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Abstract

Convergence rate analysis for general state-space Markov chains is fundamen-
tally important in operations research (stochastic systems) and machine learning
(stochastic optimization). This problem, however, is notoriously difficult because
traditional analytical methods often do not generate practically useful convergence
bounds for realistic Markov chains. We propose the Deep Contractive Drift Calcu-
lator (DCDC), the first general-purpose sample-based algorithm for bounding the
convergence of Markov chains to stationarity in Wasserstein distance. The DCDC
has two components. First, inspired by the new convergence analysis framework in
(Qu et al., 2023), we introduce the Contractive Drift Equation (CDE), the solution
of which leads to an explicit convergence bound. Second, we develop an efficient
neural-network-based CDE solver. Equipped with these two components, DCDC
solves the CDE and converts the solution into a convergence bound. We analyze
the sample complexity of the algorithm and further demonstrate the effectiveness
of the DCDC by generating convergence bounds for realistic Markov chains aris-
ing from stochastic processing networks as well as constant step-size stochastic
optimization.

1 Introduction

General state-space Markov chains are indispensable in a wide array of fields due to their flexibility
and applicability in modeling random dynamical systems. To analyze the long-term behavior of these
Markovian models, estimating the rate of convergence to equilibrium is critical. When designing
reliable real-world systems (e.g. cloud platforms and manufacturing lines), the faster the convergence,
the faster the recovery after disturbances. When designing efficient sample-based algorithms (e.g.
stochastic gradient descent (SGD) variants and MCMC), the faster the convergence, the faster the goal
attainment. The rate of convergence also appears in MDP-related sample complexity results under
the name "mixing time". Although convergence rate estimation is critically important, estimating the
convergence rate of even a mildly complex chain can be extremely difficult.

Over the last three decades, significant efforts have been made to bound the convergence of general
state-space Markov chains. Most of these works utilize a pair of drift and minorization conditions
(D&M) to bound the convergence in terms of the total variation (TV) distance (Meyn et al., 1994;
Rosenthal, 1995; Jarner and Roberts, 2002; Douc et al., 2004; Baxendale, 2005; Andrieu et al.,
2015). The drift condition forces the chain to move towards a selected region. On such a region, the
minorization condition allows the chain to regenerate or to couple with a stationary version of the
chain. This analysis tends to produce overly conservative TV bounds, especially in high-dimensional
settings; see (Qin and Hobert, 2021) for a discussion.

The Wasserstein distance, as a measure of convergence to equilibrium, can exhibit better dimension
dependence (Qin and Hobert, 2022b). In addition, many Markov chains of interest (e.g. constant
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step-size SGD minimizing convex loss on finite datasets) converge in Wasserstein distance but not
in TV distance. Consequently, bounding convergence in Wasserstein distance has steadily gained
popularity over the years (Gibbs, 2004; Hairer et al., 2011; Butkovsky, 2014; Durmus and Moulines,
2015; Durmus et al., 2016; Qin and Hobert, 2022a). Most of these works replace the minorization
condition with a contraction condition (D&M becomes D&C). After returning to a selected region,
two copies of the chain tend to become closer to each other. Both D&M and D&C enforce two
conditions in two respective regions. However, partitioning the state space into two distinct regions
often leads to suboptimal rates.

Recently, (Qu et al., 2023) introduce the so-called contractive drift condition (CD), a single condition
enforced on the entire state space, to explicitly bound the convergence in Wasserstein distance. A
special case of CD dates back to (Steinsaltz, 1999). By verifying CD, (Qu et al., 2023) establish
parametrically sharp convergence bounds for stylized Markov chains arising from queueing theory
and stochastic optimization (e.g. revealing how step-size, heavy-tailed gradient noise, growth rate
and local curvature of objectives affect the convergence of stylized SGD). Although CD may generate
better bounds than D&M and D&C for stylized chains (e.g. SGD with iid gradient noise), these
methods are generally intended as theoretical tools that can provide closed-form convergence bounds
for structured models. For more realistic, less structured chains, computational rather than analytical
methods are needed. However, despite of the rapid development of computational power in the past
decade, the convergence analysis of general state-space Markov chains is still in the pen-and-paper
age.

To launch computational Markov chain convergence analysis, we need a key to switch on the deep
learning engine. This paper introduces the Deep Contractive Drift Calculator (DCDC) is the first
general-purpose sample-based algorithm for bounding the convergence of general state-space Markov
chains. There are two key ideas we develop. The first is to observe that CD, an inequality by definition,
is actually an equality by nature (if the inequality has a solution, then the corresponding equality also
has a solution). Thus, we introduce the Contractive Drift Equation (CDE), an integral equation the
solution of which leads to an explicit convergence bound. For the second part, inspired by the success
of physics-informed neural networks (PINNs) in solving PDEs (Sirignano and Spiliopoulos, 2018;
Raissi et al., 2019), we develop an efficient neural-network-based CDE solver. By combining these
two components, DCDC solves CDEs by training neural networks and converts solutions into explicit
convergence bounds. DCDC demonstrates the potential of computer-assisted convergence analysis
and bridges the gap between deep learning and a traditionally challenging area of mathematical
analysis.

In high-dimensional spaces, PINNs minimize the integrated residual of a PDE via SGD to find a
continuously differentiable function that approximately satisfies the PDE. When applying this idea to
solve a CDE, an integral equation, the solving procedure becomes more natural in the following two
ways. First, we only assume that the CDE solution is Lipschitz continuous, and neural networks are
inherently Lipschitz continuous. Second, as SGD is already used to handle the integrated residual,
we can simultaneously use it to handle the integral in the CDE. After approximately solving the CDE,
DCDC needs to convert the solution into a convergence bound, which requires that the solution is
uniformly accurate with high probability. This is different from PINNs in the PDE literature since the
accuracy is mainly measured in the L2 sense.

The CDE solution is a new type of Lyapunov function that provides explicit convergence rates for
random dynamical systems. For deterministic dynamical systems, traditional Lyapunov functions
play central roles in establishing stability; see (Pukdeboon, 2011) for a review. There is a substantial
literature on computing traditional Lyapunov functions via neural networks; see (Liu et al., 2023)
and references therein. As pointed out in (Dawson et al., 2023), a survey on certificate learning,
learned (traditional) Lyapunov functions provide safety certificates for learned control policies
(on deterministic dynamical systems). For the control of random dynamical systems, DCDC not
only generates safety certificates (CDE solutions) but also quantifies safety levels (convergence
rates). Control and performance evaluation of random dynamical systems have become a staple in
contemporary data-driven decision making systems, thus underscoring the importance of DCDC.

In short, we summarize our contributions as follows:

• We introduce the Deep Contractive Drift Calculator (DCDC), the first general-purpose
end-to-end approach that enables the use of deep learning to bound the convergence rate of
general state-space Markov chains.
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• We perform sample complexity analysis and use DCDC to generate convergence bounds for
realistic Markov chains arising in operations research as well as machine learning.

• Our DCDC approach discovers features that are exploited by techniques developed to study
CDs by closed-form methods, such as the wedge shape and the boundary removal technique
discussed in (Qu et al., 2023).

2 Contractive Drift Equation

Let X be a Markov chain on X ⊂ Rd, with random mapping representation

Xn+1 = fn+1(Xn), n = 0, 1, 2, . . .

where fn’s are iid copies of f , a locally Lipschitz random mapping from X to itself (with probability
one, f : X → X is locally Lipschitz).
Example. Let α be a positive constant and Z be a square integrable random variable. The SGD
with step-size α to solve minx E(x− Z)2/2 is Xn+1 = Xn − α(Xn − Zn+1) where Zn+1’s are iid
copies of Z, so the corresponding random mapping is f(x) = x− α(x− Z).

Understanding the long-term behavior of X requires estimating how fast Xn converges to X∞
(equilibrium) as n → ∞. The difference between the two distributions is quantified by either
total variation (TV) distance or Wasserstein distance. Representative TV convergence bounds (e.g.,
TV (Xn, X∞) ≤ Crn) can be found in (Meyn et al., 1994; Rosenthal, 1995; Baxendale, 2005).
Representative Wasserstein convergence bounds (e.g., W (Xn, X∞) ≤ Crn) can be found in (Hairer
et al., 2011; Durmus and Moulines, 2015; Qin and Hobert, 2022a). These analytical methods can
only handle stylized (structured) Markov chains. The goal of this paper is to introduce the first
computational method that can handle realistic (less structured) Markov chains.

The first step to achieve the goal is introducing the contractive drift equation (CDE). The local
Lipschitz constant of f at x ∈ X is defined as

Df(x)
∆
= lim

δ→0
sup

x′,x′′∈Bδ(x)

∥f(x′)− f(x′′)∥
∥x′ − x′′∥

where ∥·∥ is the Euclidean norm and Bδ(x) = {x′ : ∥x′ − x∥ < δ}. If f is differentiable, then

Df(x) = lim
h→0

sup
v:∥v∥=1

∥f(x+ hv)− f(x)∥
h

= sup
v:∥v∥=1

∥∇f(x)v∥ = ∥∇f(x)∥

where ∇f is the Jacobian matrix of f and ∥·∥ becomes the spectral norm when applying to matrices.
Basically, Df(x) describes how expansive or contractive f is around x. With these notations, the
contractive drift condition (CD) in (Qu et al., 2023) that leads to computable convergence bounds is

KV (x)
∆
= EDf(x)V (f(x)) ≤ V (x)− U(x), x ∈ X (1)

where V,U : X → R+ are bounded away from zero. In the rest of this paper, we adopt the convention
that all functions denoted by U are positive and bounded away from zero, i.e. inf U > 0. We use
Ex to denote the expectation operator conditional on X0 = x. In (1), the subscript is omitted as the
initial location is clear. By replacing "≤" with "=" in (1), the contractive drift equation (CDE) is
KV = V − U , for which we establish the following existence and uniqueness results. All proofs are
in the appendix.
Theorem 1. Fix U and suppose that KW ≤ W − U has a non-negative finite solution W∗. Then

V∗(x)
∆
= Ex

[ ∞∑
k=0

U(Xk)

k∏
l=1

Dfl(Xl−1)

]
, x ∈ X (2)

is finite and satisfies KV∗ = V∗ −U . Furthermore, KV = V −U has at most one bounded solution.
Remark. This V∗ can be interpreted as an average space-discounted cumulative reward. Imagine a
swarm of agents moving according to f . For an agent at x, if Df(x) < 1 (contraction), then after f
is applied, there will be more agents around this agent. If all agents around f(x) share a total reward
U(f(x)), then the reward for each of them is discounted. From the perspective of a particular agent,
the procedure is like collecting reward within a shrinking ball.
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3 Deep Contractive Drift Calculator

3.1 Why do we introduce CDE?

Physics-informed neural networks (PINNs) solve a PDE by minimizing its integrated residual
(Sirignano and Spiliopoulos, 2018; Raissi et al., 2019). If we want to use this idea to solve KV ≤
V − U , then the integrated residual is

l̄(θ)
∆
=

∫
X
(KVθ(x)− Vθ(x) + U(x))+ h(x)dx

where h is a positive density and {Vθ : θ ∈ Θ} is a neural network. Note that the residual at x is
positive if and only if KVθ(x) > Vθ(x)− U(x). By letting X0 have distribution h,

l̄(θ) = E [E [Df1(X0)Vθ(f1(X0))− Vθ(X0) + U(X0)|X0]]+ ,

which is an expectation of a non-linear function of a conditional expectation. Minimizing l̄(θ) is a
conditional stochastic optimization problem (CSO). In CSO, the sample-average gradient is biased
(Hu et al., 2020b), which leads to a high sample complexity for convergence (Hu et al., 2020a).
Fortunately, if we aim at solving KV = V − U (CDE) instead of KV ≤ V − U (CD), then there
exists a simple unbiased gradient estimator. Now we briefly derive this estimator. For a CDE, the
integrated residual becomes

l(θ)
∆
=

∫
X
(KVθ(x)− Vθ(x) + U(x))

2
h(x)dx

=E [E [Df1(X0)Vθ(f1(X0))− Vθ(X0) + U(X0)|X0]]
2

with its gradient

l′(θ)

=2E [E [Df1(X0)Vθ(f1(X0))− Vθ(X0) + U(X0)|X0]E [Df1(X0)V
′
θ (f1(X0))− V ′

θ (X0)|X0]]

=2EE [[Df1(X0)Vθ(f1(X0))− Vθ(X0) + U(X0)] [Df−1(X0)V
′
θ (f−1(X0))− V ′

θ (X0)] |X0]

=2E [[Df1(X0)Vθ(f1(X0))− Vθ(X0) + U(X0)] [Df−1(X0)V
′
θ (f−1(X0))− V ′

θ (X0)]]

where f1 and f−1 are iid copies of f while V ′
θ = dVθ/dθ is computed via backpropagation. This

expression allows us to estimate l′(θ) without any bias. In summary, the inequality (CD) is enough to
bound the convergence, but the equality (CDE) turns out to be easier to establish (via deep learning).

3.2 DCDC

Given the above discussion, a standard application of SGD is enough to simultaneously handle the
integrated residual as well as the integral in the CDE, resulting in the following simple algorithm,
Deep Contractive Drift Calculator, the first general-purpose sample-based algorithm to bound the
convergence of general state-space Markov chains.

Algorithm 1 Deep Contractive Drift Calculator (DCDC)
Require: Step-size α, number of iterations T , neural network {Vθ : θ ∈ Θ}, initialization θ0

for t ∈ {0, ..., T − 1} do
sample (X0, f1, f−1)

compute l̂′(θt) as

2 [Df1(X0)Vθt(f1(X0))− Vθt(X0) + U(X0)]
[
Df−1(X0)V

′
θt(f−1(X0))− V ′

θt(X0)
]

update θt+1 = θt − αl̂′(θt) (SGD or its variants)
end for
convert VθT into a convergence bound (Theorem 3 and Theorem 4)

The conversion will be discussed in the next two subsections. In the current subsection, we show
the validity of approximating CDE solutions via neural networks. In the following, we use ∥·∥∞ to
denote the sup norm of functions on X .
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Theorem 2. If X is compact, ∥EDf∥∞ is finite, and V∗ in (2) is finite and continuous, then for any
ϵ > 0, there exists a neural network {Vθ : θ ∈ Θ} and its realization Vθ∗ such that

∥KVθ∗ − Vθ∗ + U∥∞ < ϵ.

Although DCDC solves CDEs on compact sets, it can be applied to Markov chains on non-compact
sets that have compact absorbing sets (e.g. SGD for regularized problems). For chains without a
compact absorbing set, extending DCDC to bound their convergence is left for future research, but
here we describe a natural strategy to do so. In general, a Markov chain spends most of its time on
some large compact set C where the chain may have complex dynamics. When the chain is outside
C, it typically has a strong tendency to return. Therefore, to extend DCDC, we can (i) search some
parametric family (e.g. VA(x) = x⊤Ax) to establish a CD outside C (capturing the return tendency);
(ii) apply DCDC to obtain a CDE solution on C (capturing the complex dynamics); (iii) stitch them
together to obtain a global CD. Comparing the large set here with the small set (Meyn and Tweedie,
2009) in D&M or D&C illustrates the advantage of computational methods over analytical ones. The
size of the large set is determined by the approximation capability of neural networks, but the size of
the small set is determined by the minorization or contraction condition (the two conditions often
require the small set to be very small).

3.3 Practical convergence bounds with exponential rates

Now we discuss how to convert KV ≤ V − U into convergence bounds with exponential rates in
Wasserstein distance. To begin, we recall the definition of the Wasserstein distance. Let P(X ) be the
set of probability measures on X equipped with its Borel sigma-algebra. The Wasserstein distance
between µ, ν ∈ P(X ) is

W (µ, ν)
∆
= inf

π∈C(µ,ν)

∫
X×X

∥x− y∥π(dx, dy)

where
C(µ, ν) ∆

= {π ∈ P(X × X ) : π(·,X ) = µ(·), π(X , ·) = ν(·)}
is the set of all couplings of µ and ν. Given two random variables Z1 and Z2, we use W (Z1, Z2) to
denote the Wasserstein distance between their marginal distributions.
Theorem 3. Suppose that X is convex and that KV ≤ V − U holds with supV < ∞. If
E ∥X0 −X1∥ < ∞, then X has a unique stationary distribution X∞ with

W (Xn, X∞) ≤ Crn, r
∆
= 1− inf U/ supV, C

∆
=

E ∥X0 −X1∥V (X0 + Ũ(X1 −X0))

inf U · (inf V/ supV )

where Ũ is a U [0, 1] random variable independent of X0 and X1.

Given U , the exponential rate r is determined by the magnitude of V . The smaller the V , the faster
the convergence. Given X0, the pre-multiplier C can be easily computed by simulating the first
transition (from X0 to X1).

In Theorem 3 of (Qu et al., 2023), convergence bounds with exponential rates are straightforwardly
derived from KV ≤ rV where r < 1, so one might wonder why we need the less straightforward
Theorem 3 here. This is because KV ≤ rV is not suitable for PINN-like solvers. In Theorem 3,
we solve KV = V − U and compute the exponential rate r from the solution V . However, for
KV = rV , we need the answer (the exponential rate r) to write down the question (the equation
to solve and the corresponding loss to minimize), which is circular. Of course, we may try solving
KV = rV for different values of r, but it turns out that it is very hard for DCDC to converge even
for very conservative (close to 1) r’s. Here is an explanation. Unlike KV = V − U , which has a
solution as long as KV ≤ V − U has one (Theorem 1), KV = rV may not have a solution even
when KV ≤ rV has one. However, it is not hard to show that KV = rV − r has a (formal) solution

Vr(x)
∆
= Ex

[ ∞∑
k=0

(1/r)k
k∏

l=1

Dfl(Xl−1)

]
, x ∈ X .

Comparing with V∗ in (2), U(Xk) is replaced by exponentially exploding (1/r)k. Back to KV = rV ,
its solution (if there is any) should be the above expression without the summation but with k → ∞
(as a limit), which suggests that the solution may have a large magnitude, making it difficult to
approximate.
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3.4 Practical convergence bounds with polynomial rates

Now we discuss how to generate convergence bounds with polynomial rates using DCDC. The key is
to iteratively solve a sequence of CDEs. For example, given V0, we first solve KV1 = V1 − V0 to
obtain V1. Then we solve KV2 = V2 − V1 to obtain V2. These two CDEs together lead to an O(1/n)
convergence bound.
Theorem 4. Suppose that X is convex and that there exist positive functions V0, V1, . . . , Vm such that
0 < inf V0 < supVm < ∞ and KVk+1 ≤ Vk+1 − Vk for k = 0, . . . ,m− 1. If E ∥X0 −X1∥ < ∞,
then X has a unique stationary distribution X∞ with

W (Xn, X∞) ≤ E ∥X0 −X1∥Vm(X0 + Ũ(X1 −X0))

inf V0 ·
∏m−1

k=1 (1 + n/k)

where Ũ is a U [0, 1] random variable independent of X0 and X1.

The expectation in the numerator can be easily computed by simulating the first transition, while the
product in the denominator is basically nm−1 as n → ∞.

In Theorem 1 of (Qu et al., 2023), convergence bounds with polynomial rates (O(1/nm−1)) are
derived from KV ≤ V − U1/mV 1−1/m paired with KU ≤ U , so one might wonder why we
need so many CDs in Theorem 4 here. This is because KV ≤ V − U1/mV 1−1/m is designed
for the pen-and-paper setting where directly establishing a sequence of CDs is difficult. Given
KV ≤ V − U1/mV 1−1/m, many inequalities are applied to extract a CD sequence from this single
special CD, resulting in large constants in convergence bounds. DCDC makes it possible to directly
establish a sequence of CDs (by consecutively solving CDEs). In this setting, we can use Theorem 4
to obtain better convergence bounds. To be specific, compared with our Theorem 4, the result in (Qu
et al., 2023) has an extra factor mm/m!.

4 Sample Complexity

As a numerical solver, DCDC solves CDEs approximately. Let Ṽ = VθT be the output of DCDC.
We should not expect KṼ = Ṽ − U to hold exactly. Even if Ṽ is an exact solution, the exactness is
hard to verify as KṼ is an expectation and the domain X ⊂ Rd is not a finite set. As establishing
convergence bounds requires CDs to exactly hold everywhere, given N iid copies of f to estimate K
and M = {x1, . . . , xM} uniformly sampled from X , we can (i) establish

K̂N Ṽ (x)
∆
=

1

N

N∑
k=1

Dfk(x)Ṽ (fk(x)) ≤ Ṽ (x)− Ũ(x), x ∈ M

where Ũ may be smaller than U (e.g. if Ṽ is supposed to solve Ṽ − KṼ = U ≡ 1, then Ũ ≡
infM[Ṽ − K̂N Ṽ ]); (ii) claim that KṼ ≤ Ṽ − Ũ + ϵ holds everywhere with probability at least
1− δ where ϵ, δ > 0; (iii) convert KṼ ≤ Ṽ − Ũ + ϵ into a convergence bound. To have M,N large
enough to make the claim in (ii), we need the following sample complexity result.
Theorem 5. Suppose that (i) X is compact; (ii) V,U are bounded and Lipschitz; (iii) EDf2 +
ED2f < ∞ where Df is the Lipschitz constant of f and D2f is the Lipschitz constant of Df . Given
ϵ, δ > 0, we can choose M = O(log(1/ϵ)/(δϵd)) and N = O(1/(δϵ2)) to have

P

(
sup
x∈X

[KV (x)− V (x) + U(x)] ≤ sup
x∈M

[
K̂NV (x)− V (x) + U(x)

]
+ ϵ

)
> 1− δ.

Since the exponential rate of convergence in Theorem 3 is r = 1 − inf U/ inf V , Theorem 5 also
provides the sample complexity for estimating the exponential rate. Specifically, with probability at
least 1− δ, the exponential rate r̂M,N computed from K̂NV ≤ V − U on M, which may not be a
valid exponential rate, is ϵ-close to a valid exponential rate r∗ (given by KV ≤ V − U + ϵ on X ).

It is worth noting that in terms of sample complexity, Theorem 5 guarantees a DCDC certificate
(and thus a convergence bound to stationarity) with high probability with an efficient parametric
O(1/N1/2) rate in terms of the number of samples (namely, the bound holds with high probability
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up to an error of order O(1/N1/2)). Once samples are generated, M = Õ(1/ϵd) points are chosen
for the empirical evaluation. Thus, the total complexity (both in terms of number of evaluations
and number of samples is O(1/ϵ2) + Õ(1/ϵd). A related literature on parametric integration (i.e.
learning a Markov transition kernel that maps Lipschitz functions to continuous functions on the
d-dimensional cube) provides a lower bound of order Õ(1/ϵd), (Heinrich and Sindambiwe, 1999).
Although these results are suggestive, they cannot be applied directly because we assume a random
mapping representation, which provides additional structure. We plan to study the lower bounds in
future work.

5 Numerical Examples

5.1 Mini-batch SGD for logistic regression with regularization

Having established the theoretical foundation of DCDC, we now utilize it to generate convergence
bounds for Markov chains of interest that are too hard for pen-and-paper analysis. To begin, we
bound the convergence of a constant step-size mini-batch SGD that minimizes the cross-entropy loss
over a finite dataset with L2 regularization.

Let (x1, y1),. . . ,(xm, ym) be m data points where xi ∈ [−1/2, 1/2]2 and yi ∈ {0, 1}. To perform
regularized logistic regression, we want to choose b ∈ R2 to minimize

− 1

m

m∑
i=1

(yi log pi + (1− yi) log(1− pi)) +
λ

2m
∥b∥2 , pi = σ(b⊤xi) =

1

1 + exp(−b⊤xi)

where λ > 0 is the regularization parameter. The random mapping representation of the corresponding
SGD with step-size α and batch-size β is

f(b) =b(1− λα/m) + (α/β)
∑
i∈B

[
yi − σ(b⊤xi)

]
xi

where B with |B| = β is uniformly sampled from {1, . . . ,m}. Thanks to the regularization, the
chain has a compact absorbing set. In fact, the chain cannot escape from Bm/(λ

√
2)(0). The local

Lipschitz constant of f(b) is

Df(b) =

∥∥∥∥∥(1− λα/m)I − (α/β)
∑
i∈B

σ′(b⊤xi)xix
⊤
i

∥∥∥∥∥ ≤ 1− λα/m

where ∥A∥ = supv:∥v∥=1 ∥Av∥ is the spectral norm. This demonstrates that the L2 regularization
makes the chain contractive ∥f(b1)− f(b2)∥ ≤ (1 − λα/m) ∥b1 − b2∥. However, since the regu-
larization parameter is chosen via cross-validation in a separate validation process, it is useful to
obtain a contraction rate that is uniform in the regularization parameter. This rate is brought by the
second term in Df(b) - we refer to this contribution as the intrinsic convergence rate. However, it is
challenging to analyze the spectrum of this state-dependent data-based random matrix, so we need
DCDC. The code is available in the supplementary material. Each training procedure in this paper
was completed within ten minutes on an M2 MacBook Air with 8GB RAM.

For the dataset, we set m = 100 and uniformly generate 100 xi’s. For each xi, its label yi follows
Ber(0.9) or Ber(0.1), depending upon which coordinate of xi is larger. For the SGD, we set the
regularization parameter λ = 1, step-size α = 0.1, and batch-size β = 10. For DCDC, we run
1M Adam steps to train a single-layer network with width 1000 and sigmoid activation. We also
experiment with deeper networks with the same amount of neurons, and the results are similar.

As demonstrated in Figure 5.1, the single-layer network can already accurately solve the CDE
KV = V − 0.1. The learned solution Ṽ is on the left while the estimated difference K̂Ṽ − Ṽ is
on the right. Aiming at KV ≤ V − 0.1, we get K̂Ṽ ≤ Ṽ − 0.0986. This leads to exponential
rate 1− 1.07× 10−3 (Theorem 3) where 1× 10−3 corresponds to the regularization contribution,
while 7× 10−5 corresponds to the intrinsic rate. Now we briefly discuss how the surface in Figure
5.1 (left) leads to the intrinsic rate. From the expression of Df(b), we know that the intrinsic
contraction concentrates around the center. To make it contribute to the overall convergence, it
needs to be spread. The surface in Figure 5.1 (left) provides the media to spread: (i) for points not
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Figure 1: Left: The learned solution Ṽ of KV − V = −0.1 for the mini-batch SGD, with maximum
91.87. Right: The estimated difference K̂Ṽ − Ṽ , with maximum -0.0986, mean -0.9999, standard
deviation 0.0003.

at the center, the sunken surface creates a drift ExV (X1) < V (x); (ii) however, for points at the
center, the sunken surface creates an anti-drift ExV (X1) > V (x), but it is overcome by the strong
contraction ExDf1(x)V (X1) < V (x). In this way, the strong contraction is spread (in the form
of drift) to overall improve the contractive drift, which leads to the intrinsic rate. To conclude this
example, when X0 = 0, we compute the pre-multiplier C = 8.1, which leads to convergence bound
W (Xn, X∞) ≤ 8.1(1− 1.07× 10−3)n.

5.2 Tandem fluid networks

In the above SGD example, contraction plays the leading role. Now we consider a tandem fluid
network (Kella and Whitt, 1992) where drift plays the leading role. Let s1 and s2 be two stations
with buffer capacity c that can process fluid workload at rates r1 and r2, respectively. External fluid
only arrives at s1 and is processed by s1 then s2. Assume that the external input follows a compound
renewal process where a random amount of fluid Z arrives after a random length of time T has passed
since the last arrival. If r1 < r2, then s2 is always empty, so we let r1 > r2. Let X be the remaining
workload vector after each arrival. Its random mapping representation is

f(x1, x2) = (min((x1−r1T )++Z, c), (min(x2+(r1−r2)min(T, x1/r1), c)−r2(T−x1/r1)+)+)

where x1 decreases at rate r1 until it is empty while x2 increases at rate (r1 − r2) until x1 is empty.
Basically, within [0, c]2, the chain follows a northwest-then-south path for time T and then jumps east
by amount Z. This chain has simple local Lipschitz constant Df(x1, x2) = I(T ≤ (x1 + x2)/r2),
obtained as an infinitesimal ball around (x1, x2) collapses to a single point when the system is
depleted before the next arrival. As a result, drift plays the leading role as contraction only happens
around the origin.

For the tandem network, we set the buffer capacity c = 1, processing rates (r1, r2) = (1.1, 1.0),
interarrival time T ∼ U [0, 0.2] and arriving amount Z ∼ U [0, 0.1] (the stability condition is
EZ < r2ET ). For DCDC, we run 1M Adam steps to train a double-layer network with width 40 and
sigmoid activation.

Although a slightly deeper network is trained, the result in Figure 5.2 (left) is almost a plane. Now
we briefly explain why this is the correct solution. First, note that as long as the stability condition
EZ < r2ET holds, the total workload V̄ (x1, x2) = x1 + x2 is the most natural Lyapunov function
such that ExV̄ (X1) − V̄ (x) = E(−r2T + Z) < 0 holds when x is far away from the boundary.
Second, the "boundary removal technique" introduced in (Qu et al., 2023) shows that the above drift
can be extended to the boundary as a contractive drift ExDf(x)V̄ (X1)− V̄ (x) = E(−r2T +Z) < 0
as if the boundary (that causes anti-drift) never exists. The plane in Figure 5.2 (left) demonstrates that
DCDC has already mastered the above two steps! Again, we conclude this example with convergence
bound W (Xn, X∞) ≤ 5.67(1− 0.017)n when X0 = 0.
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Figure 2: Left: The learned solution Ṽ of KV − V = −0.1 for the tandem network, with maximum
3.78. Right: The estimated difference K̂Ṽ − Ṽ , with maximum -0.0668, mean -0.0989, standard
deviation 0.0097.

5.3 Discovery of meaningful wedge-like Lyapunov functions

Lyapunov functions are usually denoted by V in the literature, and V typically represents the shape of
Lyapunov functions. As mentioned in the introduction, the CDE solution is a new type of Lyapunov
function. In most cases, it is also V -shaped, representing the drift towards some contractive region.
However, Markov chains sometimes exhibit neither drift nor contraction, such as when SGD is
stuck in a non-strongly-convex basin or when the water level of the Moran dam (Stadje, 1993) is
neither too low nor too high. Here, we use the simplest example, a two-sided regulated random walk
f(x) = max(min(x+ Z, 1/2),−1/2) with Z ∼ U [−1/3, 1/3], to illustrate that DCDC discovers
upside-down

V

-shaped Lyapunov functions to address the above issue.

Figure 3: Left: The learned solution Ṽ of KV − V = −0.1 for the regulated random walk, with
maximum 0.972. Right: The estimated difference K̂Ṽ − Ṽ , with maximum -0.0662, mean -0.0964,
standard deviation 0.0106.

In [−1/6, 1/6], the chain exhibits neither drift (Z is symmetric) nor contraction (±1/2 boundaries are
not reachable in one step). The wedge in Figure 5.3 (left) creates an artificial drift to maintain the CD.
In (Qu et al., 2023), a similar function is introduced as a tool to study stylized non-strongly-convex
SGD. DCDC not only discovers this tool but also makes the wedge meaningful. As mentioned in
the remark below Theorem 1, the CDE solution generated by DCDC represents an average space-
discounted cumulative reward, where an agent collects reward within a shrinking ball. Why does
starting from the middle lead to the highest reward? Because the ball starting there has the longest
lifespan before hitting the boundary and collapsing into a single point.
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5.4 Recovery of exact convergence rates

Finally, to demonstrate the potential of DCDC to accurately recover exact convergence rates, we
examine a class of d-dimensional autoregressive processes

f(x) = Hx+ Z, x,H,Z ≥ 0 (3)

where random vector Z is integrable and constant matrix H is symmetric with all its eigenvalues
in (0, 1). The exact convergence rate of this Markov chain in Wasserstein distance can be explicitly
computed by pen and paper.

Proposition 1. Let X be the Markov chain defined by (3). If X0 = 0, then

E ∥HnY ∥ /
√
d ≤ W (Xn, X∞) ≤ E ∥HnY ∥ , Y =

∞∑
k=1

Hk−1Zk

where Zk’s are iid copies of Z. Let λ be the largest eigenvalue of H . Then E ∥HnY ∥ = Θ(λn) as
long as Y does not concentrate on the orthogonal complement of the eigenspace associated with λ.

For the autoregressive process, let d = 3 and

H =

(
0.4 0.2 0.1
0.2 0.5 0.2
0.1 0.2 0.6

)

with λ = 0.850. Let Z be uniformly sampled from B1(0) ∩ R3
+. Note that the resulting Markov

chain cannot escape from B10(0) ∩ R3
+. After plugging into the simulator of (3), DCDC generates

V ≡ 0.668, which recovers the exact convergence rate

KV = V − U = (1− U/V )V = (1− 0.1/0.668)V = 0.850V = λV.

6 Conclusions

We introduce DCDC, a potent framework that enables the use of deep learning techniques to tackle
the problem of estimating convergence to stationarity of complex, general state-space Markov chains.
Our approach unlocks the key to using scalable data-driven tools to tackle this important problem. In
future work, we plan to use these results in the context of general state-space reinforcement learning,
control of ergodic systems, and related applications by employing the CD condition as a policy
regularizer.

7 Limitations

DCDC solves CDEs on compact spaces. A potential strategy to handle non-compact spaces is
discussed in Section 3.2. Sample complexity lower/upper bounds are not studied in this paper and
they are left for future research.
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A Appendix

Proof of Theorem 1. Note that

W∗(x) ≥KW∗(x) + U(x)

=EDf1(x)W∗(f1(x)) + U(x)

≥EDf1(x)(KW∗(f1(x)) + U(f1(x))) + U(x)

=EDf1(x)E [Df2(f1(x))W∗(f2(f1(x)))|f1] + EDf1(x)U(f1(x)) + U(x)

=EDf1(x)Df2(f1(x))W∗(f2(f1(x))) + EDf1(x)U(f1(x)) + U(x)

· · ·

≥Ex

[
W∗(Xn)

n∏
k=1

Dfk(Xk−1)

]
+

n−1∑
k=0

Ex

[
U(Xk)

k∏
l=1

Dfl(Xl−1)

]

≥
n−1∑
k=0

Ex

[
U(Xk)

k∏
l=1

Dfl(Xl−1)

]
.

As n → ∞, we have V∗ ≤ W∗ < ∞ and

KV∗(x) = EDf1(x)EX1

[ ∞∑
k=0

U(Xk+1)

k∏
l=1

Dfl+1(Xl)

]

= E

[ ∞∑
k=0

U(Xk+1)

k∏
l=0

Dfl+1(Xl)

]

= E

[ ∞∑
k=1

U(Xk)

k∏
l=1

Dfl(Xl−1)

]
= V∗(x)− U(x).

Let V ∗ be another solution of KV = V − U . Similar to W∗,

V ∗(x) = Ex

[
V ∗(Xn)

n∏
k=1

Dfk(Xk−1)

]
+

n−1∑
k=0

Ex

[
U(Xk)

k∏
l=1

Dfl(Xl−1)

]
. (4)

As n → ∞, we have V ∗ ≥ V∗. If V∗, and hence V ∗, is unbounded, then KV = V − U doesn’t have
bounded solution. If V ∗, and hence V∗, is bounded, we claim that they are the same solution. It
suffices to show that the first term on the RHS of (4) vanishes as n → ∞. This is true because

V∗(x) < ∞ ⇒ Ex

[
U(Xn)

n∏
k=1

Dfk(Xk−1)

]
→ 0 ⇒ Ex

[
V ∗(Xn)

n∏
k=1

Dfk(Xk−1)

]
→ 0

where the last step follows from supV ∗ < ∞ and inf U > 0.

Proof of Theorem 2. Since continuous functions on compacts sets are bounded, by Theorem 1, V∗ is
the unique continuous solution of KV = V − U. By the universal approximation theorem (Cybenko,
1989), there exists a single-layer neural network with sigmoid activation {Vθ : θ ∈ Θ} (Θ is some
Euclidean space) and its realization Vθ∗ such that ∥Vθ∗ − V∗∥∞ < ϵ/(L̄+ 1) where L̄ = ∥EDf∥∞.
Then

∥KVθ∗ − Vθ∗ + U∥∞ ≤∥KV∗ − V∗ + U∥∞ + ∥Vθ∗ − V∗∥∞ + ∥KVθ∗ −KV∗∥∞
<0 + ϵ/(L̄+ 1) + L̄ϵ/(L̄+ 1)

=ϵ.

Proof of Theorem 3. The setting introduced in Section 2 is a special case of the setting in (Qu et al.,
2023), allowing us to directly invoke the results from that work. In particular, as X is assumed
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to be convex, the intrinsic metric used in (Qu et al., 2023) reduces to the Euclidean metric. From
KV ≤ V − U , we have

KV ≤ V − U ≤ V − U · V/ supV ≤ rV, r = 1− inf U/ supV.

By Theorem 3 in (Qu et al., 2023),

W (Xn, X∞) ≤ 1

inf V

rn

1− r
E ∥X0 −X1∥V (X0 + Ũ(X1 −X0)) = Crn

where

C =
E ∥X0 −X1∥V (X0 + Ũ(X1 −X0))

inf U · (inf V/ supV )

and Ũ is a U [0, 1] random variable independent of X0 and X1.

Proof of Theorem 4. The proof is similar to the proof of Theorem 1 in (Qu et al., 2023), but in our
specific setting, the proof becomes much simpler notation-wise. As in the proof of our Theorem 1,
we have

V1(x) ≥
∞∑

n=0

KnV0(x), KnV0(x) = Ex

[
V0(Xn)

n∏
l=1

Dfl(Xl−1)

]
.

Following the same induction process as in (Qu et al., 2023), we have

Vm(x) ≥
∞∑

n=0

cm,nK
nV0(x), cm,n =

(
n+m− 1

m− 1

)
.

Let Fn = fn ◦ · · · ◦ f1 and F̄n = f1 ◦ · · · ◦ fn be the n-fold forward and backward composition,
respectively. Given f independent of anything else,∫ f(x)

x

Vm(y)dy ≥
∞∑

n=0

cm,n

∫ f(x)

x

KnV0(y)dy

=

∞∑
n=0

cm,nE
∫ f(x)

x

[
V0(Fn(y))

n∏
l=1

Dfl(Fl−1(y))

]
dy

≥
∞∑

n=0

cm,nE
∫ Fn(f(x))

Fn(x)

V0(z)dz

≥
∞∑

n=0

cm,nE
∫ F̄n+1(x)

F̄n(x)

V0(z)dz

For a particular n̄, ∫ f(x)

x

Vm(y)dy ≥
∞∑

n=n̄

cm,nE
∫ F̄n+1(x)

F̄n(x)

V0(z)dz

≥cm,n̄E
∫ F̄∞(x)

F̄n̄(x)

V0(z)dz

≥cm,n̄ inf V0 · E
∥∥F̄n(x)− F̄∞(x)

∥∥ .
By integrating with respect to the initial distribution X0,

E ∥X0 −X1∥Vm(X0 + Ũ(X1 −X0)) ≥cm,n̄ inf V0 · E
∥∥F̄n̄(X0)− F̄∞(X0)

∥∥
≥cm,n̄ inf V0 ·W (Xn̄, X∞)

=
(n̄+m− 1) . . . (n̄+ 1)

(m− 1) . . . 1
inf V0 ·W (Xn̄, X∞)

=

m−1∏
k=1

( n̄
k
+ 1
)
inf V0 ·W (Xn̄, X∞).
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Proof of Theorem 5. As X is compact, without loss of generality, let X = [0, 1]d. The main goal is
to find M,N such that

P

(
sup
x∈X

[KV (x)− V (x) + U(x)] > sup
x∈M

[
K̂NV (x)− V (x) + U(x)

]
+ ϵ

)
≤ δ.

This probability is bounded by the sum of

P

(
sup
x∈X

[KV (x)− V (x) + U(x)] > sup
x∈M

[KV (x)− V (x) + U(x)] + ϵ/2

)
(5)

and

P

(
sup
x∈M

[KV (x)− V (x) + U(x)] > sup
x∈M

[
K̂NV (x)− V (x) + U(x)

]
+ ϵ/2

)
. (6)

To bound (5), we need to bound the Lipschitz constant of KV − V + U . For x, y ∈ X ,

|KV (x)−KV (y)|
= |EDf(x)V (f(x))− EDf(y)V (f(y))|
≤ |EDf(x)V (f(x))− EDf(x)V (f(y))|+ |EDf(x)V (f(y))− EDf(y)V (f(y))|
≤EDf(x) |V (f(x))− V (f(y))|+ E |Df(x)−Df(y)|V (f(y))

≤DV · EDf2 · ∥x− y∥+ supV · ED2f · ∥x− y∥
where DV is the Lipschitz constant of V . Then, the Lipschitz constant of KV − V + U is bounded
by

L̃
∆
= DV · EDf2 + supV · ED2f +DV +DU.

Then (5) is bounded by P
(
[0, 1]d ̸⊂ ∪x∈MBr̃

)
where r̃ = ϵ/(2L̃). To bound this probability, we

divide the unit cube into C̃ = (
√
d/r̃)d = (2L̃

√
d/ϵ)d sub-cubes with edge length r̃/

√
d. Then

[0, 1]d ̸⊂ ∪x∈MBr̃ implies that there exists at least one sub-cube that does not contain any element
of M. This is equivalent to failing to collect C̃ different coupons within M draws. It is well-known
that we need Θ(C̃ log C̃) on average to collect C̃ different coupons. By Markov inequality, we can
choose M = O(C̃ log C̃/δ) = O(log(1/ϵ)/(δϵd)) to reduce the failure probability below δ/2.

To bound (6), let xM = argmaxx∈M [KV (x)− V (x) + U(x)]. By Chebyshev inequality,

P

(
KV (xM)− V (xM) + U(xM) > sup

x∈M

[
K̂NV (x)− V (x) + U(x)

]
+ ϵ/2

∣∣∣M)
≤P

(
KV (xM)− V (xM) + U(xM) > K̂NV (xM)− V (xM) + U(xM) + ϵ/2

∣∣∣M)
=P

(
KV (xM) > K̂NV (xM) + ϵ/2

∣∣∣M)
≤Var [Df(xM)V (f(xM))|M] /N

ϵ2/4

≤4 supV 2 · EDf2

Nϵ2

≤δ/2

when N ≥ (8 supV 2 · EDf2)/(δϵ2) = O(1/(δϵ2)).

Proof of Proposition 1. By X0 = 0 and (3), we have

Xn =

n∑
k=1

Hn−kZk and X̄n =

n∑
k=1

Hk−1Zk

where X̄n is the backward chain. By definition,

W (Xn, X∞) ≤ E
∥∥X̄∞ − X̄n

∥∥ = E

∥∥∥∥∥
∞∑

k=n+1

Hk−1Zk

∥∥∥∥∥ = E

∥∥∥∥∥Hn
∞∑
k=1

Hk−1Zk

∥∥∥∥∥ = E ∥HnY ∥ .
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Let Lip(1) be the family of functions on Rd that are 1-Lipschitz with respect to the 2-norm ∥·∥. Let
∥·∥1 be the 1-norm. By the Kantorovich–Rubinstein duality,

W (Xn, X∞) = sup
h∈Lip(1)

|Eh(X∞)− Eh(Xn)|

≥E
[∥∥X̄∞

∥∥
1
−
∥∥X̄n

∥∥
1

]
/
√
d

=E
∥∥X̄∞ − X̄n

∥∥
1
/
√
d

≥E
∥∥X̄∞ − X̄n

∥∥ /√d

=E ∥HnY ∥ /
√
d,

where the second line is because ∥·∥1 /
√
d is 1-Lipschitz with respect to ∥·∥, the third line is because

X̄∞ ≥ X̄n ≥ 0, and the fourth line is because ∥·∥1 ≥ ∥·∥. Let Λ be the diagonal matrix containing
all the eigenvalues of H . Let Q be the orthogonal matrix containing all the (column) eigenvectors of
H . Then

Hn = QΛnQ⊤ =

d∑
i=1

λn
i qiq

⊤
i .

Recall that λ is the largest eigenvalue of H . Then

E ∥HnY ∥ /λn = E

∥∥∥∥∥
d∑

i=1

(λi/λ)
nqiq

⊤
i Y

∥∥∥∥∥→ E

∥∥∥∥∥∑
i∈I

qiq
⊤
i Y

∥∥∥∥∥ , as n → ∞

where {qi : i ∈ I} are the eigenvectors corresponding to λ. Since Z is integrable and Y does not
concentrate on the orthogonal complement of the eigenspace associated with λ, the above limit is
finite and positive.
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Answer: [Yes]

Justification: All claims are justified.
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made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
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Answer: [Yes]

Justification: We have a "Limitations" section.
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• The answer NA means that the paper has no limitation while the answer No means that
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• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All proofs are in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides enough details for reproduction, and the code provides
one-click reproduction.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Code with instructions is included in the submission.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We present enough details in the paper and full details in the code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the average error and its standard deviation in the numerical experi-
ments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As mentioned in the paper, an M2 MacBook Air suffices with 8GB RAM
suffices.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms with the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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