
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FEEDBACK SCHRÖDINGER BRIDGE MATCHING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in diffusion bridges for distribution transport problems have
heavily relied on matching frameworks, yet existing methods often face a trade-
off between scalability and access to optimal pairings during training. Fully
unsupervised methods make minimal assumptions but incur high computational
costs, limiting their practicality. On the other hand, imposing full supervision
of the matching process with optimal pairings improves scalability, however, it
can be infeasible in many applications. To strike a balance between scalability
and minimal supervision, we introduce Feedback Schrödinger Bridge Matching
(FSBM), a novel semi-supervised matching framework that incorporates a small
portion (less than 8% of the entire dataset) of pre-aligned pairs as state feedback to
guide the transport map of non-coupled samples, thereby significantly improving
efficiency. This is achieved by formulating a static Entropic Optimal Transport
(EOT) problem with an additional term capturing the semi-supervised guidance.
The generalized EOT objective is then recast into a dynamic formulation to leverage
the scalability of matching frameworks. Extensive experiments demonstrate that
FSBM accelerates training and enhances generalization by leveraging coupled
pairs’ guidance, opening new avenues for training matching frameworks with
partially aligned datasets.

1 INTRODUCTION

Transporting samples between distributions is a ubiquitous problem in machine learning. Given the
rise of generative modeling, significant progress has been made using static (Goodfellow et al., 2014),
deterministic (Chen et al., 2018; Biloš et al., 2021), or stochastic mappings (Ho et al., 2020; Song
et al., 2020) that transport samples from noise to a more complex distribution. A prominent approach
lies in diffusion models that simulate a Stochastic Differential Equation (SDE) to diffuse the data to
noise, and learn the score function (Hyvärinen & Dayan, 2005; Vincent, 2011) to reverse the process
(Anderson, 1982). However, these models present several limitations. For instance, the requirement
to converge during the noising (forward) process to a Gaussian noise suggests that these models must
run for a sufficient number of time steps to ensure the final distribution approximates Gaussian noise
(Chen et al., 2021). Additionally, this suggests that these models begin their generative (backward)
processes without any structural information about the data distribution, which implies randomness
being introduced in the couplings that emerge from the diffusion models (Liu et al., 2023). Lastly,
there is no guarantee that the optimal path interpolating the boundary distribution minimizes the
kinetic energy. (Shi et al., 2023)

In an attempt to overcome these shortcomings, principled approaches that stem from Optimal Trans-
port (Villani et al., 2009) have emerged. The most prominent alternative has been the Schrödinger
Bridge (SB; Schrödinger (1931)), which has been shown to be equivalent to entropy-regularized
Optimal Transport (EOT; Cuturi (2013); Léonard (2013); Pavon et al. (2021)), and can also be framed
as a Stochastic Optimal Control (SOC) Problem (Chen et al., 2016; 2021). In particular, SB gained
significant popularity in the realm of generative modeling following advancements proposing a train-
ing scheme based on the Iterative Proportional Fitting (IPF), a continuous state space extension of the
Sinkhorn algorithm to solve the dynamic SB problem (De Bortoli et al., 2021; Vargas et al., 2021).
Notably, SB generalizes standard diffusion models transporting data between arbitrary distributions
π0, π1 with fully nonlinear stochastic processes, seeking the unique path measure that minimizes the
kinetic energy. More recently, building on advancements in Bridge Matching methods (Peluchetti,
2023; Liu et al., 2022c), Shi et al. (2023) introduced Diffusion Schrödinger Bridge Matching (DSBM),
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Figure 1: FSBM connecting existing Bridge Matching frameworks at the extremes, where the dataset
is comprised of either fully aligned or fully non-aligned pairs

a framework that solves the Schrödinger Bridge problem while being significantly more efficient.
Unlike previous methods, DSBM avoids the need to cache the full trajectories of forward and back-
ward SDEs, making it more scalable and mitigating the time-discretization and "forgetting" issues
encountered in earlier DSB techniques.

For training these matching frameworks, we start from two datasets that lack pre-aligned pairs—
that is, we sample only from the marginal π0, π1—and the framework is trained to determine the
optimal coupling in the sense of least-energy transportation. This process represents an unsupervised
learning approach, as no prior information about the coupling is provided. However, there are
other applications—such as image restoration (Liu et al., 2023) and protein docking (Somnath et al.,
2023)—in which we have prior knowledge of the coupling π0,1, between pairs (x0, x1) ∼ π0,1

drawn presumably from the SB solutions. Consequently, using an unsupervised approach for such
problems is not ideal, as it discards valuable information about the relationships between the samples
of the two boundary distributions. An alternative approach suggests re-framing these tasks as inverse
problems. In this vein, Liu et al. (2023) proposed recently I2SB, building diffusion bridge matching
frameworks between coupled data to perform image restoration.

In practice, in most tasks, the available datasets might possess a few limited coupled pairs, however,
the high cost of manually labeling large datasets renders fully supervised approaches infeasible.
Unfortunately, existing matching frameworks can not effectively leverage the information in partially
pre-aligned datasets. An alternative approach from Optimal Transport (OT) literature involves
using guided transportation maps, where only a few pairs that belong to a Key-Point (KP) set are
annotated. These pairs are utilized to guide the transportation mapping of the unpaired samples (Gu
et al., 2023a), substantially reducing the need for extensive human labeling or expert guidance by
leveraging a small number of source-target aligned sample pairs for training (Mustafa & Mantiuk,
2020). More specifically, recent approaches employ a “relation-preserving” scheme, which maintains
the data’s relationship to the given pairs from the KP set (Mémoli, 2011; Sato et al., 2020), or a
pairwise distance-preserving constraint (Gu et al., 2023b). However, the feasibility of adapting
semi-supervised guidance in a dynamic Schrödinger Bridge or Bridge Matching setting remains
an open question. In this vein, drawing inspiration from the guided OT schemes, we advocate a
semi-supervised guided Schrödinger Bridge Matching framework.

In this work, we introduce a novel semi-supervised matching algorithm, Feedback Schrödinger
Bridge Matching (FSBM), designed to integrate information from partially aligned datasets. Draw-
ing inspiration from optimal transport (OT) literature (Gu et al., 2022), our analysis begins from a
static, semi-supervised OT problem, from which we derive a dynamic objective. Following recent
advancements in matching frameworks, we adopt an alternating scheme, where the intermediate path
and the coupling are optimized in two separate steps, resulting in a novel matching framework that
leverages partially aligned data to guide the transport mapping of non-aligned samples. A key aspect
of our approach is that the information from aligned samples is encoded as state feedback within the
dynamic objective, effectively steering the transport of non-aligned data. This renders our FSBM a
bridge between two extremes: unsupervised matching frameworks, which lack pre-aligned couplings
(Shi et al., 2023), and fully supervised frameworks, where data is entirely pre-aligned (Liu et al.,
2023; Somnath et al., 2023) (see Figure 1). Empirical results show that our algorithm generalizes
better, is more robust to perturbations in the initial conditions, and exhibits reduced training time.
Our contributions are summarized as follows:

• We introduce FSBM, the first matching framework leveraging information from partially
aligned datasets.
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• We begin our analysis from a static semi-supervised OT problem, and derive a modified
dynamic formulation. Notably, our analysis can be extended to any selection of regularization
functions.

• We introduce an Entropic Lagrangian extension of the variational gap objective used in BM
frameworks to match the parameterized drift given a prescribed probability path

• Through extensive experimentation, we verify the remarkable capability of FSBM to gen-
eralize under a variety of unseen initial conditions, while simultaneously achieving faster
training times. These results were consistent across a wide range of matching tasks from
low-dimension crowd navigation, to high-dimensional opinion depolarization and image
translation.

2 PRELIMINARIES

2.1 SCHRÖDINGER BRIDGES

The Schrödinger Bridge (Schrödinger, 1931) in the path measure sense is concerned with finding the
optimal measure P⋆ that minimizes the following optimization problem

min
P

KL(P|Q), P0 = π0, P1 = π1 (1)

where Q is a Markovian reference measure. Hence the solution of the dynamic SB P⋆ is consid-
ered to be the closest path measure to Q. A very convenient, and heavily used property of P⋆

is its decomposition as P ⋆ =
∫
Rd×Rd Q|0,1dπ

⋆(x0, x1), where π⋆ is the solution of the static SB
minπ∈Π(π0,π1) KL(π|R), and Q|0,1 is the Bridge of the reference measure for pinned points (x0, x1)
(Léonard, 2013). Another formulation of the dynamic SB crucially emerges by applying the Girsanov
theorem in Eq. (1)

min
ut,pt

∫ 1

0

Ept [∥ut∥2]dt s.t.
∂pt
∂t

= −∇ · (utpt) +
σ2

2
∆pt, and p0 = π0, p1 = π1 (2)

Finally, note that the static SB is equivalent to the entropy regularized OT formulation (Pavon et al.,
2021; Nutz, 2021).

min
π∈Π(π0,π1)

∫
Rd×Rd

∥X0 −X1∥2dπ(X0, X1) + ϵKL(π|π0 ⊗ π1) (3)

This regularization term enabled efficient solution through the Sinkhorn algorithm and has presented
numerous benefits, such as smoothness, and other statistical properties (Ghosal et al., 2022; Léger,
2021; Peyré et al., 2019).

2.2 SCHRÖDINGER BRIDGE MATCHING

As discussed above, SB Matching algorithms (Shi et al., 2023; Liu et al., 2024) have emerged recently,
following advancements in matching frameworks (Liu et al., 2022c; Peluchetti, 2023; Lipman et al.,
2022; Liu et al., 2022b), rendering the solution of the SB problem significantly more tractable.
Specifically, this family of algorithms solves Eq. (2) by separating the training process into two
alternating steps. The first step entails relaxing the boundary distributional constraints in Eq. (2) into
just two endpoints, by fixing the coupling π0,1, and drawing pairs of samples (x0, x1).

min
ut|0,1

∫ 1

0

Ept|0,1 [∥ut|0,1∥2]dt

s.t.
∂pt|0,1

∂t
= −∇ · (pt|0,1ut) +

1

2
σ2∆pt|0,1, X0 = x0, X1 = x1

(4)

This optimization problem returns the optimized intermediate bridges between the drawn pairs.
Subsequently, the parameterized drift uθ

t is matched given the prescribed marginal path from the
previous step, by minimizing the following variational gap

min
θ

∫ 1

0

Ept
[∥u⋆

t − uθ
t ∥2]dt (5)

3
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where u⋆
t is the drift associated with the fixed intermediate path. Propagation of the SDE according

to the matched parameterized drift uθ
t : Rd × [0, 1] → R

dXt = uθ
tdt+ σdWt, X0 ∼ π0, X1 ∼ π1 (6)

induces the parameterized coupling πθ
0,1. In the next iteration of the BM algorithm, this updated

coupling is used to generate improved pairs of (x0, x1) ∼ πθ
0,1 employed to refine the marginal path.

3 METHODOLOGY

3.1 SEMI-SUPERVISED GUIDANCE

Figure 2: Source and Target Distributions
with their KP set pairs

In the context of semi-supervised optimal transport, cer-
tain aligned couples of data points from the source and
target distributions are employed to guide the match-
ing of unpaired samples. These pairs are assumed by
construction to be given by the optimal solution of the
static SB. We denote with K = {xn

0 , x
n
1}Nn=1 the set

with the aligned pairs, the Key-Point (KP) set, with N
being the number of pairs in the set. Usually, N ≪ M ,
where M is the total number of samples.
Assumption 3.1. All pairs from the KP set are consid-
ered to be solutions of the static Schrödinger Bridge.

Note that since the KP pairs are sampled from the solu-
tion of the static SB, this ensures their stochastic nature,
making them well-suited for guiding the transport map. Our analysis begins with the static entropic
OT problem in Eq. (3), to which an additional regularization term is included to capture the interaction
among unpaired samples and aligned samples, thereby guiding the transport map. We consider a
distance-preserving scheme. We start by sampling a pair of non-coupled samples (X0, X1). Let us
assume that the ith sample from the KP set xi

0 ∈ K is closest to X0 in the source distribution. Then,
the distance d(X0, x

i
0) is computed and we proceed to compute the distance d(X1, x

i
1). Therefore,

for a fixed cou pair (xi
0, x

i
1) ∈ K, we define the Guidance function for the non-aligned pair (X0, X1),

and as
G(X0, X1) = (d(X1, x

i
1)− d(X0, x

i
0))

2 (7)
Intuitively, this regularization term creates a region of attraction, as illustrated in Figure 2. This
attraction around each KP sample defines clusters that guide the neighboring samples from the source
distribution to the target distribution, by preserving the relative distance to the respective KP sample.
Adjusting the cost function of the entropic O.T. formulation in 3, to incorporate guidance from the
coupled pairs yields

min
π∈Π(π0,π1)

∫ (
||X0 −X1||2 +G(X0, X1)

)
dπ(x0, x1) + ϵKL(π|π0 ⊗ π1) (8)

In this work, we start our analysis from the modified expression of Eq. (3) to exploit the flexibility
of static OT formulation into adding the regularization term that is responsible for the guidance of
the non-paired samples. However, our focal point is to derive an equivalent dynamic formulation,
resembling Eq. (2), which provides a more thorough description of the transport process. From an
algorithmic standpoint, our methodology is based on BM frameworks (see Section 2.2) in order to
leverage their great efficiency and scalability in solving distribution matching problems.

3.2 FEEDBACK SCHRÖDINGER BRIDGE MATCHING

We propose Feedback Schrodinger Brige Matching (FBSM) a novel matching framework, which
leverages the information of partially, optimally paired datasets to guide the matching of the non-
aligned samples. Our analysis starts from recasting Eq. (8) in a dynamic formulation in Sec. 3.2.1.
Subsequently, we adopt recent advances in dynamic SB frameworks, that propose a decomposition
of the dynamic optimization problem into two components (Liu et al., 2024; Shi et al., 2023).
Therefore, we separate the training phase into two stages: 1) the optimization of the intermediate path,
conditioning on the endpoints (x0, x1), and 2) the optimization of the parameterized drift, which
results in refining the coupling.
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3.2.1 DYNAMIC OBJECTIVE

The theorem below provides a general framework to recast the entropy regularized semi-supervised
O.T. problem in Eq. (8) in a dynamic setting, regardless of the selection for the guidance function G.
Theorem 3.2. Assume X0, X1 ∈ Rd, with X0 ∼ π0, and X1 ∼ π1, and consider a stochastic
random variable Xt connecting X0 and X1, whose law is the continuous marginal probability path
pt joining π0, and π1. Additionally consider the KP pairs {xn

0 , x
n
1}Nn=1 with their fixed interpolating

paths. Starting from the static semi-supervised guided entropic OT problem in Eq. (8), we derive the
following relaxed dynamic formulation.

min
pt,ut

∫
Rd×[0,1]

(1
2
∥ut∥2 + Ep0|t

[
|u⊺

t∇Gt,0|+
σ2

2
∆Gt,0

])
ptdxdt,

s.t.
∂pt
∂t

= −∇ · (utpt) +
σ2

2
∆pt, and p0 = π0, p1 = π1

(9)

Notice that our dynamic formulation is a modified and generalized version of Eq. (2) to capture
the guidance from the KP samples. For degenerate guidance term (G ≡ 0), one readily obtains the
standard entropic analogue of the fluid dynamic formulation (Benamou & Brenier, 2000; Gentil et al.,
2017) in Eq. (2) which also corresponds to the objective of SB objective (De Bortoli et al., 2021; Shi
et al., 2023).

3.2.2 INTERMEDIATE PATH OPTIMIZATION

As discussed above, the initial step of our methodology entails the optimization of the inter-
mediate path. Let the marginal be expressed as a mixture of conditional probability paths
pt =

∫
pt|0,1π0,1dx0dx1. More explicitly, we sample non-coupled pairs (x0, x1) and fix the coupling

at the boundaries π0,1. This results in relaxing the distributional constraints in Eq. (9) to just two
endpoints. The optimization of the intermediate path yields the optimal marginal conditioned on the
two endpoints pt|0,1, which crucially preserves the relative distance of KPs and uncoupled points
from the source distribution throughout the entire trajectory.
Proposition 3.3. Let the continuous marginal path pt satisfy the following decomposition pt =∫
pt|0,1π0,1dx0dx1. For optimizing with respect to the intermediate path, the coupling π0,1 is frozen

which results in Eq. (9) being recasted as

min
pt|0,1

∫
Rd×[0,1]

(
1

2
∥ut|0,1∥2+

∣∣u⊺
t|0,1∇G(Xt, x0)

∣∣+ σ2

2
∆G(Xt, x0) pt|0,1dxdt,

s.t.
∂pt|0,1

∂t
= −∇ · (pt|0,1ut) +

1

2
σ2∆pt|0,1, X0 = x0, X1 = x1

(10)

Importantly, the conditioning on the unpaired sample x0 acts as an anchor. Our guidance function
G groups the unpaired data into clusters around the KPs in the source distribution, and penalize the
deviation of the unpaired samples from the trajectory that their assigned keypoint sample follows,
preserving structural and distance information in the dynamic transport map. This forces unpaired
samples to preserve their relative distance from the closest KP sample in the source distribution at
each time-step.
Remark 3.4. Notice that in the extreme case in which the entire dataset is comprised of only pre-
aligned couples, G would be trivial, and Eq. (10) would retrieve the diffusion bridges between
optimal pairs, similarly to I2SB (Liu et al., 2023). Conversely, in the other extreme case, where the
KP set is the empty set, our algorithm retrieves DSBM.

Feedback Interestingly, in stochastic optimal control literature ((Theodorou et al., 2010)) it has
been reported that the inner product of the drift with the state cost acts as state feedback. Hence, the
term |∇G⊺

t|0ut|0,1| is interpreted as state-feedback that steers the non-coupled samples, by projecting
the conditioned drift on the gradient of Gt|0 Figure 3 illustrates the gradient field of the guidance
function, and how it pushes the optimal trajectory towards the path of the aligned data. Note that the
trajectories of the KP samples along with their coupling are assumed to be given and fixed for each
KP pair. Furthermore, the absolute value implies that the angle of projection is always acute, which
greatly improves stability during training.
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Figure 3: Gradient Field of ∇G in the S-tunnel

Intemediate Path Recall that we have relaxed the distributional constraints in Eq. (9) to just two
endpoints. We solve Eq. (10) for each pair (x0, x1) ∼ pθ0,1 and later marginalize to construct pt.
The conditioned probability path is approximated in a simulation-free manner as a Gaussian path
pt|0,1 ≈ N (It|0,1, σtId), where It|0,1 ≡ I(t, x0, x1) is the interpolant function between the pinned
endpoints I0 = x0, I1 = x1, and σ is the standard deviation with σ0 = σ1 = 0. This enables us to
compute a closed-form expression for the conditional drift (Särkkä & Solin, 2019; Albergo et al.,
2023).

ut|0,1 = ∂tIt|0,1+
(∂tσt

σt
− ν2

2σ2
t

)
(Xt − It) (11)

where ν is by definition of σt = ν
√
t(1− t). More details are left for Appendix B.1.

3.2.3 COUPLING OPTIMIZATION

Subsequently, we will match the parameterized drift uθ
t , given the prescribed path pt|0,1 from the

previous step, which will further improve the intermediate path in the next iteration. The more general
form of the Lagrangian in Eq. (10) prompts us to express the variational gap through the Bregman
divergence, following recent advancements in bridging optimality gaps for general Lagrangian costs
Neklyudov et al. (2023). However, before deriving the expression of the variational gap, we need the
convex conjugate of the Lagrangian in Eq. (10).
Proposition 3.5. The convex conjugate of the Lagrangian in Eq. (10) is defined as the Hamiltonian
H(xt, at, t) = suput|0,1

⟨ut|0,1, at⟩−L(xt, ut|0,1, t). The optimization with respect to the drift yields
ut|0,1 = at − g(a⊺t∇Gt|0)∇Gt|0, where ∇Gt|0 ≡ G(Xt, x0), and g(·) : R → R is given by

g(a⊺t∇Gt|0) =

{
a⊺
t ∇Gt|0

∥∇Gt|0∥2 if |a⊺t∇Gt|0| ≤ ∥∇Gt|0∥2

sgn(a⊺t∇Gt|0) else

Finally, we obtain the Hamiltonian associated with the Lagrangian in Eq. (10)

H(xt, at, t) =
1

2
||at − g(a⊺t∇Gt|0) · ∇Gt|0||2 −

σ2

2
∆G(Xt, x0) (12)

At this point, we introduce our Entropic Lagrangian Bridge Matching objective through the Bregman
divergence, using the Hamiltonian in Eq. (12).
Proposition 3.6. Consider the parameterized drift uθ

t , which we want to match given a pre-
scribed marginal path. We express the variational gap through the Bregman divergence: DL, H =
L(Xt, ut, t) +H(Xt, at, t)− ⟨at, ut⟩, which yields

min
θ

∫ 1

0

Ep0,1
Ept|0,1∥a

θ
t − u⋆

t|0,1 − g(a⊺t∇Gt|0) · ∇Gt|0∥2dt (13)

From Proposition 3.5, the parameterized drift can be expressed as uθ
t = aθt − g(a⊺t∇Gt|0) · ∇Gt|0.

Therefore, the matching objective of Eq. (13) can be rewritten as the objective in Eq. (5)

min
θ

∫ 1

0

Ept
||u⋆

t|0,1 − uθ
t ||2dt (14)

6
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Algorithm 1 Feedback Schrödinger Bridge Matching (FSBM)

1: Input: Boundary distributions π0, and π1 and the pairs from the key-point (KP) set {xn
0 , x

n
1 }Nn=1, and their

fixed trajectories
2: Initialize uθ

t , and π0,1 as independent coupling π0 ⊗ π1.
3: repeat
4: Sample x0, x1, Xtk by forward propagating using uθ

t , on time steps 0 < t1 < · · · < tK < 1
5: Find closest aligned sample xi

0 to x0, and calculate d(x0, x
i
0)

6: Using the same ith data point from the KP set, calculate d(Xtk , x
i
tk )

7: G(Xtk , x0) from Eq. (7)
8: Fix the x0, x1, and obtain p⋆t|0,1 using Eq. (10)
9: Calculate ut|0,1 from Eq. (11)

10: Update uθ
t , from Eq. (14)

11: until converges

3.3 TRAINING SCHEME

A summary of our training procedure is presented in Alg. 1. Our algorithm finds a solution (p⋆t , u
⋆
t )

to Eq. (9) by iteratively optimizing Eq. (10), and Eq. (14). First, we draw pairs (x0, x1), and fix
the parameterized coupling πθ

0,1. Subsequently, to compute the guidance function, let the ith data
point from the KPs set xi

0 ∈ K be closest to x0 in the source distribution, the distance d(x0, x
i
0)

between the two samples is evaluated. Next, for every sampled time-step tk, we compute the distance
d(Xtk , X

i
tk
) between Xtk , and Xi

tk
, and evaluate G(Xtk , x0). Then, optimizing Eq. (10), between

the sampled endpoints (x0, x1) from the first step, yields the optimal conditional path p⋆t|0,1 which
ensures that the uncoupled data follow the trajectory of the KPs. Lastly, we fix the marginal path
and optimize the coupling. More specifically, we match the parameterized drift uθ

t to u⋆
t|0,1 using Eq.

(14), given the prescribed marginal pt. The optimized parameterized drift uθ
t induces an improved

coupling πθ
0,1 by propagating the dynamics through the SDE in Eq. (6).

4 EXPERIMENTS

We demonstrate the efficacy of our FSBM in a variety of distribution matching tasks, such as Crowd
Navigation, Opinion Depolarization, and Unpaired Image Translation, compared against other state-
of-the-art distribution matching frameworks such as GSBM (Liu et al., 2024), DSBM (Shi et al.,
2023), and Light and Optimal Schrodinger Bridge Matching (LOSBM; Gushchin et al. (2024)).

4.1 CROWD NAVIGATION

We first showcase the efficacy of our FSBM in solving complex crowd navigation tasks and its
superior capability to generalize under a variety of initial conditions, listed as: i) Vanilla: initial
distribution is the same as the one the model was trained on, ii) Perturbed Mean: shift the mean of
Vanilla, iii) Perturbed STD: shift the standard deviation (STD) of Vanilla, iv) Uniform Distribution:
the initial distribution is defined as a uniform distribution. We compare our FSBM with the GSBM
framework (Liu et al., 2024). The aligned pairs used to guide the transport map were less than 4% of
the uncoupled pairs for both tasks. More details are left for Appendix C.1.

Table 1 shows that FSBM generated more accurately the targeted distribution in both tasks. Addition-
ally, Figure 4 depicts our FSBM consistently producing better trajectories, successfully avoiding the
obstacles under all initial conditions, and generating final distributions pθ1, that more closely match
the target distribution π1, also shown by the smaller values of the Wasserstein distance W2(p

θ
1, π1).

In contrast, under GSBM, several particles were observed to diverge completely in the S-tunnel task
under shifted initial conditions, causing the increase of the W2 distance. Additionally, notice that
the final distributions generated by GSBM (see navy blue particles in the upper row of Figure 4),
even for the samples that did not diverge, were substantially more inaccurate when compared to our
FSBM. Lastly, Fig. 5 illustrates that our FSBM required significantly less wall-clock time for training.
This is attributed to the faster convergence of FSBM with regards to the number of epochs, but also
due to GSBM requiring the computation of the entropy and congestion cost, which according to our
experiments has been shown to increase training duration significantly.
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Figure 4: Crowd Navigation comparison between GSBM and FSBM in the S-tunnel, and V-neck
under perturbed mean and uniform initial distribution, and in the V-neck under perturbed mean and
perturbed STD. The color of particles means: i) Yellow: initial conditions, ii) Green and Cyan:
intermediate trajectory, iii) Red: target distribution, iv) Navy Blue: generated distribution

Table 1: W2 distance between generated and ground truth
distributions for GSBM and FSBM in (Lower is better)

S-tunnel V-neck
GSBM FSBM GSBM FSBM

Vanilla 0.02 0.02 0.01 0.01

Perturbed
Mean 8.87e+5 0.67 0.68 0.34

Perturbed
STD 2.43e+10 0.34 3.03 0.11

Uniform
Distribution 6.65e+9 0.49 0.10 0.10

Figure 5: Training time percentage
comparison between GSBM and
FSBM in Crowd Navigation tasks

4.2 OPINION DYNAMICS

Subsequently, we consider high-dimensional opinion depolarization, where each particle possesses a
high-dimensional opinion Xt ∈ R100 that evolves through interaction with the other agents under
polarizing dynamics which tend to segregate them into two groups of diametrically opposing opinions
(see Figure 6: first row, second column). More information about the polarization base drift are left in
Appendix C.2. To mitigate the segregation, we apply our FSBM method employing the KPs samples
to guide the rest of the population to a more uniform opinion, closer to the target distribution (see
Figure 6: second row third column). We compare against DeepGSB and GSBM (Liu et al., 2022a;
2024), which employ state cost to mitigate polarizing dynamics. Lastly, it is worth noting that the size
of the KP set utilized for the opinion depolarization was approximately 2%, of the entire population.

The results shown demonstrate that the utilization of certain opinion leaders, that guide the overall
opinion of the population to depolarization renders our FSBM a highly efficient model to mitigate
opinion segregation. The metrics used to evaluate the proximity of the generated and target distribu-
tions (e.g. pθ1, π1 respectively) are the W2(p

θ
1, π1) distance and the KL divergence. Observation of

Table 2 and Figure 6 indicates that our FSBM retrieves a solution that is slightly closer to the targeted
distribution compared to GSBM, albeit needing half of the training time.
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Table 2: Comparison of W2(p
θ
1, π1) distance and KL

divergence between target and generated distribution
in High Dimensional (X ∈ R100) Opinion Dynamics
among Deep GSB, GSBM and FSBM (ours) (Lower is
better in all metrics)

Optimizer
Time

(hours:min)
W2

Distance
KL

divergence

DeepGSB 4:37 58.16 0.096

GSBM 5:29 43.41 0.034
FSBM 2:43 42.91 0.034

Figure 6: Opinion depolarization from
our FSBM and GSBM, and DeepGSB

4.3 IMAGE TRANSLATION

Finally, we present the results of our FSBM in two types of image translations: i) Gender translation, ii)
Age translation. We follow the setup of (Korotin et al., 2023) with the pre-trained ALAE autoencoder
(Pidhorskyi et al., 2020) on the 1024 ×1024 FFHQ dataset (Karras et al., 2019) to perform the
translation in the latent space of dimensions 512× 1, enabling more efficient training and sampling.
Notably, the number of aligned images was 4% of the total dataset for the gender translation and 8%
for the age translation. Our method is compared with other state-of-the-art matching frameworks,
such as DSBM (Shi et al., 2023) and Light and Optimal SBM (LOSBM)(Gushchin et al., 2024).
Additional details are left for Appendix C.3.

Table 3: FID values in 4 translation tasks for DSBM,
LOSBM, and our FSBM (Lower is better)

Optimizer
Man to
Woman

Woman
to Man

Old to
Young

Young
to Old

DSBM 15.90 17.02 16.83 17.76

LOSBM 18.89 17.24 17.89 19.32

FSBM 14.78 16.12 15.52 17.14
Figure 7: Translation comparison be-
tween our FSBM, LOSBM and DSBM

Table 3 shows that our FSBM consistently achieves lower FID value, than the other methods.
Additionally, it is demonstrated that our FSBM recovers better couplings through the qualitative
comparison in Figure 7 and quantitatively through the LPIPS values in Table 5. We can see that DSBM
and FSBM return very close LPIPS values, along with very similar images, which suggests that the
two methods converge to close solutions. Conversely, the translations of LOSBM in the validation set
were losing some of the features of the input image. Figure 8 presents additional examples of the
couplings obtained from our FSBM. Our FSBM demonstrates highly accurate translations preserving
key features identical, such as smile, accessories, angle of the face, and background color. Notably,
Table 4 demonstrates that FSBM required only an additional 180 MB of VRAM compared to DSBM,
to manage the aligned latent vectors, which is tractable for most modern GPUS, while training DSBM
and FSBM for the same number of epochs requires virtually identical training duration.

4.4 LIMITIONS AND DISCUSSIONS

Our FSBM has demonstrated remarkable results in leveraging partially aligned datasets for distribution
matching. However, our framworks relies heavily on the availability and the quality of the available
KP pairs. The manner in which we sample from solution of the static SB does not ensure that all
modes are equally and satisfactorily represented. This implies that in cases where a minimal number

9
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Figure 8: Image Translations using our FSBM

Table 4: Epoch duration and memory
usage (GB) of different stages in Alg. 1,
measured on the age translation task

Epoch Time
(hours:min)

Memory
(GB)

Guidance
(lines 5-8) 00:01 0.18

Matching
(lines 9-11) 02:56 1.51

Table 5: LPIPS values in 4 translation tasks for DSBM,
LOSBM, and our FSBM (Lower is better)

Optimizer
Man to
Woman

Woman
to Man

Old to
Young

Young
to Old

DSBM 0.47 0.48 0.53 0.49

LOSBM 0.70 0.69 0.71 0.70

FSBM 0.44 0.43 0.48 0.47

of these pairs are available, the regions of attraction formed around these may not sufficiently cover
the diversity of the source distribution. This could lead to wrongful guidance, suboptimal matching
and poor generalizabilty.
In future work, we have identified several directions which could improve our work even further. For
instance, we aim to devise a more intricate mechanism to sample from the solution of the static SB,
while guaranteeing that all modes in highly diverse datasets are covered and represented through the
sampled KPs. Additionally, we aim to further explore the capabilities of the guidance function and
devise more task-specific function which furhter improve perfomance generalizability by optimizing
the information offered by the KP samples. Additionally, we intend to improve the way we impose
guidance, by allowing the aligned pairs to preserve the relative distance to k-nearest neighboring KPs,
instead of simply the nearest one.

5 CONCLUSION

In this work, we developed FSBM, a novel matching algorithm capable of using the information
from pre-aligned data pairs, to guide the transport mapping of samples from the source to the target
distribution. We demonstrated our algorithm’s enhanced generalizability and reduced training over
prior methods through extensive experimentation. In future work, we wish to delve deeper into the
effect of the KP samples on the matching procedure, along with using more intricate and task-specific
guidance functions for further improvements. In summary, our work paves new ways for training
diffusion models with partially aligned data.
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A APPENDIX

A.1 PROOF OF THEOREM 3.2

Assume X0, X1 ∈ Rd, with X0 ∼ π0, and X1 ∼ π1, and consider a stochastic random variable Xt

connecting X0 and X1, whose law is the continuous marginal probability path pt joining π0, and π1.
Starting from the static semi-supervised guided entropic OT problem in Eq. (8), we modify it
appropriately and obtain the following relaxed dynamic formulation.

min
pt,ut

∫
Rd×[0,1]

(1
2
∥ut∥2 + Ep0|t

[
|u⊺

tGt,0|+
σ2

2
∆Gt,0

])
ptdxdt,

s.t.
∂pt
∂t

= −∇ · (utpt) +
σ2

2
∆pt, and p0 = π0, p1 = π1

(15)

Before the proof, we provide a sketch of the proof overviewing the key steps towards the derivation
of our dynamic formulation.
Sketch of Proof. Let π0, π1 be the two given boundary laws, recall the static formulation:
minπ

∫
∥X0 − X1∥2 + G(X0, X1) + ϵKL(π0,1|π0 ⊗ π1). The first step of our analysis is a re-

arrangement of the terms of the static semi-superivsed EOT problem in Eq. (8). This rearrangement
allows us to rewrite the modified EOT as a regularized static Schrodinger Bridge problem.

min
π

KL(π0,1|πQ
0,1) +

∫
G(X0, X1)π0,1dx0dx1

Starting from the EOT problem, from t0 = 0 and tN = 1, we can consider any intermediate point t1
and find the optimal paths p⋆1, p⋆2 between the endpoints in the two newly formed subproblems (i.e.,
from t0 to t1, and t1 to tN ). The union of the optimal subpaths forms the optimal policy of the initial
problem, and the converse is also true Villani et al. (2009). This can be extended for any number of
intermediate points, leading us to to consider ‘local’ versions of optimal transport problems between
infinitesimally close distributions Villani et al. (2009). Therefore, in the next step, we express the
guidance constraint EOT problem as a sequence of local EOT problems.

min
pt

min
Xt

N−1∑
i=0

KL(pti→i+1
|qi→i+1) + Ept

N−1∑
i=0

G(Xti , Xti+1
)

Subsequently, we rewrite the G : Rd × Rd → R function between Xti and Xti+1 , and as a sum of
telescopic series with constant reference point X0 from the source distribution. This induces the
difference G(Xti+1 , X0)−G(Xti , X0). Although, this term is positive at the optimal path, in order
to ensure positivity of this term throughout the optimization process, we upper bound it with its
absolute value.

min
pt,Xt

N−1∑
i=0

∣∣∣Epti,i+1,0
G(Xti , X0)−G(Xti+1

, X0)
∣∣∣+ N−1∑

i=0

KL(pti→i+1
|qi→i+1)

Finally, we apply the Girsanov theorem in the KL divergence and Ito’s Lemma in the difference
G(Xti+1 , X0)−G(Xti , X0) introduced in step 3, where the stochastic terms are dropped assuming
zero mean Wiener noise.

Assuming now that the number of intermediate steps N → ∞, this yields our continuous dynamic
formulation

min
pt|0,1

∫
Ept

[1
2
∥ut|0,1∥2+

[
|u⊺

t|0,1∇Gt|0|+
σ2

2
∆Gt|0

]]
, s.t.

∂pt|0,1

∂t
= −∇·(ut|0,1pt|0,1)+

σ2

2
∆pt|0,1
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Proof. First, let c(X0, X1) be the cost from the static optimal transport expression, and let π0, π1 be
the two given boundary laws. Recall the static formulation: minπ

∫
∥X0 −X1∥2 + G(X0, X1) +

ϵKL(π0,1|π0 ⊗ π1). Our objective is to derive a dynamic formulation for the static EOT problem
with the cost function c(X0, X1) = ||X0 − X1||2 + G(X0, X1). We can rewrite the divergence
KL(π0,1|π0 ⊗ π1), and the quadratic cost ∥X0 −X1∥2, as KL(π0,1|πQ

0,1) assuming a gaussian prior
measure Q (Nutz, 2021). More specifically, it holds that log πQ

0,1 ∝ ∥X0 −X1∥2/ϵ, hence πQ ∝
e∥X0−X1∥2/ϵ. We rewrite the objective in Eq. (16), as KL(π0,1|πQ

0,1) +
∫
G(x0, x1)π0,1dx0dx1.

Therefore, the static objective can be rewritten as

min
π

KL(π0,1|πQ
0,1) +

∫
G(X0, X1)π0,1dx0dx1 (16)

In this work, our focal point is the derivation of a dynamic expression for the semi-supervised
regularized cost function in 8. Through the prism of entropic interpolation Gentil et al. (2017), the
solution of dynamical OT formulations correspond to solving ‘local’ versions of optimal transport
problems between infinitesimally close distributions Villani et al. (2009). Let a stochastic random
variable path (Xt)0≤t≤1 joining X0 ∼ π0 to X1 ∼ π1, namely Xt is an interpolation from X0 to X1.
This random variable is assumed to be the solution of the following SDE

dXt = utdt+ σdWt (17)

Equivalent we can consider a marginal density induced by Eq.17 (pt)0≤t≤1 which joins π0, and π1

Villani et al. (2009) admits the Fokker Plank Equation (FPE):

∂pt
∂t

= −∇ · (utpt) +
1

2
σ2∆pt (18)

Now, application of [Villani et al. (2009), Theorem 7.21] suggests that if we consider pt be the
solution to the infimum above, namely a minimizing curve. The endpoints of the random curve Xt,
whose law admits an optimal transference plan, are an optimal coupling (Xti , Xti+1

). Then from the
definition of the optimal cost and the minimizing property of the Xt

min
pt

min
Xt

N−1∑
i=0

KL(pti→i+1
|qi→i+1) + Ept

N−1∑
i=0

G(Xti , Xti+1
) (19)

for with p0 = π0, and pN = πN . It generally holds Ept
c(xi, xi+1) ≥ Ept

c(x0, xi+1)−Ept
c(x0, xi),

with the equality being true for the minimizing path. Therefore, we can say that

min
pt

min
Xt

Ept
c(Xi, Xi+1) = min

pt

min
Xt

Ept
c(X0, Xi+1)− Ept

c(X0, Xi) (20)

This yields the modified version of the dynamic analogue

min
pt

min
Xt

N−1∑
i=0

KL(pt0,i+1 |q0,i+1)−KL(pt0,i |q0,i)

+

N−1∑
i=0

Epti+1,0 [G(Xti+1 , X0)]− Epti,0
[G(Xti , X0)]

(21)

However, note that KL(pt0,i+1 |q0,i+1)−KL(pt0,i |q0,i) ≤ KL(pti→i+1 |qi→i+1). Subsequently, note
for any coupling between pti , and pti+1

, it holds that

Epti+1,0
[c(Xti+1

, X0)]− Epti,0
[c(Xti , X0)] ≤ Epti→i+1,0

[c(Xti , X0)− c(Xti+1
, X0)]

Finally, in order to ensure positivity of the difference G(Xti , X0)−G(Xti+1
, X0), we upper bound

with its absolute value, and finally obtain the relaxed dynamic objective, which admits the following
formulation

min
pt,Xt

N−1∑
i=0

∣∣∣Epti,i+1,0
G(Xti , X0)−G(Xti+1

, X0)
∣∣∣+ N−1∑

i=0

KL(pti→i+1
|qi→i+1) (22)
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For the first term, assuming the Markovian property of the base measure, we apply the Girsanov
theorem in the infinitesimally small time-step i → i+ 1:

KL(pi,i+1|qi,i+1) =

∫ ti+1

ti

∥uti∥2dt = ∥uti∥2∆ti (23)

For the second term, we have∣∣∣Epti→i+1,0
[G(Xti+1

, X0)−G(Xti , X0)]
∣∣∣

For discretized random variable Xti obeying the following discretized SDE: Xti+1
= Xti +uti∆ti+

σti∆Wti , application of the discrete version of the Ito’s Lemma yields
N−1∑
i=0

∣∣∣Epti→i+1,0
[(
∂Gti

∂t
+ u⊺

t∇Gti +
1

2
σ2
tiTr(∇

2Gti))∆ti + (σti∇Gti)∆Wti ]
∣∣∣ (24)

It holds that ∂Gti

∂ti
= 0, since G does not explicitly depend on t, and also assume that the Wiener

process increment has zero expectation, hence the equation above is rewritten as
N−1∑
i=0

∣∣∣E[(u⊺
t∇Gti +

1

2
σ2
tiTr(∇

2Gti))∆ti]
∣∣∣ (25)

Now, we make use of the fact that |E[f(x)]| ≤ E[|f(x)|], to take the expectation out of the absolute
value.

N−1∑
i=0

∣∣∣∣E[u⊺
t∇G+

σ2

2
Tr(∇2Gti)))∆t

]∣∣∣∣ ≤ N−1∑
i=0

E
[∣∣(u⊺

t∇G+
σ2

2
Tr(∇2Gti)))

∣∣∆t
]

≤
N−1∑
i=0

E
[
(
∣∣u⊺

t∇G
∣∣+∣∣σ2

2
Tr(∇2Gti))∆t

] (26)

Note that G is convex, i.e., σ2

2 Tr(∇2G) ≥ 0, thus we conclude that the expression in Eq. (33) is
upper bound by

Epti→i+1,0

N−1∑
i=0

G(Xti , Xti+1
) ≤

N−1∑
i=0

Epti→i+1,0

[(
|u⊺

t∇G|+ σ2

2
Tr(∇2Gti)

)
∆t

]
(27)

Finally, let us substitute back in the expression above the function G, and consider the continuous
analogue of Eq. (23) and 27

min
pt

min
ut

∫ 1

0

Ept
[∥ut∥2] + Ept,0

[(
|u⊺

t∇Gt,0|+
σ2

2
∆Gt,0

)]
dt (28)

where Gt,0 = G(Xt, X0). Finally, we conclude the relaxed dynamic formulation is given by

min
pt

min
ut

∫ 1

0

Ept

[1
2
∥ut∥2 + Ep0|t

[
|u⊺

t∇Gt,0|+
σ2

2
∆Gt,0

]]
dt (29)

subjected to the FPE: ∂pt

∂t = −∇ · (utpt) +
1
2σ

2∆pt, and under the boundary constraints: p0 = π0,
and p1 = π1.

A.2 PROOF OF PROPOSITION 3.3

Let the continuous marginal path pt satisfy the following decomposition pt =
∫
pt|0,1π0,1dx0dx1. For

optimization with respect to the intermediate path, we freeze the joint distribution at the boundaries
π0,1, which results in Eq. (9) being recasted as

min
pt|0,1

∫ 1

0

∫
Rd

(
1

2
∥ut|0,1∥2+

∣∣u⊺
t|0,1∇G(Xt, x0)

∣∣+ σ2

2
∆G(Xt, x0) pt|0,1dxdt,

s.t.
∂pt|0,1

∂t
= −∇ · (pt|0,1ut) +

1

2
σ2∆pt|0,1

(30)
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Proof. Initially, let us deal with the dynamic objective in Eq. (29)

min
pt

min
ut

∫ 1

0

Ept

[1
2
∥u∥2 + Ep0|t

[
|u⊺

t∇Gt,0|+
σ2

2
∆Gt,0

]]
dt (31)

The marginal is constructed as a mixture of conditional probability paths pt =
∫
pt|0,1π0,1dx0dx1.

Now, we sample pairs of x0, x1, and fix the couplings. This is equivalent to fixing the vector, which
induces the couplings. Consequently, fixing the coupling results in recasting Eq. (29) as

min
pt|0,1

∫
Ept

[1
2
∥ut|0,1∥2+

[
|u⊺

t|0,1∇Gt|0|+
σ2

2
∆Gt|0

]]
dt (32)

where ut|0,1 is used to emphasize the drift that corresponds to the conditional probability path,
Gt|0 ≡ G(Xt, x0). Additionally, notice that by fixing the coupling, the expectation Ep0|t is dropped.

min
pt

min
Xt

Epti|0,1

N∑
i=0

G(Xti , Xti+1
) (33)

Now, we want to prove that the conditional path preserves the marginal. Our process to show that is
to isolate from every term in the Fokker Plank the joint distribution π0,1, and preserve the Fokker
Plank formulation after freezing the coupling.

• ∂pt

∂t = ∂
∂t

∫
pt|0,1π0,1dx0dx1 =

∫ ∂pt|0,1
∂t π0,1dx0dx1 = Eπ0,1

[
∂pt|0,1

∂t ]

• ∇ · (ut|0,1pt) = ∇ · (ut|0,1
∫
pt|0,1π0,1dx0dx1) =

∫
∇ · (ut|0,1pt|0,1)π0,1dx0dx1 =

Eπ0,1
[∇ · (ut|0,1pt|0,1)]

• ∆pt = ∇ ·∇pt = ∇ ·∇
∫
pt|0,1π0,1dx0dx1 =

∫
∇ ·∇pt|0,1π0,1dx0dx1 = Eπ0,1 [∆pt|0,1]

where in every term we used Fubini’s Theorem, to change the order between the integral from the
definition of the marginal and the differentations from the FPE. Therefore, we can conclude that by
freezing the coupling the Eq. (29) is recasted as

min
pt|0,1

∫
Ept

[1
2
∥ut|0,1∥2+

[
|u⊺

t|0,1∇Gt|0|+
σ2

2
∆Gt|0

]]
,

s.t.
∂pt|0,1

∂t
= −∇ · (ut|0,1pt|0,1) +

σ2

2
∆pt|0,1

(34)

A.3 PROOF OF PROPOSITION 3.5

The convex conjugate of the Lagrangian in Eq. (10) is defined as the Hamiltonian H(xt, at, t) =
suput|0,1

⟨ut|0,1, at⟩ −L(xt, ut|0,1, t). The optimization with respect to the drift ut|0,1 yields ut|0,1 =

at − g(a⊺t∇Gt|0)∇Gt|0, where ∇Gt|0 ≡ G(Xt, x0), and

g(a⊺t∇Gt|0) =

{
a⊺
t ∇Gt|0

∥∇Gt|0∥2 if |a⊺t∇Gt|0| ≤ ∥∇Gt|0∥2

sgn(a⊺t∇Gt|0) else

Finally, we obtain the Hamiltonian associated with the Lagrangian in Eq. (10)

H(xt, at, t) =
1

2
||at − g(a⊺t∇Gt|0) · ∇Gt|0||2 −

σ2

2
∆G(Xt, x0) (35)

Proof. We begin with the definition of the Hamiltonian, dependent on the gradient field at.

H(xt, at, t) = sup
ut|0,1

⟨ut|0,1, at⟩ − L(xt, ut|0,1, t) (36)
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A more detailed analysis on the gradient field is given in Neklyudov et al. (2023). Given the convexity
of Eq. (10), we compute the Hamiltonian through the subgradient of the absolute value ∂(|u⊺

t∇G|).
Optimizing with respect to the conditioned drift ut|0,1 yields the following

0 = at − (ut + ∂(u⊺
t∇Gt)(∇Gt)) ⇒ u⋆

t|0,1 = at − ∂(u⊺
t∇Gt) · (∇Gt) (37)

where ∂(·) denotes the subgradient. Note that
u⊺
t∇Gt > 0 : ut = at − (∇Gt) ⇒ (at − (∇Gt))

⊺∇Gt ≥ 0 ⇒ a⊺t∇Gt ≥ ∥∇Gt∥2 ≥ 0

u⊺
t∇Gt < 0 : ut = at + (∇Gt) ⇒ (at + (∇Gt))

⊺∇Gt ≤ 0 ⇒ a⊺t∇Gt ≤ −∥∇Gt∥2 ≤ 0

u⊺
t∇Gt = 0 : ∂(u⊺

t∇Gt) = [−1, 1], from which we infer a⊺t∇Gt = α∥∇Gt∥2, for α ∈ [−1, 1].

This essentially means that the inner products u⊺
t∇Gt, and a⊺t∇Gt share the same sign, namely

sgn(u⊺
t∇Gt) = sgn(a⊺t∇Gt), when u⊺

t∇Gt ̸= 0, otherwise a⊺t∇Gt = α∥∇Gt∥2.{
∂(u⊺

t∇Gt) = sgn(a⊺t∇Gt), for |a⊺t∇Gt| ≥ ∥∇Gt∥2

∂(u⊺
t∇Gt) =

a⊺
t ∇Gt

∇∥Gt∥2 , for |a⊺t∇Gt| ≤ ∥∇Gt∥2

We define function g : R → R, to be equal to:

g(a⊺t∇Gt) =

{
sgn(a⊺t∇Gt), for |a⊺t∇Gt| ≥ ∥∇Gt∥2
a⊺
t ∇Gt

∇∥Gt∥2 , for |a⊺t∇Gt| ≤ ∥∇Gt∥2

and substitute it in Eq. (36), which yields an expression for ut as a function of the gradient field

ut|0,1 = at − g(a⊺t∇Gt) · ∇Gt (38)

Now, we will provide an expression for the Hamiltonian dependent only on the gradient field at and
the feedback term ∇Gt(Xt, x0).

H(xt, at, t) = ⟨at − gt∇Gt, at⟩ −
(
1

2
∥at − gt∇Gt∥2 − ⟨at − gt∇Gt,∇Gt⟩

)
− σ2

2
∆Gt (39)

Therefore, we conclude that the Hamiltonian can be expressed as:

H(xt, at, t) =
1

2
||at − g(a⊺t∇Gt) · ∇Gt||2 −

σ2

2
∆Gt (40)

A.4 PROOF OF PROPOSITION 3.6

Given the optimal conditional drift u⋆
t|0,1, we match the parameterized drift uθ

t , by minimizing the
optimality gap given by our Entropic Lagrangian Bridge Matching objective as

min
θ

∫ 1

0

Ep0,1
Ept|0,1∥a

θ
t − u⋆

t|0,1 − g(a⊺t∇Gt) · ∇Gt|0∥2dt (41)

From Proposition 3.5, we find that the parameterized drift can be expressed as uθ
t = aθt −g(a⊺t∇Gt) ·

∇Gt|0. Therefore, the matching objective of Eq. (13) can be rewritten as follows

min
θ

∫ 1

0

Ept
||u⋆

t|0,1 − uθ
t ||2dt (42)

Proof. Given the prescribed path, we seek to learn a parameterized drift field that matches the optimal
conditioned paths, acquired from the previous step, which minimized the Lagrangian ??. Following
advancements in matching frameworks, we extend the notion of bridging the variational gap for an
entropy regularized optimal transport problem with general langriangian cost. We will first prove the
following proposition which shows that we can express the variational gap that we need to bridge is
expressed through the Bregman divergence.
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Proposition A.1. For a Lagrangian function L(Xt, ut, t), the convex conjugate is given by the
Hamiltonian: H(xt, at, t) = sup⟨at, ut⟩ − L(xt, ut, t), dependent on the gradient field at. The
variational gap between the optimal drift and the parameterized gradient field is expressed as the
following Bregman divergence.

Lθ − L⋆ =

∫ 1

0

∫
Rd

DL,H [at : u
⋆
t|0,1]pt|0,1dxdt (43)

Proof. Starting from a general minimization problem for a Lagrangian strictly convex with ut

min
ut|0,1

∫ 1

0

∫
Rd

L(xt, ut|0,1, t)pt|0,1dxdt, subj.:
∂pt|0,1

∂t
= −∇·(pt|0,1ut|0,1)+

1

2
σ2∆pt|0,1, and p0 = x0, p1 = x1

(44)
and expressing it as a Lagrange optimization problem yields, with st is the Lagrange multiplier
enforcing the Fokker Plank equation constraint

L(θ) = min
ut|0,1

∫ 1

0

∫
Rd

L(xt, ut|0,1, t)pt|0,1dxdt, subj.:
∂pt|0,1

∂t
= −∇ · (pt|0,1ut|0,1) +

1

2
σ2∆pt|0,1

= sup
st

min
ut|0,1

∫ 1

0

∫
Rd

L(xt, ut|0,1, t)pt|0,1dxdt+

∫ 1

0

∫
Rd

st(
∂pt|0,1

∂t
+∇ · (pt|0,1ut|0,1)−

1

2
σ2∆pt|0,1)dxdt

= sup
st

min
ut|0,1

∫ 1

0

∫
Rd

L(xt, ut|0,1, t)pt|0,1dxdt︸ ︷︷ ︸
I1

+

∫ 1

0

∫
Rd

st
∂pt|0,1

∂t
dxdt︸ ︷︷ ︸

I2

+

∫ 1

0

∫
Rd

st∇ · (pt|0,1ut|0,1)dxdt︸ ︷︷ ︸
I3

−
∫ 1

0

∫
Rd

st
2
σ2∆pt|0,1dxdt︸ ︷︷ ︸
I4

(45)

We separate each one of the integrals and perfrom integration by parts

• I2 =
∫ 1

0

∫
Rd st

∂pt|0,1
∂t dxdt = [stpt|0,1]

1
0 −

∫ 1

0

∫
Rd pt|0,1

∂st
∂t dxdt

• I3 =
∫ 1

0

∫
Rd st∇ · (pt|0,1ut|0,1)dxdt = −

∫ 1

0

∫
Rd⟨∇st, u⟩pt|0,1dtdx +

σ2

2

∫ 1

0

∮
st⟨∇pt|0,1, dn⟩dt

• I4 =
∮
st⟨∇pt|0,1, dn⟩dt −

∫ 1

0

∫
Rd st∆pt|0,1dtdx =

∫ 1

0

∫
Rd⟨∇st,∇pt|0,1⟩dx =

−
∫ 1

0

∫
Rd ∆st pt|0,1dx+ σ2

2

∮
st⟨pt|0,1, dn⟩

Substituting them back to Eq. (45), we obtain

L =sup
st

min
ut|0,1

∫ 1

0

∫
Rd

(L(xt, ut|0,1, t)−
∂st
∂t

− ⟨∇st, u⟩ −∆st) pt|0,1dxdt− Ep0 [x0] + Ep1 [x1]

+
σ2

2

∫ ∮
st⟨pt|0,1, dn⟩

=sup
st

∫ 1

0

∫
Rd

(−H(xt,∇st, t)−
∂st
∂t

−∆st) pt|0,1dxdt− Ep0
[x0] + Ep1

[x1] +
σ2

2

∫ ∮
st⟨pt|0,1, dn⟩

=min
st

∫ 1

0

∫
Rd

(H(xt,∇st, t) +
∂st
∂t

+∆st) pt|0,1dxdt+ Ep0
[x0]− Ep1

[x1]−
σ2

2

∫ ∮
st⟨pt|0,1, dn⟩

(46)

where, the second equation stems from defining the Hamiltonian of the Lagrangian L(xt, ut, t) with
respect to the Lagrange multiplier st as: H(xt,∇st, t) = sup⟨ut,∇st⟩−L(xt, ut, t). Now, consider
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the optimality gap between a parameterized gradient field, and an optimal gradient field s⋆t , which
corresponds to a loss function L⋆. We compute the optimality gap as

Lθ − L⋆ =

∫ 1

0

∫
Rd

(H(xt,∇st, t) +
∂st
∂t

+∆st) pt|0,1dxdt+ Ep0 [x0]− Ep1 [x1]−
σ2

2

∫ ∮
st⟨pt|0,1, dn⟩

−
∫ 1

0

∫
Rd

(H(xt,∇s⋆t , t) +
∂s⋆t
∂t

+∆s⋆t ) pt|0,1dxdt+ Ep0
[x0]− Ep1

[x1]−
σ2

2

∫ ∮
s⋆t ⟨pt|0,1, dn⟩

=

∫ 1

0

∫
Rd

(H(xt,∇st, t)−H(xt,∇s⋆t , t))pt|0,1dxdt+

∫ 1

0

∫
Rd

∂st
∂t

pt|0,1dxdt+ Ep0
[x0]− Ep1

[x1]︸ ︷︷ ︸
−

∫ 1
0

∫
Rd

∂pt|0,1
∂t stdxdt

−
∫ 1

0

∫
Rd

∂s⋆t
∂t

pt|0,1dxdt+ Ep0
[x0]− Ep1

[x1]︸ ︷︷ ︸∫ 1
0

∫
Rd

∂pt|0,1
∂t s⋆t dxdt

+

∫ 1

0

∫
Rd

∆stpt|0,1dxdt−
σ2

2

∫ ∮
st⟨pt|0,1, dn⟩︸ ︷︷ ︸∫ 1

0

∫
Rd ∆pt|0,1stdxdt

−
∫ 1

0

∫
Rd

∆s⋆t pt|0,1dxdt−
σ2

2

∫ ∮
st⟨pt|0,1, dn⟩︸ ︷︷ ︸∫ 1

0

∫
Rd ∆pt|0,1s

⋆
t dxdt

=

∫ 1

0

∫
Rd

(H(xt,∇st, t)−H(xt,∇s⋆t , t))pt|0,1dxdt+

∫ 1

0

∫
Rd

(st − s⋆t )(−
∂pt|0,1

∂t
+∆pt|0,1)dxdt

=

∫ 1

0

∫
Rd

(H(xt,∇st, t)−H(xt,∇s⋆t , t))pt|0,1dxdt+

∫ 1

0

∫
Rd

(st − s⋆t )(∇ · (pt|0,1u⋆
t|0,1))dxdt

=

∫ 1

0

∫
Rd

(H(xt,∇st, t)−H(xt,∇s⋆t , t))− ⟨∇(st − s⋆t ), u
⋆
t|0,1⟩pt|0,1dxdt

(47)

At this point, we define the gradient field function at(Xt) : Rd → Rd, which is equal to ∇st = at,
which finally yields

Lθ − L⋆ =

∫ 1

0

∫
Rd

H(xt, at, t) + L(xt, u
⋆
t|0,1, t))− ⟨at, u⋆

t|0,1⟩pt|0,1dxdt

=

∫ 1

0

∫
Rd

DL,H [at : u
⋆
t|0,1]pt|0,1dxdt

(48)

where the first equality stems from L(x, u⋆
t|0,1, t) = supat

⟨at, ut|0,1⟩ − H(x, at, t), and the last
equality is the definition of the Bregman divergence, finishing the proof of the proposition.

Therefore, to minimize the optimality gap, we sample sufficiently many uncoupled pairs (x0, x1),
and parameterize the gradient field at → aθt , and try to match the parameterized gradient field on
the optimized drift u⋆

t . We express our matching objective an expectation over the sampled pairs of
optimality gap derived from the previous proposition

min
θ

Eπ0,1
[Lθ − L⋆] = min

θ
Eπ0,1

[ ∫ 1

0

∫
Rd

H(xt, a
θ
t , t) + L(xt, u

⋆
t|0,1, t)− ⟨aθt , u⋆

t ⟩pt|0,1dxdt
]

(49)

Substituting for the expressions we have for the functions L, and H , we obtain

Eπ0,1
[Lθ − L⋆] =

∫ 1

0

∫
Rd

(1
2
||aθt − gt · ∇Gt||2 −

σ2

2
∆Gt

+
1

2
∥u⋆

t|0,1∥
2 + |u⋆

t|0,1
⊺∇Gt|+

σ2

2
∆Gt − ⟨aθt , u⋆

t|0,1⟩
)
pt|0,1π0,1dxdt

(50)
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At this point, we take cases for the different values of gt. First: sgn(a⊺t∇Gt) = sgn(u⋆,⊺
t ∇Gt) > 0,

and g(a⊺t∇Gt) = 1:

Eπ0,1
[Lθ − L⋆] =

∫ 1

0

∫
Rd

(
1

2
||aθt −∇Gt||2 +

1

2
∥u⋆

t|0,1∥
2 + u⋆

t|0,1
⊺∇Gt − ⟨aθt , u⋆

t|0,1⟩)ptdxdt

=

∫ 1

0

∫
Rd

(
1

2
||aθt −∇Gt||2 +

1

2
∥u⋆

t|0,1∥
2 − ⟨u⋆

t|0,1, a
θ
t −∇Gt⟩)ptdxdt

=

∫ 1

0

∫
Rd

(
1

2
∥aθt −∇Gt − u⋆

t|0,1∥
2)ptdxdt

(51)

Second: sgn(at∇Gt) = sgn(u⋆
t∇Gt) < 0, and g(a⊺t∇Gt) = −1:

Eπ0,1
[Lθ − L⋆] =

∫ 1

0

∫
Rd

(
1

2
||aθt +∇Gt||2 +

1

2
∥u⋆

t|0,1∥
2 − u⋆

t|0,1
⊺∇Gt − ⟨aθt , u⋆

t|0,1⟩)ptdxdt

=

∫ 1

0

∫
Rd

(
1

2
||aθt +∇Gt||2 +

1

2
∥u⋆

t|0,1∥
2 − ⟨u⋆

t|0,1, a
θ
t +∇Gt⟩)ptdxdt

=

∫ 1

0

∫
Rd

(
1

2
∥aθt +∇Gt − u⋆

t|0,1∥
2)ptdxdt

(52)

Third: (u⋆
t∇Gt) = 0, , and g(a⊺t∇Gt) = λ , with λ ∈ [−1, 1]:

Eπ0,1
[Lθ − L⋆] =

∫ 1

0

∫
Rd

(
1

2
||aθt − λ∇Gt||2 +

1

2
∥u⋆

t|0,1∥
2 − ⟨aθt , u⋆

t|0,1⟩)ptdxdt

=

∫ 1

0

∫
Rd

(
1

2
||aθt − λ∇Gt||2 +

1

2
∥u⋆

t|0,1∥
2 + λu⋆

t|0,1
⊺∇Gt − ⟨aθt , u⋆

t|0,1⟩)ptdxdt

=

∫ 1

0

∫
Rd

(
1

2
||aθt −∇Gt||2 +

1

2
∥u⋆

t|0,1∥
2 − ⟨u⋆

t|0,1, a
θ
t + λ∇Gt⟩)ptdxdt

=

∫ 1

0

∫
Rd

(
1

2
∥aθt − λ∇Gt − u⋆

t|0,1|
2)ptdxdt

(53)

where the second equality comes from the fact that we added the quantity λu⋆
t|0,1∇Gt = 0. Finally,

we can succinctly express the optimality gap combining Eq. (51), and 52:

min
θ

Eπ0,1
[Lθ − L⋆] = min

θ

∫ 1

0

∫
Rd

(
1

2
∥aθt − g(aθt ,∇Gt)∇Gt − u⋆

t|0,1∥
2)ptdxdt (54)

But notice that by the definition of uθ
t in Eq. (38), we have uθ

t = aθt − g(aθt ,∇Gt|0)∇Gt|0 , hence
the minimization problem of the variational gap in Eq. (54) is expressed as

min
θ

∫ 1

0

∫
Rd

1

2
||u⋆

t|0,1 − uθ
t ||2ptdxdt (55)

B DISCUSSIONS

B.1 GAUSSIAN PATH APPROXIMATION

Finally, following recent advancements in matching frameworks (Liu et al., 2024; Albergo et al.,
2023), the conditioned probability path is approximated in a simulation-free manner, as a Gaussian
path

pt|0,1 ≈ N (It|0,1, σtId) (56)
, where the process is given from

Xt = It|0,1 + σtZ
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Algorithm 2 Spline Optimization

1: Input: x0, x1, {Xtk} where 0<t1< · · ·<tK<1, and the pairs from the key-point (KP) set {xn
0 , x

n
1 }Nn=1,

and obtain their trajectories.
2: Initialize It, σt

3: repeat
4: Sample Xt ∼ N (It, σ

2
t Id)

5: Evaluate the objective G(Xt, x0) using the KP pairs
6: Estimate the conditional drift ut(Xt|x0, x1) Eq. (11)
7: Take gradient step w.r.t control pts. {Xtk , σtk}
8: until converges
9: Return pt|0,1 parametrized by optimized It, σt

,where It|0,1 ≡ I(t, x0, x1) is the interpolant function between the pinned endpoints, and Z ∼
N (0, Id) is the Brownian motion. evaluate It, and σt through the following equations for the vector
field and the score function (Särkkä & Solin, 2019)

∂tXt = ∂It +
∂tσt

σt
(Xt − It), ∇ log pt(Xt) = − 1

σ2
t

(Xt − It)

Lastly, using these expressions, we obtain the following expression for the conditional drift

ut(Xt|x0, x1) = ∂tIt +
∂tσt

σt
(Xt − It)−

ν2

2σ2
t

(Xt − It)

where ν is given by the definition of σt = ν
√
t(1− t). We can see that substitution of It :=

(1− t)x0 + tx1 and σt := ν
√

t(1− t), to the conditional drift expression indeed yields the desired
drift of the Brownian bridge x1−Xt

1−t .

Spline optimization. Efficient optimization is achieved by parameterizing It, σt respectively as
d- and 1-D splines using several knots (i.e., control points) sampled sparsely and uniformly along
the time steps 0 < t1 < ... < tK < 1: Xtk ∈ Rd and σtk ∈ R. Among those knots, we fit the
time-dependent interpolant function It, and the standard deviation σt

It := Spline(t; x0, {Xtk}, x1) σt := Spline(t; σ0=0, {σtk}, σ1=0). (57)

Notice that the parameterization in Eq. (57) satisfies the boundary in Eq. (56), hence remains as a
feasible solution to Eq. (10). The number of control points K is much smaller than the discretization
steps (K≤30 for all experiments). This significantly reduces the memory complexity, compared to
prior methods caching entire discretized SDEs (e.g. (De Bortoli et al., 2021; Chen et al., 2021)).

We follow the algorithm proposed in (Liu et al., 2024), shown in Alg. 2, which, crucially, involves no
simulation of an SDE. This is attributed to the utilization of independent samples from pt|0,1, which
are known in closed form. Finally, recall that since we solve Eq. (10) for each pair (x0, x1) ∼ pθ0,1
and later marginalize to construct pt.

C ADDITIONAL DETAILS ON THE EXPERIMENTS

In this section, we provide further information about the experiments run to validate the efficacy of
our FSBM.

Baselines We compare the efficacy of our FSBM in the crowd navigation tasks against the state-
of-the-art matching framework GSBM (Liu et al., 2024), with the default hyperparamters. For
the opinion depolarization task, we compare against the GSBM, and the DeepGSB (Liu et al.,
2022a) also run with their default hyperparameters. For the DeepGSB, we adopt the “actor-critic”
parameterization which yields better performance. Finally, in the image translation experiments, we
compare against with DSBM (Shi et al., 2023), and Light and Optimal SBM (LOSBM) (Korotin et al.,
2023). In our experiments, DSBM was implemented by considering trivial guidance returning the
analytic solution of non-guided Brownian bridges. All other frameworks were run using their official
implementation, and default hyperparameters. All methods, including our FSBM, are implemented
in PyTorch (Paszke et al., 2019).
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Figure 9: Comparison of gradient fields ensuing after training with UP: distance-preserving G,
DOWN: relation-preserving G

Guidance Function Recall that our analysis begins with the static entropic OT problem in Eq.
(3), to which an additional regularization term is included to capture the interaction among unpaired
samples and aligned samples, thereby guiding the transport map. In practice, the selected Guidance
Function was a slightly modified version of Eq. (7)

G(X0, Xt) = α · (d(Xt, x
i
t)− d(X0, x

i
0))

2 (58)

where α ∈ R is the guidance regularization hyperparameter responsible to amplify G, and bypass
the minimization of the kinetic energy of the non-paired samples enough to satisfy the feasibility
of the solution. where for our experiments, the selected distance between the non-coupled samples
and the fixed KP sample was the L1 norm d(Xt, x

i
t) = ∥Xt − xi

t∥L1. The ith aligned data point
was the closest keypoint sample to non-aligned particle Xt at time t = 0. To compute the guidance
function, we need the trajectories of the KP samples. These are assumed to be given only through
their samples and fixed for each KP pair. In practice in the next sections, we discuss how we acquired
those trajectories for each of our experiments.

Relation-Preserving vs Distance Preserving Although the relation-preserving scheme was indeed
the more effective choice in the static setting in [1], this was not the case in our applications. This
could be attributed to the fact that the softmax averaging relation preserving scheme works more
effectively in static frameworks. However, in our dynamic formulation, we observed empirically that
the softmax averaging in relation-preserving schemes (similar to [1]) failed to generate a gradient field
capable of providing effective guidance to the unpaired samples. In contrast, the distance-preserving
scheme offered significantly better guidance. Figure 9 presents a comparison of the ensuing gradient
fields after training with the relation-preserving guidance function similar to (Gu et al., 2022), and
our distance-preserving guidance function.

Related Works (Semi-Supervised OT) Recently, the field of Optimal Transport (OT) has seen
advancements in developing partially supervised frameworks aimed at reducing the reliance on
source-target aligned image pairs for training, thereby alleviating the high cost of labeling supervised
datasets (Mustafa & Mantiuk, 2020). In particular, the semi-supervised domain adaptation framework
(Sato et al., 2020) demonstrates how limited labeled target domain data can act as keypoints, enabling
the adaptation of unlabeled data through iterative optimization. These approaches generally share
a common theme: the way partial supervision is integrated into the OT formulation. For many
applications, annotated keypoint pairs are pre-determined, and guidance is incorporated into the OT
problem as regularization terms that constraint the transport map (Gu et al., 2023a). For example,
(Courty et al., 2017) explored regularizing the OT cost using functions that encode class label
information. Their regularization term was used to preserve the data structure while encouraging
the alignment of labeled data with shared class labels across source and target domains for domain
adaptation. Similarly, (Yan et al., 2018) proposed a method that uses the Gromov-Wasserstein (GW)
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model to transport source samples to the target domain. Their approach induced constraints in the
transport process by minimizing the distance between the centers of transported source samples and
labeled target samples with the same class labels. Furthermore, (Lin et al., 2021) regularized the OT
cost to capture the group structure between source and target distributions and their representative
anchors. In this framework, the anchors promote clustering, similar to our approach, and are used to
enhance robustness to outliers by imposing rank constraints on the transport plan. However, unlike
the concept of keypoints in our approach, the anchors do not represent pairs of annotated points
explicitly used to guide the transport map. More closely aligned with our approach, (Gu et al., 2023b)
proposed a relation-preserving keypoint-guided model that steers OT matching by preserving both
the correspondence between keypoint pairs and the relationships of each data point to the keypoints.
In their framework, this guidance is introduced as a regularization term in the OT formulation. While
the utilization of keypoitns by Gu et al. 2023 is similar to ours, their choice of the guidance function
differs. Specifically, they modeled the distance as a softmax-averaged relationship between unlabeled
samples and keypoints, with the guidance expressed as the Jensen-Shannon divergence between the
softmax averages of the source and target distributions. Lastly, in (Gu et al., 2023a) it was shown that
this partially supervised OT framework could be applied to effectively guide a score based diffusion
model.

Network Architectures For all experiments, we adopted the same architectures from GSBM,
which consists of 4 to 5 residual blocks with sinusoidal time embedding. All networks are trained
from scratch, without utilizing any pretrained checkpoint, and optimized with AdamW (Loshchilov,
2017)

Forward and Backward Scheme Training of our FSBM entails a ’forward-backward’ scheme
originally proposed in DSBM (Shi et al., 2023). This necessitates the parameterization of two drifts,
one for the forward SDE and another for the backward. During odd epochs, we simulate the coupling
from the forward drift, solve the corresponding conditional lagrangian problem in Eq. (10), and then
match the resulting pt with the backward drift. On the other hand, during even epochs, we perform
the reverse procedure, matching the forward drift with the marginal pt derived from the backward
drift. As discussed in Liu et al. (2024), this alternating scheme improves the performance of the
matching algorithm, averting the matching framework from bias accumulation, as the forward drift
always matches the terminal distribution π1, and the backward drift is ensured to match the source
distribution π0.

C.1 CROWD NAVIGATION

We revisit the efficacy of our FSBM in solving complex crowd navigation tasks and its superior
capability to generalize under a variety of initial conditions. More explicitly, the two compared
frameworks were trained on transporting the samples X0 ∼ π0 to X1 ∼ π1. In the evaluation phase,
the task is always to transport the samples to the same target distribution as in the training phase,
however, the initial conditions change throughout the different tasks. For the first task (Vanilla), we
draw new samples from the same distribution π0 = N (µ0, σ0), for the second task we shift the mean
of the distribution, for the third task we increase the standard deviation, and in the fourth task we
sample from a uniform distribution. The initial conditions for each task are the following:

• Vanilla: N
(
[−11,−1], 0.5

)
• Perturbed Mean: N

(
[−11,−4], 0.5)

• Perturbed STD: N
(
[−11,−1], 3

)
• Uniform Distribution with geometric mean [−11,−1]

where N ([µ1, µ2], σ
2) represents a Gaussian with mean the point [µ1, µ2], and standard deviation

equal to σ. Note that for the S-tunnel crowd navigation, we used 100 KPs, which is approximately
4%, of the entire population, and in the V-neck task only 20 KP samples were employed, which is
approximately 1% of the population. In our experiments, for the trajectories of the aligned data, we
utilized the POT python package (Flamary et al., 2021), to acquire optimal pairings, and GSBM
for one epoch to obtain the trajectories between the endpoints. Figures 10, and 11 illustrate the
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trajectories of the coupled samples, that guide the matching of the unpaired particles. Finally, Figure
13 presents additional plots of FSBM in the crowd navigation tasks examined under the variety of
initial conditions mentioned above.

Figure 10: Interpolating path of the KP samples
for the S-tunnel

Figure 11: Interpolating path of the KP samples
for the V-neck

Figure 12: Additional Figures on S-tunnel using our FSBM. The color of particles means: i) Yellow:
initial conditions, ii) Green and Cyan: intermediate trajectory, iii) Red: target distribution, iv) Navy
Blue: generated distribution

Figure 13: Additional Figures on V-neck using our FSBM. The color of particles means: i) Yellow:
initial conditions, ii) Green and Cyan: intermediate trajectory, iii) Red: target distribution, iv) Navy
Blue: generated distribution

C.1.1 IMPACT OF KP PAIRS IN THE S-TUNNEL
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Figure 14: UP: Training Epochs, DOWN:
The W 2 Distance under Vanilla and Per-
turbed Mean in the S-tunnel for varying the
number of KP samples

Table 6: The W 2 Distance under Vanilla and Per-
turbed Mean in the S-tunnel for varying the number
of KP samples

Percentage
of KPs

W2

Vanilla
W2

Pert. Mean

1 0.034 0.77
2.5 0.027 0.55
5 0.018 0.79
8 0.015 0.82
10 0.013 0.81
12 0.010 1.01
15 0.008 1.23
20 0.008 1.48

In our methodology, it becomes clear that the number of KP pairs used to guide the rest of the
samples affects the effectiveness of our algorithm. In Fig. 14, and Table ??, we see that the vanilla
performance of our framework continues to increase as the number of aligned pairs increases. As
depicted in Figure 14a, although an increase of the aligned pairs results in reduced training time.
Additionally, in Fig. 14, we see that the vanilla performance of our framework continues to increase
as the number of aligned pairs increases. However, it is shown that the empirical generalization
to unseen initial conditions (e.g. when the mean of the initial distribution is perturbed) does not
necessarily improve by adding more keypoints, suggesting an overfitting like phenomenon. There
appears to be a "sweet spot", which suggests that using too many KP pairs hinders the ability of
our algorithm to generalize effectively akin to an overfitting-like effect. Lastly, it is important to
note that the hyperparameters of the framework were tuned to maximize the performance while
using few keypoints. As a result, increasing the number of aligned pairs may require re-tuning
the hyperparameters to maintain optimal performance. Lastly, it should be mentioned that even
this decrease in generalizability is still very small compared to the benchmark methods. Deeper
understanding the effect of the aligned data points in the efficacy, and generalizability of the model is
a topic for future work.

C.2 OPINION DYNAMICS

Subsequently, we revisit the high-dimensional opinion depolarization of a population. Each particle
possesses a high-dimensional opinion Xt ∈ R100 that evolves under polarizing dynamics

dXt = fpolarize(Xt, t)dt+ σdWt (59)

which tend to segregate them into two groups of diametrically opposing opinions.

Polarization drift We use the same polarization drift from DeepGSB and GSBM Liu et al. (2022a;
2024), based on the party model (Gaitonde et al., 2021). At each time step t, all agents receive
the same random information ξt ∈ Rd sampled independently of pt, then react to this information
according to

f(x; pt, ξt) := Ey∼pt
[a(x, y, ξt)ȳ], a(x, y, ξt) :=

{
1 if sign(⟨x, ξt⟩) = sign(⟨y, ξt⟩)
−1 otherwise

, (60)

where x, y are opinions and ȳ := y

∥y∥
1
2

and a(x, y, ξt) is the agreement function indicating whether

the two opinions agree on the information ξt. This suggests that the agents tend to reject opinions,
with which they disagree, while they accept opinions closer to theirs. As the dynamics of this model
evolve
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Figure 15: Additional Translation Examples

Recall that the size of the key-point set utilized for the opinion depolarization was approximately
2%, of the entire population. In our opinion depolarization experiments, the optimal pairings were
obtained through the POT python package, however, in contrast to the crowd navigation tasks, in this
case, the trajectories of the opinion guide particles were obtained by linear interpolating between
initial and target positions.

C.3 IMAGE TRANSLATIONS

Finally, we review the experiments in the two types of image translations: i) Gender translation,
ii) Age translation. We follow the setup of (Gushchin et al. (2024)) with the pre-trained ALAE
autoencoder (Pidhorskyi et al. (2020)) on 1024 ×1024 FFHQ dataset (Karras et al. (2019)) to perform
the translation in the latent space of dimension 512× 1 enable more efficient training and sampling.

Recall that the number of aligned images was 4% of the total number of images for the gender
translation and 8% for the age translation. In our translation experiments, the aligned pairings, used
to guide the rest of the matching algorithm, were obtained by employing a lightweight SB algorithm
using Gaussian mixture parameterization (Korotin et al., 2023). Theoretically, this algorithm provides
guarantees to solve the SB, and empirically the quality of the images generated in the training set of
this algorithm was deemed satisfactory to constitute our KP set. Tables 7 and 11 present additional
results establishing the superiority of the coupling obtained by our FSBM. More specifically, Table 7
presents the L2-norm of the difference between the pixel values of the input images and the generated
images for each of the 4 translation tasks. Note that the values have also been divided by the total
number of pixels (1024×1024) to derive a mean L2-norm difference. Furthermore, Table 11 presents

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

the Structural Similarity Index Measure (SSIM) between the input and the generated images in the 4
translation tasks. Finally, Figure 15 presents additional translation instances using our FSBM.

Table 7: L2− norm/(1024× 1024) values between input and generated images in 4 translation tasks
for DSBM, LOSBM, and our FSBM (Lower is better). Note the values are divided by 220, which is
the total number of pixels to get a mean L2-norm over all the pixels

Optimizer
Man to
Woman

Woman
to Man

Old to
Young

Young
to Old

DSBM 0.87 0.84 0.88 0.87
LOSBM 1.42 1.47 1.41 1.35

FSBM 0.79 0.81 0.83 0.88

Table 8: SSIM values between input and generated images in 4 translation tasks for DSBM, LOSBM,
and our FSBM (Higher is better)

Optimizer
Man to
Woman

Woman
to Man

Old to
Young

Young
to Old

DSBM 0.46 0.51 0.50 0.43

LOSBM 0.34 0.35 0.35 0.36

FSBM 0.49 0.47 0.46 0.45

Finally, we also used ChatGPT to assess the image couplings between 100 pairs of input and generated
images in each translation task. Given that the coupling from LOSBM was considerably worse than
the coupling generated by the other two methods, we only performed comparison between DSBM [1]
and our FSBM. ChatGPT was instructed to give a score on the coupling quality on a scale 0-5, with
5 being the best. The coupling quality was assessed using the following 3 criteria: i) Background
Consistency: consistency in terms of color, lighting, background objects, ii) Identity Preservation:
maintain the identity of the original face in terms of facial features and overall resemblance iii)
Structural Integrity: preserve structural integrity of the input image in terms of accessories worn,
pose, orientation. The results in 4 translation tasks are shown in the Tables below.

Table 9: Background Consistency score between input and generated images in 4 translation tasks for
DSBM, and our FSBM (Higher is better), assigned by ChatGPT

Optimizer
Man to
Woman

Woman
to Man

Old to
Young

Young
to Old

DSBM 4.05 4.04 3.99 4.08

FSBM 4.58 4.21 4.05 4.10

Table 10: Identity Preservation score between input and generated images in 4 translation tasks for
DSBM, and our FSBM (Higher is better), assigned by ChatGPT

Optimizer
Man to
Woman

Woman
to Man

Old to
Young

Young
to Old

DSBM 3.89 3.09 3.15 3.49

FSBM 4.02 3.48 3.72 3.60
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Under review as a conference paper at ICLR 2025

Table 11: Structural Integrity score between input and generated images in 4 translation tasks for
DSBM, and our FSBM (Higher is better), assigned by ChatGPT

Optimizer
Man to
Woman

Woman
to Man

Old to
Young

Young
to Old

DSBM 3.38 3.27 3.11 3.30

FSBM 3.69 3.61 3.55 3.33
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