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Abstract

Global Covariance Pooling (GCP) has garnered increasing attention in visual recog-
nition tasks, where second-order statistics frequently yield stronger representations
than first-order approaches. However, two main streams of GCP—Newton—Schulz-
based iSQRT-COV and exact or near-exact SVD methods—struggle at opposite
ends of the training spectrum. While iSQRT-COV stabilizes early learning by
avoiding large gradient explosions, it over-compresses significant eigenvalues in
later stages, causing an over-flattening phenomenon that stalls final accuracy. In
contrast, SVD-based methods excel at preserving the high-eigenvalue structure
essential for deep networks but suffer from sensitivity to small eigenvalue gaps
early on. We propose Halley-SVD, a high-order iterative method that unites the
smooth gradient advantages of iSQRT-COV with the late-stage fidelity of SVD.
Grounded in Halley’s iteration, our approach obviates explicit divisions by (A; — ;)
and forgoes threshold- or polynomial-based heuristics. As a result, it prevents both
early gradient explosions and the excessive compression of large eigenvalues. Ex-
tensive experiments on CNNs and transformer architectures show that Halley-SVD
consistently and robustly outperforms iSQRT-COV at large model scales and batch
sizes, achieving higher overall accuracy without mid-training switches or custom
truncations. This work provides a new solution to the long-standing dichotomy
in GCP, illustrating how high-order methods can balance robustness and spectral
precision to fully harness the representational power of modern deep networks.

1 Introduction

Global Covariance Pooling (GCP) has recently emerged as a powerful and increasingly popular
strategy in visual recognition tasks, including large-scale image classification and fine-grained object
categorization[31}, 157, 140, 48}, 18, [12, [13 [11]. In contrast to traditional Global Average Pooling
(GAP)[23} 1}, 126, 43|, |42]], which retains only first-order statistics, GCP captures the second-order
statistics—namely, covariances among deep feature channels. Such second-order descriptors often
lead to more expressive and discriminative network representations and improved classification
accuracy across diverse datasets[44} 136 (35,46, 4] [3].

Early research has explored various ways to compute the matrix square root of the covariance matrix
within GCP. Among them, two competing paradigms have attracted substantial attention: (i) SVD-
based GCP, often referred to as MPN-COV[25]], which theoretically yields the accurate matrix
square root but suffers from numerical instability when eigenvalues are close; (ii) iISQRT-COV[24],
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relying on the Newton—Schulz iteration to approximate the covariance root, provides surprisingly
smoother gradients and has empirically outperformed its more “accurate” SVD counterpart in a
wide range of benchmarks. This discrepancy has been viewed as somewhat counterintuitive, often
attributed to the less severe gradient explosions encountered by iISQRT-COV in practice[49) 17, 27].

A New Challenge: Over-Flattening in Large-Scale Settings. Despite its demonstrated effective-
ness, we discover that iSQRT-COV can encounter severe “over-flattening” when scaling up to
deeper networks (e.g., ResNet-101, Vision Transformers) or larger training batches. Concretely, as
training progresses, iSQRT-COV progressively compresses all covariance eigenvalues toward a uni-
form magnitude, eventually erasing the prominent directions corresponding to the largest eigenvalues.
This over-flattening phenomenon significantly stalls the model’s final accuracy, preventing it from
leveraging the full representational capacity offered by large architectures. In contrast, once classic
SVD-based methods successfully mitigate their early-stage gradient instability, they better preserve
large eigenvalues and maintain a higher capacity to learn discriminative features in later epochs.

To illustrate these points, we present in Figure I]a representative example of training a ResNet-101
model on the ImageNet dataset with GCP, comparing iSQRT-COV and our novel SVD variant. It is
evident that while iISQRT-COV reaches a performance plateau relatively early, our enhanced SVD
approach keeps improving in terms of final accuracy. Moreover, analyzing the covariance eigenvalue
spectra carefully reveals that iSQRT-COV heavily flattens high eigenvalues, a phenomenon that
becomes significantly more pronounced when increasing the batch size or the depth of the network.

Our Approach: Revitalizing SVD with-
out Thresholding. While iSQRT-COV | o tsning s L oo
initially gained favor for its stability, the
late-stage compression now emerges as a
bottleneck. This observation naturally mo- ;"
tivates us to revisit SVD-based methods. *
If the problematic gradient blow-ups in =
SVD could be curtailed, yet without heavy . ==
hyper-parameter tuning or complicated
thresholding, then SVD-based GCP might Figure 1: Over-Flattening vs. Improved SVD in Large-
consistently surpass iISORT-COV in large- Scale GCP. (a) Training curves, where iSQRT-COV satu-
scale regimes. Our work aims to bridge rates early while our improved SVD keeps rising; (b) Co-
this gap by introducing a high-order ma- variance eigenvalue distribution, highlighting iSQRT’s
trix square root iteration for SVD that al- excessive compression of large eigenvalues; (c) Com-
leviates early-stage numerical instability, parison of final accuracies at various batch sizes, where
ensures stable gradients, and preserves the 1SQRT consistently lags further behind as scale grows.
largest eigenvalues in later epochs.

(¢) Scaling Comparison

" Bateh size

Contributions and Outline. We summarize our main contributions as follows:

* Diagnosis of Over-Flattening. We systematically analyze how iSQRT-COV s iterative scheme
progressively flattens feature spectra in deeper networks or larger-scale training tasks, showing
precisely why this limitation imposes a strict performance ceiling on classification accuracy.

¢ High-Order SVD Method. We propose a novel high-order iteration (named “Halley-SVD”) that
effectively and elegantly neutralizes SVD’s gradient explosion problem, without relying on manual
thresholds, additional hyper-parameters, or any piecewise function definitions.

* Broad Experimental Validation. On ImageNet, fine-grained benchmarks, and Vision Transform-
ers, we demonstrate that the improved SVD method consistently outperforms iSQRT-COV at high
scale, thus unveiling a promising new path to fully exploit the potential of SVD-based GCP.

The remainder of this paper is organized as follows. Section 2]investigates and quantifies the over-
flattening effect, establishing its numerical root causes. Section |3|introduces the proposed high-order
SVD iteration. Section ] provides theoretical insights into why Halley-SVD better preserves large
eigenvalues than Newton-Schulz iterations. Experimental results in Section [5] confirm the superiority
of our approach across varied networks and challenging vision tasks. Finally, Section [6]concludes
with future prospects, while the Appendix offers additional derivations and ablative studies.
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Figure 2: Comparative Analysis of iSQRT-COV vs. SVD-based GCP in Various Networks and
Datasets. We present eight subplots, spanning ResNet-50 and ResNet-101 on ImageNet/CIFAR-100,
as well as Vision Transformer and Swin Transformer cases. (a,b) iISQRT-COV (in red) outper-
forms SVD (in blue) initially but saturates, (c,d) this effect is amplified on deeper ResNet-101,
(e,f) transformer-based architectures likewise reveal late flattening by iSQRT-COV, (g) large-batch
Swin training sees iISQRT-COV lagging in final accuracy, and (%) the spectral flatness index «g,¢ con-
firms that iISQRT-COV over-compresses significant eigenvalues. Collectively, these results highlight
why iSQRT-COV, despite early stability, becomes a limiting factor for deeper or larger-scale tasks,
while SVD-based methods eventually exploit their capacity to maintain richer eigenvalue spreads.

2 Investigation

The performance gap between iISQRT-COV and SVD-based methods is historically well understood
in the mid-scale regime. With architectures such as ResNet-50[14]] on ImageNet[6] and batch sizes
up to a few hundred, iSQRT-COV has been shown to outperform exact SVD (or mild SVD variants),
primarily because the Newton—Schulz iteration avoids the notorious gradient instability that arises
when eigenvalues of the covariance matrix become very close[20, [19]. By contrast, exact SVD
can incur terms like 1/(\; — A;) in its gradient calculation, often leading to explosions if \; = A;.
In moderate dimensions, iSQRT-COV s iterative balancing effectively whitens the covariance in a
smooth manner[56]], giving it a distinct advantage over the more delicate SVD backpropagation.

However, deeper experiments with networks such as ResNet-101[14] or Transformers[29, [7], com-
bined with larger batch sizes (exceeding 1k), reveal a remarkable shift. Although iSQRT-COV
preserves its initial stability, it exhibits a significant saturation later in training, and its accuracy soon
plateaus. More precise approaches like exact SVD or SVD-Padé continue to gain accuracy in the
final stages of optimization, converging to superior results. This phenomenon indicates that while
iSQRT-COV is adept at taming early gradients, it imposes a persistent and systematic over-flattening
of the covariance spectrum that ultimately restricts the network’s capacity to discriminate subtle
features.

2.1 iSQRT-COV vs. SVD at Different Scales

Early studies predominantly focused on scenarios such as ResNet-50 trained on ImageNet with batch
sizes up to a few hundreds. Under these special conditions, iISQRT-COV typically outperforms exact
SVD or minor variations thereof, since the Newton—Schulz iteration very effectively avoids direct
divisions by small (\; — A;), resulting in notably smoother gradients. The iSQRT-COV update,

Xpi1 = X (31 X3), e))



mitigates the hallmark “gradient explosions” of SVD-based approaches, especially when eigenvalues
of the covariance matrix P are too close. As a result, iISQRT-COV reliably converges even in
mid-scale settings where a few large eigenvalues might otherwise trigger unstable derivatives in SVD.

However, deeper architectures, such as ResNet-101 or transformer models (Vision Transformer, Swin
Transformer), combined with large batch sizes (> 1k), present a new interesting twist. Whereas
iSQRT-COV maintains its early stability, its final accuracy often saturates at a noticeably lower
level. In contrast, precise SVD-based methods (including SVD-Padé) are initially more fragile, but
once properly stabilized, they preserve stronger eigenvalue contrasts and achieve far better late-stage
results. Empirically, we observe that the fundamental switch in dominance from iSQRT-COV to SVD
occurs in a regime where the network capacity is large enough that capturing fine-grained feature
distinctions and not flattening high eigenvalues becomes essential for the final performance.

2.2 Over-Flattening of the Covariance Spectrum

The crux of iSQRT-COV’s late-stage saturation lies in a systematic over-flattening of the feature
covariance spectrum. Each iteration in (@) nudges large eigenvalues downward and propels small
eigenvalues upward, gradually forcing a too uniform spread of X;,’s eigenvalues. When training on
high-dimensional embeddings or with massive data, these adjustments become very pronounced. The
beneficial “white balancing”[[18] that helps with early stability turns into an excessive compression of
significant eigenvalues, fundamentally limiting the network’s capacity to distinguish subtle features.

To measure this compression rigorously, we track a spectral flatness index:

_ exp(é 25:1 In )‘i(X))
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where {)\;(X)} are the eigenvalues of X, an approximation to P'/2, A lower rig,; signifies a
more uniform (flattened) distribution. In large-scale experiments, iISQRT-COV steadily drives gt
downward, characteristically highlighting how prominent eigenvalues are being overly suppressed.
By contrast, a well stabilized SVD retains higher variance in the top eigenvalues, culminating in a
superior accuracy when the learning rate decays and the training seeks fine discriminative cues.

Kfiat (X) . @

Figure [2] compiles subplots across different networks and datasets, illustrating how iSQRT-COV (in
red) and an SVD-based method (in blue) evolve. Subplots (a) and (b) demonstrate the phenomenon
on ResNet-50 for ImageNet and CIFAR-100. iSQRT-COV climbs swiftly but flattens in later epochs,
leaving a small yet gap for the SVD-based approach to surpass it. Subplots (c) and (d) shift to
ResNet-101 on ImageNet and CIFAR-100, where the deeper architecture accentuates iSQRT-COV’s
limiting behavior, while SVD steadily refines large eigenvalue directions in the final epochs.

Moving to transformer-based models, subplots (e) and (f) analyze Vision Transformer on the same
two datasets, revealing a similar pattern. Self-attention mechanisms benefit from capturing fine
feature correlations, but iSQRT-COV flattens the spectral structure, capping final performance. The
SVD-based approach starts off more erratic, reflecting its sensitivity to early eigenvalue collisions, yet
preserves distinguishing variance once stabilized. Subplot (g) highlights final accuracies for a Swin
Transformer under large batch sizes, where iSQRT-COV consistently lags behind an SVD-based
alternative. Finally, subplot (h) plots kg, over epochs, comprehensively quantifying the increasing
uniformity iISQRT-COV imposes. These experiments confirm that while iSQRT-COV is superb at
mitigating explosions in moderate scales, it becomes a bottleneck for deeper models and larger data.

2.3 The Potential of SVD for High-Precision Late Training

From the viewpoint of final accuracy, a precisely maintained eigenvalue spectrum remains crucial in
deeper models or extensive data contexts. SVD-based methods, if effectively curbing early gradient
spikes, can preserve the top eigenvalues of P, ensuring that significant variations among classes
or features are not lost. Indeed, SVD-Padé leverages rational function approximations to carefully
sidestep abrupt divisions by small (A; — A;), but it may still rely on explicitly parameterizing
polynomials or thresholds to handle near-duplicates in A;. A perfectly stable iterative scheme that
completely obviates these thresholds yet guides large eigenvalues much more gently, in principle,
could very successfully unify iSQRT-COV’s early smoothness with SVD’s late-stage fidelity.



Therefore, the insights gleaned from these empirical curves and numerical analysis highlight a
genuine opportunity for a refined SVD iteration capable of neutralizing the early risk of exploding
gradients and preventing the over-flattening outcome of iSQRT-COV. In Section 4, we introduce
precisely such an approach: a high-order matrix square root iteration thoughtfully derived from
the SVD principle, free from explicit divisions by (A; — A;) and completely avoiding truncated
or piecewise definitions. As the subsequent experiments extensively confirm, this novel method
effectively capitalizes on deeper networks and large-batch training without succumbing to spectral
collapse, ultimately surpassing iISQRT-COV once the network enters its advanced phases of learning.

3 Proposed SVD Refinement: Halley-SVD

3.1 Theoretical Motivation: Newton vs. Halley Iteration

To conquer the over-flattening introduced by the Newton—Schulz iteration in iSQRT-COV, one can
strategically look to higher-order iterative methods for the challenging matrix square root problem.
Newton—Schulz itself naturally stems from directly viewing

X2 - % =0, 3)
as a root-finding problem f(X) = X2 — ¥ = 0. Standard Newton’s method for scalars can be
generalized to matrices, yielding the update

X = 5%, (31 - X3), )
which is precisely the iteration used by iISQRT-COV. Although this method reliably converges

and avoids the explicit ﬁ denominators that plague SVD gradients, it suffers from repeatedly
i ]
compressing large eigenvalues in practice, ultimately yielding an over-flattened spectrum.

Scalar Halley Method. In the scalar setting, a more sophisticated root-finding technique is Halley’s
method, which can be derived from a third-order expansion of the correction term. Suppose we want
to solve g(x) = 22 — a = 0 with > 0. Newton’s method prescribes

g(mk) 1 a
x = T — = (g + ).
k+1 k 7 (@r) 5 (zk 731»)
By contrast, Halley’s iteration includes higher-order corrections:
/
9\Tk) g Tk
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and exhibits cubic convergence for many smooth g(-). In the specific case g(z) = x
to

2 _ g, this leads

2 —1
Thy1 = ffk(l-f'%(l—%)) )
which typically converges faster than the Newton scheme once a is moderately far from 1.

3.2 Derivation of Matrix Halley Iteration

We now generalize Halley’s iteration to matrices for the same root-finding problem in (3), i.e., solving
X? = ¥ with X positive definite. Define:

fX) =X -3 VfX) =2X, V¥(X) =:2L (5)
The matrix-version Halley update can be written analogously to the scalar case by including second-
order (and partial third-order) terms. In particular:

Xpr1 = Xg — {Vf(Xk,)}_l fQ(Xk) V(Xk)
|V rx0)|| = 40 (X0), V2 F(X))

where one interprets matrix inversion and the inner products in a properly defined sense. Specializing
to f(X) = X2 - %, Vf(X) = 2X, and V2 f(X) = 2I, one obtains a matrix Halley iteration that
avoids explicit denominators ()\1- - )\j) and yields:

Xpi1 = Xk(I n %(I—X;lzxgl)). )

; 6)

In practice, a few iterations (e.g., 5—10) suffice to approximate =12 with high accuracy.



3.3 Why Halley Avoids Over-Flattening

Unlike the Newton—Schulz iteration @), which repeatedly pushes the largest eigenvalues toward
smaller magnitudes in order to enforce approximate “whitening”, Halley’s update applies an
additional second-order correction. Concretely, if A\« is the largest eigenvalue of Xy, the extra
factor

(T+3a-x'=x;))

tends to reduce the over-penalty on large Ay, .x, thus making the iteration step for Ay, less aggressive
than in Newton—Schulz. Qualitatively, one can see that the second-order term in Halley’s method
partially “pulls back” the matrix update if X, has already grown close to certain eigen-directions,
mitigating further compression of those principal components. Moreover, the cubic convergence rate
often noted in scalar Halley’s iteration indicates that once Xy, is in a reasonable neighborhood of
»1/2, each subsequent update refines the approximation in fewer steps than Newton—Schulz. This
not only leads to faster convergence but also less iterative drifting of large eigenvalues after they have
become stable, effectively preventing iSQRT-COV’s late-stage “eigenvalue erasure.”

3.4 Forward & Backward Pass: A Smooth Gradient Framework

In the forward pass of our GCP layer, the Halley update is computed iteratively to derive the
approximate covariance root X g ~ »1/2. As with iSQRT-COV, all steps remain completely free
of explicit ()\i — )\j) _1. For the backward pass, we follow a matrix calculus framework similar to
that in iSQRT-COV [24] but carefully adapt the chain rule to Halley’s iteration. Specifically, let ¢ be
the training loss. Then one ultimately needs g—é, which is obtained by systematically unrolling the
differentiations through each Halley update. Concretely, if X1 is defined by (7)), one can write

K-1
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where A(+) is the corresponding Jacobian derived from (7) (omitted here for brevity). In practice,
most modern deep-learning libraries can implement automatic differentiation of this iterative process
directly, yielding remarkably stable gradients without requiring threshold-based or polynomial
expansions. As a result, Halley-SVD can be seamlessly integrated into CNN or Transformer pipelines
in the same manner as iSQRT-COV, with minimal overhead and no additional hyper-parameters.

3.5 Properties: No Extra Hyperparameters, Gentle Spectrum Handling

One major attraction of Halley-SVD is the absence of new hyperparameters. We do not introduce
polynomial degrees (as in Padé expansions), nor do we specify truncation thresholds to avoid gradient
spikes (as in SVD-Trunc or SVD-TopN). The iteration (/) naturally handles close eigenvalues by
distributing updates across X, via matrix inversions, rather than dividing one eigenvalue difference
by another. Moreover, Halley’s iteration balances the spectrum more cautiously and intelligently than
Newton—Schulz. By virtue of second-order (and partial third-order) corrections, Halley-SVD avoids
iSQRT-COV’s pitfall of flattening out the principal directions of the covariance, thus preserving
crucial high-eigenvalue information especially in deeper models or large-batch scenarios.

3.6 Relation to Existing SVD Improvements

Although numerous approaches have been proposed to stabilize SVD-based GCP, Halley-SVD
distinguishes itself in multiple ways:

Padé or Taylor Expansions. Some variants of SVD rely on truncated Taylor or Padé expansions
(e.g., SVD-Padé), which approximately approximate the 1/(1 — z) factor arising in the gradient.
Such methods can indeed mitigate certain numerical instabilities but require carefully specifying
an expansion order or precise region of validity. Halley-SVD, by contrast, elegantly encapsulates
high-order corrections within a unified iterative formula that does not rely on polynomial degrees.



Hybrid or Switching Protocols. Others combine iISQRT-COV in early training (to avoid blow-
ups) with a late-stage switch to SVD for more accurate covariance roots. This hybrid approach
necessarily necessitates an additional complex schedule for switching at the “right time,” or multiple
exhaustive experiments to locate a beneficial switch point. Halley-SVD completely eliminates this
extra complexity, consistently maintaining a single robust iteration formula throughout training.

Comparison with iSQRT-COV. Halley-SVD inherits iSQRT-COV’s general advantage of avoiding
explicit ﬁ in the backward pass. Crucially, it further carefully moderates the downward pull on
large eigenvalues, so that the over-flattening observed in iSQRT-COV at large scales is drastically
reduced. Consequently, Halley-SVD is able to effectively capture the benefits of smooth gradient
updates in early epochs while robustly preserving critical high-eigenvalue directions during the final
epochs, preventing the saturation we see in iSQRT-COV on deeper networks or large-batch training.

Taken together, Halley-SVD stands as a pure iterative scheme that neither requires threshold-based
intervention nor relies on expansions of uncertain convergence radius. This comprehensive feature set
is precisely what enables it to consistently outperform both iSQRT-COV and classical SVD methods
in the deeper or more challenging larger-scale experiments we detail in the following section.

4 Theoretical Analysis of Halley-SVD

In this section, we provide a concise theoretical account of why Halley-SVD consistently avoids
over-compressing large eigenvalues more effectively than the classical Newton—Schulz scheme. We
focus on a carefully selected representative scenario in which 3 has widely separated eigenvalues,
and then highlight the key statement (Theorem [I)) that quantifies this effect. The complete technical
details, including multi-step proofs with intermediate derivations, appear in Appendix [B]

Notation & Setup. Let ¥ € R?*? be a symmetric positive-definite matrix with eigenvalues

A1 > -+ > Ag > 0. Our goal is to approximate »1/? by an iterative method Xy = }"(Xk, 2).
For Newton—Schulz [24], we have:

Xy = 1%, (31 _ xi). ©)
For Halley iteration, one form is:
X1 = X [I n %(I—X,;lzx,;l)}. (10)

Theorem 1 (Less Over-Compression). Suppose ¥ = diag(A1,...,Aq) with Ay > \g > 0. Let
{X,(CN)} and {X,(CH)} be the sequences generated by ) and (10), respectively, from a similar initial
guess Xq. Then, for sufficiently large k, the top eigenvalue of X,iH) is consistently closer to \/ A1 than

that of XiN), implying that Halley iteration preserves large eigenvalues significantly more effectively
and robustly (while still always remaining fully convergent overall).

Key Idea. Halley iteration has a second-order correction that effectively tempers the “downward
pull” on coordinates exceeding v/\;, whereas Newton—Schulz aggressively shrinks any coordinate
too large relative to \/A;. Consequently, in challenging large-scale tasks, Halley-SVD consistently
retains the important top spectral directions much better, avoiding iSQRT-COV’s over-flattening.

A complete formal proof with multi-step expansions, plus an extension to non-diagonal ¥, is given
in Appendix [B] We also provide a novel perturbation analysis for the practically important scenario
where X continuously evolves over successive mini-batches during actual deep learning training.

5 Experimental Results

5.1 Deep Diagnosis of Over-Flattening and Performance Bottleneck

In this section, we provide a detailed diagnosis of the over-flattening phenomenon that consistently
emerges in large-scale settings when using iSQRT-COV. We comprehensively compare our Halley-
SVD against iSQRT-COV and SVD-Padé on ResNet-101 and Swin-T by carefully examining both
final recognition accuracy and the dynamic evolution of the critically important covariance spectrum.



Over-Flattening Diagnosis: ResNet-101 and Swin-T with Large-Batch Training

(a) ResNet-101 Accuracy (b) ResNet-101 Spectral Flat

(¢) Swin-T Accuracy (d) Swin-T Spectral Flatness
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Figure 3: Over-Flattening Diagnosis on ResNet-101 and Swin-T (ImageNet, BS=2048/4096). (a)
ResNet-101 accuracy: iSQRT-COV (red dashed) saturates early, while Halley-SVD (blue solid) and
SVD-Padé (green dash-dotted) continue improving consistently. (b) ResNet-101 spectral flatness:
iSQRT-COV aggressively compresses large eigenvalues, driving kg, toward 0. (¢) Swin-T accuracy:
similar saturation pattern as ResNet-101, but even more pronounced. (d) Swin-T spectral flatness:
iSQRT-COV shows even more aggressive eigenvalue compression. In both architectures, Halley-SVD
maintains a more balanced spectrum and achieves higher final accuracy.

Table 1: ImageNet validation accuracy (%) under different models and batch sizes. We report both
Top-1 and Top-5. “Vanilla GAP” denotes the standard Global Average Pooling baseline. All GCP-
based methods are trained end-to-end without hybrid strategies. The parentheses in the rightmost
column show the Top-1/Top-5 gains of Halley-SVD over iSQRT-COV under large-batch settings.

Model Batch Size Vanilla GAP iSQRT-COV SVD-Padé (E2E) Halley-SVD (Ours)
(% Top-1/ Top-5 Accuracy)

ResNet-50 256 76.1/92.9 77.2/93.5 77.3/93.6 77.3/93.6
ResNet-50 2048 76.0/92.8 76.9/93.3 77.1/93.4 77.2/93.5
ResNet-101 256 77.4193.6 78.3/94.1 78.4/94.2 78.4194.2
ResNet-101 2048 77.2193.5 77.7193.7 78.1/94.0 78.5/94.3 (+0.8/+0.6)
ViT-B/16 1024 81.8/96.0 82.5/96.3 82.7/96.4 82.8/96.5
ViT-B/16 4096 81.5/95.8 82.0/96.0 82.4/96.2 82.9/96.5 (+0.9/+0.5)
Swin-T 1024 81.3/95.6 82.1/96.0 82.3/96.1 82.4/96.2
Swin-T 4096 81.0/95.5 81.4/95.6 81.9/959 82.3/96.1 (+0.9/+0.5)

Setup. We train ResNet-101[14]] and Swin-T[29] on ImageNet[6] using large batch sizes of either
BS = 2048 or 4096. All hyper-parameters follow the carefully selected defaults described in
Section Each covariance pooling variant iISQRT-COV[24], SVD-Padé[37], Halley-SVD) is
implemented completely end-to-end with absolutely no hybrid or switching protocols.

Results and Analysis. Figure|3|illustrates how iSQRT-COV and Halley-SVD evolve throughout
training for both architectures. Panels (a) and (b) show that iISQRT-COV (red dashed) quickly
ramps up in early epochs but saturates prematurely, leading to significantly lower final accuracy
(e.g., ~ 77.7% on ResNet-101 and ~ 81.4% on Swin-T). By contrast, SVD-Padé (green dotted)
and Halley-SVD (blue solid) continue to improve, with Halley-SVD eventually reaching the highest
accuracies (~ 78.5% on ResNet-101 and ~ 82.3% on Swin-T). Panels (c) and (d) reveal that this
saturation arises from a rapid drop in the spectral flatness index (kaat) under iISQRT-COV, indicating
that large eigenvalues are aggressively compressed until kg, < 0.1. Halley-SVD, however, preserves
a more balanced eigenvalue distribution (kg,¢ = 0.28), retaining crucial discriminative directions into
later epochs. Although iISQRT-COV remains stable in mid-scale regimes, its over-flattening severely
hinders performance in deeper networks and large-batch contexts. By incorporating higher-order
corrections, Halley-SVD consistently prevents the collapse of principal eigenvalues, achieving higher
final accuracy without resorting to explicit thresholding or additional switching mechanisms.

5.2 ImageNet Main Results across Different Scales

Setup. We evaluate four representative backbones—ResNet-50, ResNet-101, ViT-B/16, and Swin-
T—across both standard and large batch sizes. We compare our proposed Halley-SVD to iSQRT-
COV|[24], SVD-Padé (E2E)[37], and a Vanilla GAP baseline. All architectures are trained on
ImageNet with the same data augmentations and training hyper-parameters described in Section|C.1}



Results and Analysis. Table[I]reports the final Top-1 and Top-5 accuracies for various architectures
and batch sizes. When training at moderate batch sizes (e.g., 256 or 1024), iSQRT-COV and
Halley-SVD perform similarly and both surpass the Vanilla GAP baseline, while SVD-Padé (E2E)
also offers comparable results. However, as the batch size scales up to 2048 or 4096, iISQRT-COV
begins to lag behind, especially on deeper backbones like ResNet-101 and Transformers, where
over-flattening becomes more pronounced. In these large-batch regimes, Halley-SVD consistently
achieves a 0.8-0.9% higher Top-1 accuracy than iSQRT-COV (see the parentheses in Table [I),
demonstrating how its more balanced handling of the covariance spectrum prevents the late-stage
saturation observed in iISQRT-COV. Compared with SVD-Padé (E2E), Halley-SVD generally reaches
accuracy on par with or marginally better, indicating that its higher-order iteration preserves critical
eigen-directions without resorting to rational approximations or threshold heuristics. Overall, this
evidence underscores Halley-SVD’s ability to outperform iSQRT-COV in exactly those deep or
large-batch scenarios where second-order features must remain spectrally diverse, offering a robust
and purely iterative GCP solution that matches or surpasses SVD-Padé’s level of performance.

5.3 Fine-Grained Transfer Learning

Setup. To further validate the Table 2: Fine-grained classification (FGVC) accuracies
transferability of the representa- (9%). All models are ResNet-50 backbones pre-trained on
tions learned by Halley-SVD, we ImageNet (BS=2048) and then finetuned for 50 epochs on
adopt a challenging downstream Birds, Dogs, and Cars. Halley-SVD achieves the best perfor-

fine-grained visual classification mance across all three datasets, surpassing iISQRT-COV by
(FGVC) setting. We pre-train a ~ 1.2% on average.

ResNet-50[14] model on ImageNet[6]

with BS = 2048 using each GCP Accuracy (%

method (iSQRT-COV[24], SVD- Method . Y (%) Avg
Padé[37], Halley-SVD). We then Birds Dogs Cars
carefully finetune for 50 epochs on iSQRT-COV 86.5 83,5 91.6 87.20
three FGVC datasets: Birds[52, 43, SVD-Padé (E2E) 87.3 843 93.0 88.20
Dogs(3], and Cars[3], following the Halley-SVD 875 84.6 932 8843

standard protocol in Appendix [C.T}

Results and Analysis. Table [2| reports the fine-grained classification accuracy for each of the
three GCP pre-training methods. Across all tested FGVC tasks, Halley-SVD achieves the highest
performance, surpassing iISQRT-COV by approximately 1.2% on average. Although SVD-Padé
likewise improves upon iISQRT-COV, Halley-SVD consistently attains slightly better results (e.g.,
gains of +0.2% on Birds, +0.3% on Dogs, and +0.2% on Cars). These outcomes suggest that
Halley-SVD learns a more discriminative second-order representation on ImageNet, thus conferring
an advantage in fine-grained tasks that hinge on subtle inter-class differences. In summary, these
FGVC transfer experiments confirm that Halley-SVD not only excels at large-scale ImageNet
training but also provides a stronger backbone for downstream applications, as it effectively preserves
prominent eigenvalue directions to yield richer semantic features and higher classification accuracy.

6 Conclusion

Halley-SVD addresses the critical trade-off in Global Covariance Pooling between the early stability
but late-stage spectral over-flattening of iISQRT-COV, and the potential instability but spectral fidelity
of SVD methods. Leveraging higher-order matrix iterations, Halley-SVD inherently balances gradient
smoothness and eigenvalue preservation without heuristic interventions like thresholds or switching.
This yields superior performance, particularly in large-scale deep learning scenarios involving deep
networks and large batches, offering a robust, unified approach to harnessing second-order statistics.

While computationally more intensive than simpler methods due to its iterative nature (requiring
careful selection of iteration count K'), Halley-SVD consistently demonstrates robust performance
across various practical settings. Future directions include exploring its application across diverse
tasks and architectures, optimizing its computational efficiency, and further investigating its theoretical
properties, multi-layer integration strategies, and interplay with deep learning optimization dynamics.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions,
including: diagnosis of over-flattening in iSQRT-COV, proposal of Halley-SVD method,
and experimental validation across various architectures. Section 1 clearly outlines these
contributions as bullet points and explains the paper’s scope and organization.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

13



Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses limitations in the conclusion (Section 6), noting that
Halley-SVD is computationally more intensive than simpler methods and requires careful
selection of the iteration count K. Future research directions and potential challenges are
also addressed in the conclusion section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provides theoretical analysis in Section 4 with explicit assumptions
about the eigenvalue distribution. Theorem 1 is clearly stated with its assumptions, and a
formal proof is provided. Complete detailed proofs with multi-step derivations are included
in Appendix B.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides comprehensive details on implementation in Section 5
and Appendix D.1, including network architectures, training hyperparameters, initialization
strategies, and dataset configurations. The Halley-SVD algorithm (Eq. 10) is explicitly
described with its forward and backward passes.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All experiments use publicly available datasets (ImageNet, CUB-200, Stanford
Dogs, Stanford Cars). The code implementation of our Halley-SVD method is provided in
the supplementary materials, including the core algorithm, training scripts, and evaluation
protocols. This enables full reproducibility of our experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
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* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental details are thoroughly described in Section 5.1 and Appendix
D.1, including training protocols, optimizer settings, learning rate schedules, batch sizes, and
data augmentation strategies for all tested architectures (ResNet-50/101, ViT-B/16, Swin-T).
Guidelines:

* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Appendix D.7 (Table 9) presents multiple runs with different random seeds,
reporting mean accuracy and standard deviations to demonstrate statistical significance. The
reported performance differences are shown to be statistically robust with small standard
deviations.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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8.

10.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies in Appendix that experiments were conducted using
PyTorch on NVIDIA A100 GPUs. Appendix provides detailed runtime analysis, including
forward/backward pass times, total runtimes, peak memory usage, and training throughput
for each method.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

 The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms to the NeurIPS Code of Ethics. It focuses on improving
machine learning methodology using standard public datasets, with no apparent ethical
concerns related to data collection, privacy, or potential for harmful applications.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper presents a technical improvement to the matrix square root compu-
tation used in deep learning models. Given its mathematical focus on numerical stability
of matrix operations, there are no specific societal impacts (positive or negative) beyond
general advancement of machine learning methodology.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any models or datasets with high risk for misuse.
It focuses on improving numerical methods for matrix computation with no potential for
harmful applications that would require safeguards.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper cites the original sources for all datasets used (ImageNet, CUB-200,
Stanford Dogs, Stanford Cars) and the base network architectures (ResNet, ViT, Swin

Transformer). Standard publicly available datasets and models are used according to their
intended academic purposes.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
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has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

» For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce new datasets or code repositories. It proposes a
new algorithm (Halley-SVD) but does not release it as an asset that would require documen-
tation beyond what’s provided in the paper.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research does not involve crowdsourcing or human subjects. It focuses on
algorithmic improvements using existing computer vision datasets and does not collect new
human-annotated data.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research does not involve human subjects or any activities that would
require IRB approval. It is focused entirely on algorithmic development and evaluation
using standard computer vision benchmarks.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not use Large Language Models as a component of the research
methodology. The proposed method (Halley-SVD) is a purely mathematical approach to
matrix computation that does not involve LLMs in any way.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Work

A.1 From GAP to Second-Order Pooling

Deep convolutional neural networks (CNNs) often employ global average pooling (GAP) at the
end of the network to aggregate spatial activations into a feature vector [14]. While GAP reduces
parameters and mitigates overfitting, it only captures the first-order statistics (mean) of features,
ignoring key critical channel-wise correlations [21]. To enrich the representation power, researchers
have increasingly shifted toward second-order statistics, typically covariance matrices of deep
features [33|128] 40]. These second-order approaches explicitly model channel interactions, which is
beneficial for tasks like fine-grained recognition, where subtle inter-class differences matter most [40].

Early attempts, such as Bilinear CNN (B-CNN) [28] and DeepO2P [33]], demonstrated the significant
potential of integrating second-order pooling into CNNss, effectively improving overall performance on
various complex vision tasks. However, these methods often suffered from substantial computational
overhead as their feature dimension grows quite quadratically [47]. Subsequent works like compact
bilinear pooling [9] alleviated dimensional explosion, but the inherent numerical and computational
challenges introduced by second-order computations remained an important open issue [47} 24].

A.2 Large-Scale GCP: From MPN-COV to iSQRT-COV

Matrix Power Normalized Covariance Pooling (MPN-COV). [24] proposed MPN-COV, using
matrix power normalization (especially matrix square root when o = 0.5) to achieve robust covariance
estimation under the high-dimension small-sample (HDSS) condition [47]]. This approach effectively
regularizes feature distributions and approximates a Power-Euclidean metric in the space of positive
definite matrices [24], boosting performance over GAP on ImageNet-scale data [47]. Nevertheless,
MPN-COV relies on either eigenvalue decomposition (EIG) or singular value decomposition (SVD)
to compute the matrix square root, incurring high computational cost [24]. Such operations are often
suboptimal for GPU acceleration in large-batch training, making them a major bottleneck [47]].

Iterative Matrix Square Root (iSQRT-COV). To overcome this bottleneck, [24] introduced iSQRT-
COV, which replaces EIG/SVD with the Newton-Schulz iterative scheme that only involves matrix
multiplications [24]. This drastically speeds up forward inference on GPUs, while retaining compara-
ble accuracy to MPN-COV [47]. However, the backpropagation of iSQRT-COV still requires careful
treatment of the iteration’s gradients [24, 38]. The success of iISQRT-COV consolidates “matrix
square root normalization” as a de facto standard in global covariance pooling (GCP), making efficient
and stable differentiable solutions for the square root operation a primary research focus [37, 150].

A.3 Differentiable Matrix Operations and Numerical Challenges

Gradient Backpropagation for Structured Layers. Ionescu et al. [19}20] established the funda-
mental theoretical foundation for matrix backpropagation, providing critical analytic gradients for
complex SVD/EIG-based layers. Despite this significant mathematical advancement, applying these
sophisticated gradients in practical large-scale deep networks can be inherently numerically unstable:
when eigenvalues or singular values are extremely close together, the problematic terms 1/(\; — A;)
may approach infinity, potentially causing catastrophic gradient explosions [37, 40, 50].

IlI-Conditioned Covariance and Small Eigenvalues. Real-world complex deep features often lead to
severely ill-conditioned covariance matrices, where the critical ratio between the largest and smallest
eigenvalues (condition number) becomes extremely large [39}47]]. This mathematical phenomenon
exacerbates two significant practical issues: (1) numerical instability in forward decomposition
(SVD/EIG may completely fail or dramatically lose precision for extremely tiny eigenvalues), and
(2) dangerous exploding gradients in backpropagation [40]]. Interestingly, these problematic small
eigenvalues can carry essential fine-grained discriminative information [40], so naively truncating
them might reduce computational instability but risk harming discriminative power [37, 40].

Computational Overhead. Exact SVD or EIG is known to be expensive, especially in large-batch
or GPU-based training, where batchwise decomposition often neutralizes parallel efficiency [47].
Although iISQRT-COV accelerates forward passes via matrix multiplication, its backward pass can
remain costly [24, [38]], prompting investigation into more advanced or approximate methods [50, 38]].
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A.4 Enhanced Second-Order Methods and Broader Applications

Recent Solutions for Stability and Efficiency. [50] employed power iteration or Taylor expansions
to approximate SVD gradients, thereby avoiding explicit 1/(A; — A;) terms. Song et al. [38]] proposed
matrix Taylor polynomials (MTP) and matrix Padé approximants (MPA), combined with Lyapunov
equation solvers, to accelerate and stabilize both forward and backward computations of matrix square
roots. MPA typically provides better precision than MTP at a similar computational budget [38]].

Condition Number Improvement. Efforts like NOG/OLR by [39] directly enhance feature orthogo-
nality in the pre-SVD layers, significantly reducing the condition number of covariance matrices while
carefully retaining or even improving accuracy. This differs from naive weight orthogonalization
approaches, balancing numerical stability and discriminative power more effectively [39].

Approximate vs. Exact Decompositions. A fundamental key question is why approximate methods,
such as iSQRT-COV, frequently outperform traditional exact SVD in practice [37]]. It appears that high-
precision SVD can significantly aggravate gradient instability by precisely capturing problematic tiny
eigenvalues, whereas iterative approximations implicitly smooth out such numerical fluctuations [37]].
To effectively reconcile both competing sides, [37] introduced SVD-Padé and a novel hybrid training
protocol (switching from iSQRT to SVD in later epochs) to optimally harness the benefits of both.

Extensions Beyond CNNs. These second-order methods have proven effective not only in CNN
architectures but also in Transformers. Song et al. [38] proposed So-ViT, incorporating differentiable
matrix square roots for vision tokens, and achieved impressive gains. Moreover, second-order
pooling and related matrix operations are being explored in few-shot incremental learning [10],
domain adaptation [41], high-order pooling [S3]], generative models [31]], and out-of-distribution
detection [34]. Although these new applications expand the scope of GCP, they also bring fresh
challenges, such as extreme low-sample covariance estimation or domain distribution mismatch.

Second-order pooling has evolved from an innovative add-on to a more general paradigm, with a wide
range of improvements focusing on stability, computation speed, and numerical conditioning. Yet, as
models become larger and data more complex, balancing these factors—high representation power,
numerical robustness, and efficiency—remains a central problem in second-order deep learning.

B Extended Theoretical Analysis and Proofs

In this appendix, we give full proofs of the results stated in Section 4] including step-by-step
derivations with multiple formulas. We also add new theoretical insights on perturbation stability.

B.1 Proof of Theorem[Il

Theorem 2 (Halley Avoids Over-Compression — Detailed Statement). Ler 3 = diag(A1,..., Aq)
with \1 > Ao > --- > \g > 0. Consider the Newton—Schulz iteration

N N N)2
XY = 1xY (30— X%, (1)
and the Halley iteration
H H H)\— H)\—
X = X (1 1 - x{) =) ). (12)

Suppose both start from the same (or comparable) Xy > 0. Then for large k, the largest coordinate

of X;CH) remains significantly closer to \/\1 than that of X,EJN), thereby preserving more variance in
the top eigenvalue. Concretely, if we denote

N) . [ (N) (H) . 5 (H)

vy =Xy ] ziy = [X5]

i,k i i’

then there exist constants C, 8 > 0 such that for sufficiently large k,

2
‘x(f,j - \/Al‘ < C‘x?jcll - \/)\1‘ +4, (13)
o = V| = oo - VA -8, (14)

which implies xﬁg remains systematically less compressed (closer to v/ A1) than :1751\2
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Proof (with Multi-Step Expansions). We focus on the diagonal scenario, i.e. X = diag(\1,. .., Aa),

SO ch ) and X(H) remain diagonal. Denote:
N N H H
xg,k) = [Xl(c )L‘i’ xz(',k) = [ch )]“

Without loss of generality, analyze the ¢ = 1 case (the largest eigenvalue \;). Newton—Schulz on the
1st coordinate is

(N)2
0 = 32l (3 - 555), (s)
N o (N)?
~ 3(eaf) - 47,
where we used I and X(N)2 = diag(xgljc)z7 .. ). Similarly, Halley iteration yields

L2y 71
w=al e (1-55)] (16)
Step 1: Expand near +/ ;. Define A(N) = :nﬁg VA1, i.e. the deviation from the true root /1.

Suppose |A§C | is small (the iteration is near convergence). We rewrite (I3)) as

(N)
R OV VD

Now expand (v/A; + A N))3'

\F+AN> =AY 43 Al 4 3V AN ¢+ AMS (18)
Plugging (T8) back into (I7) and simplifying,
3/2
acgli,)ﬂ — VA= %(3 \/)\1> — % )‘)1\1 — VA1 + (lower order in A,(CN)), (19)

this main part vanishes to 0

where the leading terms in y/\; exactly cancel out. The remaining expansions yield

(N) \/)\»1__§ \/KAECN) _ 3\/7 N)2 LAI(CN)B 4+ . (20)

Ly Jk+1 2)\1 k - 2)\1

(Here we have omitted a few intermediate factor groupings; see (24)) for the full details.)

Step 2: Halley expansion. Similarly, for Halley iteration (T6)), define A;H) = xﬁ) —+/A1. We have
+AM)? 11
o =V = (WA L+ F( - MRS - L e

Expand (v + Agﬁ )) similarly, factor out A\, etc. After a longer chain of simplifications, we get
an expression of the form:

Ing)-x-l VA - A + (higher-order terms in A,(fH)) + .- (22)
Crucially, the coefficient in front of Agc is smaller in magnitude than that in (20}, and the subsequent
cubic corrections also differ in sign, resulting in a “less negative pull.”
Step 3: Compare the magnitudes. Subtract (22)) from 20):

0 = VA~ 6~ VA = [ ()

+ (cubic and cross terms). (23)
3 W

If AEN) and A,gH) is substantially more
(N)

negative than —)\ﬂll. Hence, the net difference 23) is typically positlve, strongly implying z; ;'

is smaller than xng) -1 by a significant nontrivial margin. Formalizing this mathematical argument

requires bounding the higher-order and cross terms using standard Lipschitz arguments. Thus, for
large k, Halley’s iteration consistently yields a bigger x; , near v/A; than Newton—Schulz does.
Repeating the same analysis for each diagonal entry ¢ completes the proof of (T3). O
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B.1.1 Full Multi-Line Expansions

We now demonstrate more explicit expansions (potentially excessive for the main text) to show how
each term arises. Let us re-derive (Z0) with full factorization:

$§T3+1 V/X;

LV + A (3 SRR

(3vA + 300 - Lo ALIATE (/34 AY)) - Vi

(3 V) - Vi 1A - A/ 2V o Al

A B C

[N

Group and simplify term A:

HeVA) -V = (3-1)VA = BVAL

But observe that in the next step, it can further combine with part of C, eventually giving 0. We
proceed:

€= ok O+ 2VA A + AR (VA + afY)
i (v AR 12000 AN VA 2y A AN 4 Al

(25)
After reorganizing and combining with the % v/ A1 leftover in part A, one obtains the final form:

VA . . .
x(ll\gﬂ -V =-3 Tl A,(CN) -+ (quadratic/cubic terms in A,(CN)).
’ 1

Hence (20).

One can see from that the coefficient in front of A,(CN) is indeed significantly larger (in negative
sense) than in the Halley counterpart. The latter’s expansions have an extra important factor in the
denominator from the (1+ % -...) ! structure, leading to a noticeably gentler push. The mathematical
details for Halley are similarly multi-line and are omitted here for brevity; see (22)) in the main text
proof. This thoroughly justifies the critical statement that Halley iteration consistently exerts less
compression on large coordinates near v/ \;, ultimately preserving more valuable spectral spread.

B.2 General Positive-Definite Matrices (Non-Diagonal Case)

When X is not diagonal, one can still diagonalize it as U diag(\y, ..., Aq) UT and rigorously rewrite
each iterative update in that basis. Newton—Schulz and Halley remain free of explicit denominators
(Ai — ), so the same mathematical expansions and local-Lipschitz bounding apply, albeit with extra
rotation terms. A careful bounding argument (cf. [[15, Chap. 6]) shows that each diagonal coordinate
in the eigenbasis experiences a Halley vs. Newton—Schulz update akin to (2Z4)-@25). Hence the
fundamental core difference between the two methods persists for arbitrary PSD 3.

B.3 Additional Perturbation Stability: Halley vs. Newton-Schulz

Finally, we mention a new "dynamic" viewpoint: In typical deep-learning pipelines, the covariance
3} is computed per mini-batch, so it might vary slightly from iteration to iteration. If 3 changes in
small increments (say, ||X:+1 — 3¢|| < €), we want the iterative method to remain stable across these
continuous changes. Newton—Schulz can accumulate flattening across many mini-batches, eventually
saturating the spectral distribution. Halley’s gentler correction significantly mitigates that effect.
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Proposition 3 (Stability Under Small Shifts). Let 3; be a sequence of PSD matrices where || 311 —

3|l < ex. Consider X,(CI? approximating E; /2 by k steps of Halley iteration from some Xg ;. Then,

under mild conditions on X 4, there exists €g > 0 such that if es; < €g, we have
H 1/2 H 1/2
IX{ - =20 < X, -2 + Des (26)

)

or some constants C, D > 0. Iteratively applying shows that X8 stays close to the “true”
kit

root Ei /2 throughout training, avoiding thresholding or truncation.

Sketch. See Section for an expanded multi-line derivation. The gist is to treat X,g? — Zi/ 2

like (22) plus an extra “perturbation” term from X, to 3;_;. We then employ standard matrix-norm
bounding to show the difference remains O(eyx), ensuring stability. O

B.3.1 Detailed Proof of Proposition 3]

We give a more explicit big-formula expansion to illustrate how the perturbation enters:

X\ - %/
- M) p, 1 (H)\—1 (H)\_1y1-1
= Xk,t - Xk,t [I + 5(1 - (Xk,t )T B (Xk,t ) )} +[' ’ ] 27

difference in 3¢ vs. 34 _1 inside the iteration

We can factor out (X,(c};))_1 (B¢ — 3iq) (X,(ft))_1 from the bracket term in (27), leading to an

extra piece bounded by ||32; — X;_1|| < ex. Next, combine the expansions with the local Lipschitz
continuity of Halley iteration (analogous to Theorem [2), yielding:

||X§ft) -2 < o HXéHt) — 22| 4+ Coes + (terms that vanish when F is large), (28)

for some constants C'1, Co depending on min{\;} and max{\;}. Using (28) over ¢ leads to 26). [

C Additional Experiments

C.1 Implementation Details

All experiments were conducted using PyTorch [32] (version 1.12 or later) and executed primarily on
NVIDIA A100 GPUs. For large-scale classification, we utilize the ImageNet-1k dataset [6], employ-
ing the standard training/validation split. Fine-grained visual classification (FGVC) experiments are
performed on Caltech-UCSD Birds 200 (Birds) [45]], Stanford Dogs (Dogs) [5]], and Stanford Cars
(Cars) [22]. Specific details for FGVC finetuning are deferred to Appendix D.5.

We evaluate our proposed method and baselines across a diverse set of modern backbone architectures,
including Convolutional Neural Networks (CNNs)—ResNet-50 and ResNet-101 [[14]—and Vision
Transformers—ViT-Base/16 (ViT-B/16) [7] and Swin Transformer Tiny (Swin-T) [29]. We use
standard pre-trained weights where applicable or train from scratch following common practices for
each architecture.

Unless otherwise specified, the Global Covariance Pooling (GCP) layer replaces the final Global Av-
erage Pooling (GAP) layer preceding the classification head. To maintain a consistent dimensionality
for the covariance matrix across different backbones, we typically insert a 1 x 1 convolutional layer
before the GCP layer to project the feature channels to d = 256. All computations within the GCP
layer, including covariance matrix calculation, iterative updates (for iSQRT-COV and Halley-SVD),
SVD decomposition (for MPN-COV and SVD-Padé), and gradient computations, are performed
using double precision (float64) to ensure numerical accuracy and stability, following best practices
established in prior GCP works [37} 24]. The rest of the network utilizes standard single precision
(float32) or automatic mixed precision (AMP) for efficiency.
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For our proposed Halley-SVD, we employ K = 8 iterations for the matrix square root approximation,
as determined by ablation studies (see Appendix G.7). The iteration is initialized with Xy =
10~31. For baseline methods: iSQRT-COV follows the implementation in [24], typically converging
within K = 5 iterations implicitly; SVD-Padé follows [37]] using K = 100 degree diagonal Padé
approximants for the backward pass, but crucially, it is trained end-to-end (E2E) in our main
comparisons without any hybrid strategy; MPN-COV [25] uses standard SVD for both forward
and backward passes. For methods involving explicit eigenvalues or matrix inversions (SVD-
Padé, MPN-COV, and potentially Halley-SVD under extreme conditions), eigenvalues smaller than
machine epsilon for float64 (or a threshold like 10~%) are clamped to this value for numerical
robustness, although Halley-SVD’s iterative structure is inherently designed to handle near-singular
cases smoothly.

For ImageNet-1Kk training:

* CNNs (ResNet-50/101): We train for 100 epochs using SGD with momentum 0.9 and weight
decay 1 x 10~*. We employ a Cosine Annealing learning rate schedule with an initial learning rate
of 0.1 for a standard batch size (BS) of 256, linearly scaled (LR = 0.1 x BS/256) for larger batch
sizes (e.g., 0.8 for BS=2048). A 5-epoch linear warmup is used.

* Transformers (ViT-B/16, Swin-T): We train for 300 epochs using the AdamW optimizer [30] with
weight decay 0.05. A Cosine Annealing schedule is used with an initial learning rate of 1 x 103
for a standard batch size of 1024, linearly scaled for larger batches (e.g., 4 x 10~3 for BS=4096).
A 20-epoch linear warmup is applied.

» Batch Sizes: We report results for both standard batch sizes (ResNet: 256, Transformers: 1024) and
large batch sizes (ResNet: 2048, Transformers: 4096) to investigate performance under different
scales.

Standard data augmentation techniques are applied during training, including RandAugment [2],
Mixup [54], and CutMix [53]]. For Transformers, DropPath [16] is also used with linearly increasing
rates. We report Top-1 and Top-5 accuracy on the ImageNet validation set, computed using a single
center crop from images resized to 256x256 (then cropped to 224x224). Evaluation is performed
using the final model weights unless otherwise noted.

C.2 Performance with Multi-Layer Covariance Pooling

While GCP is typically applied before the final classifier, exploring its use at intermediate network
stages can offer insights into how second-order statistics evolve and whether potential issues like
over-flattening accumulate. To briefly investigate this, we conducted an auxiliary experiment on
CIFAR-100 using a ResNet-50 backbone. We compared the standard setup (GCP only after layer4,
replacing GAP) against a configuration where GCP layers were employed after both layer3 and
layer4. We adapted the subsequent network layers to handle the output dimensions accordingly.

Setup. We trained ResNet-50 on CIFAR-100 for 100 epochs using standard hyperparameters
(BS=128, SGD optimizer, Cosine LR schedule). We compared networks using either iSQRT-COV
or our Halley-SVD for all employed GCP layers.

Results and Analysis. Table[3|presents the final test accuracies. Both methods benefit from using
GCP compared to the GAP baseline. When employing GCP at multiple stages (Layer3 & Layer4),
both methods show a slight further improvement over using GCP only at the final stage. Notably,
the performance gap between Halley-SVD and iSQRT-COV widened slightly in the multi-layer
setting (+0.3%) compared to the single-layer setting (+0.1%). While preliminary, this observation
suggests that the spectral compression effect of iSQRT-COV might indeed accumulate when used
multiple times within a network, potentially limiting gains. Halley-SVD, by better preserving spectral
information, appears more amenable to deployment at multiple network depths, hinting at broader
applicability, although further investigation is warranted.

C.3 Numerical Stability in Near Rank-Deficient Scenarios

A potential concern regarding iterative matrix methods, including Halley’s iteration which involves
terms like X,;l (implicitly or explicitly derived from Eq. (7)), relates to numerical stability when
the covariance matrix 3 becomes near singular or rank-deficient. This could theoretically occur if
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Table 3: Multi-Layer GCP Accuracy (%) on CIFAR-100 with ResNet-50.

GCP Configuration iSQRT-COV Acc (%) Halley-SVD Acc (%)
ResNet-50 Baseline (GAP) 78.5 78.5

Layer4 Only GCP 80.0 80.1

Layer3 & Layer4 GCP 80.2 80.5 (+0.3)

the input features X within a mini-batch lack sufficient variability, leading to very small or zero
eigenvalues in X.

Mitigation via Regularization. Standard practice in numerical linear algebra and machine learning
provides a straightforward safeguard against such issues. If necessary, one can ensure the positive
definiteness and invertibility of the covariance matrix (and consequently the iterates X) by adding a
small diagonal loading or Tikhonov regularization before applying the GCP method:

Y =3+,

where € is a small positive constant (e.g., 10~¢ or 10~®). This minor adjustment guarantees that all
eigenvalues are strictly positive, preventing divisions by zero or ill-conditioned inversions.

Practical Considerations. In the context of large-scale deep learning with diverse datasets like Ima-
geNet and the common use of Batch Normalization layers, empirical covariance matrices 3 computed
from mini-batches are typically well-conditioned and numerically full-rank. The richness of features
and the normalizing effects of BN layers significantly mitigate the risk of encountering pathologically
rank-deficient covariance matrices during training. Therefore, while the e-regularization serves as a
robust theoretical backup, it is rarely invoked or required in practice for methods like Halley-SVD to
function stably. The primary stability advantage of Halley-SVD stems from its iterative formulation
inherently avoiding the problematic 1/(\; — A;) terms found in direct SVD gradient calculations,
rather than relying heavily on additive regularization. Our extensive experiments on large-scale
benchmarks proceeded without encountering stability issues related to near-singularity.

C.4 Detailed Speed and Resource Usage

Table [ provides a more comprehensive breakdown of forward/backward time, total runtime, peak
memory, and training throughput for various global covariance pooling (GCP) methods. We bench-
mark these on ResNet-101 with a batch size of 256, using NVIDIA A100 GPUs.

Table 4: Detailed Computation Cost (ResNet-101, BS=256, single A100). “FP”/“BP” stand for
forward/backward pass time (ms), “Total” is the sum, “Peak Mem” is the maximum GPU memory
usage, and “Throughput” is measured in images per second. Halley-SVD’s overall runtime is
comparable to SVD-Padé, reflecting the cost of multiple iterative steps rather than an explicit SVD.
Its memory consumption remains close to iSQRT-COV, indicating no significant extra overhead.

Method FP (ms) BP (ms) Total (ms) Peak Mem (GB) Throughput (img/s)
Vanilla GAP ~ 80 ~ 100 ~ 180 ~ 18.0 ~ 1420
iSQRT-COV (K=5) ~ 110 ~ 180 ~ 290 ~ 20.5 ~ 880
MPN-COV ~ 280 ~ 70 ~ 350 ~ 22.0 ~ 730
SVD-Padé (K=100) ~ 280 ~ 90 ~ 370 ~ 22.0 ~ 690
Halley-SVD (K=8) ~ 170 ~ 220 ~ 390 ~21.0 ~ 650

As observed, Vanilla GAP remains the fastest option but lags in final accuracy (see main paper).
iSQRT-COV runs faster than Halley-SVD or SVD-Padé, yet its over-flattening limits accuracy
in large-scale regimes. MPN-COV and SVD-Padé exhibit similar overall times, driven by SVD
computations or rational expansions. Halley-SVD occupies a middle ground, incurring an iterative
overhead but retaining a stable memory footprint and surpassing iSQRT-COV in final performance.
Hence, the additional cost of Halley-SVD’s higher-order iteration is often justified by its superior
accuracy in deeper or large-batch scenarios.
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C.5 Detailed Gradient Stability Analysis Across Architectures and Conditions

To visually confirm the gradient stability of Halley-SVD across various settings, we tracked the L2
norm of the gradient || g—ﬁ ||2 during the first 10 epochs of training on ImageNet. Figurepresents a
comprehensive 4x4 comparison grid.

Setup. The grid covers four architectures (Rows: ResNet-50, ResNet-101, ViT-B/16, Swin-T) and
four conditions (Columns). Columns 0 and 1 compare iSQRT-COV (red dashed) against Halley-SVD
(blue solid) under standard and large batch sizes, respectively. Columns 2 and 3 show the behavior of
MPN-COV (grey) under standard and large batch sizes, serving as a reference for potential instability
from direct SVD gradients. The specific batch sizes used for standard/large settings correspond to
those defined in Section [C1lfor each architecture.

Results and Analysis. The composite figure clearly demonstrates the stability patterns. Across
all architectures and batch sizes (Columns 2 and 3), MPN-COV consistently exhibits numerous
large gradient spikes, often exceeding magnitudes of 10* to 105, confirming its inherent numerical
instability in early training phases. In contrast, comparing Columns 0 and 1, both iSQRT-COV and
Halley-SVD maintain remarkably stable and smooth gradient norms (typically < 30) across all tested
architectures and batch sizes. There are no large spikes observed for either method. This extensive
visualization corroborates that Halley-SVD achieves gradient stability comparable to iSQRT-COV,
effectively avoiding the severe instability issues of MPN-COV, which is crucial for reliable training,
particularly in challenging large-scale scenarios.

C.6 Convergence Speed Comparison

Beyond final accuracy, the speed at which a model converges during training is also a crucial practical
consideration. We compared the convergence behavior of Halley-SVD, iSQRT-COV, and SVD-Padé
(E2E) by examining both validation accuracy progression per epoch and against wall-clock training
time.

Setup. We tracked the Top-1 validation accuracy throughout training for the large batch size settings
on ImageNet across our four main architectures: ResNet-50 (BS=2048), ResNet-101 (BS=2048),
ViT-B/16 (BS=4096), and Swin-T (BS=4096).

Results and Analysis. Figure 5 presents the convergence curves. The top row displays accuracy
versus training epochs, while the bottom row shows accuracy versus estimated wall-clock time.
Observing the accuracy vs. epochs plots (top row), iSQRT-COV (red dashed) typically shows the
fastest initial improvement but, as established previously, tends to saturate earlier at a lower accuracy
level compared to the other methods, particularly for deeper models (R101, ViT, Swin-T). Both
SVD-Padé (E2E) (green dotted) and Halley-SVD (blue solid) demonstrate the ability to continue
learning for more epochs and reach higher final accuracies. Halley-SVD often matches or slightly
surpasses SVD-Padé in terms of the final accuracy achieved within the given epochs.

Examining accuracy vs. wall-clock time (bottom row) reveals the trade-offs. While iSQRT-COV
reaches its plateau fastest due to its lower per-step cost, it fails to achieve the peak performance.
Halley-SVD and SVD-Padé require more total training time to reach their higher final accuracies.
Comparing Halley-SVD and SVD-Padé, Halley-SVD’s potentially faster forward pass (no explicit
SVD) but slower backward pass (more complex iteration) results in overall convergence times that
are broadly comparable to SVD-Padé, or potentially slightly faster in some scenarios to reach a
specific high accuracy target, despite potentially taking similar total wall-clock time to complete all
epochs. Halley-SVD thus offers a compelling balance, achieving state-of-the-art accuracy without
the extreme saturation of iSQRT-COV or necessarily extending the total training time significantly
compared to other high-performing SVD variants like SVD-Padé.

C.7 Ablation Studies and Robustness Analysis

To further understand the properties of our proposed Halley-SVD method and validate the robustness
of our main findings, we conducted several ablation studies.
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Detailed Gradient Norm Stability Across Architectures and Conditions (Early Training)

ResNet-50 (BS=256)
iSQRT vs Halley

ResNet-50 (BS=2048)
iSQRT vs Halley

ResNet-50 (BS=256)
MPN-COV Ref.

ResNet-50 (BS=2048)
MPN-COV Ref.

— = ISQRT-COV
1000000 1000000 VD 1000000 1000000
100000 100000 100000 100000
S 100004 S 100004 S 10000 S 10000
= o] = o] 2 2
1004 1004 100 100
104 104 0 10
Y i "
. ! ! ! ! ! A ! 3 | ! | Bl iwinaann |
O 1000 2000 300 4000 5000 O 10 2000 3000 4000 5000 0 1000 200 3000 4000 5000 3000
Training Steps Training Steps Training Steps aining Steps
ResNet-101 (BS=256) ResNet-101 (BS=2048) ResNet-101 (BS=256) ResNet-101 (BS=2048)
iSQRT vs Halley ISQRT vs Halley N-COV Ref. MPN-COV Ref.
1000000 1000000 1000000 1000000
100000 100000 100000 100000 4
E ? ? ?
S 100004 S 100004 S 100004 S 100004
= o] = on] = o] = ]
1004 1004 1004 1004
104 W 104 104 104
11 L y y T y 1l — y / T i 1 —_——
O 1000 2000 3000 4000 5000 O 10 2000 300 4000 5000 O 100 200 3000 4000 5000 O 1000 200 000 4000 5000
Training Steps Training Steps Training Steps Training Steps
ViT-B/16 (BS=1024) ViT-B/16 (BS=4096) VIT-B/16 (BS=1024) VIT-B/16 (BS=4096)
ISQRT vs Halley iSQRT vs Halley MPN-COV Ref. MPN-COV Ref.
1000000 1000000 1000000 1000000
100000 100000 100000 100000 4
? E @ ®
S 100004 S 100004 S 100004 S 100004
= o] 2 o] 2 o] 2 ]
1004 1004 1004 1004
104 W 104 104 104
11 v : — ; 11 y y y T : i . — o — 11 e S S
O 1000 2000 3000 4000 5000 O 10 2000 3000 4000 5000 O 100 200 000 4000 5000 O 1000 200 000 4000 5000
Training Steps Training Steps ‘Training Steps ‘Training Steps
Swin-T (BS=1024) Swin-T (BS=4096) Swin-T (BS=1024) Swin-T (BS=4096)
ISQRT vs Halley ISQRT vs Halley MPN-COV Ref. MPN-COV Ref.
1000000 1000000
100000 100000
? ? @ ?
S 100004 S 100004 3 3
i tood i toood & &
1004 1004
104 104
11 T y T y y 1 T y T
O 100 2000 3000 4000 5000 O 10 2000 3000 4000 5000

Training Steps

Training Steps

Training Steps

Training Steps

Figure 4: Comprehensive comparison of GCP gradient stability during early training (first 10 epochs)
on ImageNet. Each row represents an architecture (R50, R101, ViT-B/16, Swin-T). Columns represent
conditions: (0) Standard BS, iSQRT vs Halley; (1) Large BS, iSQRT vs Halley; (2) Standard BS,
MPN-COV reference; (3) Large BS, MPN-COV reference. Plotted is the L2 norm of the gradient
w.r.t. P (logarithmic y-axis). Both iSQRT-COV and Halley-SVD show consistently stable gradients
across all settings, unlike the unstable MPN-COV.

Impact of Halley Iteration Count (K). The number of iterations K in the Halley-SVD update
(Eq. (7)) affects both the accuracy of the matrix square root approximation and the computational
cost. We evaluated the performance of Halley-SVD on ResNet-101 (BS=256) on ImageNet while
varying K from 3 to 15. Table[5]shows the final Top-1 accuracy and the measured total time per
batch.

Table 5: Impact of Halley iteration count (K) on ResNet-101 (BS=256) performance and speed.
Halley Iter (K) Top-1Acc (%) Total Time (ms/batch)

3
5
8
10
15

78.0
78.3
78.4
78.4
78.4

~120
~150
~190
~220
~280

As observed, the accuracy essentially saturates at K = 8 iterations, with further iterations yielding no
significant performance gain while steadily increasing the computational time. Therefore, we chose
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Convergence Speed Comparison (Large Batch Settings)
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Figure 5: Convergence speed comparison on ImageNet under large batch size settings. Top Row
(Epochs): Validation Top-1 Accuracy vs. Training Epochs. Bottom Row (Time): Validation Top-1
Accuracy vs. Estimated Wall-Clock Time (hours). Columns correspond to different architectures: (0)
ResNet-50 (BS=2048), (1) ResNet-101 (BS=2048), (2) ViT-B/16 (BS=4096), (3) Swin-T (BS=4096).
iSQRT-COV (red dashed) saturates early. Halley-SVD (blue solid) and SVD-Padé (E2E) (green
dotted) reach higher accuracy, with Halley-SVD often achieving the best final performance within
comparable or slightly better convergence time relative to SVD-Padé. Panels in rows 2 and 3 are
intentionally left blank.

K = 8 as the default setting for all other experiments, representing a favorable balance between
accuracy and efficiency.

Impact of Initialization Method. We investigated the sensitivity of Halley-SVD to the choice of
the initial iterate Xy. We compared our default initialization (X, = 10~3I) against an alternative
scaled identity initialization based on the trace of the input covariance matrix 3, specifically Xy =
(\/ﬁ)l, where d is the dimension and € is a small constant. The results on ResNet-101

(BS=256) are shown in Table 6]

Table 6: Impact of Halley-SVD initialization method on ResNet-101 (BS=256) accuracy.

Initialization Method Top-1 Acc (%)
X, = 10731 (Default) 78.4
Xgo = (...)I (Trace-Scaled) 78.3

The final performance is nearly identical between the two initialization strategies, indicating that
Halley-SVD is robust to reasonable choices for the starting iterate X.

Sensitivity to Optimizer. To assess whether the observed performance advantages depend on a
specific optimizer, we compared Halley-SVD and iSQRT-COV when training ResNet-50 (BS=256)
using either SGD (our default) or the AdamW optimizer. Standard hyperparameters were used for
each optimizer (see Section@ for SGD; AdamW used 1r=0.001, wd=0.01).

Table 7: Optimizer sensitivity comparison on ResNet-50 (BS=256).

Optimizer Method Top-1 Acc (%)
iSQRT-COV 772

SGD Halley-SVD 77.3
iSQRT-COV 76.8

AdamW - Holley-SVD 77.0

Table[7] shows that both methods achieve reasonable performance with both optimizers, although
SGD yielded slightly better results overall in this setting. Importantly, Halley-SVD maintained
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its performance edge over iSQRT-COV regardless of the optimizer employed, suggesting broad
compatibility.

Sensitivity to Feature Dimension (d). Our main experiments used a covariance matrix dimension
of d = 256, achieved viaa 1 x 1 convolution. To verify that our conclusions are not specific to this
dimension, we compared performance using d = 256 versus d = 512 for the challenging ResNet-101
(BS=2048) setting.

Table 8: Sensitivity to feature dimension d on ResNet-101 (BS=2048).

Feature Dim (d) Method Top-1 Acc (%) Halley vs iSQRT Diff
256 iSQRT-COV 77.7
Halley-SVD 78.5 +0.8
512 iSQRT-COV 77.9
Halley-SVD 78.8 +0.9

As shown in Table [8] increasing the feature dimension to d = 512 slightly improved absolute
accuracies for both methods. Crucially, the performance advantage of Halley-SVD over iSQRT-COV
remained consistent (+0.8% for d = 256, +0.9% for d = 512), indicating that Halley-SVD’s ability
to better handle large-scale training is robust across different reasonable feature dimensionalities.

Robustness to Random Seeds. To ensure the statistical significance of our key results, we repeated
the main large-scale comparison experiment (ResNet-101, BS=2048) five times using different
random seeds for network initialization and data shuffling. We report the mean and standard deviation
of the final Top-1 accuracy.

Table 9: Stability across random seeds for ResNet-101 (BS=2048).

Method Top-1 Acc (%) Mean + StdDev (N=5 runs)
iISQRT-COV 77.7 £0.08
Halley-SVD 78.5 £ 0.06

Table 9] confirms that the results are highly stable across different runs. The standard deviations are
very small (< 0.08%), and the substantial mean performance gap (0.8%) between Halley-SVD and
iSQRT-COV is statistically robust, reinforcing the reliability of our main conclusions.
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