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Figure 1: State-of-the-art virtual try-on models still struggle to render high-resolution fine details.
Our PR-VTON refines positional encodings at the PE level to steer attention and feature learning,
markedly improving fine-grained texture preservation in the generated try-on results.

ABSTRACT

Recent advancements in pre-trained diffusion models have significantly enhanced
image-based virtual try-on, enabling the realistic synthesis of garments for sim-
ple textures. However, preserving high-frequency patterns and text consistency
remains a formidable challenge, as existing methods often fail to retain fine-
grained details. To address this, we introduce PR-VTON, a simple yet effective
method that integrates a Position-Refined Positional Encoding (termed PRPE) and
a lightweight positional relation learning module (termed PRL) to enhance detail
preservation across diverse fabric designs. Specifically, PRPE leverages the inher-
ent impact of positional encoding on attention mechanisms within the Diffusion
Transformer (DiT) architecture, guiding attention maps with precise positional
cues to achieve superior texture fidelity without additional modules or complex
loss functions. Meanwhile, PRL explicitly models token-level correspondences
between garments and target bodies, ensuring accurate spatial alignments. Ex-
tensive experiments on standard benchmarks demonstrate that PR-DIT surpasses
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existing baselines in both quantitative and qualitative metrics, with marked im-
provements in perceptually sensitive areas, such as textual logos. Furthermore,
we critically reassess evaluation protocols for virtual try-on, highlighting deficien-
cies in existing metrics for capturing global consistency and fine detail fidelity,and
propose a detail-focused metric loc-CMMD, establishing a more robust standard
for high-resolution virtual try-on research.

1 INTRODUCTION

Virtual try-on (VTON) has become a pivotal task, propelled by the rapid expansion of e-commerce.
Given a reference garment image and a target person image, VTON aims to generate a realistic
try-on outcome, seamlessly aligning the garment with the individual’s body shape while preserving
intricate, fine-grained textures. This technology significantly enhances user experience and delivers
accurate product visualizations, ultimately contributing to reduced return rates.

Before the diffusion era, VTON methods primarily relied on appearance flow estimation coupled
with GAN-based synthesis Han et al. (2018); Wang et al. (2018); Yang et al. (2020); Ge et al.
(2021); Gou et al. (2023); Xie et al. (2023); Yang et al. (2024). However, the limited generative
capacity of GANs Goodfellow et al. (2020) frequently resulted in severe artifacts and unrealistic
texture distortions. The emergence of diffusion models prompted a reversal of this situation. Current
approaches typically inject garment features into the generative process through reference networks
or in-context learning, leveraging powerful pre-trained diffusion models to achieve globally coher-
ent results Zhu et al. (2023); Morelli et al. (2023); Kim et al. (2024); Zeng et al. (2024); Choi et al.
(2024); Chong et al. (2024); Zhou et al. (2025). Recent efforts have further pursued fine-grained con-
trol by constraining garment regions or optimizing feature injection. Despite these advancements,
even state-of-the-art models built on Diffusion Transformer (DiT) Peebles & Xie (2023) backbones,
such as Stable Diffusion 3 Esser et al. (2024) or Flux, struggle to preserve high-frequency details
faithfully. In particular, small textual logos and intricate textures are often lost or distorted, as shown
in Figure 1.

Unlike previous methods that establish semantic positional correspondences through feature injec-
tion and attention constraints, we leverage the inherent properties of positional encodings (PEs)
within Diffusion Transformer (DiT) architectures to naturally represent spatial relationships. By re-
fining PEs at the positional level, rather than the feature level, we impose precise constraints based
on positional relationships. As PEs influence feature interactions through the attention mechanism,
subtle adjustments at the PE level effectively guide feature interactions, significantly enhancing
texture detail, consistency, and overall garment fit. Furthermore, since PE refinement operates in-
dependently of the model, it requires neither complex architectural modifications nor bespoke loss
functions terms to constrain features, markedly improving usability and scalability. The technique
integrates seamlessly with any DiT backbone and is readily extensible toward unified editing frame-
works.

To illustrate how positional relations influence feature interactions, we conducted an in-context
learning (ICL) experiment, as depicted in Figure 2. Using an inpainting model not specifically
trained for virtual try-on, we concatenate a masked image with a reference garment image (cloth).
The experiments demonstrate that treating the concatenated image as a single entity with default po-
sitional encoding (Fig. 2(1)) results in a generated image that fails to incorporate the input garment’s
details entirely, as the untrained model cannot accurately reference clothing features. To address this,
we attempt to guide the model to attend to the reference image by using positional encoding. In Fig.
2(2), we paste the positional coordinates of the masked image onto the reference image for encoding,
inducing a coordinate-aligned copy effect, even without training, where the garment is essentially
copied into the masked region with remarkably preserved details, despite incorrect positional align-
ment. Based on this, we hypothesize that incorporating precise positional correspondences could
enable the model to generate spatially accurate and detail-rich results. Consequently, in Fig. 2(3),
We manually define a coordinate mapping ϕ that assigns identical coordinates to semantically cor-
responding points on the garment and the target person. This yields results where both fine details
and spatial relations are effectively aligned, demonstrating the strong semantic alignment capability
of positional mapping and its potential to preserve high-fidelity details from the reference image.
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Motivated by this zero-shot behavior, we introduce a Position-Refined Positional Encoding (PRPE):
instead of relying on fixed, image-agnostic PEs, we reconstruct and remap positional encodings
according to estimated garment-to-body correspondences. By injecting these alignment-aware
PEs into the DiT attention stack, PRPE implicitly steers attention to aggregate reference textures
along semantically correct paths, improving both global plausibility and high-frequency detail fi-
delity—without introducing extra modules or bespoke loss terms on the diffusion features. To
make the approach broadly applicable, we further present a lightweight Positional Relation Learn-
ing (PRL) module that learns a stable remapping field directly from in-context pairs, obviating any
pre-computed matches or labels. Beyond methodology, we revisit evaluation for VTON. We find
that widely used metrics fail to reliably capture global consistency and fine detail at high resolu-
tion: a naı̈ve warped-paste baseline can score near state-of-the-art despite poor perceptual quality,
underscoring a gap with human judgment. To address this, we adopt stronger perceptual backbones
(CMMD Jayasumana et al. (2024), FD-DINOv2 Stein et al. (2023); Ahn (2024), DreamSim Fu et al.
(2023); Sundaram et al. (2024)) that better correlate with human assessments, and we introduce loc-
CMMD, a metric tailored to textual and micro-texture fidelity. loc-CMMD focuses evaluation on
salient, detail-rich regions and avoids the pitfalls of downsampling-based scoring, offering a more
faithful measure of legibility and fine-grain preservation.

In summary, our contributions are fourfold: (1) Position-Refined Positional Encoding (PRPE).
We remap positional encodings using garment–body correspondences to inject alignment-aware
spatial cues into DiT attention, markedly improving spatial accuracy and high-frequency texture
fidelity without introducing extra modules or bespoke loss terms on diffusion features. (2) Posi-
tional Relation Learning (PRL). A lightweight module that learns a stable, dense remapping field
directly from in-context pairs, eliminating the need for precomputed matches or manual labels. (3)
High-resolution evaluation protocol. We expose the shortcomings of common metrics and intro-
duce loc-CMMD; together with stronger perceptual backbones (CMMD, DINOv2-FD, Dream-
Sim), this protocol more faithfully assesses global consistency and the legibility of textual logos
and micro-textures. (4) Extensive empirical validation. Extensive experiments show that PR-DIT
outperforms prior state-of-the-art on both conventional and newly proposed metrics, yielding clear
gains in visual quality and detail preservation.

Figure 2: In the ICL setting, zero-shot virtual try-on with an inpainting model: (1) Default PE
assigns a single coordinate frame to both the masked image and the garment, often causing the
model to ignore the reference and hallucinate an incorrect outfit. (2) Coordinate copy duplicates
the masked-image coordinates onto the garment; tokens at identical positions attend to each other,
yielding a direct “paste-in” effect. (3) Position mapping ϕ sets equal coordinates only for true corre-
spondences between the masked image and the garment, enabling zero-shot synthesis that preserves
the garment’s original fine details while remaining spatially plausible.

2 RELATED WORK

2.1 APPEARANCE-FLOW–BASED TWO-STAGE SYNTHESIS

Early virtual try-on systems lacked powerful generative backbones and therefore adopted two-stage,
appearance-flow pipelines: a warping network first predicted a location mapping (appearance flow)
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conditioned on preprocessed human cues (pose, parsing), transforming the reference garment to
match the target body; a second-stage compositor (typically a GAN) then rendered the warped gar-
ment onto the person. Representative works included VITON Han et al. (2018), which pioneered
the “geometry alignment + synthesis” paradigm with a garment-agnostic person representation and
a coarse-to-fine pipeline; ACGPN Yang et al. (2020), which predicted semantic layouts before warp-
ing and content refinement, and switched adaptively between generation and preservation to boost
realism; and PF-AFN Ge et al. (2021), which introduced progressive flow alignment to stabilize
multi-scale deformation. More recently, GP-VTON Xie et al. (2023) decomposed warping into torso
and left/right sleeves and fused a global parser (LFGP) to better retain textures and text under com-
plex poses; D4-VTON Yang et al. (2024) performed grouped/block-wise warping in feature space
and used a differentiable grouping strategy to ease semantic mismatch and reduce reliance on static
parsing. While such appearance-flow methods explicitly provided the desired position mapping,
they came with substantial engineering overhead and error accumulation across stages. Compared
to these deformation-centric pipelines that enforced text/texture fidelity via explicit warps, our ap-
proach preserves correspondence without explicit garment warping: we refine positional encodings
to modulate attention, thereby improving high-resolution detail fidelity within a single diffusion-
based generation process.

2.2 SINGLE-STAGE DIFFUSION–BASED VIRTUAL TRY-ON

With the advent of strong diffusion backbones, the field shifted to single-stage, diffusion-based try-
on that treated the garment as an image condition injected into the generator. TryOnDiffusion Zhu
et al. (2023) systematized diffusion for try-on with a dual-UNet pipeline and delivered high-fidelity
synthesis. IDM-VTON Choi et al. (2024) introduced a reference-net branch to inject garment-detail
features and improved robustness under real, cluttered backgrounds. CatVTON Chong et al. (2024)
advocated the “concatenate-and-generate” ICL paradigm, spatially stacked person and garment in-
puts, and fine-tuned self-attention to reach SOTA. FitDiT Jiang et al. (2024) brought DiT archi-
tectures to try-on and pretrained a garment texture extractor to strengthen detail injection. Beyond
plain conditioning, newer approaches aimed to reference the right locations: SPM-Diff Wan et al.
(2025) encoded fine appearance as structured semantic point sets and matched garment-to-person
correspondences via local manifold warps; Leffa Zhou et al. (2025) learned an attention “flow” un-
der direct supervision of query-to-reference focus, thereby mitigating detail distortion. Our method
is also correspondence-centric, but instead of introducing explicit warping modules or heavy su-
pervision on attention maps, we exploit the inductive role of positional encoding in DiT: we refine
RoPE Su et al. (2024) coordinates to steer attention toward geometry-consistent matches, requiring
no extra complex modules or losses while achieving high-fidelity synthesis at high resolution.

3 METHODOLOGY

3.1 PRELIMINARY

In-Context Learning. Our core innovation lies in optimizing positional encoding (PE). Given that
in-context learning (ICL) inherently aligns features across concatenated condition images, it opti-
mally leverages position-guided information. Consequently, we adopt an ICL-based approach as our
baseline to exploit this positional guidance effectively.

Virtual try-on is defined as follows: given a person image Ip ∈RH×W×3, a target garment-region
mask Mg∈RH×W×1, and a reference garment image Ig∈RH×W×3, the objective is to synthesize
a try-on image It ∈ RH×W×3. In in-context learning (ICL), we first apply the person mask Mp

to Ip to generate a garment-agnostic person image Im. Subsequently, Im and Ig are concatenated
along the spatial dimension and, under a fixed text prompt, fed into a diffusion-based inpainting
model, which outputs D′ = [It, I

′
g], where It is the final result. Within the Diffusion Transformer

(DiT) backbone, Ig and Im are encoded into feature maps Fg and Fm, respectively, which are then
processed through L Transformer blocks.

Positional Encodings in DiT. Unlike convolutional diffusion models, such as Stable Diffusion,
which implicitly maintain spatial relationships through local connectivity, Diffusion Transformers
(DiTs) are permutation-invariant and thus necessitate explicit positional encodings. The FLUX fam-
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ily employs Rotary Position Embeddings (RoPE), which incorporate relative positional information
into the attention mechanism by applying position-dependent rotations to the query and key vectors.

As illustrated in Figure 3, the queries and keys are derived from learned linear projections of the
token features (e.g., from [Fg,Fm]). RoPE then applies a rotation operator RΘ(·) whose phase
depends on the token position, ensuring that attention scores are modulated by relative offsets rather
than absolute coordinates and thereby imparting a translation-friendly inductive bias. Concretely,
Θ=θii = 1d/2, where θi=10000−2(i−1)/d. The rotation matrix for integer position p is

RΘ(p) = diag

([
cos(pθ1) − sin(pθ1)
sin(pθ1) cos(pθ1)

]
, . . . ,

[
cos(pθd/2) − sin(pθd/2)
sin(pθd/2) cos(pθd/2)

])
. (1)

In FLUX.1-dev, each token position is represented as a 3-D vector [p, x, y]. Multi-axis RoPE applies
independent rotations in disjoint channel subspaces corresponding to these axes. Text tokens typi-
cally use [0, 0, 0] (the text encoder provides their semantics), whereas image tokens use t=0 with
(x, y) taken from the token grid (either the patch grid or the latent grid). Since p is fixed to 0 in our
setting, all subsequent analysis focuses on the spatial coordinates [x, y]. As illustrated in the RoPE
module of Figure 3, we denote this 2-D spatial portion of the positional encoding by C=(x, y), with
C ∈Ω and Ω= {0, . . . , H − 1} × {0, . . . ,W − 1}, and C can be viewed as a coordinate field over
the H ×W token grid.

3.2 POSITION-REFINED POSITIONAL ENCODING

Problem Statement and Learning Objective. As explained in the introduction and illustrated
in Figure 2, assigning default coordinates either by vertical concatenation, C0

g (i, j) = (i, j) and
C0
p(i, j) = (i+H, j), or by simple pasting, C0

g (i, j) = (i, j) and C0
p(i, j) = (i, j), fails to encode the

true local semantic correspondences between Ig and Im. In contrast, correcting positional encodings
with a proper garment→person mapping markedly improves alignment. Since the synthesis target
is the person branch Im, we keep its coordinate field as the default grid Cp(i, j) = (i, j), while the
garment coordinates are obtained via the position mapping. Our goal is therefore to estimate the
following position mapping:

ϕ : Ω → R, (u, v) 7→ (i, j), Ω = {0, . . . , H−1} × {0, . . . ,W−1}, (2)

which assigns to each garment coordinate (u, v) its semantically corresponding person coordinate
(i, j). We use ϕ to modulate RoPE so that attention peaks at geometrically correct correspondences.
Once ϕ is estimated, we construct the mapped garment coordinate field Cg(u, v) = ϕ(u, v), RoPE
then rotates queries/keys using these coordinates:

q̃
(p)
i,j = RΘ

(
Cp(i, j)

)
q
(p)
i,j , k̃(g)

u,v = RΘ

(
Cg(u, v)

)
k(g)
u,v. (3)

By the relative-phase property of RoPE, the cross-attention score becomes

α(i,j)→(u,v) ∝
〈
q
(p)
i,j , RΘ

(
Cg(u, v)− Cp(i, j)

)
k(g)
u,v

〉
. (4)

When (u, v) matches (i, j), Cg(u, v)≈Cp(i, j); the phase tends to zero, RΘ becomes identity, and
attention is amplified. Mismatches yield nonzero phase and suppress the score. Thus semantic align-
ment is enforced directly via positional encoding, without extra losses, schedules, or architectural
changes. Next, we present two simple estimators for the mapping ϕ.

Flow Guided Position Mapping. As shown in Figure3(1). Appearance flow naturally encodes
the spatial mapping needed by virtual try-on. A pretrained warping module W predicts a forward
flow F : Ω → R2, F(i, j) = (u, v), meaning that a person location (i, j) corresponds to the
continuous garment coordinate (u, v). Denote T(i, j) = F(i, j). We approximate the inverse
map T̃−1 : Ω → R2 via scattered interpolation on F: for each garment grid point (u, v) ∈ Ω,
find its enclosing forward-flow neighbors on Ω and compute the corresponding person coordinate
(̂i, ĵ) ∈ R2. Then define the garment coordinate field: ϕflow(u, v) = T̃−1(u, v) = (̂i, ĵ) ∈ R2.

Mask Guided Position Mapping. As shown in Figure3(2), we derive a coarse cloth-to-person
correspondence directly from the binary masks of the garment Mg and the person Mp. We first
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Figure 3: Overview of PR-VTON. Left: Within the DiT backbone we modify only the RoPE-
based positional mapping, underscoring the method’s plug-and-play usability. Before attention,
keys/queries are RoPE-encoded from per-token coordinates; we keep the masked-person coordinates
Cm at the default grid and set the garment coordinates Cg using the garment-to-person mapping ϕ.
Right: Estimating ϕ. (1) Flow-guided: the precomputed appearance flow encodes correspondences;
we fit ϕ via scattered/bilinear interpolation. (2) Mask-guided: take the axis-aligned bounding-box
corners of Mg and Mp as correspondences and interpolate to obtain a coarse field. (3) Lightweight
PRL: a positional-relation learning module that infers ϕ from the intrinsic affinity of semantically
matched tokens.

compute the axis-aligned bounding boxes for both masks and enforce a corner-to-corner alignment
(top-left, top-right, bottom-left, bottom-right). For any garment pixel inside its box, we normalize
its coordinates to the unit square and obtain its target location in the person box via bilinear inter-
polation of the four aligned corners. The resulting mapping ϕbbox is a dense, backbone-agnostic,
training-free coordinate field. Although coarse, it reliably steers attention toward globally correct
matches and serves as a lightweight prior for RoPE modulation.

3.3 LIGHTWEIGHT POSITIONAL RELATION LEARNING (PRL) MODULE VIA DIFFUSION
FEATURE AUTOCORRELATION

While flow-PE achieves fine local alignment, it relies on an external optical-flow module; conversely,
bbox-PE is straightforward to implement but yields only coarse correspondences. We thus pursue
a method that enables fine-grained semantic alignment without any external dependencies. Draw-
ing inspiration from DIFT Tang et al. (2023), we recognize that features within diffusion models
inherently encode rich semantics; however, DIFT emphasizes sparse keypoint matches, whereas we
require dense positional guidance. To this end, we introduce a self-supervised strategy that esti-
mates the mapping ϕ solely from the autocorrelation between diffusion features, yielding ϕ without
auxiliary modules.

Concretely (cf. Figure3(3)), at the K-th DiT block we take the garment tokens Fg and the masked-
person tokens Fm. To use semantics independently and prevent the mapping branch from affecting
generation quality, we stop gradients when computing ϕ: F̂g = sg(Fg), F̂m = sg(Fm), where
sg(·) denotes stop-gradient (i.e., gradient detachment). To enlarge the receptive field and obtain dis-
criminative local semantics, we define a lightweight covariance augmentation g(x) = cov(x) + x

and apply it to both branches, yielding g(F̂g) and g(F̂m). We then form a cosine-similarity matrix
H = cos

(
g(F̂g), g(F̂m)

)
∈ R(HW )×(HW ). Figure3(3) details how to derive the corresponding po-

sitional mapping from H . Taking a point P (x0, y0) on the masked image as an example, we explain
how to find its mapped point Q(x1, y1): first, extract the heatmap H(x0, y0) of size h×w, which rep-
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resents the similarity of each point on the garment to P ; next, apply a row-wise MLP for refinement,
followed by softmax over the person position dimension: H̃u,(i,j) = softmax(i,j)

(
ϕMLP(Hu,(:))

)
,

producing the optimized positional similarities.

Let Cp ∈R(HW )×2 stack all person grid coordinates (i, j). The predicted garment→person map-
ping is the similarity-weighted centroid (our ϕ):

Cpred(u) =
∑
(i,j)

H̃u,(i,j) (i, j) = H̃u,: Cp, ϕ(u) ≜ Cpred(u). (5)

We supervise ϕ with dense pseudo ground truth ϕflow provided by an appearance-flow estimator
using a simple regression loss:

Lflow =
1

|Ω|
∑
u∈Ω

∥∥ϕ(u)− ϕflow(u)
∥∥2
2
, Ω = {0, . . . ,H−1} × {0, . . . ,W−1}. (6)

Finally, the predicted coordinates directly modulate RoPE by rotating garment-side tokens at their
mapped person locations:

PEpred(u) = RΘ

(
Cpred(u)

)
, (7)

after which queries/keys are rotated as in standard RoPE. Throughout the model, we use the bbox-
guided mapping ϕbbox for all layers before K; at layer K we switch to online estimation of the
mapping and reuse it for the remaining L−K layers (i.e., for all ℓ ≥ K). In this way, the network
first follows a stable coarse prior ϕbbox and then self-corrects to a fine-grained mapping ϕ. In this
way, semantic alignment is realized through diffusion-internal feature autocorrelation and encoded
at the positional-embedding level—fine-grained and external-module-free.

3.4 TRAINING STRATEGY

Training PRL from scratch can be unstable when the early estimate ϕ̂ is inaccurate. We therefore
adopt a progressive schedule tightly coupled to the mapping objective. During the first T training
steps, we modulate the DiT with the flow-warped positional encoding (“Flow-warped PE”, Sec. 3.2),
i.e., set ϕ ≈ ϕflow, which provides reliable spatial guidance while the generator learns the base task.
After step T , we switch the positional encoding in layers ℓ ≥ k to the network’s own prediction ϕ̂
(via PEpred), aligning training with inference and enabling end-to-end refinement.

Let LFM denote the flow-matching denoising loss. The total objective is

L = LFM + λLPE, (8)

where LPE supervises the predicted mapping ϕ̂ (e.g., against ϕflow or a coarse prior).

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS AND DATASETS

We adopt FLUX.1-Fill-dev as the backbone, and use GP-VTON Xie et al. (2023) as the appearance-
flow predictor in 3.2. Following prior work, we evaluate on the standard VITON-HD Choi et al.
(2021) (13,679 images—11,647 train / 2,023 test; upper body) and DressCodeMorelli et al. (2022)
(53,792 images—48,392 train / 5,400 test; tops/bottoms/dresses) benchmarks. Unless otherwise
stated, we use a batch size of 16 and train for 100,000 steps on both datasets. We fine-tune only the
attention layers of FLUX and our lightweight Positional Relation Learning (PRL) module, keeping
all other parameters frozen. All experiments are conducted on eight NVIDIA H800 GPUs with a
learning rate of 2× 10−5.

Within the TransformerBlock, we select layers k ∈ {40, 41, 42} for positional-encoding correction
and take the average of the three predicted PEs as the final estimate. The loss trade-off coefficient is
set to λ = 10−2, and the schedule switch step is T = 5K.

4.2 LIMITATIONS OF EXISTING EVALUATION METRICS

7
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Table 1: Tailored metrics on VITON-HD. CMMD/DINOv2-FD/DreamSim reflects global agree-
ment; OCR-FD targets high-frequency detail in both paired and unpaired setups.

Methods Paired Unpaired

CMMD↓ DINOv2↓ DreamSim↓ Loc-CMMDA↓ Loc-CMMDO↓ CMMD↓ DINOv2↓
Leffa 0.042 22.388 0.0339 0.058 0.091 0.054 54.853
IDM-VTON 0.131 30.096 0.0433 0.151 0.275 0.138 58.311

Any2AnyTryon 0.154 94.125 0.0647 0.203 0.236 0.187 130.839
FitDiT 0.087 55.209 0.0587 0.190 0.175 0.092 79.308
CatVTON-Flux 0.029 26.055 0.0372 0.059 0.073 0.038 58.427
Warp-and-Paste 0.158 34.260 0.0361 0.303 0.481 - -
Ours 0.013 20.305 0.0293 0.045 0.051 0.022 20.367

Table 2: Conventional-metric comparison on VITON-HD.
The best and 2nd-best are highlighted in bold and underlined
formats.

Methods Paired Unpaired

SSIM↑ FID↓ KID↓ LPIPS↓ FID↓ KID↓
GP-VTON Xie et al. (2023) 0.894 9.20 3.94 0.080 11.84 4.31
LaDI-VTON Morelli et al. (2023) 0.876 6.66 1.08 0.091 9.41 1.60
IDM-VTON Choi et al. (2024) 0.870 6.29 0.73 0.102 9.84 1.12
OOTDiffusion Xu et al. (2025) 0.878 8.81 0.82 0.071 12.41 4.69
CatVTON Chong et al. (2024) 0.870 5.43 0.41 0.057 9.02 1.09
LeFFA Zhou et al. (2024) 0.899 4.54 0.05 0.048 8.52 0.32
FitDiT Jiang et al. (2024) 0.899 4.73 0.19 0.066 8.20 0.34
Any2AnyTryon Guo et al. (2025) 0.839 6.93 0.74 0.087 8.97 0.98
SPM-Diff Wan et al. (2025) 0.917 6.87 0.52 0.055 - -
MV-VTON Wang et al. (2025) 0.897 5.43 0.49 0.069 17.90 8.86
ITA-MDT Hong et al. (2025) 0.885 5.46 - 0.083 8.68 -

warpe and paste 0.923 4.84 0.322 0.0478 - -
baseline 0.875 5.50 0.54 0.069 - -
Ours 0.884 4.35 0.10 0.051 8.49 0.55

A critical step toward progress
in virtual try-on is establishing
evaluation metrics that reflect
human perception. However,
widely used measures—FID Par-
mar et al. (2022), KID Bińkowski
et al. (2018), SSIM Wang et al.
(2004), and LPIPS Zhang et al.
(2018)—fail to capture two essen-
tials for high-resolution synthesis:
(i) global perceptual agreement
(holistic fit and visual coher-
ence) and (ii) fine-grained detail
fidelity.

To reveal the mismatch on global
perception, we design a simple
Warp-and-Paste baseline that in-
volves no generative modeling.
Given a garment image Ic and a person image Im, we warp Ic using the appearance flow F (see
Sec. 3) and composite it onto Im:

Ipred = grid sample(Ic;F )︸ ︷︷ ︸
warped garment

⊙Mp ⊕ Im ⊙ (1−Mp), (9)

where Mp is the warped garment foreground mask; ⊙ and ⊕ denote element-wise multiplication and
addition, respectively. The outputs clearly exhibit seam artifacts, lack shading, and look “pasted-
on.” Paradoxically, Table 2 shows competitive—or even superior—scores under SSIM, KID, and
LPIPS, exposing a severe disconnect between these metrics and perceptual plausibility.

Table 3: Tailored metrics on DressCode. CMMD/DINOv2-
FD/DreamSim reflect global agreement; OCR-FD targets
high-frequency detail in both paired and unpaired setups.

Methods Paired Unpaired

CMMD↓ DINOv2↓ DreamSim↓ CMMD↓ DINOv2↓

IDM-VTON 0.087 36.291 0.0395 0.097 55.804
Any2AnyTryon 0.053 57.280 0.0805 0.073 95.425
FitDiT 0.050 46.432 0.0485 0.053 61.253
Ours 0.021 18.260 0.0321 0.037 53.068

For detail consistency, most metrics
resize images before feature extrac-
tion (e.g., FID uses an Inception-
V3 Szegedy et al. (2016) encoder at
299×299), which irreversibly dis-
cards high-frequency content criti-
cal to try-on (brand logos, fine pat-
terns, small text). This downsam-
pling renders the metrics insensi-
tive to local degradations, failing to
distinguish high-quality text from
distorted replicas in high-resolution
outputs.

4.3 METRICS TAILORED FOR VIRTUAL TRY-ON
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Table 4: Conventional-metric comparison on DressCode.

Methods Paired Unpaired

SSIM↑ FID↓ KID↓ LPIPS↓ FID↓ KID↓

GP-VTON Xie et al. (2023) 0.771 9.93 4.61 0.180 12.79 6.63
LaDI-VTON Morelli et al. (2023) 0.906 4.14 1.21 0.064 6.49 2.20
IDM-VTON Choi et al. (2024) 0.920 8.64 2.92 0.062 9.55 4.32
OOTDiffusion Xu et al. (2025) 0.927 4.20 0.37 0.045 12.57 6.63
CatVTON Chong et al. (2024) 0.892 3.99 0.82 0.046 6.14 1.40
FitDiT Jiang et al. (2024) 0.926 2.64 0.50 0.043 4.73 0.90

Ours 0.909 2.12 0.06 0.035 4.93 1.08

Motivated by the above shortcom-
ings, we adopt metrics that bet-
ter reflect global coherence and
local detail fidelity. For global
consistency, inspired by Dream-
Sim, we compute image-level per-
ceptual alignment using strong
vision encoders—CMMD (CLIP-
based) Jayasumana et al. (2024),
FD-DINOv2 Stein et al. (2023);
Ahn (2024), and DreamSim Fu
et al. (2023); Sundaram et al.
(2024)—which capture semantics, layout, and overall visual coherence more faithfully than the
Inception features used by FID. For local details, to avoid the downsampling inherent in many met-
rics, we evaluate directly on high-resolution, detail-rich regions via our loc-CMMD; implementation
specifics are provided in the appendix.

4.4 QUANTITATIVE RESULTS

Tables 1,3 show state-of-the-art results under SSIM/FID/KID/LPIPS in both paired and unpaired
settings; notably, simply correcting the positional encoding already yields large gains over our Base-
line. 2,4summarize perception-aligned results on VITON-HD: Loc-CMMDA evaluates the full set,
Loc-CMMDO targets text garments. Using public checkpoints for representative SD/DiT baselines,
our method ranks first with larger margins than conventional metrics; the heuristic warp-and-paste
scores much worse on CMMD/DINOv2, and the Loc-CMMDO gap widens—especially on Loc-
CMMDAA. See Appendix for details.

4.5 ABLATION STUDIES.

Table 5: Ablation Studies.

SSIM ↑ FID↓ KID ↓ LPIPS↓
k=10 0.8700 5.34 0.332 0.0603
k=30 0.869 5.32 0.348 0.0609
k=40 0.870 5.28 0.259 0.0597
k=50 0.868 5.39 0.259 0.0617

We ablate the layer-scheduling hy-
perparameter k at 768 resolution for
efficiency. As reported in Table 5,
k = 40 delivers the best overall
scores. When k is too small, masked
and reference tokens have insufficient
affinity, leading to unreliable seman-
tic correspondences. When k is too
large, most blocks remain driven by
the coarse ϕbbox prior, limiting detail
fidelity. A mid-range k thus strikes the right balance between coarse guidance and learned refine-
ment.

5 CONCLUSION

We presented PR-VTON, a simple yet effective framework that improves high-frequency detail
preservation in virtual try-on by acting directly on positional encodings. Our PRPE remaps RoPE
coordinates using garment–body correspondences to inject alignment-aware cues into DiT attention,
while the lightweight PRL module learns a dense remapping field from in-context pairs, avoiding
extra modules or bespoke losses. A zero-shot ICL analysis motivated this design and showed that
precise positional correspondences alone can steer attention to aggregate reference textures along se-
mantically correct paths. Beyond methodology, we revisited evaluation and introduced loc-CMMD
alongside stronger perceptual backbones (CMMD, DINOv2-FD, DreamSim) to better capture global
coherence and text/texture legibility at high resolution. Extensive experiments on VITON-HD and
DressCode demonstrate that our DiT instantiation (PR-DiT) surpasses prior work on both conven-
tional and perception-aligned metrics, yielding clear gains in visual quality and fine-detail fidelity.

9
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A APPENDIX

A.1 LOC-CMMD: IMPLEMENTATION DETAILS.

Concretely, we first run PP-OCRv5 Cui et al. (2025) on the ground-truth image Igt to detect text
regions and select the highest-confidence bounding box with score > 0.8; we require the box center
to lie within the person mask Mp, and if no candidate satisfies this, we fall back to the geometric
centroid of Mp (which typically lies near the garment’s texture center). We then crop a 225×225
patch around this center on Igt and take the co-located patch on Ipred, and compute the DINOv2-
based similarity (DINOv2-FD) on these crops. This cropping protocol sidesteps global resizing,
preserves fine textures (logos, dense patterns, small text), and yields a more discriminative measure
of detail fidelity.

A.2 EXPERIMENTAL ANALYSIS.

Table2 reports results on perception-aligned metrics that better reflect holistic agreement and detail
fidelity on VITON-HD. Here, Loc-CMMDA denotes evaluation over the entire test set, while Loc-
CMMDO restricts evaluation to garments with detected text regions. For fair comparison, we select
representative methods from both SD-based and DiT-based families, using their public checkpoints
for inference: LeFFA and IDM (SD-base), and Any2Any and FitDiT (DiT-base). Our method
attains the best performance on all these metrics, with margins that are larger than those observed
under conventional metrics—evidence that the new measures are more sensitive to perceptual qual-
ity. In particular, the heuristic warp-and-paste baseline scores markedly worse on CMMD and DI-
NOv2 than methods with superior visual plausibility (e.g., LeFFA, Baseline, IDM), a contrast that
conventional metrics fail to expose. On our proposed Loc-CMMD family, the gap further widens
in favor of our approach; the difference on Loc-CMMDO exceeds that Loc-CMMDA, indicating
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Figure 4: Our generation effect.

Figure 5: warpe and paste, resize

that modulating positional encoding confers a pronounced advantage in synthesizing fine, text-like
details.
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