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Abstract

Vision—language models (VLMs) exhibit strong zero-shot generalization on natural
images and show early promise in interpretable medical image analysis. However,
existing benchmarks do not systematically evaluate whether these models truly
reason like human clinicians or merely imitate superficial patterns. To address
this gap, we propose DrVD-Bench, the first multimodal benchmark for clinical
visual reasoning. DrVD-Bench consists of three modules: Visual Evidence Com-
prehension, Reasoning Trajectory Assessment, and Report Generation Evaluation,
comprising a total of 7,789 image—question pairs. Our benchmark covers 20 task
types, 17 diagnostic categories, and five imaging modalities—CT, MRI, ultrasound,
radiography, and pathology. DrVD-Bench is explicitly structured to reflect the
clinical reasoning workflow from modality recognition to lesion identification
and diagnosis. We benchmark 19 VLMs, including general-purpose and medical-
specific, open-source and proprietary models, and observe that performance drops
sharply as reasoning complexity increases. While some models begin to exhibit
traces of human-like reasoning, they often still rely on shortcut correlations rather
than grounded visual understanding. DrVD-Bench offers a rigorous and structured
evaluation framework to guide the development of clinically trustworthy VLMs.
Dataset: Kaggle, Hugging Face. Code: GitHub
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Figure 1: Overview of the DrVD-Bench
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1 Introduction

The lack of interpretability in Al-driven diagnostic systems has long been a critical barrier to their
adoption in clinical practice [87,136]. Vision-Language Models (VLMs) [29] (18 (14} 27, [74] 35} 190]
offer a promising direction toward interpretable medical Al, as they can generate outputs that mimic
the stepwise clinical reasoning process of physicians [[72} [13], 166]]. In clinical settings, physicians
arrive at diagnosis by progressively integrating information across multiple levels—ranging from
basic image features to anatomical structures and lesion characteristics—before synthesizing this
evidence step-by-step into a clinical diagnostic report. Despite the increasing adoption of VLMs in
analyzing medical images, there exists no benchmark that systematically evaluates whether these
models follow a similar reasoning trajectory or merely rely on memorized patterns and spurious
shortcuts.

To address this gap, we introduce DrVD-Bench (Doctor-like Visual Diagnosis Benchmark), the first
benchmark explicitly designed to evaluate the understanding and reasoning capabilities of VLMs in
medical image analysis. DrVD-Bench comprises three complementary modules: (i) Visual Evidence
Comprehension, containing 4,480 high-quality image—question pairs structured to mirror the each step
of clinical reasoning, assessing how well models identify essential visual cues and generate diagnoses;
(ii) Reasoning Trajectory Assessment, consisting of 487 images with 3,321 question—answer turns
that emulate the progressive reasoning process of clinicians and evaluate whether models reason step
by step or rely on shortcuts; and (iii) Report Generation Evaluation, comprising 475 questions aimed
at assessing holistic understanding through free-form clinical report generation.

Modules 1 and 2 are explicitly designed to reflect the clinical reasoning workflow—from modality
recognition to anatomical localization, lesion characterization, and final diagnosis. This workflow is
defined as follows:

* Level 0: Image Quality Assessment — Detecting artifacts or noise; typically handled
during acquisition.

* Level 1: Basic Information Extraction — Identifying modality, body region, view, etc.;
often available as metadata in clinical settings.

* Level 2: Anatomy-Level Recognition — Recognizing and localizing anatomical structures
(e.g., organs, tissues).

* Level 3: Lesion-Level Identification — Detecting, localizing, and describing abnormalities
such as lesions or fractures.

* Level 4: Clinical Interpretation — Integrating visual findings to produce a diagnosis or
generate a structured report.

By organizing tasks into stepwise levels, DrVD-Bench enables fine-grained analysis of VLM per-
formance—not only in terms of final diagnostic predictions, but also in their capacity to extract
intermediate visual evidence and engage in coherent reasoning. This structure allows us to examine
whether models genuinely analyze medical images by identifying key visual cues and reasoning in a
step-by-step manner, akin to human clinicians. In the Visual Evidence Comprehension module, we
introduce specially designed organ erasure and lesion erasure tasks, which compel models to rely on
visible image content rather than memorized associations, thereby mitigating potential information
leakage from pretraining. The Reasoning Trajectory Assessment module includes three distinct QA
formats—Independent QA, Joint QA, and Multi-turn QA, —with the latter specifically enforcing a
stepwise reasoning pattern that mirrors clinical workflows. Except for this module, all other stages
adopt an independent QA format, where each question is presented in isolation without shared context.
Finally, unlike previous benchmarks that limit report generation to specific modalities [41} 75 93]
such as radiographs or CT scans, our Report Generation Evaluation module introduces a setting to
assess models’ holistic understanding across diverse imaging modalities.

We evaluated 19 publicly available VLMs, including both general purpose and medical-specific
models (see Table[3). Our key findings are summarized as follows:

» Reasoning performance declines with task complexity: VLMs perform well on low-level
visual tasks such as modality or view recognition, but their accuracy drops substantially on
higher-level tasks involving anatomical understanding, lesion localization, and diagnosis.



* Correct answers without supporting evidence: Many models achieve higher diagnostic
accuracy than their performance on lesion-level tasks, suggesting they can produce correct
diagnoses without fully understanding or localizing the supporting visual evidence.

* Limited capacity for stepwise clinical reasoning: Models perform best when provided
with all questions at once (Joint QA), but struggle in Multi-turn QA, suggesting difficulty
with maintaining dialogue state and reasoning trajectories.

* Hallucinations in report generation: In free-form generation tasks, models often produce
plausible but unsupported statements, revealing challenges in grounding clinical language in
image evidence.

* Smaller, specialized models can compete: While larger and newer models generally
perform better, domain-optimized models demonstrate strong performance relative to their
scale, highlighting the value of medical-specific alignment.

2 Related Works

2.1 Vision-Language Models

Modern vision-language models (VLMs) build upon the reasoning capabilities and world knowledge
of large language models (LLMs) by aligning visual inputs with the textual domain [90]. For instance,
LLaVA [435] introduces a multi-layer perceptron (MLP)[59] to bridge a vision encoder (e.g., CLIP
[62]) with a language model backbone, enabling the system to perform tasks such as interpreting
scientific figures [82] and understanding cartoons [47]. VLMs have also been adapted for the
medical domain [42] |89} 39]. For example, LLaVA-Med [39]], derived from LLaVA, is fine-tuned on
medical data to adapt the model for healthcare-specific tasks. Although VLMs have shown impressive
performance on general visual reasoning tasks [16, 88} 32} |51]], it remains uncertain whether they truly
comprehend medical images or merely rely on prior knowledge and pattern matching [17} 77,160, 37].

2.2 Medical VLM Benchmarks

The application of VLMs in medicine demands benchmarks with broad coverage and fine-grained,
clinically relevant evaluation. However, most existing benchmarks remain narrow in scope (see
Table[I), typically limited to single modalities or task types. For example, PathMMU [73], VQA-
RAD [38], and PMC-VQA [92] focus primarily on visual question answering (VQA) within specific
imaging domains, limiting generalizability and diagnostic depth.

Recent benchmarks introduce hierarchical structures [58, 185, [31]], but these do not align with the
stepwise nature of clinical reasoning. GMAI-MMBench [85]], for instance, organizes questions
by perceptual complexity rather than reasoning stages. OmniMedVQA [31]] covers diverse tasks
like modality recognition and diagnosis but lacks a clinically grounded task progression, grouping
questions only by type. As a result, current benchmarks fall short in evaluating whether VLMs
reason like clinicians. A critical gap remains: we lack a benchmark that not only measures answer
correctness but also reveals how and why models succeed or fail—essential for assessing clinical
reasoning ability.

Table 1: Comparison of Medical VLM Benchmarks

Benchmark Imaging modalities Task hierarchy Clinical reasoning Task types
VQA-RADI38] Radiography, CT X X VQA

SLAKE[44] Radiography, CT, MRI X X VQA

PMC-VQA [92] CT, MR], and others X X VQA

Rad-ReStruct [58] Radiography v X VQA
GMAI-MMBench([85] CT, MRI, Radiography, Ultrasound, Pathology v X VQA

PathMMU[73] Pathology X X VQA
OmniMedVQA|31] 12 modalities v X VQA

CARES[79 16 modalities X X VQA
MultiMedEval[68] > 11 modalities X X VQA, open QA, and others
DrvVD-Bench 5 modalities v (stepwise) v VQA, report generation




3 Design of DrVD-Bench

3.1 Overview

We propose DrVD-Bench, a multi-scale benchmark for systematically evaluating vision—language
models (VLMs) in the medical domain. Inspired by the diagnostic workflow of clinicians, DrVD-
Bench defines a three-module framework that evaluates VLMs from three aspects: (i) Reliability
in visual evidence extraction; (ii) Ability in stepwise clinical reasoning; and (iii) Comprehensive
understanding of medical image-revealed by the ability in report generation. Representative examples
are shown in Figure 2}

DrVD-Bench comprises three modules: (1) Visual Evidence Comprehension, containing 4,480
expert-curated image—question pairs across 16 tasks, structured by the depth of clinical reasoning,
from the superficial modality recognition to the deep lesion-level identification and diagnosis. To
reduce reliance on shortcuts, we introduce organ and lesion erasure tasks that force models to
reason from visible evidence. (2) Reasoning Trajectory Assessment, with 3,321 QA turns on 487
images, evaluates whether models reason step by step using three prompting formats: Joint QA,
Independent QA, and Multi-turn QA. (3) Report Generation Evaluation, spanning all the five
modalities, it contains 475 questions aimed at assessing holistic understanding through free-form
clinical report generation. See Appendix [A.2]for the detailed composition of our benchmark.

Together, these components enable fine-grained analysis of VLMs’ clinical visual understanding and
diagnostic reasoning.

3.2 Dataset Collection and Task Construction

3.2.1 Data Collection

This study systematically aggregates multi-modal medical images (CT, MRI, ultrasound, X-ray, and
pathology) from 24 publicly available datasets and online repositories (See Table[§|in Appendix [A]
). These sources encompass a wide range of imaging scales, including panoramic, organ-level, and
histopathological views. Only images with a resolution of at least 256 x 256 are retained to ensure
sufficient visual clarity for structural and anatomical interpretation;

3.2.2 Task Overview

To enable fine-grained evaluation of models’ intermediate reasoning in medical image analysis,
DrVD-Bench organizes all QA tasks (except report generation) into a five-level hierarchy that mirrors
the cognitive stages of clinical diagnosis. Each level targets a distinct reasoning step:

* Level 0 (Image Quality): noise and artifact detection.

* Level 1 (Basic Information): modality, view, body part, magnification, stain, and imaging
technique recognition.

* Level 2 (Anatomy Level): organ/tissue identification, localization, and organ-erasure
detection.

* Level 3 (Lesion Level): lesion recognition, lesion-erasure detection, and morphological
description.

* Level 4 (Clinical Interpretation): diagnostic classification.

The Visual Evidence Comprehension module includes tasks from all levels, with each image paired
with a single QA focused on one aspect of visual understanding. In contrast, the Reasoning Trajectory
Assessment module evaluates multi-level reasoning per image by combining one task from each
level (e.g., modality, body part, organ, lesion, diagnosis). It offers three prompting formats: Joint
QA presents all questions at once; Independent QA asks them sequentially; and Multi-turn QA
incorporates the model’s prior response into subsequent prompts, simulating stepwise reasoning.

3.2.3 Dataset and QA Pair Construction

To support diverse evaluation objectives, we employ task-specific dataset construction strategies. For
noise robustness, we simulate modality-specific clinical noise at three PSNR levels—135, 25, and 35
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Question:
Generate a clinical report (caption) for this
Uttrasound image.

Answer: Ultrasound image from a focused
examination shows a well-defined oval lesion
with a relatively hypoechoic margin, but
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Question:
Generate a clinical report (caption) for this MRI
scan.

Bl Answer: MRI brain at the time of diagnosis, Axial T2
&) sequence. Vasogenic edema involving the bilateral
cerebral hemispheres, with relative sparing of the
frontal lobes suggestive of PRES. Pneumocephalus
i present secondary to interval placement of an
external ventricular drain (seen in the right lateral
ventricle).

Figure 2: Hierarchical five-level evaluation framework for medical imaging diagnostics. Representa-
tive tasks—spanning CT, MRI, ultrasound, radiography, and pathology—are shown alongside their
corresponding stage in the clinical reasoning cascade. Tasks labeled with ! are exclusive to pathology,
and those with 2 are exclusive to MRI.

dB—representing severe, moderate, and mild interference per clinical standards. Recognition and
localization tasks include bounding box and region annotations for relevant anatomical or pathological
areas. To assess sensitivity to local visual cues, we introduce an erasure task: using the Bailian
high-throughput image platform, targeted anatomical or lesion regions are digitally removed while
preserving structural continuity. All modified images are manually verified to ensure artifact-free
erasure and reliable evaluation of visual evidence dependence.

The Reasoning Trajectory Assessment module builds on the Visual Evidence Comprehension question
format but varies in structure and prompting. Independent QA pairs one image with multiple questions
at different reasoning levels. Joint QA bundles sub-questions from multiple levels into a single prompt
for simultaneous response. Multi-turn QA sequentially passes earlier responses into higher-level
questions, simulating stepwise reasoning (See Appendix Figure [T2).

For Report Generation Evaluation, we frame the task as medical captioning, using curated ground-
truth references from PubMedVision [15] and PathMMU [73]] that provide detailed clinical explana-

tions.



All QA pairs are authored by physicians based on task objectives (e.g., modality recognition, local-
ization, diagnosis) and span both closed-form and open-ended formats. Each is blind-reviewed by a
senior clinician to ensure clinical relevance, visual grounding, and diagnostic realism. Distractors are
carefully curated to remain plausible, and all questions are self-contained, unambiguous, and visually
answerable. Data distribution is summarized in Table

4 Experiments

4.1 Experiment Setup

In this study, we evaluated a total of 19 models (Table [3)), including general-purpose open-source
models, proprietary models accessed via API calls, and fine-tuned medical vision models. The
parameter sizes of open-source models range from 7B to 72B. All experiments were conducted under
a standardized zero-shot evaluation framework using system prompts on 8xNVIDIA A100 GPUs
(80GB each). This setup ensures consistent and fair comparisons across different model architectures
while maintaining reliable performance benchmarking.

Table 2: Statistics of DrVD-Bench Table 3: VLMs benchmarked in our study
Category Metric Count Model Developer Year
Module 1: Visual Evidence Comprehension Proprietary
Total QA pairs 4,480 GPT-4o0[54] OpenAl 2024.11
Level 0: Image Quality QA pairs 591 GPT-ol[55] OpenAl 2024.12
Level 1: Basic Information QA pairs 1,400 GPT-03[53] OpenAl 2025.04
Level 2: Anatomy QA pairs 1,151 Gemini 2.5 Pro[25]] Google 2025.03
Level 3: Lesion QA pairs 890  Grok-3[78] xAl 2025.02
Level 4: Clinical Interpretation QA pairs 923  Doubaol.5-VisionPro [11]] ByteDance  2025.01
Module 2: Reasoning Trajectory Assessment Claude 3.7 Sonnet[4] Anthropic  2025.02
Total images 487  Open-source
Independent QA QA pairs 2,347  Qwen2.5-VL [6] Alibaba 2025.01
Joint QA QA pairs 487  Phi-4 14B [1] Microsoft 2024.12
Multi-turn QA QA pairs 487 GLM-4V [23] Tsinghua 2024.06
CT/MRI/Radiography/US images each 100 Janus-Pro-7B [19] DeepSeek  2025.01
Pathology images 87 Medical-specific
Module 3: Report Generation Evaluation HuatuoGPT-Vision-34B [15] CUHK 2024.06
Open-ended QA pairs 475  HealthGPT-L14B [42]] ZJU 2025.02
Global Dataset Statistics RadFM-14B [/6] PJ.LAB 2023.12
Total QA pairs (all modules) 7789 LLaVA-Med-7B [39] Microsoft 2024.04
Organ/Tissue classes 38
Lesion classes 27
Diagnosis categories 17

4.2 Evaluation

In DrVD-Bench, we use accuracy to evaluate multiple-choice tasks, each with a single correct answer.
If the model’s output conforms to the expected format, we directly compare it with the ground truth
to determine correctness. For responses that deviate from the format, we apply DeepSeek-V3 [43] to
extract the selected option. If extraction fails, the answer is marked as incorrect (See Appendix D).
All results are averaged over five independent runs to ensure robustness. Accuracy is computed per
question and then averaged within each level to obtain level-specific scores.

For open-ended tasks such as report generation, we employ DeepSeek-V3 [43] to extract key features
from both the model’s response and the reference text. We then adopt BERTScore [91] with
PubMedBERT [26] to capture biomedical semantics of the generated data. To enable consistent
comparison, we normalize BERTScore using the baseline (See Appendix [B) and best-performing
model. Let sy0de1 be the model’s BERTScore, Spaseline the score of an irrelevant response, and Spest



the highest score observed. The normalized score is:

i Smodel — Sbaseli
Normalized BERTScore = ——— %0
Sbest — Sbaseline

In addition, to further evaluate factual consistency and hallucination in report generation, we incor-
porate FActScore [50] as a complementary metric. FActScore first extracts atomic-level clinical
facts from both the reference and generated reports using DeepSeek-v3, followed by fact-level
matching with GPT-40. We compute two indicators: recall, which measures the proportion of true
facts correctly captured by the model, and specificity, which measures the proportion of generated
facts supported by the reference. Low recall and specificity respectively reflect insufficient factual
coverage and the presence of hallucinated content.

5 Results Analysis

5.1 Models’ Performance on Visual Evidence Comprehension
5.1.1 Models Perform Differently Across Task Levels

Table[d]presents the evaluation results for CT modality tasks, with results for other modalities provided
in Appendix [B] Across all models, we observe a consistent decline in performance as the reasoning
level increases. While most models perform well on basic recognition tasks such as identifying the
imaging modality or view, their accuracy drops markedly on tasks requiring organ-level understanding,
and declines even further on lesion-level reasoning. For instance, GPT-03 achieves 86% accuracy
on Basic Information tasks, decreases to 66% on Organ-Level tasks, and further falls to 41% on
Lesion-Level tasks. This trend reflects a clear gap between surface-level visual parsing and clinically
meaningful reasoning. As tasks increasingly demand multi-step inference and integration of both
global context and local features, model performance becomes less stable and less reliable. These
results highlight the limitations of current VLMs in replicating the fine-grained, layered reasoning
processes central to clinical diagnosis.

Table 4: Accuracy of different VLMs across different task levels. The best-performing scores are
highlighted in red, and the second-best in blue. Due to the large number of tasks across imaging
modalities, we only present the performance of different models on task levels here. Results for the
detailed subtasks among five modalities (CT, MRI, Ultrasound, Radiography, and Pathology) are
provided in Appendix [B] These are recognition subtasks across reasoning levels.

Model Image Quality Basic Info Anatomy Level Lesion Level Diagnosis
Random 49 29 27 25 24
Proprietary
GPT-40 68 84 57 50 54
GPT-ol 56 71 44 37 39
GPT-03 69 86 66 41 48
Claude 3.7 Sonnet 68 83 60 42 48
Gemini 2.5 Pro 76 88 65 52 54
Grok-3 63 78 56 45 51
Doubao-VisionPro 63 82 52 59 52
Qwen-VL-MAX 65 78 54 56 53
Open-source
Qwen2.5-VL-72B 65 77 54 56 52
LLaVA-1.6-34B 61 60 38 49 46
Qwen2.5-VL-32B 61 73 51 48 56
Phi-4-14B 70 68 39 44 47
GLM-4V-9B 65 70 43 32 36
Qwen2.5-VL-7B 68 69 41 45 38
Janus-Pro-7B 59 68 44 39 56

HuaTuoGPT-Vision-34B 61 85 58 54 59
HealthGPT-L14B 56 77 46 41 53
RadFM-14B 52 61 33 38 31
LLaVA-Med-7B 52 49 34 32 29




5.1.2 Overdiagnosis without Understanding

Notably, as shown in Table ] many models perform better on diagnosis tasks than on lesion
recognition, revealing a disconnect between output accuracy and reasoning fidelity. In other words,
models can produce clinically plausible diagnostic results without actually identifying the supporting
lesion evidence, a phenomenon we term “overdiagnosis without understanding”.

This gap likely stems from biases in training data. Most VLMs are trained on image—report pairs that
provide final diagnoses (e.g., “pneumonia”, “fracture”) but omit intermediate steps such as lesion
localization or characterization. As a result, models tend to learn global pattern-to-label mappings,
bypassing the step-by-step reasoning process that underpins clinical decision-making.

The issue becomes especially pronounced in zero-shot settings that demand fine-grained lesion-level
reasoning. As shown in Table[TT](Appendix [B)), in CT lesion erasure detection, GPT-03 and Gemini
2.5 Pro perform worse than random (19% and 16%, respectively), and achieve only 28% accuracy on
lesion-level tasks—indicating a failure to recognize missing lesion evidence. Yet, on CT diagnosis
tasks, they attain substantially higher accuracy (52% and 71%, respectively). This stark discrepancy
suggests that diagnostic conclusions can be produced without properly grounding in anatomically or
lesion-relevant visual features.

This behavior raises fundamental concerns about the reliability and clinical validity of current models.
Despite producing seemingly accurate outputs, many models struggle with evidence-based reasoning,
especially when visual grounding is essential to safe and explainable diagnosis.

5.2 Models Prefer Global Context over Step-by-Step Clinical Reasoning

Our benchmark reveals a clear performance hierarchy across the three reasoning settings (Table [5):
Joint QA achieves the best overall results, followed by Independent QA, while Multi-turn QA
performs the worst. In the Joint QA setting, where the model receives the full sequence of questions
at once, it can reason more effectively by integrating global context and avoiding cumulative errors.
Independent QA, where each question is asked separately without memory of previous turns, provides
more stable but fragmented reasoning, leading to limited performance in higher-order tasks such as
lesion identification and diagnosis. Surprisingly, Multi-turn QA—which retains previous questions
and answers to simulate a realistic step-by-step clinical reasoning process—results in the weakest
performance. This suggests that current models struggle with managing dialogue state and are
vulnerable to propagating errors over turns. Overall, these findings indicate that today’s VLMs benefit
more from static, comprehensive context than from dynamic, trajectory-based reasoning.

To further verify this, we conducted a controlled experiment to isolate the effect of error accumulation
from other factors such as missing image references or prompt formatting. We designed three
conditions:

(1) Baseline — the model reasons based on its own previous answers;
(2) Insert-Correct — lower-level answers are replaced with ground-truth labels;
(3) Insert-Error — lower-level answers are replaced with random incorrect labels.

As shown in Table@ results on three representative models (Qwen2.5-VL-72B, Claude 3.7 Sonnet,
and GPT-40) reveal that diagnosis accuracy improves notably when earlier answers are corrected
(e.g., +28 for Qwen) and drops when errors are inserted (—15). Intermediate tasks (Body Part and
Organ) change only slightly (+6%), suggesting that dependencies intensify at deeper reasoning stages.
These results confirm that cumulative errors—rather than prompt design or forgetting—are the main
cause of performance degradation in multi-turn reasoning.

5.3 Hallucinations and Reasoning Errors in Clinical Report Generation

Figure [9]and Table[T7] (Appendix [B)) shows the report scores of various models across five imaging
modalities. Gemini 2.5 Pro, HuatuoGPT, and Claude 3.7 Sonnet demonstrate strong performance
across multiple modalities, with leading overall scores. Figure 3] further illustrates the performance
of the highest-scoring model, Gemini 2.5 Pro, under different scenarios: examples A and B are
high-scoring cases that successfully identify key lesions and generate structured descriptions, but
still exhibit occasional diagnostic errors or hallucinations. In contrast, example C is a low-scoring



Table 5: Performance across modality, bodypart, organ, lesion, and diagnosis (recognition
subtasks across levels in module 1). Each cell shows accuracy in the format: Independent/Multi-
turn/Joint. The highest value(s) are bolded, second highest are underlined. Missing values are
shown as —.

Model Modality  Bodypart  Organ Lesion  Diagnosis
GPT-4o 99/99/99 86/85/—~  58/55/65 45/45/54  40/40/41
Claude 99/99/99 82/83/-  53/52/70  38/36/51  33/30/38

Gemini 2.5 Pro 100/100/99  90/78/—  62/47/76  51/38/61  48/35/55
Qwen2.5-VL-72B 99/99/99 85/85/—  57/56/68  44/47/47  36/34/38
Grok-3 99/99/99 87/59/—  56/37/62 38/20/46  33/18/35

Table 6: Impact of low-level answer accuracy on multi-turn QA performance. Each cell shows
accuracy under three conditions: Baseline/Insert-Correct/Insert-Error. The highest value(s) are
bolded, and the second highest are underlined.

Model Modality Body Part  Organ Lesion  Diagnosis

Qwen2.5-VL-72B  99/99/99 85/84/84  57/58/55 47/60/43  37/65/22
Claude 3.7 Sonnet ~ 99/99/99 83/84/77  52/52/46  36/50/32  30/60/19
GPT-40 99/99/99 85/86/85  55/55/54  45/52/44  40/67/33

case, where most of the generated content consists of hallucinated findings unrelated to the refer-
ence diagnosis. These results suggest that while current models have made noticeable progress in
medical image-based reasoning and diagnosis, they still struggle to fully eliminate inaccuracies and
hallucinations during the reasoning process, limiting their clinical reliability.

To quantify this issue, we evaluate four representative models—Gemini 2.5 Pro, HuaTuoGPT-Vision-
34B, Qwen2.5-VL-72B, and Claude 3.7 Sonnet—using FActScore. As shown in Table all models
exhibit low recall and low specificity, indicating that they capture only a small fraction of clinically
relevant facts while generating substantial hallucinated content unrelated to the reference reports
or underlying images. These findings further demonstrate that factual consistency remains a key
bottleneck for current VLMs in clinical report generation.

Cyan Correct findings Yellow Missed reference findings - Incorrect statements Gray Contents not present in reference
A Good Case B Good Case C Bad Case

Instruction: Instruction: Instruction:

Generate a clinical report Generate a clinical report Generate a clinical report

for this ultrasound image. for this CT image. for this MRI image.
Refined Reference: Refined Reference: Refined Reference:
distended endometrial cavity; left perihilar mass; narrowing of left upper

multiple lobe bronchus; narrowing of pulmonary cerebellar compression; fourth ventricle
cystic spaces; snow storm appearance vein; narrowing of lingual pulmonary artery; compression; heterogeneous
absent fetal parts mass abutting left main pulmonary artery; intra/extracranial mass; temporalis muscle
mass abutting left atrial appendage to C1-C2 articulation

Refined Answer: BERTScore: 94 Refined Answer: BERTScore: 93 Refined Answer: BERTScore: 88
e RS EGUSIyometu diffuse small || left perihilar mass; compression of Well-defined mass in right carotid space;|
anechoic cystic spaces; "Swiss cheese" or bronchus and vessels; abutment of left posterior to carotid artery and jugular vein;
"honeycomb" appearance; vascular flow in atrium; atherosclerotic calcification in isointense to muscle; distinct from parotid
intervening myometrial tissue descending aorta gland

Figure 3: Report generation examples of Gemini 2.5 Pro. A and B represent high-scoring examples,
while C represents bad-scoring examples
5.4 Bigger, Newer, or Specialized: Factors Drive Model Performance

Model performance on DrVD-Bench is shaped by both scale and recency. Large proprietary models
such as Gemini 2.5 Pro and GPT-03 lead the overall leaderboard, confirming the advantages of



Table 7: FActScore results: factual consistency of clinical report generation. Recall measures the
coverage of true facts, while specificity reflects the proportion of generated facts supported by the
reference report. Low values indicate persistent hallucination issues across models.

Model Recall (std) Specificity (std)
Gemini 2.5 Pro 0.13 (0.16) 0.07 (0.10)
Claude 3.7 Sonnet 0.06 (0.11) 0.03 (0.05)
Qwen2.5-VL-7B 0.08 (0.13) 0.05 (0.09)

HuatuoGPT-Vision-34B  0.13 (0.16) 0.09 (0.17)

scale—especially for complex reasoning and fine-grained visual tasks. Meanwhile, newer models
consistently outperform older ones at similar sizes (Figure ), highlighting the impact of improved
architectures, training pipelines, and data quality on overall effectiveness.

Yet scale and recency are not the whole story. While proprietary models dominate, open-source
models like Qwen2.5-VL-72B perform competitively despite having fewer parameters. More notably,
HuaTuoGPT-Vision-34B achieves the second-highest accuracy with fewer than half the parameters
of top-tier models. Its success demonstrates that domain-specific optimization—when aligned
with medical structure and semantics—can enable smaller models to rival or even surpass larger
general-purpose systems in clinical reasoning.

6 Conclusion

We present DrVD-Bench, a hierarchical, multimodal benchmark designed to assess whether VLMs
reason like human clinicians. Covering five imaging modalities, 20 task types, and 7,789 QA pairs,
DrVD-Bench captures the full spectrum of clinical visual reasoning—from basic information tasks
like modality recognition to lesion identification and diagnosis. While many VLMs perform well
on surface-level recognition tasks, their accuracy drops sharply as reasoning complexity increases.
Notably, some models generate plausible diagnoses without correctly identifying supporting visual
evidence, revealing a disconnect between diagnostic output and evidence-based understanding. By
explicitly targeting intermediate reasoning steps and simulating clinical workflows, DrVD-Bench
shows that current VLMs show early signs of clinical reasoning, but still far from truly interpreting
medical images like human doctors. Our benchmark offers a structured foundation for developing
clinically reliable and visually grounded medical Al systems.

7 Limitations

Although DrVD-Bench is clinically inspired, it re-

mains a controlled evaluation without real-world B Gemini 25pro
patient context (e.g., notes, disease progression), ) Huoor s 4 boorsvmonre O (Sm
. .o, . . . . . Claude 3.7 Sonnet
limiting its reflection of actual diagnostic work- orrae O /

flows. Thus, results should not be overinterpreted s Qwen2.5VL728 O " quenviiax
for clinical translation, and future refinements

should better capture real-world complexity.

HealthGPT-L14B @ Qwen2.5-VL-328
Phi-4-14B ©Qwen2.5-VL-7B

Accuracy (%)

LLAVA-1.6-348
(5 @ Janus-Pro-78

3 @ GLM-4v-9B o
As DrVD-Bench uses public datasets, some re- onmariaes o o oponsouss O ™
cent models may have seen parts of them during © el specic éii@
pre-training, leading to potential train—test overlap < © LiavAMed-78 Foee
and affecting performance trends. Besides, given zomm 2024108 O easeTme " 2028108

current VLM limitations, selecting one “most in-

formative” 2D slice from 3D or 4D volumes isa Figure 4: Performance of VLMs on DrVD-
practical compromise but remains a common con- Bench visual evidence comprehension tasks
straint. Moreover, most training datasets (Table[[0] 4€TOSS different scales and recencies.

in Appendix |A) originate from large institutions,

underrepresenting minority groups and smaller or resource-limited hospitals. Future benchmarks
should better control data leakage, enable volumetric reasoning, and reduce data bias to improve
fairness and generalizability.
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A Technical Appendices and Supplementary Material

A.1 Dataset Availability
DrVD-Bench is publicly available at the following links:

» Kaggle: https://wuw.kaggle.com/datasets/tianhongzhou/drvd-bench
* Hugging Face: https://huggingface.co/datasets/jerry1565/DrVD-Bench

The code used to conduct our experiments is released at https://github.com/Jerry-Boss/
DrVD-Bench.

A.2 Detailed Composition of Our Benchmark

In this section, we describe the task compositions and dataset usage in more detail. Our benchmark
contains 3 modules, Module 1 (Visual Evidence Comprehension) contains 4480 QA pairs, Module 2
(Reasoning Trajectory Assessment) contains 3321 QAs, and Module 3 (Report Generation Evaluation)
contains 475 questions (See Figure[5). The compositions of Module 1 is illustrated in Figure 6] and
that of Module 2 is illustrated in Figure[7] The levels and tasks of Module 1 are listed in detail in
Table

Tasks of Module 2 (Reasoning Trajectory Assessment) are adapted from Module 1 (Visual Evidence
Comprehension), But they are differently organized. They are organized into 3 forms using different
prompts (See Appendix[C). Notably, there are 4 questions per Joint QA, and 5 questions per Multi-turn
QA.

In Joint QA, the number of answer options is carefully designed to reduce prompt-induced information
leakage. Both modality and organ questions contain 4 options each, while lesion and diagnosis
questions are expanded to 8 options (i.e., 4x2), mitigating the information leak from our prompts.

Module 3:5.7%

S\

Module 2: 40.1%

Figure 5: Diagram for the composition of our benchmark, which contains 3 modules

......

}r\\ Lv2: 23.2% ‘74 |

g Lv4: 18.6%

/

Figure 6: Diagram for the composition of Module 1. Module 1 spans all five modalities, and is
designed to contain tasks of five levels
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Figure 7: Diagram for the composition of Module 2. Module 2 contains three parts: Independent QA,
Joint QA and Multi-turn QA.

Table 8: Datasets used in DrVD-Bench, organized by imaging modality.

Modality Dataset Name

Radiography (X-ray) MIMIC-CXR v4[34]
MURA[64]
VinDr-SpineXR[52]]

Panoramic Dental Radiography / Tufts Dental Dataset[56]]
SA-Med2D-20M [84]
RSNA-Pneumonial[J3]]

CT SA-Med2D-20M [84]
AMOS 2022 [33]
DeepLesion[&1]]
CT-RATE[28]]
PubMedVision [13]]
LiTS (Liver Tumor Segmentation)[10]
COVID-CTset [63]
CTPelviclk [46]
CT-ORG [63]
StructSeg2019-subtask1 [70]
KiTS 2021 [30]
LNDb [57]
MSD-Liver [3. [71]] COVID-19-20 [67]

MRI TotalSegmentator MRI[21]]
BraTs$ 2020[49] 7, [8]]
BraTs$ 2021 [49. 7,
PI-CAI
LLD-MMRI [48]]
MICCAI 2024 CARE MyoPS++
ISPY 1-Tumor-SEG-Radiomics[20]

Ultrasound BUSI[2]]
CardiacUDA[83]]
CuRIOUS2022[80, 0]
TG3K
Abdominal Ultrasound Images [12]]
Annotated Ultrasound Liver Images [86]]

Pathology PathMMU[73]]
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Table 9: Task QA numbers in Module 1 (continued on next page)

Modality Level Task Number
. Noise Recognition 100

Image Quality Artifact Recognition 100

Modality 100

Basic Information View 100

Body Part 100

CT Organ Recognition 100
Anatomy Level Organ Location 99

Organ Erasure Identification 98

Lesion Level Lesion Recognition 95

Lesion Erasure Identification 100

. . Report 100

Clinical Interpretation Diagnosis 90

. Noise Recognition 100

Image Quality Artifact Recognition 61

Modality 100

Basic Information View 100

Body Part 100

Radiography Organ Recognition 100
Anatomy Level Organ Location 100

Organ Erasure Identification 68

Lesion Level Lesion Recognition 95

Lesion Erasure Identification 100

. . Report 100

Clinical Interpretation Diagnosis 100

Image Quality Artifact Recognition 46

. . Modality 100

Basic Information Body Part 100

Ultrasound Organ Recognition 100
Anatomy Level Organ Erasure Identification 100

Lesion Level Lesion Recognition 100

Lesion Erasure Identification 100

. . Report 75

Clinical Interpretation Diagnosis 63

. . Stain 100

Basic Information Magnification 100

Pathology Anatomy Level Organ/Tissue Recognition 100
Lesion Level Morphology Description 100

. . Report 100

Clinical Interpretation Diagnosis 100
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(continued)

Modality Level Task Number
. Noise Recognition 100

Image Quality Artifact Recognition 84

Modality 100

. . View 100

Basic Information Technique 100

MRI Body Part 100
Organ Recognition 100

Anatomy Level Organ Location 86

Organ Erasure Identification 100

Lesion Level Lesion Recognition 100

Lesion Erasure Identification 100

.. . Report 100

Clinical Interpretation Diagnosis 95

Table 10: Training datasets for medical-Specific VLMs. List of domain-specific vision—language
models and their corresponding medical training datasets.

Medical-specific VLM  Medical training datasets

HuatuoGPT-Vision-34B  PubMedVision

HealthGPT-L14B PubMedVision, LLaVA-Med, PathVQA, MIMIC-CXR-VQA, SLAKE, VQA-RAD

RadFM-14B Rad3D-series, MPx-series, PMC-Inline, PMC-CaseReport, VinDr-Mammo, VinDr-
SpineXR, VinDr-PCXR, PMC-OA, PMC-VQA, VQA-RAD, SLAKE, MIMIC-CXR,
VinDr-CXR, NIH ChestXray14, CheXpert, Covid-CXR2, NLM-TB, Object-CXR, Openl

LLaVA-Med-7B PMC-15M
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B Detailed Results

In this section, we show our benchmark results in detail.

For Module 1 (Visual Evidence Comprehension), the result for CT is in Table [T}, the result for
Radiography is in Table the result for MRI is in Table the result for Ultrasound is in Table
the result for Pathology is in Table T3]

We also analyzed model performance across different imaging modalities (Figure[8). VLMs perform
best on Pathology and worst on Ultrasound. The strong results in Pathology may stem from the fact
that we did not use whole-slide images; instead, human annotators selected diagnostically relevant
regions and zoomed in, effectively reducing task complexity. In contrast, Ultrasound poses a unique
challenge due to its inherently dynamic nature—clinical interpretation typically relies on real-time
video sequences rather than static frames, making single-image reasoning considerably more difficult.

We evaluated the performance of different models on the report generation task by comparing
their outputs against clinically relevant references (See Figure[9] and Table [I7). The performance
differences across modalities is minimal.

To establish a baseline, we introduced a set of medically plausible but image-irrelevant texts and
computed their BERTScores against the ground-truth references. Each reference was paired with
a randomly selected sentence from the list below, and the resulting BERTScore served as the
normalization baseline:

* No focal consolidation is seen. However, based on clinical history, the findings may suggest
a prior episode of viral gastroenteritis.

» There is no acute intracranial hemorrhage. The patient’s recent weight loss should be
evaluated further with laboratory studies.

* No pulmonary embolism is identified. The patient’s chronic insomnia is unlikely to be
explained by these imaging findings.

* Normal appearance of abdominal organs. Note: elevated serum calcium should be correlated
with parathyroid hormone levels.

* No significant degenerative changes are observed. Patient’s dizziness may be related to
recent changes in medication dosage.

* Imaging of the chest is unremarkable. Recommend thyroid function tests given the history
of fatigue and cold intolerance.

* No mass lesion is detected. Given the positive ANA, autoimmune evaluation is advised.

* The study is negative for acute pathology. Further investigation is warranted for the reported
night sweats and low-grade fever.

* No obstructive uropathy is evident. Patient’s lab findings of hematuria require correlation
with urine cytology.

* Brain MRI is within normal limits. Symptoms of memory loss may be functional in origin
or related to recent psychosocial stressors.
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Table 11: Results of different VLMs across different VQA tasks in visual evidence tasks for the
CT modality. The best-performing scores are bolded, and the second-best are underlined.

Model Image Quality Basic Information Organ Level Lesion Level Clinical Interpretation
Overall  Artifact  Noise | Overall ~Modality ~ Bodypart ~ View | Overall  Recognition Location  Erasure | Overall  Recognition  Erasure Diagnosis
Random | a8 51 4 | 30 25 27 9 | 2 29 27 0| 2 25 26 | 24
Proprietary
GPT-4o 72 52 92 89 100 85 92 50 60 46 44 39 36 67
GPT-ol 62 51 72 86 94 78 87 35 39 34 33 30 27 46
GPT-03 80 65 9% 94 100 90 92 70 76 77 56 37 19 52
Claude 3.7 Sonnet 75 52 97 84 100 84 92 47 60 46 36 28 29 46
Genmini 2.5 Pro 82 64 99 9 100 88 92 67 67 73 62 39 16 71
Grok-3 65 54 76 66 100 88 43 44 58 33 41 36 33 58
Doubaol.5-VisionPro 78 68 87 90 98 81 9 50 59 52 38 61 49 59
Qwen-VL-MAX 74 61 87 87 100 85 89 54 55 58 49 2 47 68
Open-source
Qwen2.5-VL-72B 75 59 %0 88 100 87 89 54 57 61 45 45 42 47 69
LLaVA-1.6-34B 62 53 70 72 80 85 51 32 42 16 38 43 41 45 54
Qwen2.5-VL-32B 59 50 68 88 97 30 86 45 48 41 47 39 46 32 68
Phi-4-14B 75 50 99 67 9 76 57 36 45 27 36 41 35 46 64
GLM-4V-9B 66 49 83 74 86 83 52 36 44 27 36 3 29 36 38
Qwen2.5-VL-7B 71 57 84 76 100 79 73 37 40 34 36 40 42 38 39
Janus-Pro-7B 71 52 90 82 9 88 63 37 45 32 34 41 40 42 73
Medical-specific

HuaTuoGPT-Vision-34B 67 60 74 94 100 91 92 52 63 48 44 33 a7 33 68
HealthGPT-L14B 51 49 53 84 100 90 84 38 52 30 32 32 41 2 2
RadFM-14B 52 47 56 72 92 56 67 30 39 29 2 44 45 42 35
LLaVA-Med-7B 57 53 60 55 82 57 26 33 32 36 32 34 33 35 30

Table 12: Results of different VLLMs across different VQA tasks in visual evidence tasks for the
radiography modality. The best-performing scores are bolded, and the second-best are underlined.

Model Image Quality Basic Information Organ Level Lesion Level Clinical Interpretation
Overall  Artifact  Noise | Overall ~Modality ~ Bodypart ~ View | Overall Recognition Location  Erasure | Overall  Recognition  Erasure Diagnosis
Random |40 51 46 | 27 29 25 2% | 30 18 44 7 | 25 28 2 | 21
Proprietary
GPT-do 69 70 67 92 100 95 81 59 46 79 53 36 45 27 27
GPT-ol 60 61 59 82 91 74 81 51 49 57 48 33 40 25 18
GPT-03 72 74 69 92 100 98 79 76 80 9 53 33 41 25 24
Claude 3.7 Sonnet 62 62 61 95 100 91 93 66 81 65 53 38 47 28 36
Gemini 2.5 Pro 79 70 88 88 100 97 68 7 80 89 43 53 57 48 25
Grok-3 64 72 55 91 99 85 90 55 37 74 53 32 36 28 32
Doubao-VisionPro 53 44 61 90 100 89 82 60 84 77 18 37 43 30 2
Qwen-VL-MAX 66 68 64 85 100 93 63 7 80 78 56 37 37 36 27
Open-source
Qwen2.5-VL-72B 65 63 67 76 100 63 64 70 79 78 52 4 48 34 28
LLaVA-1.6-34B 62 72 51 69 96 65 46 37 38 62 10 25 27 23 31
Qwen2.5-VL-32B 64 62 66 67 100 63 37 68 75 78 52 33 38 27 29
Phi-4-14B ik 70 84 75 100 90 34 43 39 73 16 31 34 27 37
GLM-4V-9B 66 64 68 81 100 89 53 50 56 66 28 28 29 2 20
Qwen2.5-VL-TB 75 78 72 73 98 89 33 46 53 61 25 33 36 30 37
Janus-Pro-7B 57 46 67 73 9 88 33 39 37 73 6 33 35 30 24
Medical-specific

HuaTuoGPT-Vision-34B 63 66 59 81 100 63 79 58 67 75 32 35 42 28 37
HealthGPT-L14B 60 70 49 75 98 60 68 39 32 66 19 32 37 27 34
RadFM-14B 60 70 49 66 72 58 68 39 34 51 31 24 17 30 a4
LLaVA-Med-7B 51 49 52 51 70 51 32 44 28 60 44 28 25 31 24

Table 13: Results of different VLMs across different VQA tasks in visual evidence tasks for the
MRI modality. The best-performing scores are bolded, and the second-best are underlined.

Model Image Quality Basic Information Organ Level Lesion Level Clinical Interpretation
Overall  Artifact  Noise | Overall Modality ~ Bodypart Imaging | Overall Recogniton Locaion Erasure | Overall Recognition  Erasure Diagnosis
Random |49 55 2 | 2 21 29 % | 24 2 29 | 20 28 25 | 30
Proprietary
GPT-4o 66 51 80 7 100 68 55 66 52 66 45 46 58 53 57
GPT-0l 50 3 67 56 78 46 36 65 35 38 29 38 4 46 40
GPT-03 62 40 84 76 100 69 62 7 53 66 49 I 51 50 48
Claude 3.7 Sonnet 70 54 86 65 100 56 4 60 49 56 38 53 56 61 4
Gemini 2.5 Pro 70 45 % 80 % 74 81 67 54 58 6 57 55 55 57
Grok-3 60 45 75 64 98 65 37 55 51 64 35 53 50 51 50
Doubao-VisionPro 62 56 68 64 () 53 45 60 46 61 38 40 61 54 45
Qwen-VL-MAX 62 45 79 61 9% 58 37 54 4 48 36 46 65 68 60
Open-source
Qwen2.5-VL-72B 65 50 79 63 9% 60 40 54 46 54 36 49 67 7 58
LLaVA-1.6-34B 62 50 74 46 57 43 29 56 35 36 24 45 68 60 76
Qwen2.5-VL-32B 60 49 7 62 91 60 39 57 4“ 45 38 48 6 61 70
Phi-4-14B 66 I 88 55 97 4 25 51 31 3 24 36 57 49 m
GLM-4V-9B 65 50 79 50 93 55 17 34 39 39 30 47 35 29 37
Qwen25-VL-7B 62 45 78 51 95 52 24 34 2 49 29 4 54 46 39
Janus-Pro-7B 59 38 79 57 87 68 2 50 4 45 44 40 36 31 79
Medical-specific
HuaTuoGPT-Vision-34B 57 40 73 n 100 70 65 73 49 63 36 47 68 67 67
HealthGPT-L14B 60 67 53 61 98 6 25 58 1) 50 35 I 54 54 2
RadFM-14B 46 50 ) 49 94 31 38 3 3 58 2 40 55 50 35
LLaVA-Med-7B 51 59 43 43 71 34 28 38 25 31 17 27 36 34 32
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Table 14: Results of different VLMs across different VQA tasks in visual evidence tasks for the
ultrasound modality. The best-performing scores are bolded, and the second-best are underlined.

Model Image Quality Basic Information Organ Level Lesion Level Clinical Interpretation
‘ Artifact ‘ Overall ~ Modality ~ Bodypart | Overall — Recognition  Erasure | Overall — Recognition  Erasure Diagnosis
Random | 53 | 25 2 7 | 4 23 5 | 22 23 20 | 20
Proprietary
GPT-40 50 76 99 53 44 37 51 54 76 31 62
GPT-o0l 35 61 89 32 35 27 43 35 44 26 43
GPT-03 46 82 99 65 46 36 55 36 36 36 48
Claude 3.7 Sonnet 48 71 100 41 54 46 61 28 36 19 49
Gemini 2.5 Pro 50 81 100 6l 48 40 56 59 58 59 51
Grok-3 54 75 98 52 45 36 54 53 74 32 64
Doubao-VisionPro 48 71 100 42 35 31 39 83 87 78 49
Qwen-VL-MAX 39 67 98 35 37 33 40 69 76 62 52
Open-source
Qwen2.5-VL-72B 30 66 98 33 36 33 38 63 74 52 46
LLaVA-1.6-34B 50 54 77 31 32 22 42 58 83 32 51
Qwen2.5-VL-32B 50 59 94 24 32 28 36 34 36 32 52
Phi-4-14B 37 66 95 36 26 25 27 43 49 36 41
GLM-4V-9B 50 75 100 49 29 30 28 17 23 10 33
Qwen2.5-VL-7B 50 47 92 2 30 32 28 46 36 56 25
Janus-Pro-7B 15 69 98 40 30 29 30 26 47 4 60
Medical-specific

HuaTuoGPT-Vision-34B 46 82 98 65 44 33 55 64 63 64 64
HealthGPT-L14B 50 67 94 40 35 36 34 25 4 45 51
RadFM-14B 50 47 60 33 20 25 14 36 60 12 11
LLaVA-Med-7B 44 50 58 41 23 21 25 31 30 32 30

Table 15: Results of different VLLMs across different VQA tasks in visual evidence tasks for the
pathology modality. The best-performing scores are bolded, and the second-best are underlined.

Model Basic Information Organ Level | Lesion Level | Clinical Interpretation
Overall Magnification Stain | Recognition | Morphology Diagnosis
Random | 34 46 2t | 30 | 23| 25
Proprietary
GPT-40 88 88 88 80 62 57
GPT-ol 72 73 71 65 43 50
GPT-03 88 89 87 83 56 66
Claude 3.7 Sonnet 94 96 91 83 61 67
Gemini 2.5 Pro 96 99 93 86 63 67
Grok-3 83 83 83 83 55 49
Doubao-VisionPro 93 94 91 69 58 63
Qwen-VL-MAX 86 84 87 65 63 58
Open-source
Qwen2.5-VL-72B 86 85 87 66 64 59
LLaVA-1.6-34B 60 56 63 53 51 49
Qwen2.5-VL-32B 88 89 87 66 69 59
Phi-4-14B 69 65 72 59 46 47
GLM-4V-9B 69 73 65 61 48 51
Qwen2.5-VL-7B 89 93 84 50 50 50
Janus-Pro-7B 58 70 46 73 57 44
Medical-specific
HuaTuoGPT-Vision-34B 93 93 93 86 61 57
HealthGPT-L14B 91 93 89 75 64 64
RadFM-14B 73 60 85 32 33 30
LLaVA-Med-7B 47 56 38 43 32 27
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Figure 8: Performance of VLMs across five medical imaging modalities in visual evidence tasks,
sorted by overall accuracy.

Table 16: Performance of VLMs across five medical imaging modalities in visual evidence tasks.
The best-performing scores are bolded, and the second-best are underlined.

Model | CT  Radiography Ultrasound MRI  Pathology | Overall
Proprietary
GPT-40 64.8 63.1 574 62.5 75 64.6
GPT-ol 53.7 55.8 424 46.4 60.4 51.7
GPT-03 68.9 69.9 52.6 61.2 76.2 65.8
Claude 3.7 Sonnet 60.9 679 50 584 79.6 63.4
Gemini 2.5 Pro 70.1 69.9 594 65.7 81.6 69.3
Grok-3 56.4 60.6 58 56.4 70.6 60.4
Doubao-1.5-VisionPro 67.5 64.2 59.3 57.3 75 64.7
Qwen-VL-MAX 67.4 63.5 54.4 57.3 71.4 62.8
Open-source
Qwen2.5-VL-72B 67.8 61.3 50.5 59.2 72.2 62.2
LLaVA-1.6-34B 52.3 50.5 48.5 49.7 54.4 51.1
Qwen2.5-VL-32B 60.3 56.6 44 57.8 74 58.5
Phi-4-14B 57.6 57.9 433 50.2 57.8 534
GLM-4V-9B 512 53.1 40.4 45.8 59.6 50.0
Qwen2.5-VL-7B 56.5 59.1 40.1 499 65.4 542
Janus-Pro-7B 59.4 47.5 40.4 51.9 58 514

Medical-specific

HuaTuoGPT-Vision-34B | 65.5 61.4 61 64.1 78 66
HealthGPT-L14B 56.8 54 443 534 77 57.1
RadFM-14B 48.2 51.3 33.1 46.8 48 455
LLaVA-Med-7B 433 41.5 35.1 37.7 39.2 39.4
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Figure 9: Normalized scores of report generation across five imaging modalities (sorted by overall
scores).
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Table 17: BERTScore performance of vision-language models across five imaging modalities.
Best-performing scores are bolded, and second-best scores are underlined. Models follow visual

grouping.

Model CT Radiography Ultrasound MRI Pathology | Overall
Proprietary
GPT-40 73/89.42 100/92.09 84/89.98 79/89.11 99/90.20 | 87/90.16
GPT-ol 60/88.96 71/90.79 69/89.39 42/87.90 84/89.69 | 65/89.35
GPT-03 60/88.97 87/91.52 78/89.73 63/88.60 79/89.52 | 74/89.67
Claude 3.7 Sonnet 100/90.35 76/91.02 81/89.85 100/89.80  95/90.08 | 90/90.22
Gemini 2.5 Pro 87/89.89 98/91.98 100/90.61 85/89.30  100/90.25 | 94/90.41
Grok3 66/88.90 94/91.07 76/89.35 49/87.52 95/89.99 | 76/89.77
Doubaol.5-VisionPro ~ 54/87.67 75/89.76 64/88.91 42/87.45 92/89.73 | 65/88.70
Qwen-VL-max 71/89.71 92/91.01 79/89.62 77/89.38 95/89.84 | 83/89.91
Open-source
Qwen2.5-VL-72b 60/87.85 87/89.99 78/89.53 60/87.50 85/89.71 74/88.92
LLaVA-1.6-34b 46/85.32 78/88.66 64/88.34 37/86.76 93/89.81 64/87.78
Qwen2.5-VL-32b 63/88.26 87/89.99 76/89.31 59/87.43 86/89.72 | 74/88.94
Phi-4-14B 60/87.84 82/89.12 58/87.46 47/87.04 73/88.26 | 64/87.74
GLM-4V-9B 51/86.37 94/91.05 40/86.36 50/87.23 35/85.48 | 54/87.30
Qwen2.5-VL-7B 68/88.98 82/89.12 70/88.91 68/88.61 89/89.88 | 76/89.50
Janus-Pro-7B 62/88.15 85/89.79 58/87.10 54/87.28 91/89.89 | 70/88.84
Medical-specific
HuatuoGPT 91/91.40 96/91.65 89/89.06 88/88.38 89/89.37 | 91/90.94
HealthGPT-14B 79/90.08 89/88.79 72/88.26 66/88.09 89/89.08 | 79/88.86
RadFM 15/81.46 0/80.00 29/82.85 36/83.64 29/82.87 | 22/82.17
LLaVA-Med-7B 50/85.04 30/83.01 49/84.94 66/88.09 60/86.01 51/85.13
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C Prompts

In this section, we present the exact prompts used in our experiments. To ensure model compliance,
particularly with recent models that may reject clinical queries, all prompts are framed within an
educational context.

C.1 Multiple-Choice Problems

System prompt:
You are a helpful assistant participating in an educational visual reasoning task.
Always follow the instructions strictly.

User prompt:
Question: {}

Options:

A) {}

B) {}

O {}

D) {}

Instructions:

Choose the SINGLE best answer by replying with one capital letter (A—D). Do not
explain. Do not add extra text.

C.2 Independent QA

You are participating in an educational exercise based on visual information.
Below is an image typically used in medical training, followed by a question.
Question: {}

Options:

A) {}

B) {}

O {}

D) {}

Instructions: Based only on the visible structures and general anatomical knowl-
edge, choose the most appropriate answer by replying with a single capital letter
(A, B, C, or D). Do not explain your reasoning.

C.3 Joint QA

System prompt:
You are participating in a step-by-step medical reasoning diagnosis task based on
interpretation of a medical image.

User prompt:

Please answer the following four questions sequentially. Each question builds upon
the reasoning of the previous one. Carefully analyze the image and select the most
appropriate answer at each step. For each question, choose one capital letter (A, B,
C, or D). Do not skip any step.

1. What imaging modality is used in this image?

Options:

A {}

B. {}

C. {}

D. {}

2. Which organ appears to be abnormal in this image?

Options:

A {}

B. {}
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Instructions:
Please reply with your four selected letters in order, separated by commas (e.g.,
A,C,B,A). Do not provide explanations.

C.4 Multi-turn QA

System prompt:
You are an expert medical Al. You will answer several step-by-step questions about
the same medical image. Respond with one capital letter (A—H).

User (Round 1):

(with image)

1. What imaging modality is used in this image?

Options: A) CT B)MRI C) Ultrasound D) Radiography

Assistant:
A

User:
[Same image QA record] 1. What imaging modality is used in this image?

Assistant:
CT

User (Round 2):
2. Which organ is shown in this medical image?
Options: A) Liver B) Pancreas C) Spleen D) Kidney

Assistant:

A

User:

[Same image QA record] 2. Which organ is shown in this medical image?
Assistant:

Liver

User (Round 3):

3. What lesion is visible in this image?

Options: A) Target sign  B) Hepatic steatosis  C) Pancreatic pseudocyst D)
Splenic infarct
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Assistant:
A

User (Round 4):

4. What is the most likely diagnosis?

Options: A) Crohn’s disease  B) Acute pancreatitis C) Splenic rupture D)
Diverticulitis

C.5 Report Generation

System prompt:
Generate a clinical report based on the image. This is used solely for educational
purposes.

User prompt:

Generate a clinical report based on the image. Limit your output to no more than
500 words. (with image)

{question}

C.6 Key Feature Extraction in Generated Reports

Given the following description of a medical image, extract only clinically relevant
information that can be visually determined from the image. This includes both

non

normal findings (e.g., "no lung opacity", "normal heart size") and abnormal
findings (e.g., "fracture", "tumor mass"). Exclude any details that cannot be
inferred from the image itself (e.g., patient history, lab values).

Input: {text}

Return a concise, comma-separated list of visually identifiable clinical features.
Do not include any irrelevant words or phrases, do not include explanations.
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D Examples for Model Response

In this section, we provide examples of model responses. For multiple-choice questions, models
are required to respond with a single capital letter (A, B, C, or D) corresponding to their selected
answer. If the response does not follow this format, we perform automatic answer extraction using
DeepSeek-V3 [43]. If no valid answer can be extracted, the response is considered incorrect.

—— Example for Answer Extraction
Question:  What type of medical imaging is this image?

Options:

A. X-Ray
B.US

C. Patholl
—— Example for Invalid Answer ———— D. n:l:l olosy

Question: What is the view position of this chest X-ray?
Options:

A. antero-posterior
B. postero-anterior
C. lateral

Claude 3.7 Sonnet Raw Response:

| can see this is a medical ultrasound (US) image showing
Llava-Med Raw Response: anatomical structures with the characteristic grayscale

appearance and texture typical of ultrasound imaging.\n\nB"
I think the selected option is correct. However, it's important to PP YP ging-\n\nB"}

remember that the actual image may vary, and a healthcare

professional should be consulted for a proper evaluation. Extracted Answer:

B.US

Did not understand the question. Did not follow the format.

Figure 10: An example of an invalid answer, Figure 11: An example of a valid but unformat-

which is marked as wrong. The option high- ted answer, which is still marked as correct. The

lighted in yellow is the correct answer. option highlighted in yellow indicates the correct
answer.

We provide an example of Joint QA below. The formats of Independent QA and Multi-turn QA
are similar and thus omitted. Both Independent and Multi-turn QA present questions sequentially;
however, in Independent QA, each answer is given without memory of prior interactions, whereas in
Multi-turn QA, the model retains memory of previous questions and answers, simulating a step-by-
step reasoning process.
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———Example for Joint QA

Q1. What imaging modality is used in this image?
System Prompt:

You are participating in a step-by-step medical reasoning diagnosis Options:
task based on interpretation of a medical image. A)CT  B)Ultrasound ~ C)MRI D) X-ray
Please answer the following four questions sequentially. Each
question builds upon the reasoning of the previous one. Carefully Q2. Which organ appears to be abnormal in this
analyze the image and select the most appropriate answer at each image?
step. For each question, choose one capital letter (A, B, C, or D). Do Options:
not skip any step. A) liver B) duodenum C) spleen
D) pancreas

Q3. Based on the abnormal organ, what lesion or
finding is most clearly visible?

Options:

A) A) hemangioma B) cirrhosis

C) intussusception D) diverticulum

E) splenomegaly F) infarction

G) pancreatitis H) pseudocyst

Q4. Considering all the above findings, what is
the most likely diagnosis?

Options:
A) hepatocellular carcinoma B) duodenal
intussusception C) splenic rupture
GPT-40 Raw Response: D) pancreatic cancer E) gallstones

F) appendicitis G) gastric ulcer H) colitis
A,B,C,B

Figure 12: An example of Joint QA, in which the model answers four questions from different
reasoning levels simultaneously. The option highlighted in yellow indicates the correct answer.

30



E Examples of Tasks

This section provides detailed examples of our tasks. Choices highlighted in yellow represent the
ground truth. In the responses, correct answers are highlighted in green, while incorrect ones are
highlighted in red.

— Example for Artifact Recoghnition

Question: Is there an artifact present in the image?
Options:

A. Yes, there is an artifact present in the image.
B. No, the image appears normal without any artifacts.

Claude Response:

A.Yes, there is an artifact present in the image.

Figure 13: Example for Artifact Recognition

— Example for Noise Recognition

Question:  Here are two medical images. One of them has added
noise. Which one is the noised image?
Options:
A. Left
B. Right

Claude Response:
B. Right

Figure 14: Example for Noise Recognition
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— Example for Modality Recognition

Question: What type of medical imaging is this image?
Options:

A. Radiography

B. Ultrasound

C. Magnetic Resonance Imaging

D. Pathology

Claude Response:

A. Radiography

Figure 15: Example for Modality Recognition

—— Example for View Recognition ———

Question: What is the view position of this CT image?
Options:

A. sagittal

B. axial

C. coronal

Claude Response:

B. axial

Figure 16: Example for View Recognition
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— Example for Body Part Recognition

Question: What body part is shown in this MRI?
Options:

A. Head

B. Chest

C. Abdomen

D. Pelvis

Claude Response:

D. Pelvis

Figure 17: Example for Body Part Recognition

- Example for Magnification Recognition

Question: Based on the field of view and visible detail, is this
image captured under low-power (<=10x) or high-
power (>=20x) magnification?

Options:

A. Low-power field (e.g., overview of tissue, <=10x)
B. High-power field (e.g., individual cells and nuclei, >=20x)

Claude Response:

B. High-power field (e.g., individual cells and nuclei, >=20x)

Figure 18: Example for Magnification Recognition
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— Example for Stain Recognition

Question: What is the type of staining used in this image?

Options:
A. H&E
B. Masson's Trichrome
C. PAS
D. Wright's stain
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Claude Response:
A.H&E

Figure 19: Example for Stain Recognition

— Example for Imaging tech. Recognition —,

Question: Which MRI sub-modality does the image below

Options: correspond to?

A. Tl
B. T2
C. Flair
B. dwi

Claude Response:
A.T1

Figure 20: Example for Imaging Technique Recognition
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—— Example for Organ/Tissue Recognition —

Question: : What organ is highlighted in this image?
Options:

Right lung

B. Gallbladder

C. Pulmonary artery

D. Left kidney

>

Claude Response:

Figure 21: Example for Organ Recognition

— Example for Organ/Tissue Recognition —

Question: What is the organ or tissue in this image?
Options:

A. Liver

B. Adipose tissue

C. Skeletal muscle

D. Kidney

Claude Response:

Figure 22: Example for Tissue Recognition
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Example for Organ Location

Question: Which color represents aorta in this image?
Options:
A. Red
B. Green
C. Blue
D. Yellow

Claude Response:

Figure 23: Example for Organ Location

— Example for Organ Erasure Recognition —

Question:  Which anatomical structure has been removed or
Options: edited in this Al-edited X-ray image?

A. Leftlung

B. Rightlung

C. Heart

D. Firstrib

Claude Response:

C. Heart

Figure 24: Example for Organ Erasure Recognition
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——Example for Lesion Recognition ——

Question:  What abnormality is inside the red box in this image?
Options:
A. Atelectasis

B. Pneumothorax
C. Cardiomegaly
D. Fibrosis

Claude Response:

B. Pneumothorax

Figure 25: Example for Lesion Recognition

— Example for Lesion Erasure Recognition —

. Thisis a pair of CT images, with the original scan on
Sl the left and the Al-edited image on the right. Can you
identify which type of lesion has been removed or

edited in the right image?
A. Lung nodule

B. Lung cancer
C. Pleural effusion
D. Lung infections

Options:

Claude Response:

Figure 26: Example for Lesion Erasure Recognition
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—— Example for Morphology Description ——

Question: Which of the following best describes the cellular

Options: morphology observed in the slide?

A. Spindle cells arranged in tightly packed, parallel fascicles

B. Spindle cells aligned in a whorled, storiform pattern

C. Spindle cells loosely distributed in a disorganized matrix

D. Spindle cells forming solid sheets without architectural
arrangement

Claude Response:

C. Spindle cells loosely distributed in a disorganized matrix

Figure 27: Example for Morphology Description

- ExampleforDiagnosis

Question: What is the most likely histopathological diagnosis for
this slide?
Options:
A. Interface hepatitis with lymphocytic infiltration
B. Presence of a leukocyte within a hepatocyte
C. Endothelial lifting in a portal venule
D. An eosinophilic leukocyte in the sinusoidal space

Claude Response:

A. Interface hepatitis with lymphocytic infiltration

Figure 28: Example for Diagnosis
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