are given by:

X0 ∼ Ψ0, dXt = µs(Xt, t)dt+ σdWt, t ∈ [0, 1], (S)

X1 ∼ Ψ1, dXt = −υs(Xt, t)dt+ σdWt, t ∈ [1, 0], (←−S )
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for the SB-optimal drift functions µs, υs. These functions are related to the Schrödinger potentials (Léonard,
2014b) and are not analytically available aside from very specific choices of Ψ0,Ψ1 and R.

We assume that R0,1 admits density r0,1. Once S is obtained, the solution to the static Schrödinger bridge
problem is given by S0,1:

S0,1 = arg min
C0,1∈C(Ψ0,Ψ1)

KL(C0,1 ∥R0,1),

= arg min
C0,1∈C(Ψ0,Ψ1)

E
C0,1

[− log r1|0(X1|X0)] + H(C0,1).
(2)

In (2), C(Ψ0,Ψ1) denotes the class of d×d-dimensional joint distributions with marginal distributions Ψ0 and
Ψ1, commonly referred to as the class of couplings of Ψ0 and Ψ1, and H(C0,1) := EC0,1 [log c1,0(X1, X0)] is
the entropy of C0,1.

The entropic optimal transport (EOT) solution for the cost function k(x0, x1) and regularization level ε is
given by:

E0,1 := arg min
C0,1∈C(Ψ0,Ψ1)

E
C0,1

[κ(X1, X0)] + εH(C0,1). (3)

Thus, for each choice of R0,1 in (2), S0,1 solves a corresponding problem (3). As in the following, when R
is associated to (R), S0,1 solves the EOT problem (3) for the Euclidean cost κ(x1, x0) = 1/2∥x0 − x1∥2 and
regularization level ε = σ2.

We refer to Peyré & Cuturi (2020); Léonard (2014b); Gushchin et al. (2023) for related background material
from complementary perspectives.

2.2 Reference Dynamics

We focus on the case where R is the distribution of a scaled Brownian motion:

X0 ∼ Ψ0, dXt = σdWt, t ∈ [0, 1], (R)

with σ > 0. Our approach is not limited to the choice of SDE (R), BM2 readily extends to the broader class
of reference SDEs examined in Peluchetti (2023). The main requirement for the applicability of BM2 is the
analytical availability of (4, 5) for the chosen reference SDE. We address the case, commonly employed in
generative applications, of dXt = σ

√
βtdWt for a schedule βt explicitly in Appendix A, and refer the reader

to Peluchetti (2021; 2023) for the general setting. As our developments are orthogonal to the specific choice
of reference process, we focus on the simplest case for explanatory reasons.

We collect here various results concerning (R) that will be utilized in the following:

Rt|0( · |x0) = N (x0, σ
2t), (4)

Rt|0,1( · |x0, x1) = N (x0(1− t) + x1t, σ
2t(1− t)), (5)

µ01(xt, t, x1) := σ2∇xt
log r1|t(x1|xt) = x1 − xt

1− t , (6)

υ01(xt, t, x0) := σ2∇xt log rt|0(xt|x0) = x0 − xt

t
. (7)

Conditioning X ∼ R on the endpoints X0 = x0, X1 = x1 results in the diffusion bridge distribution R|0,1,
with associated forward and backward SDEs:

X0 = x0, dXt = µ01(Xt, t, x1)dt+ σdWt, t ∈ [0, 1], (R|0,1)

X1 = x1, dXt = −υ01(Xt, t, x0)dt+ σdWt, t ∈ [1, 0]. (←−−R|0,1)

3 Bridge Matching (BM)

We succinctly review Bridge Matching, and refer to Peluchetti (2021; 2023); Shi et al. (2023) for more details.
BM takes as input a joint distribution Q0,1 with marginal distributions Q0, Q1 and a SDE, (R). Firstly, a

3



Under review as submission to TMLR

stochastic process ΠQ0,1 is constructed as a mixture of diffusion bridges (R|0,1), such that the endpoints
(X0, X1) of X ∼ ΠQ0,1 are distributed according to Q0,1. This process, which is a mixture of diffusion
processes, is not itself a diffusion process in general (Jamison, 1974). However, we can obtain a marginal-
matching diffusion process with distribution MQ0,1 for which M

Q0,1
t = ΠQ0,1

t , 0 ≤ t ≤ 1. Consequently,
X ∼MQ0,1 is a diffusion process for which X0 ∼ Q0 and X1 ∼ Q1, i.e. it defines a dynamic transport from
Q0 to Q1.

Concretely, let ΠQ0,1 := Q0,1R|0,1. The BM transport based on Q0,1 with distribution MQ0,1 is realized by

X0 ∼ Q0, dXt = µQ0,1
m (Xt, t)︸ ︷︷ ︸

EΠQ0,1 [µ01(Xt, t,X1)|Xt]
dt+ σdWt, t ∈ [0, 1], (M)

X1 ∼ Q1, dXt = −υQ0,1
m (Xt, t)︸ ︷︷ ︸

EΠQ0,1 [υ01(Xt, t,X0)|Xt]
dt+ σdWt, t ∈ [1, 0], (←−M)

and satisfies MQ0,1
t = ΠQ0,1

t , 0 ≤ t ≤ 1.

As conditional expectations are mean squared error minimizers, suitable training objectives for the drift
functions µQ0,1

m and υ
Q0,1
m are derived from

µQ0,1
m = arg min

µ
E

ΠQ0,1

[1
2

∫ 1

0
∥µ01(Xt, t,X1)− µ(Xt, t)∥2dt

]
, (8)

υQ0,1
m = arg min

υ
E

ΠQ0,1

[1
2

∫ 1

0
∥υ01(Xt, t,X0)− υ(Xt, t)∥2dt

]
, (9)

by replacing each integral with an expectation over uniform time t ∼ U(0, 1), and then approximating both
expectations with Monte Carlo estimators. While we will rely exclusively on (8, 9) in the experiments of
Section 5, µQ0,1

m and υ
Q0,1
m can be inferred from paths X ∼ ΠQ0,1 also by performing maximum likelihood

estimation or by employing a drift matching estimator (Liu et al., 2022; Peluchetti, 2023).

We conclude this section by reviewing prior BM results relevant for BM2. Define:

P := {d-dimensional, continuous, stochastic processes on [0, 1]},
R := {P ∈ P | P = P0,1R|0,1 = ΠP0,1 for some P0,1},
M := {P ∈ P | P is a (Markov) diffusion process},
S := {P ∈ P | P is a Schrödinger bridge for some target marginal distributions} = R∩M,

where the equivalence is established by Jamison (1975) under appropriate assumptions. We additionally
define the following restrictions: P(Ψ0, ·) := {P ∈ P | P0 = Ψ0}, P(·,Ψ1) := {P ∈ P | P1 = Ψ1},
P(Ψ0,Ψ1) := {P ∈ P | P0 = Ψ0 and P1 = Ψ1}. Restrictions to R,M,S and C employ the same notation.

For Q ∈ P, it is instructive to view BM as a map between distributions defined by the composition of two
projections: Q Rp→ ΠQ0,1

Mp→ MQ0,1 . Here, the reciprocal projection Rp : P → R projects Q onto the reciprocal
class R, while the Markovian projection Mp : R →M projects ΠQ0,1 onto the class of diffusion processes, see
Shi et al. (2023). It follows that if P ∈ R, then P = Rp(P ), and if P ∈M, then P =Mp(P ). Consequently,
if P ∈ S, P = (Mp ◦ Rp)(P ) for the BM map (Mp ◦ Rp), and conversely if P = (Mp ◦ Rp)(P ) then P ∈ S.

3.1 Iterated Bridge Matching (I-BM) and Diffusion Iterative Proportional Fitting (DIPF)

In the dynamic setting, Peluchetti (2023); Shi et al. (2023) demonstrate that, under suitable conditions,
iterative application of the BM procedure to an initial coupling C0,1 ∈ C(Ψ0,Ψ1) results in convergence
toward S. Specifically, defining I(0) := MC0,1 and I(i) := M I

(i−1)
0,1 for i ≥ 1, it holds that KL(I(i) ∥ S) → 0

as i → ∞. In practical applications, the independent initial coupling given by the product distribution
C0,1 = Ψ0⊗Ψ1 is frequently employed.
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In the static setting, the classical procedure employed in solving problems (2, 3) is known by several names: the
Sinkhorn algorithm (Peyré & Cuturi, 2020), the Iterated Proportional Fitting (IPF) procedure (Ruschendorf,
1995), or Fortet iterations (Fortet, 1940). The iterates are given by D

(0)
0,1 := Ψ0R1|0, D(1)

0,1 := Ψ1K
(0)
0|1 ,

D
(2)
0,1 := Ψ0D

(1)
1|0, and so on. At each iteration, one of the target marginal distributions is replaced while the

remaining conditional distribution is kept fixed. Alternatively, one can start from Ψ1R0|1 following the same
logic. Under suitable conditions (Ruschendorf, 1995), KL convergence KL(S0,1 ∥D(i)

0,1)→ 0 is established.
The key insight of Bortoli et al. (2021); Vargas et al. (2021) is that it is possible to extend the IPF iterations
to the dynamic setting. In this case, the IPF iterations are implemented by learning the time reversal of a
diffusion process at each iteration. We refer to the resulting training algorithm, as proposed by Bortoli et al.
(2021), as Diffusion Iterative Proportional Fitting (DIPF). Bortoli et al. (2021) establishes the convergence
properties of the DIPF iterates, see their Propositions 4, 5 and Section 3.5.

4 Coupled BM (BM2)

As a starting point for the derivation of BM2, consider the system of equationsHK′
0,1 = Ψ0M

K′
0,1

|0

KH′
0,1 = Ψ1M

H′
0,1

|1

, (10)

whose variables are diffusion distributions HK′
0,1 ,KH′

0,1 and H ′,K ′. That is, HK′
0,1 is obtained as the BM

transport based on K ′
0,1 conditioned to have initial distribution Ψ0, while KH′

0,1 is obtained as the BM
transport based on H ′

0,1 conditioned to have terminal distribution Ψ1. Equivalently, (10) is expressed as

X0 ∼ Ψ0, dXt = µ
K′

0,1
m (Xt, t)dt+ σdWt, t ∈ [0, 1], (HK′

0,1)

X1 ∼ Ψ1, dXt = −υH′
0,1

m (Xt, t)dt+ σdWt, t ∈ [1, 0]. (←−KH′
0,1)

All of µm, υm,M are defined in Section 3. System (10) defines an update step (H ′,K ′) (10)→ (HK′
0,1 ,KH′

0,1).
We are interested in the fixed points of such updates, i.e. (H ′,K ′) such that (H ′,K ′) (10)→ (H ′,K ′). It holds
that H ′ = K ′ = S is a fixed point to (10). As S ∈ S(Ψ0,Ψ1), S = ΠS0,1 = MS0,1 , see the review at the end
of Section 3. Consequently, Ψ0M

S0,1
|0 = Ψ0S|0 = S and Ψ1M

S0,1
|1 = Ψ1S|1 = S. In this case, the SB-optimal

drifts µs and υs of (S, ←−S ) respectively replace µK′
0,1

m and υ
H′

0,1
m in (HK′

0,1 , ←−KH′
0,1). Under the additional

assumption that H ′ = K ′, or equivalently that (HK′
0,1 , ←−KH′

0,1) are the time reversal of each other, this
fixed point is unique. Let G = H ′ = K ′, we have G = Ψ0M

G0,1
|0 = G0M

G0,1
|0 = M

G0,1
0 M

G0,1
|0 = MG0,1 and

G0 = Ψ0, G1 = Ψ1, thus G = S(Ψ0,Ψ1) = S. We have shown the following:

Lemma 1 (Fixed points of (10)). Under suitable conditions (Léonard, 2014a), the updates (H ′,K ′) (10)→
(HK′

0,1 ,KH′
0,1), parametrized by diffusion process distributions, admit H ′ = K ′ = S as fixed point. If H ′ = K ′,

this fixed point is unique.

When µK′
0,1

m = µs and υH′
0,1

m = υs, (10) has reached an equilibrium. The updates (H ′,K ′) (10)→ (HK′
0,1 ,KH′

0,1)
are realized through the computation of the drifts µK′

0,1
m and υ

H′
0,1

m , i.e. by minimizing the losses (8, 9),
where Q0,1 is respectively equal to K ′

0,1 and H ′
0,1. Our proposal, BM2, follows from replacing the complete

minimization of (8, 9) with partial and stochastic minimization of (8, 9) through stochastic gradient descent.
More precisely, consider the forward and backward SDEs with distributions F (θ) and B(θ):

X0 ∼ Ψ0, dXt = µf (Xt, t, θ)dt+ σdWt, t ∈ [0, 1], (F (θ))

X1 ∼ Ψ1, dXt = −υb(Xt, t, θ)dt+ σdWt, t ∈ [1, 0]. (←−B (θ))
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µf (Xt, t, θ) and υb(Xt, t, θ) are drift functions to be learned, which are implemented through a neural network
with parameters θ. Let θ′ represent the values of θ at a given step during training, and define the losses

Lf (θ; θ′) := E
ΠB0,1(θ′)

[1
2

∫ 1

0
∥µ01(Xt, t,X1)− µf (Xt, t, θ)∥2dt

]
,

Lb(θ; θ′) := E
ΠF0,1(θ′)

[1
2

∫ 1

0
∥υ01(Xt, t,X1)− υb(Xt, t, θ)∥2dt

]
,

L(θ; θ′) := Lf (θ; θ′) + Lb(θ; θ′).

(11)

At each optimization step, BM2 attempts to minimize L(θ; θ′) in θ via a step of stochastic gradient descent,
starting from θ = θ′ and keeping θ′ fixed, resulting in θ′′. The subsequent optimization step employs θ′ ← θ′′.
The complete training objective is presented in Algorithm 1, where sg() refers to the stop-gradient operator —
L(θ; θ′) is minimized in the first arguments only — and discretize() represents a generic SDE discretization
scheme. For completeness, we outline the standard SGD training loop in Algorithm 2, where sgdstep() refers
to an update step via a generic gradient descent optimizer.

It should be noted that merely performing coupled drift matching of F and B, wherein F learns the drift
consistent with paths from B and vice versa, does not yield the Schrödinger bridge as a fixed point (Bortoli
et al., 2021). The introduction of the mixing process Π is crucial in ensuring this property. Moreover, L(θ; θ′)
must be minimized only with respect to its first argument: the application of the stop-gradient operator sg()
is not an efficiency consideration but a necessary component.

Algorithm 1 BM2 — training loss computation
outputs: l(θ): sampled loss value
inputs: θ: current parameters

1: function loss(θ)
2: f0 ∼ Ψ0 ▷ Marginal sampling
3: f∆t, . . . , f1|f0 ∼ sg(discretize(f0,∆t, µf ( · , · , θ))) ▷ Discretization of (F (θ))
4: b1 ∼ Ψ1 ▷ Marginal sampling
5: b1−∆t, . . . , b0|b1 ∼ sg(discretize(b1,∆t, υb( · , · , θ))) ▷ Discretization of (←−B (θ))
6: t ∼ U(0, 1) ▷ Time sampling
7: πft ∼ Rt|0,1( · |f0, f1) ▷ Bridge sampling (5)
8: πbt ∼ Rt|0,1( · |b0, b1) ▷ Bridge sampling (5)
9: lf(θ)← 1/2∥µ01(πbt, t, b1)− µf (πbt, t, θ)∥2 ▷ BM based on B0,1 (6, 8)

10: lb(θ)← 1/2∥υ01(πft, t, f0)− υb(πft, t, θ)∥2 ▷ BM based on F0,1 (7, 9)
11: l(θ)← lf(θ) + lb(θ)
12: return l(θ)

Algorithm 2 BM2 — training loop
outputs: θ∗: trained parameters
inputs: θ◦: initial parameters

1: function train(θ◦)
2: θ ← θ◦

3: while not converged do
4: l(θ)← loss(θ) ▷ Sample loss with Algorithm 1
5: θ ← sgdstep(θ,∇θl(θ)) ▷ Perform SGD step
6: return θ

4.1 Implementation Aspects

The following aspects are not presented in Listing 1, but are taken care of in the codebase utilized to carry
out the experiments of Section 5.
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Path Caching: as in Bortoli et al. (2021); Shi et al. (2023), to enhance efficiency, we cache the initial and
terminal endpoints of the paths sampled in lines 3 and 5 of Algorithm 1, and periodically refresh the cache
during training. Notably, it is unnecessary to cache entire paths; only the endpoints are required for bridge
sampling, which is advantageous from a memory perspective. Bridge sampling offers the additional benefit of
increased sample diversity: for cached (fixed) endpoints, the samples corresponding to lines 7 and 8 differ at
each step.

Model: we utilize a single neural network to parametrize both µf (x, t, θ) and υb(x, t, θ). As the training
process is not iterative, it is unnecessary to introduce multiple neural networks (or parameters), one for each
iteration.

Sampling EMA: as in Ho et al. (2020); Song et al. (2021), to improve the stability of training we apply
the Exponential Moving Averaging (EMA) to the parameters employed in path sampling in lines 3 and 5 of
Algorithm 1.

Loss Singularities: the losses of lines 9 and 10 of Algorithm 1 diverge for t→ 1 and t→ 0 respectively.
Singularities of these kind are common to scalable losses for generative diffusion models. In our numerical
experiments we simply restrict sampling of t to U(ϵ, 1− ϵ) for a small ϵ > 0. More sophisticated alternatives
involve either employing the dynamics of Appendix A for an appropriate scheduling βt, or learning terminal-
value predictors in place of drift terms, recovering the latter through (6, 7).

4.2 Convergence Properties

At each training step, BM2 performs a partial and stochastic minimization of the loss L(θ; θ′) from (11) with
respect to θ, where L(θ; θ′) is defined by an expectation over a distribution dependent on θ′, yielding θ′′.
Subsequently, θ′ is updated to match θ′′, and the process advances to the next training step. The alternation
between expectation and maximization steps bears resemblance to the classical Expectation-Maximization
(EM) algorithm (Dempster et al., 1977).

4.2.1 Complete Minimization

We start by establishing in Theorem 1 that the version of BM2 where L(θ; θ′) is fully minimized at each
training step recovers the I-BM and DIPF iterations for two specific initialization choices of (F (θ), ←−B (θ)).
The prior convergence results of Bortoli et al. (2021); Shi et al. (2023); Peluchetti (2023) (see the review of
Section 3.1) toward S thus apply.

To facilitate the presentation of the convergence results in this section, we introduce, with a slight abuse of
notation, the following functional versions of the losses (11):

Lf (µf ; υ′
b) := E

ΠB′
0,1

[1
2

∫ 1

0
∥µ01(Xt, t,X1)− µf (Xt, t)∥2dt

]
,

Lb(υb;µ′
f ) := E

ΠF ′
0,1

[1
2

∫ 1

0
∥υ01(Xt, t,X1)− υb(Xt, t)∥2dt

]
,

L(µf , υb;µ′
f , υ

′
b) := Lf (µf ; υ′

b) + Lb(υb;µ′
f ).

(12)

In (12) we identify µf , υb with F,B, and µ′
f , υ

′
b with F ′, B′ (the remaining quantities defining F,B, F ′, B′

are fixed). We will use Lf (µf ; υ′
b), Lb(υb;µ′

f ) and Lf (θ; θ′), Lb(θ; θ′) interchangeably. We are now ready to
state our first convergence result.

Theorem 1 (Complete BM2 Iterations). Consider the SDEs (F (θ), ←−B (θ)), with initial drifts µ(0)
f , υ

(0)
b and

corresponding distributions F (0), B(0). For each i ≥ 1, let (µ(i)
f , υ

(i)
b ) = arg min(µ,υ) L(µ, υ;µ(i−1)

f , υ
(i−1)
b ),

resulting in the distribution iterates F (i), B(i). We distinguish two cases:

(i) µ
(0)
f = υ

(0)
b = 0: both the iterates F (0), B(1), F (2), . . . and the iterates B(0), F (1), B(2), . . . are equiva-

lent to the DIPF iterates, started respectively from the forward and from the backward time direction;

7
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(ii) µ
(0)
f = µ

C0,1
m , υ

(0)
b = υ

C0,1
m for some C ∈ C(Ψ0,Ψ1): F (i) = B(i) = I(i) for each i ≥ 0 where I(i) are

the I-BM iterates.

4.2.2 Partial Minimization

In the EM algorithm it suffices to perform partial maximization steps. A partial result for the setting where
L(θ; θ′) is partially minimized with respect to θ at each step is stated in Theorem 2, which is based on
Lemma 1 and Lemma 2.
Lemma 2 (Loss Interpretation). It holds that

KL(B0 ∥Ψ0) + Lf (µf ; υb) = KL(ΠB0,1 ∥ F ) + C1(B) = KL(MB0,1 ∥ F ) + C2(B),
KL(F1 ∥Ψ1) + Lb(υb;µf ) = KL(ΠF0,1 ∥B) +D1(F ) = KL(MF0,1 ∥B) +D2(F ),

(13)

for C1(B), C2(B) independent of F , D1(F ), D2(F ) independent of B, with 0 ≤ C1(B) ≤ C2(B) and 0 ≤
D1(F ) ≤ D2(F ).

The losses Lf (µf ; υb) and Lb(υb;µf ) are easily amenable to optimization in their first arguments, as seen in
Algorithm 1. Lemma 2 relates these losses to more interpretable KL divergences between distributions. By
(13), a decrease of Lf (µf ; υb) due to a change in µf corresponds to equivalent decreases of KL(MB0,1 ∥F ) for
a fixed υb, or B. Thus, partial minimization of Lf (µf ; υb) brings F closer to MB0,1 , the BM transport based
on B0,1, and the result of a complete minimization step, by means of reverse KL minimization. Symmetric
considerations apply to Lb(υb;µf ) as function of its first argument. Putting this result and Lemma 1 together
yields Theorem 2.
Theorem 2 (Partial BM2 Iterations). At each optimization step, decreases of Lf (θ; θ′) and Lb(θ; θ′) in θ

correspond to equivalent decreases of KL(MB0,1(θ′) ∥ F (θ)) and KL(MF0,1(θ′) ∥B(θ)). If the losses Lf (θ; θ′)
and Lb(θ; θ′) cannot be decreased in θ, i.e., at optimality, and if F (θ) = B(θ), then F (θ) = B(θ) = S.

4.2.3 Infinitesimal Minimization

We conclude our theoretical investigation by relating our proposal to the work of Karimi et al. (2023),
which introduces a continuous variant of the IPF procedure. In IPF, the two target marginal distributions
are replaced sequentially, one at a time. Each step corresponds to solving a static Schrödinger half-bridge
problem (Léonard, 2014a), where in (2), C(Ψ0,Ψ1) is replaced by either C(Ψ0, ·) or C(·,Ψ1). The approach
proposed by Karimi et al. (2023) retains either the even or odd steps of the IPF scheme while substituting
the alternate steps with partial minimizations of the corresponding half-bridge problems. In the limit of
infinitesimally small improvements, this yields a dynamical system for the evolution of the iterates over
continuous algorithmic time.

We demonstrate that a similar result can be obtained for a modified version of BM2, where forward KL
divergences are minimized instead of reverse KL divergences. The resulting dynamical system is a symmetrized
version of the one obtained by Karimi et al. (2023). Let F ′, B′ represent the current state in the optimization
process. We consider a partial minimization of KL(F ∥MB′

0,1), instead of KL(MB′
0,1 ∥ F ), in F and a

partial minimization of KL(B ∥MF ′
0,1), instead of KL(MF ′

0,1 ∥B), in B. As in Karimi et al. (2023), partial
minimization is formulated as

F (λ) := arg min
F ∈M(Ψ0,·)

λKL(F ∥MB′
0,1) + (1− λ)KL(F ∥ F ′),

B(λ) := arg min
B∈M(·,Ψ1)

λKL(B ∥MF ′
0,1) + (1− λ)KL(B ∥B′),

(14)

where λ ∈ [0, 1] controls the extent of the minimization. We begin by establishing two stability results: the
updates (F ′, B′) (14)→ (F (λ), B(λ)) preserve both R and S.
Lemma 3 (R-stability of F (λ), B(λ)). If F ′, B′ ∈ R, then F (λ), B(λ) ∈ R for each λ ∈ [0, 1].

Lemma 4 (S-stability of F (λ), B(λ)). If F ′, B′ ∈ S, then F (λ), B(λ) ∈ S for each λ ∈ [0, 1].

8
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Provided that the initial values F ′, B′ ∈ S, Lemma 4 establishes that the iterates defined by the updates
(F ′, B′) (14)→ (F (λ), B(λ)) always remain in S. It is straightforward to ensure that F ′, B′ ∈ S at initialization
by setting the corresponding drifts to zero: µ′

f , υ
′
b = 0, which we will assume henceforth. As MB′

0,1 = B′ and
MF ′

0,1 = F ′, (14) can be reformulated in simpler terms:

F (λ) := arg min
F ∈M(Ψ0,·)

λKL(F ∥B′) + (1− λ)KL(F ∥ F ′),

B(λ) := arg min
B∈M(·,Ψ1)

λKL(B ∥ F ′) + (1− λ)KL(B ∥B′).
(15)

By Lemma 3, it suffices to solve (15) in the static setting,

F
(λ)
0,1 := arg min

F0,1∈C(Ψ0,·)
λKL(F0,1 ∥B′

0,1) + (1− λ)KL(F0,1 ∥ F ′
0,1),

B
(λ)
0,1 := arg min

B0,1∈C(·,Ψ1)
λKL(B0,1 ∥ F ′

0,1) + (1− λ)KL(B0,1 ∥B′
0,1).

(16)

The dynamic solutions are then recovered by F (λ)
|0,1 = B

(λ)
|0,1 = R|0,1.

We assume that F ′
0,1, B

′
0,1,Ψ0,Ψ1 admit densities. By calculus of variations, the solution to (16) is

given by f
(λ)
0,1 (x0, x1) = ψ0(x0)f (λ)

1|0 (x1|x0), and b
(λ)
0,1(x0, x1) = b

(λ)
0|1(x0|x1)ψ1(x1), where f

(λ)
1|0 (x1|x0) ∝

b′
1|0(x1|x0)λf ′

1|0(x1|x0)1−λ and b
(λ)
0|1(x0|x1) ∝ f ′

0|1(x0|x1)λb′
0|1(x0|x1)1−λ. The IPF iterations are recovered

when λ = 1. Instead, taking the limit λ → 0 and applying Bayes theorem, we obtain the evolution of
log f (l)

1|0(x1|x0) and log b(l)
0|1(x0|x1) as a function of algorithmic time l ∈ [0,∞) through the dynamical system

d log f (l)
1|0(x1|x0)
dl

= − log
f

(l)
1|0(x1|x0)

b
(l)
0|1(x0|x1)ψ1(x1)

+ KL(f (l)
1|0(x1|x0) ∥ b(l)

0|1(x0|x1)ψ1(x1)), l ∈ [0,∞),

d log b(l)
0|1(x0|x1)
dl

= − log
b

(l)
0|1(x0|x1)

f
(l)
1|0(x1|x0)ψ0(x0)

+ KL(b(l)
0|1(x0|x1) ∥ f (l)

1|0(x1|x0)ψ0(x0)), l ∈ [0,∞).

(17)

In (17), KL( · ∥ ·) denotes the generalized KL divergence between unnormalized densities, as is the case
here for the second arguments, and the initial conditions f (0)

1|0 (x1|x0) and b
(0)
0|1(x0|x1) are determined by

(F (θ), ←−B (θ)) with null drift terms. (17) can be contrasted with Karimi et al. (2023, Equation (13)). In
Appendix C we report a simple numerical application of (17) to the Gaussian setting, which recovers S.

5 Numerical Experiments

To evaluate the performance of BM2 on EOT problems, we utilize the benchmark developed by Gushchin
et al. (2023). For the reference process (R), this benchmark provides pairs of target distributions Ψ0,Ψ1
with analytical EOT solution S0,1 and analytical SB-optimal drift function µs. We focus on the mixtures
benchmark, which consist of a centered Gaussian distribution as S0 = Ψ0 and a mixture of 5 Gaussian
distributions for S1|0. S1 = Ψ1 is not a mixture of Gaussian distributions, but has 5 distinct modes.
The benchmark is constructed for dimensions d ∈ {2, 16, 64, 128} and entropic regularization parameters
ε ∈ {0.1, 1, 10}.

For each fully trained method, characterized by a stochastic process distribution P and forward drift function
µp, we assess performance using two evaluation metrics:

• KL(S ∥ P ) where, by Girsanov theorem (Øksendal, 2013),

KL(S ∥ P ) = E
S

[ 1
2σ2

∫ 1

0
∥µs(Xt, t)− µp(Xt, t)∥2dt

]
; (18)

9
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ε=0.1 ε=1 ε=10

Method d=2 d=16 d=64 d=128 d=2 d=16 d=64 d=128 d=2 d=16 d=64 d=128

BM2 0.01
0.01

0.20
0.02

1.03
0.07

3.06
0.16

0.01
0.00

0.11
0.00

1.43
0.03

8.29
0.36

0.11
0.01

2.25
0.04

13.13
0.13

40.46
0.49

BM2
σ 0.43

0.09
3.76
0.46

39.55
1.96

127.2
1.4

0.04
0.01

0.43
0.03

5.36
0.35

18.66
0.73

0.15
0.00

2.64
0.05

13.78
0.24

43.42
1.43

I-BM 0.03
0.01

0.20
0.02

1.24
0.04

5.70
0.42

0.01
0.00

0.16
0.01

1.94
0.04

7.79
0.07

0.16
0.00

4.09
0.03

17.17
0.21

49.17
0.55

DIPF 0.59
0.14

2.39
0.05

7.93
1.23

34.77
0.82

0.23
0.06

1.21
0.18

13.13
0.79

36.51
1.05

0.81
0.06

28.25
2.12

113.8
7.2

345.8
8.1

Table 1: Monte Carlo estimate of KL(S ∥ P ) as function of ε and d, standard deviation in gray.

• cBW2
2-UVP(S0,1, P0,1), where

cBW2
2-UVP(S0,1, P0,1) := 100

1
2 VS [X1]

∫
BW2

2(S1|0(X1|X0), P1|0(X1|X0))S0(dX0), (19)

BW2
2( · , ·) is the squared Bures-Wasserstein distance, i.e. the squared Wasserstein-2 distance between

(assumed) multivariate Gaussian distributions (Dowson & Landau, 1982), and VS [X1] is the variance
of X1 ∼ S1.

We focus on the divergence KL(S ∥P ), rather than KL(P ∥ S), as a low KL(S ∥P ) more accurately indicates
that P approximates S effectively across the entire support of S. The data-processing inequality implies
that KL(S0,1 ∥ P0,1) ≤ KL(S ∥ P ). The cBW2

2-UVP( · , ·) metric, introduced by Gushchin et al. (2023), is a
normalized and conditional extension of the standard BW2

2( · , ·) distance. Results for evaluation metrics (18)
and (19) are summarized in Table 1 and Table 2, respectively.

In our benchmarking, we compare BM2 against the I-BM and DIPF methods (Section 3.1). Each experiment is
repeated five times, including both model training and metric evaluation, to obtain uncertainty quantification.
We use 1, 000 Monte Carlo samples to estimate (18, 19). For simplicity, we employ the Euler–Maruyama
scheme (Kloeden & Platen, 1992) with 200 discretization steps (∆t = 0.005) in all path sampling procedures.
Each method undergoes 50, 000 SGD training steps with a batch size of 1, 000, settings similar to those used
by Gushchin et al. (2023), enabling qualitative comparison of our results with theirs. We use the AdamW
optimizer with a learning rate of 10−4 and hyperparameters: β = (0.9, 0.999), ϵ = 10−8, wd = 0.01, where wd
denotes weight decay. Time is sampled as t ∼ U(ϵ, 1− ϵ) for ϵ = 0.0025.

For BM2, we employ a single feedforward neural network with 3 layers of width 768 and ReLU activation,
resulting in approximately 1 million parameters. As mentioned in Section 4.1, we implement path caching and
an exponential moving average for parameters used in path sampling. The cache contains 5, 000 initial-terminal
values from both (F (θ)) and (←−B (θ)), refreshed every 200 training steps.

For I-BM and DIPF, each outer loop iteration comprises 5, 000 SGD steps, totaling 10 outer loop (algorithmic)
iterations. Following best practices (Bortoli et al., 2021; Shi et al., 2023), we alternate time directions over
iterations for both algorithms. Each method employs two separate neural networks for forward and backward
time directions, maintaining a total parameter count close to 1 million, matching BM2’s model size. As with
BM2, we implement path caching (for DIPF, entire discretized paths are cached) and EMA for sampling.

We also consider BM2
σ, a variant of BM2 that learns Schrödinger bridges for Ψ0,Ψ1 across multiple σ values.

This amortized version leverages BM2’s non-iterative nature. At each optimization step, σ is sampled from
U(0.1, 4) and utilized in discretizing SDEs (F (θ), ←−B (θ)) (lines 3 and 5 of Algorithm 1) and in bridge sampling
(lines 7 and 8 of Algorithm 1). The neural network implementing drift functions µf (x, t, θ) and υb(x, t, θ)
is modified to accept σ as an additional input, resulting in conditional drift functions µf (x, t, θ, σ) and
υb(x, t, θ, σ). Path caching is adjusted to store σ values corresponding to cached paths.

In Table 2, we additionally include three baselines. EOT: sampling from the EOT solution, accounting for
the bias due to Monte Carlo estimation. SB(discr): sampling from the SB solution via the SB-optimal drift

10
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ε=0.1 ε=1 ε=10

Method d=2 d=16 d=64 d=128 d=2 d=16 d=64 d=128 d=2 d=16 d=64 d=128

EOT 0.02
0.00

0.05
0.00

0.34
0.00

0.91
0.00

0.09
0.00

0.17
0.00

0.43
0.00

1.14
0.00

0.12
0.00

0.18
0.00

0.23
0.00

0.38
0.00

SB(discr.) 0.04
0.00

0.07
0.00

0.35
0.00

0.92
0.00

0.10
0.00

0.17
0.00

0.45
0.00

1.18
0.00

0.12
0.00

1.15
0.00

5.38
0.01

10.48
0.01

Ψ0⊗Ψ1 195.8
6.9

186.3
2.4

162.6
0.8

145.1
2.1

136.1
4.7

127.6
1.4

113.0
1.7

93.61
1.57

8.07
0.33

4.88
0.14

4.22
0.09

4.45
0.07

BM2 0.73
0.40

4.64
0.58

6.84
0.59

8.28
0.62

0.14
0.03

0.41
0.04

1.72
0.09

8.30
1.17

0.14
0.01

2.30
0.04

41.14
1.99

264.4
7.0

BM2
σ 8.38

3.40
16.06

2.81
44.15

0.84
83.84

0.92
0.20
0.07

2.61
0.41

25.89
1.65

64.76
2.66

0.14
0.01

2.57
0.03

58.76
0.76

323.0
8.8

I-BM 1.07
0.50

4.25
0.66

7.19
0.28

16.63
2.07

0.20
0.09

0.53
0.04

2.20
0.35

7.79
0.79

0.14
0.02

5.21
0.11

135.8
1.3

578.7
9.8

DIPF 7.82
2.51

15.30
1.00

20.12
1.53

29.36
1.02

1.66
0.24

5.98
0.65

13.11
2.49

28.86
3.52

0.69
0.08

6.85
0.21

72.63
0.70

226.1
1.1

Table 2: Monte Carlo estimate of cBW2
2-UVP(S0,1, P0,1) as function of ε and d, standard deviation in gray.

µs, additionally accounting for Euler–Maruyama scheme discretization error. Ψ0⊗Ψ1: sampling from the
independent coupling.

We now discuss the results presented in Tables 1 and 2. BM2 demonstrates superior overall performance
across dimensions and entropic regularization settings in both metrics. I-BM also shows good performance,
particularly in comparison to the DIPF procedure, which aligns with the findings of Shi et al. (2023).

As expected, the performance of all methods deteriorates as the number of dimensions increases. This is
because the metric(18) scales linearly with the number of dimensions, assuming a constant error rate in
estimating each component of the true drift µs. Similar considerations apply to the metric (19).

While BM2
σ exhibits a performance gap compared to BM2, it yields reasonable results in low-dimensional

settings (d = 2, 16). This gap may be due to increased pressure on model capacity or the need to normalize
loss levels across σ values. All methods perform poorly in the high regularization setting (ε = 10), especially
in high dimensions (d = 64, 128), which we include for completeness. It should be noted that, in such cases,
sampling from the independent coupling (a trivial solution) is preferable to sampling from the SB-optimal
SDE for the chosen discretization interval.

6 Related Works

Relevant works that, like BM2, address the dynamic Schrödinger bridge problem (1) include:

I-BM and DIPF: The works most closely related to BM2 are the iterative, sample-based DIPF (Bortoli
et al., 2021; Vargas et al., 2021) and I-BM (Shi et al., 2023; Peluchetti, 2023) procedures, which do not satisfy
desiderata (i). Built on similar bridge matching principles, BM2 can be viewed as a modification of I-BM
that employs a single optimization loop, resulting in a simpler algorithm that we have empirically shown to
be competitive.

Forward-Backward SB SDE: Chen et al. (2022) proposes two training algorithms addressing the dynamic
SB problem. Both approaches employ loss functions that require divergence computations (violating desiderata
(iv)) and the use of two distinct neural networks. The first method is iterative, resembling DIPF (violating
desiderata (i)), while the second method involves differentiating through entire discretized paths, resulting in
high memory consumption (violating desiderata (iii)).

The subsequent works concentrate on solving the static Schrödinger bridge (2), or EOT (3), problem. Once
this is achieved, solutions to the dynamic problem are trivially obtained through the standard decomposition
S = S0,1R|0,1. Although these works differ in nature and objectives, we include them here due to their shared
characteristic with BM2: the non-iterative nature of the algorithm.
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Light SB: In two notable works, Korotin et al. (2023) and Gushchin et al. (2024) propose non-iterative,
sample-based EOT solvers for the Euclidean cost function, i.e., for the specific choice of reference dynamics
(R). Korotin et al. (2023) introduces an approximation to (an adjusted version of) the Schrödinger potential
for Ψ1 via a mixture of Gaussian distributions, resulting in a mixture of Gaussian distributions approximation
to S1|0. Gushchin et al. (2024) builds upon this approximation and introduces an additional sample-based
training objective that takes as input any coupling C0,1 ∈ C(Ψ0,Ψ1), whereas Korotin et al. (2023) requires
the independent coupling Ψ0⊗Ψ0. While also non-iterative, the proposals of Korotin et al. (2023); Gushchin
et al. (2024) differ from BM2 in two key aspects: (a) they learn a solution in the static setting instead of the
dynamic one, and (b) they employ mixture of Gaussian distributions approximations, rather than neural
network approximators for the drift functions. Consequently, these methods may face challenges in scaling to
modern generative ML applications. Light SB, in both variants, demonstrates strong performance in the
benchmark presented in Section 5 (Gushchin et al., 2024, Table 1). However, it is worth noting that this
benchmark is particularly well-suited for Light SB, as acknowledged by its authors, since the target S0,1 is
constructed such that S1|0 is itself a mixture of 5 Gaussian distributions.

7 Conclusions

In this work we introduced Coupled Bridge Matching (BM2), a novel approach for learning Schrödinger
bridges from samples. BM2 builds on the principles of Bridge Matching while addressing key limitations of
existing iterative methods. Our approach offers several advantages, including a simple single-loop optimization
procedure, exactness in the idealized setting, modest memory requirements, and a straightforward loss function.
The numerical experiments demonstrate that BM2 is competitive with and often outperforms existing iterative
diffusion-based methods like I-BM and DIPF across various dimensions and entropic regularization settings.

On the theoretical front, there is substantial room for improvement. Firstly, while bearing some resemblance to
the standard convergence result for the EM algorithm, Theorem 2 lacks a quantity analogous to the likelihood
being maximized in the EM algorithm. It remains unclear whether decreases in KL(MB0,1(θ′) ∥ F (θ)) and
KL(MF0,1(θ′) ∥B(θ)) can be linked to decreases in KL(F (θ)∥S) and KL(B(θ)∥S). Secondly, the requirement
that F (θ) = B(θ), equivalently that (F (θ)) and (←−B (θ)) are time-reversals of each other, appears unnecessary.
Notably, all numerical simulations conducted do not explicitly enforce this condition, which emerges naturally
during the training process. Thirdly, it would be valuable to study problem (14) where reverse KL divergences
are partially minimized, aligning more closely with the BM2 algorithm. In this scenario, Lemma 4 no
longer holds, and it may be necessary to impose a corresponding additional constraint to maintain tractable
analytical computations. The attractors of (17), and of a corresponding dynamical system arising from
reverse KL minimization, can be investigated to assess further convergence properties of BM2.

On the empirical front, the applications of BM2 in contemporary generative machine learning tasks remain
unexplored. Given the promising results from previous studies employing Bridge Matching, such as those by
Liu et al. (2023) and Somnath et al. (2023), it is anticipated that BM2 could be effectively applied to various
domains, including image generation, audio synthesis, and molecular design. Future work could investigate
the scalability and performance of BM2 in these domains.
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A Additional Dynamics

In this section we consider a simple extension to the dynamics of Section 2.2, and refer the reader to Peluchetti
(2021; 2023) for the more general case. Here, we consider the case where the reference distribution R is given
by the solution to:

X0 ∼ Ψ0, dXt = σ
√
βtdWt, t ∈ [0, 1], (20)

with σ ≥ 0, βt : [0, 1] → R>0 strictly positive and continuous. With bs:t :=
∫ t

s
βudu, 0 ≤ s ≤ t ≤ 1, βt is

chosen such that b0:1 = 1, to disentangle the contribution of βt from the contribution of σ. Indeed, under
these conditions, βt defines a time-warping: if Xt is the solution to (R), then Xb0:t has the same distribution
as the solution to (20). Consequently, the solutions to (2) and (3) are independent of βt.

When employing (20), the definitions in Section 2.2 are replaced as follows:

Rt|0( · |x0) = N (x0, σ
2b0:t), (21)

Rt|0,1( · |x0, x1) = N (x0bt:1 + x1b0:t, σ
2b0:tbt:1), (22)

µ01(xt, t, x1) := σ2βt∇xt log r1|t(x1|xt) = βt

bt:1
(x1 − xt), (23)

υ01(xt, t, x0) := σ2βt∇xt
log rt|0(xt|x0) = βt

b0:t
(x0 − xt). (24)

B Proofs

Theorem 1 (Complete BM2 Iterations). Consider the SDEs (F (θ), ←−B (θ)), with initial drifts µ(0)
f , υ

(0)
b and

corresponding distributions F (0), B(0). For each i ≥ 1, let (µ(i)
f , υ

(i)
b ) = arg min(µ,υ) L(µ, υ;µ(i−1)

f , υ
(i−1)
b ),

resulting in the distribution iterates F (i), B(i). We distinguish two cases:

(i) µ
(0)
f = υ

(0)
b = 0: both the iterates F (0), B(1), F (2), . . . and the iterates B(0), F (1), B(2), . . . are equiva-

lent to the DIPF iterates, started respectively from the forward and from the backward time direction;

(ii) µ
(0)
f = µ

C0,1
m , υ

(0)
b = υ

C0,1
m for some C ∈ C(Ψ0,Ψ1): F (i) = B(i) = I(i) for each i ≥ 0 where I(i) are

the I-BM iterates.

Proof. Define Q associated with

X1 ∼ Ψ1, dXt = σdWt, t ∈ [1, 0], (←−Q)

which is not the time reversal of (R), but R|0,1 = Q|0,1.

Firstly, consider the case of initial null drifts: µ(0)
f = υ

(0)
b = 0, corresponding to F (0) = Ψ0R|0 = Ψ0R1|0R|0,1 =

F
(0)
0,1R|0,1 ∈ S and B(0) = Ψ1Q|1 = Ψ1Q0|1R|0,1 = B

(0)
0,1R|0,1 ∈ S. As B(0) = ΠB

(0)
0,1 = MB

(0)
0,1 , we have

F (1) = Ψ0M
B

(0)
0,1

|0 = Ψ0B
(0)
|0 = Ψ0B

(0)
1|0R|0,1 ∈ S. As F (0) = ΠF

(0)
0,1 = MF

(0)
0,1 , B(1) = Ψ1M

F
(0)
0,1

|1 = Ψ1F
(0)
|1 =

Ψ1F
(0)
0|1R|0,1 ∈ S. By induction, F (i) = Ψ0B

(i−1)
1|0 R|0,1 ∈ S and B(i) = Ψ1F

(i−1)
0|1 R|0,1 ∈ S, i ≥ 1. We now

construct two forward-backward sequences. For the sequence F (0), B(1), F (2), . . . , we have F (0)
0,1 = Ψ0R1|0,

B
(1)
0,1 = Ψ1F

(0)
0|1 , F (2)

0,1 = Ψ0B
(1)
1|0 , . . . which are the static IPF iterates: one marginal gets replaced at a time

keeping the conditional distribution fixed. In the same way, for B(0), F (1), B(2), . . . , we have B(0)
0,1 = Ψ1Q0|1,

F
(1)
0,1 = Ψ0B

(0)
1|0 , B(2)

0,1 = Ψ1F
(1)
0|1 , . . . which are again the static IPF iterates (for the backward formulation of

the dynamic SB problem, i.e. via←−Q |0 as reference measure instead of R|0, and switched marginal distributions).
As each pair F (i), B(i) is of the form F (i) = F

(i)
0,1R|0,1, B(i) = B

(i)
0,1R|0,1, we also recover the dynamic DIPF

iterates.
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Secondly, consider µ(0)
f and υ

(0)
b both corresponding to the BM transport based on the given coupling:

I(0) = MC0,1 , F (0) = B(0) = I(0). Then, looking separately at either of the sequences F (i), i ≥ 1, and B(i),
i ≥ 1, we obtain that F (i) = B(i) = I(i), i ≥ 1.

Lemma 2 (Loss Interpretation). It holds that

KL(B0 ∥Ψ0) + Lf (µf ; υb) = KL(ΠB0,1 ∥ F ) + C1(B) = KL(MB0,1 ∥ F ) + C2(B),
KL(F1 ∥Ψ1) + Lb(υb;µf ) = KL(ΠF0,1 ∥B) +D1(F ) = KL(MF0,1 ∥B) +D2(F ),

(13)

for C1(B), C2(B) independent of F , D1(F ), D2(F ) independent of B, with 0 ≤ C1(B) ≤ C2(B) and 0 ≤
D1(F ) ≤ D2(F ).

Proof. We consider only Lf (µf ; υb), the arguments for Lb(υb;µf ) are symmetric. By Girsanov Theorem
(Øksendal, 2013) and by the marginal-conditional decomposition of Kullback-Leibler divergences we have

KL(MB0,1 ∥ F ) = KL(B0 ∥Ψ0) + E
ΠB0,1

[1
2

∫ 1

0
∥µf (Xt, t)− µB0,1

m (Xt, t)∥2dt
]
,

KL(ΠB0,1 ∥ F ) = KL(B0 ∥Ψ0) + E
ΠB0,1

[1
2

∫ 1

0
∥µf (Xt, t)− µB0,1

π (Xt, t,X0)∥2dt
]
,

KL(ΠB0,1 ∥ F) = KL(B0 ∥Ψ0) + E
ΠB0,1

[1
2

∫ 1

0
∥µf (Xt, t)− µ01(Xt, t,X1)∥2dt

]
= KL(B0 ∥Ψ0) + Lf (µf ; υb),

where µB0,1
π (Xt, t,X0) := EΠB0,1 [µ01(Xt, t,X1)|Xt, X0], µB0,1

m (Xt, t) := EΠB0,1 [µ01(Xt, t,X1)|Xt], and F is
distribution of the non-Markov diffusion solution to the auxiliary SDE

X0 ∼ Ψ0, dXt = [µf (Xt, t)− µ01(Xt, t,X1) + µB0,1
π (Xt, t,X0)]dt+ σdWt, t ∈ [0, 1]. (F)

By the tower property of conditional expectations and by the conditional Jensen inequality it follows that

KL(ΠB0,1 ∥ F)−KL(ΠB0,1 ∥ F )

= E
ΠB0,1

[1
2

∫ 1

0
∥µf (Xt, t)− µ01(Xt, t,X1)∥2 − ∥µf (Xt, t)− µB0,1

π (Xt, t,X0)∥2dt
]

= E
ΠB0,1

[1
2

∫ 1

0
∥µ01(Xt, t,X1)∥2 − ∥µB0,1

π (Xt, t,X0)∥2dt
]

= C1(B) ≥ 0.

By the Pythagorean property of the BM transport (Liu et al., 2022; Peluchetti, 2023)

KL(ΠB0,1 ∥ F )−KL(MB0,1 ∥ F ) = KL(ΠB0,1 ∥MB0,1) = K(B) ≥ 0.

Taking C2(B) = C1(B) +K(B) completes the proof.

Lemma 3 (R-stability of F (λ), B(λ)). If F ′, B′ ∈ R, then F (λ), B(λ) ∈ R for each λ ∈ [0, 1].

Proof. By the marginal-conditional decomposition of Kullback-Leibler divergences

KL(F ∥B′) = KL(F0,1 ∥B′
0,1) + E

F0,1
[KL(F|0,1 ∥B′

|0,1)],

KL(F ∥ F ′) = KL(F0,1 ∥ F ′
0,1) + E

F0,1
[KL(F|0,1 ∥ F ′

|0,1)],

and B′
|0,1 = F ′

|0,1 = R|0,1, hence

F (λ) := arg min
F ∈P(Ψ0,·)

λKL(F0,1 ∥B′
0,1) + (1− λ)KL(F0,1 ∥ F ′

0,1) + E
F0,1

[KL(F|0,1 ∥R|0,1)],

B(λ) := arg min
B∈P(·,Ψ1)

λKL(B0,1 ∥ F ′
0,1) + (1− λ)KL(B0,1 ∥B′

0,1) + E
B0,1

[KL(B|0,1 ∥R|0,1)],

and thus F (λ)
|0,1 = B

(λ)
|0,1 = R|0,1, which completes the proof.
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Figure 1: Algorithmic-time l evolution of EF (l) [X1], VF (l) [X1], CF (l) [X0, X1], compared with ES [X1], VS [X1],
CS [X0, X1] as dashed gray lines.

Lemma 4 (S-stability of F (λ), B(λ)). If F ′, B′ ∈ S, then F (λ), B(λ) ∈ S for each λ ∈ [0, 1].

Proof. In view of Lemma 3, we have to verify that F (λ)
0,1 , B

(λ)
0,1 solve the EOT problems (3) for some marginal

distributions if F ′
0,1, B

′
0,1 do. For simplicity, we assume that all of F (λ)

0,1 , B
(λ)
0,1 , F

′
0,1, B

′
0,1 admits positive

densities on Rd×d, and that Ψ0 and Ψ1 admits positive densities on Rd. The steps of this proof carry over to
the more general measure-theoretic setting.

We know that f (λ)
0,1 (x0, x1) = ψ0(x0)f (λ)

1|0 (x1|x0) and b
(λ)
0,1(x0, x1) = b

(λ)
0|1(x0|x1)ψ1(x1), where f (λ)

1|0 (x1|x0) ∝
b′

1|0(x1|x0)λf ′
1|0(x1|x0)1−λ and b(λ)

0|1 (x0|x1) ∝ f ′
0|1(x0|x1)λb′

0|1(x0|x1)1−λ (see Section 4.2). On the other hand

f ′
0,1(x0, x1) = exp

{
ϕf ′

0 (x0) + ϕf ′

1 (x1)− κ(x0, x1)
ε

}
,

b′
0,1(x0, x1) = exp

{
ϕb′

0 (x0) + ϕb′

1 (x1)− κ(x0, x1)
ε

}
,

for the Schrödinger potentials2 ϕf ′

0 (x0), ϕf ′

1 (x1) and ϕb′

0 (x0) + ϕb′

1 (x1) (Léonard, 2014a). It follows by direct
computation that f (λ)

0,1 (x0, x1) and b
(λ)
0,1(x0, x1) satisfy:

f
(λ)
0,1 (x0, x1) = exp

{
ϕf,λ

0 (x0) + ϕf,λ
1 (x1)− κ(x0, x1)

ε

}
,

b
(λ)
0,1(x0, x1) = exp

{
ϕb,λ

0 (x0) + ϕf,λ
1 (x1)− κ(x0, x1)

ε

}
,

for some other Schrödinger potentials ϕf,λ
0 (x0), ϕf,λ

1 (x1) and ϕb,λ
0 (x0), ϕf,λ

1 (x1).

C Infinitesimal Minimization, Gaussian Case

Consider the one-dimensional case d = 1, with target Gaussian marginal distributions Ψ0 = N (µ0, σ
2
0) and

Ψ1 = N (µ1, σ
2
1), and a reference diffusion distribution R associated with (R). In this setting, the solution

to the static Schrödinger bridge problem (2) is known analytically and is given by a bivariate Gaussian
distribution (Mallasto et al., 2022).

We hypothesize that conditional Gaussian densities for f (l)
1|0(x1|x0) and b(l)

0|1(x0|x1) solve (17). Specifically, we
propose F (l)

1|0 = N (Af
l x0 + af

l , v
f
l ) and B

(l)
0|1 = N (Ab

lx1 + ab
l , v

b
l ), where Af

l , a
f
l , A

b
l , a

b
l ∈ R and vf

l , v
b
l ∈ R>0

are algorithmic-time dependent scalar parameters. By construction, F (l)
0 = N (µ0, σ

2
0) and B

(l)
1 = N (µ1, σ

2
1)

2We formulate the potential with respect to the Lebesgue measure on Rd.
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for each l ≥ 0. Substituting these expressions for f (l)
1|0(x1|x0) and b(l)

0|1(x0|x1) into (17) yields a six-dimensional
ODE system in the parameters. The initial conditions are Ab

0 = Af
0 = 1, af

0 = ab
0 = 0, vf

0 = vb
0 = σ2,

corresponding to initial null drift terms for (F (θ), ←−B (θ)), as discussed in Section 4.2.

To numerically solve the ODE and determine the values of Af
l , a

f
l , v

f
l , A

b
l , a

b
l , v

b
l over l ∈ [0, L] for some L > 0,

we evaluate (17) for three different pairs of (x0, x1). This provides sufficient constraints to identify the
parameters. Subsequently, we verify that the proposed functional forms for f (l)

1|0(x1|x0) and b(l)
0|1(x0|x1) indeed

solve (17).

We examine the scenario where µ0 = −2, µ1 = 2, σ0 = σ1 = σ = 1. Figure 1 illustrates the evolution of
EF (l) [X1], VF (l) [X1], and CF (l) [X0, X1] over algorithmic time l. These quantities represent the mean and
variance of X1 and the covariance between X0 and X1 according to F (l), respectively. The corresponding
values ES [X1], VS [X1], and CS [X0, X1] for the static Schrödinger bridge solution S0,1 from Mallasto et al.
(2022) are depicted as dashed gray lines, demonstrating convergence.
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D Python Code

1 # dimensions: B: batch; D: data; T: time_steps + 1
2 # required: sample_0(batch_dim, device), sample_1(batch_dim, device), fwd_drift_fn(x, t), bwd_drift_fn(x, t)
3 import torch as th
4

5 # sampling from Rt|0,1 (5): (B, D), (B, D), (B,), () -> (B, D)
6 def sample_bridge(x_0, x_1, t, sigma):
7 B, D = x_0.shape
8 mean_t = (1 - t[..., None]) * x_0 + t[..., None] * x_1 # (B, D)
9 var_t = sigma**2 * t[..., None] * (1 - t[..., None]) # (B, D)

10 z_t = th.randn_like(x_0) # (B, D)
11 x_t = mean_t + th.sqrt(var_t) * z_t # (B, D)
12 return x_t
13

14 # fwd BM target (6): (B, D), (B, D), (B,) -> (B, D)
15 def fwd_target(x_t, x_1, t):
16 return (x_1 - x_t) / (1 - t[..., None]) # (B, D)
17

18 # fwd BM target (7): (B, D), (B, D), (B,) -> (B, D)
19 def bwd_target(x_t, x_0, t):
20 return (x_0 - x_t) / t[..., None] # (B, D)
21

22 # Euler–Maruyama dicretization scheme: fn(x, t), (B, D), (T), () -> (B, D)
23 def discretization(drift_fn, initial_value, times, sigma):
24 B, D = initial_value.shape
25 times = times[..., None].expand(-1, B) # (T, B)
26 x_prev_t = initial_value # (B, D)
27 for prev_t, t in zip(times[:-1], times[1:]): # (B), (B)
28 dt = t - prev_t # (B)
29 drift_t = drift_fn(x_prev_t, prev_t) # (B, D)
30 drift_part_t = drift_t * dt[..., None] # (B, D)
31 eps_t = th.randn_like(x_prev_t) # (B, D)
32 diffusion_part_t = (sigma * th.sqrt(th.abs(dt)))[..., None] * eps_t # (B, D)
33 x_t = x_prev_t + drift_part_t + diffusion_part_t # (B, D)
34 x_prev_t = x_t # (B, D)
35 return x_t
36

37 # BM2 loss computation: fn(b, d), fn(b, d), fn(x, t), fn(x, t), (), (), (), () -> ()
38 def sample_loss(sample_0, sample_1, fwd_drift_fn, bwd_drift_fn, batch_dim, time_steps, sigma, device):
39 # sample from the target marginals:
40 f_0 = sample_0(batch_dim, device) # (B, D)
41 b_1 = sample_1(batch_dim, device) # (B, D)
42 # sample according to current (F (θ)) and (

←−
B (θ)):

43 fwd_times = th.linspace(0.0, 1.0, time_steps + 1, device=device) # [0, 1/time_steps, ..., 1]
44 bwd_times = th.linspace(1.0, 0.0, time_steps + 1, device=device) # [1, ..., 1/time_steps, 0]
45 f_1 = discretization(fwd_drift_fn, f_0, fwd_times, sigma).detach() # (B, D)
46 b_0 = discretization(bwd_drift_fn, b_1, bwd_times, sigma).detach() # (B, D)
47 # sample time and mixture processes based on F0,1(θ) and B0,1(θ):
48 t = th.rand((batch_dim,), device=device) # (B)
49 pi_f_t = sample_bridge(f_0, f_1, t, sigma) # (B, D)
50 pi_b_t = sample_bridge(b_0, b_1, t, sigma) # (B, D)
51 # define regression targets and model predictions:
52 target_f_t = fwd_target(pi_b_t, b_1, t) # (B, D)
53 target_b_t = bwd_target(pi_f_t, f_0, t) # (B, D)
54 prediction_f_t = fwd_drift_fn(pi_b_t, t) # (B, D)
55 prediction_b_t = bwd_drift_fn(pi_f_t, t) # (B, D)
56 # compute loss:
57 loss_f_t = th.sum((target_f_t - prediction_f_t)**2, dim=1) / 2 # (B)
58 loss_b_t = th.sum((target_b_t - prediction_b_t)**2, dim=1) / 2 # (B)
59 loss_t = th.mean(loss_f_t + loss_b_t) # ()
60 return loss_t

Listing 1: Basic implementation of BM2 loss computation (Algorithm 1) in PyTorch.
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