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ABSTRACT

Large language models (LLMs) have achieved impressive performance on
knowledge-intensive tasks, yet they often struggle with multi-step reasoning due to
the unstructured nature of retrieved context. While retrieval-augmented generation
(RAG) methods provide external information, the lack of explicit organization
among retrieved passages limits their effectiveness, leading to brittle reasoning
pathways. Recent interpretability studies highlighting the importance of structured
intermediate reasoning further align with this perspective. We propose Retrieval-
And-Structuring (RAS), a framework that dynamically constructs question-specific
knowledge graphs through iterative retrieval and structured knowledge building.
RAS interleaves targeted retrieval planning with incremental graph construction,
enabling models to assemble and reason over evolving knowledge structures tai-
lored to each query. On seven knowledge-intensive benchmarks, RAS consistently
outperforms strong baselines, achieving up to 8.7% and 7.0% gains with propri-
etary and open-source LLMs, respectively. Our results demonstrate that dynamic,
question-specific knowledge structuring offers a robust path to improving reasoning
accuracy and robustness in language model generation. Our data and code can be
found at: https://anonymous.4open.science/r/RAS-Anonymous.

1 INTRODUCTION

Complex reasoning tasks such as scientific analysis or multi-hop question answering demand both
comprehensive knowledge and structured logical thinking (Yang et al., 2018). While large language
models (LLMs) have achieved remarkable performance across a wide range of natural language
processing tasks (Devlin et al., 2018; Brown et al., 2020), they often struggle with knowledge-
intensive reasoning due to the absence of precise, logically organized information (Rae et al., 2021;
Ling et al., 2024). This limitation has motivated growing research into augmenting LLMs with
structured knowledge to enhance their reasoning capabilities (Wang et al., 2021).

Retrieval-augmented generation (RAG) approaches provide LLMs with additional context from
retrieved passages (Guu et al., 2020; Lewis et al., 2020; Izacard & Grave, 2021; He et al., 2024),
but often face hallucination challenges (Maynez et al., 2020; Zhang et al., 2023b), where generated
content deviates from retrieved information. This issue stems from the unstructured nature of
passages, which forces the model to implicitly bridge logical gaps. Briefly, interpretability analyses
have suggested that LLMs attempt to chain facts across context internally, and failures in these
implicit reasoning chains correlate with hallucinations (Lindsey et al., 2025). These findings reinforce
the need for explicitly structured intermediate knowledge to guide reasoning.

Recent efforts have integrated knowledge graphs (KGs) with LLMs (Sun et al., 2019; Yu et al., 2022;
He et al., 2024; Edge et al., 2024), providing compact relational representations that support more
interpretable reasoning (Hogan et al., 2021; Jiang et al., 2024; Sun et al., 2023). However, existing
approaches typically rely on static, corpus-wide graphs. This design introduces two limitations. First,
global KGs are costly to build and maintain: indexing a corpus like Wikipedia 2018 can require
millions of LLM calls and cost tens of thousands to millions of USD (see Appendix G). Second,
global graphs often blend evidence from many documents, leading to ambiguous or even contradictory
relations. For example, a global KG might simultaneously encode that Geoffrey Hinton is linked
to deep learning, to cognitive neuroscience, and to critiques of large models—without clarifying
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which aspect is relevant to user query’s focus. Similarly, biomedical KGs may contain both positive
and negative associations between a drug and a disease, reflecting conflicting studies. In contrast, a
question-specific KG built from targeted documents resolves these conflicts by grounding relations in
a coherent, query-relevant context.

These limitations highlight the need for knowledge graphs that are constructed on demand, tailored to
the query, and structured to support reasoning. To this end, we propose Retrieval-And-Structuring
(RAS), a framework that dynamically constructs and reasons over question-specific knowledge graphs
through iterative retrieval and structured knowledge building. The RAS process unfolds in three
steps: (1) a planning step that identifies knowledge gaps and generates targeted sub-queries, (2) a
retrieval-and-structuring step that extracts factual triples from retrieved passages and incrementally
builds a question-specific graph, and (3) a knowledge-augmented answering step that produces
final outputs conditioned on the accumulated structured knowledge.

RAS addresses several limitations of prior methods. Unlike traditional RAG, which performs single-
pass retrieval (Guu et al., 2020; Lewis et al., 2020; Izacard & Grave, 2021), RAS iteratively plans
and fills knowledge gaps at inference. In contrast to static KG-based approaches (He et al., 2024;
Edge et al., 2024), RAS dynamically constructs question-specific graphs tailored to each question,
capturing only task-relevant information. This design avoids both the inefficiency of offline indexing
and the noise of global graphs, enabling precise and robust reasoning.

Through extensive evaluations across seven benchmarks spanning open-domain QA, closed-set QA,
and long-form generation, RAS consistently outperforms strong baselines by 7.0% with open-source
LLMs and 8.7% with proprietary models. Our main contributions are:

• We propose RAS, a framework that dynamically builds question-specific knowledge graphs
through iterative retrieval and structuring.

• We design a unified graph structure-aware model that jointly plans retrieval and generates
answers over evolving knowledge graphs.

• We show consistent gains across seven benchmarks, with up to 8.7% improvement over strong
RAG baselines, while maintaining efficiency and scalability.

2 RELATED WORK

Retrieval-Augmented Generation (RAG). RAG enhances language model performance on
knowledge-intensive tasks by incorporating retrieved passages into the model input (Guu et al.,
2020; Lewis et al., 2020), improving factual accuracy and grounding. Early approaches retrieved a
fixed number of passages once before generation (Shao et al., 2023; Es et al., 2024; Lyu et al., 2024a),
while later methods explored adaptive retrieval (Jiang et al., 2023) or retrieval evaluation (Kim et al.,
2024b) to improve relevance. Iterative retrieval-generation approaches (Shao et al., 2023; Guan et al.,
2024) and targeted subquery strategies (Khattab et al., 2023; Yao et al., 2023; Press et al., 2022;
Trivedi et al., 2023) progressively enrich the evidence. Self-RAG (Asai et al., 2023) introduced
self-reflective retrieval, and RPG (Lyu et al., 2024b) extracted fine-grained paragraphs. More recent
work, such as Search-R1 (Jin et al., 2025) and s3 (Jiang et al., 2025c), further improves RAG by
reinforcement learning over search behaviors, with s3 showing that effective training is possible with
far less data. Despite these advances, retrieved context often contains redundancy or misses critical
facts. Our work departs from these by converting retrieved content into a structured, evolving graph
aligned with the query.

Graph as Context for LLMs. Graphs offer explicit, relational structures that help models go beyond
flat text by making multi-hop relationships more tractable (Yasunaga et al., 2021; 2022; Yu, 2022; Ju
et al., 2022; Zhu et al., 2024; Gutiérrez et al., 2024). GraphToken (Perozzi et al., 2024) shows LLMs
can process serialized graphs directly (Liu et al., 2021). G-Retriever (He et al., 2024) leverages global
KGs for entity-centric subgraph retrieval, while GraphRAG-style methods (Edge et al., 2024; Jiang
et al., 2025b) construct large corpus-level graphs with community summarization. These methods
rely on static graphs, which are costly to construct (Appendix G) and often introduce irrelevant noise.
By contrast, RAS builds question-specific knowledge graphs dynamically, eliminating prohibitive
offline costs and providing denser, task-relevant context tailored to each reasoning trajectory. This
design aligns with findings that many LLM errors stem from failed implicit reasoning chains (Lindsey
et al., 2025), which explicit, query-focused structuring can mitigate.
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RAS Framework

Question
𝑸 𝓜 𝓜

[NO_RETRIEVAL] 
𝑸

Answer
𝑨

[SUFFICIENT] 

[SUBQ] 𝒒𝒊

[𝑞!, 𝑔!, …] 𝑸

Text 𝒕𝒊Triples 𝒈𝒊

Retrieval

Question-Specific KG 𝑮𝑸

StructuringMerge

[𝑞!, 𝑔!, …] 𝑸

Plan

Subquery

Figure 1: Overview of the Retrieval-And-Structuring (RAS) framework. RAS operates through three stages:
(1) Planning (§3.1): the model strategically determines retrieval needs and generates focused sub-queries based
on the current knowledge state; (2) Text Retrieval and Structuring (§3.2): the system retrieves passages based
on sub-queries, extracts factual triples, and merges them into an evolving question-specific knowledge graph that
expands iteratively with reasoning needs; and (3) Answering (§3.3): the accumulated structured knowledge is
leveraged to generate the final output. We provide a step-by-step running example in Figure 26.

3 RETRIEVAL-AND-STRUCTURING (RAS) FRAMEWORK

Effective knowledge-intensive language generation requires not only retrieving relevant information,
but also structuring and reasoning over it systematically. We introduce Retrieval-And-Structuring
(RAS), a framework that interleaves iterative retrieval planning with dynamic question-specific
knowledge graph construction, enabling large language models (LLMs) to reason over progressively
organized knowledge tailored to each query. Figure 1 illustrates the overall workflow.

Key Definitions. We define the core concepts used in the RAS framework as follows. The Main
question (Q) denotes the original task input. A subquery (qi) is a focused retrieval query generated
at iteration i to obtain supporting evidence. At the first iteration, q0 = Q. Retrieved text (ti)
is a set of the top-k documents retrieved by qi. A text-to-triples model ft2t converts retrieved
text into triples (gi), structured as subject-predicate-object facts. These triples are incrementally
accumulated into an evolving question-specific knowledge graph (GQ), representing organized
evidence related to Q. The modelM produces an plan (pi) at each step, determining whether to
continue retrieval ([SUBQ]), stop retrieval ([SUFFICIENT]), or, initially, answer directly without
retrieval ([NO_RETRIEVAL]).

3.1 KNOWLEDGE-AWARE PLANNING

The planning step initiates and controls the retrieval-and-structuring process by dynamically assessing
the current knowledge state.

Initial Planning. Formally, given an input query Q, the modelM generates an initial plan p0:

p0 ←M(∅;INSTPlan; ∅;Q) (1)

where INSTPlan is the planning instruction (as shown in Figure 16). p0 can take one of two forms:

⋄ [SUBQ] q0 = Q: IfM assesses that the query cannot be satisfactorily answered with its own
knowledge, we start the iteration with the main question Q as the initial subquery, and move to
the next stage (§3.2).

⋄ [NO_RETRIEVAL]: IfM determines that Q can be answered directly without requiring any
additional knowledge, the planning process terminates, and the framework proceeds directly to
the final Answering stage (§3.3).

3
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Iterative Planning. At iteration i > 0, given the accumulated knowledge Gi and the subquery-triples
history [q0, g0, . . . , qi, gi], the model updates the plan:

pi+1 ←M(GNN(Gi);INSTPlan; [q0, g0, ..., qi, gi];Q) (2)
where GNN is a graph neural network for encoding and projecting the evolving KG Gi; qk is the
subquery at iteration k, and gk is the extracted graph information (a list of triples) from the retrieved
context tk.

The output pi+1 at each iteration can be either:

⋄ [SUBQ] qi+1: The model generates a new subquery qi+1 to guide the retrieval of additional
relevant knowledge. The subquery is designed to fill specific gaps in the current knowledge state
with respect to answering Q. The framework proceeds to the next stage (§3.2).
⋄ [SUFFICIENT]: The accumulated knowledge Gi is deemed sufficient to comprehensively

address the main question Q. The iterative retrieval process terminates, and the framework
proceeds to the Answering stage (§3.3).

Planning serves as a key driver of the RAS framework’s iterative retrieval and refinement process. By
dynamically assessing the adequacy of the retrieved knowledge and generating targeted sub-queries,
it enables the efficient acquisition of query-relevant information.

3.2 TEXT RETRIEVAL AND STRUCTURING

Once [SUBQ] is detected, we use the subquery qi to retrieve the text ti and transform it into structured
knowledge gi, which is progressively merged to the question-specific graph GQ.

Text Retrieval. We use a text retriever to retrieve the top-k semantically relevant passages ti from
the corpus C for each subquery qi:

ti ← Retrieval(qi, C, k) (3)
We use a standard dense retriever by default but note that RAS is compatible with more advanced
information retrieval methods (Chaudhary et al., 2023; Kang et al., 2024; Jiang et al., 2025a).

Text-to-Triples Conversion. To extract essential factual information from the retrieved passages ti,
we employ a text-to-triples model ft2t. This model is trained on the full WikiOfGraph dataset (Kim
et al., 2024a), which is a high-quality, LLM-curated text-to-triples corpus. Details of the training
process are provided in Appendix D.1. The model generates structured triples in the following format:

gi ← ft2t(ti) = [(s0, r0, o0), ..., (s|gi|, r|gi|, o|gi|)] (4)
where each triple (sj , rj , oj) represents a subject-predicate-object fact extracted from the text. This
structured representation enables efficient downstream reasoning and facilitates integration with
external knowledge graphs. Although ft2t is a lightweight LLM capable of fast inference using
techniques such as quantization (Dettmers et al., 2022) and optimized inference frameworks like
vLLM (Kwon et al., 2023), the text-to-triples conversion can be precomputed offline as well when
maximal efficiency is required.

Iterative Knowledge Enrichment to Question-Specific KG. The extracted triples gi are then
converted into a graph structure g′i = (Vi, Ei), where Vi and Ei denote the sets of nodes and edges,
respectively. Each node v ∈ Vi corresponds to a unique subject or object entity in gi, while each edge
e ∈ Ei represents a predicate connecting two entities. To enrich the graph with semantic information,
the attributes of nodes and edges are obtained through Sentence-BERT (Reimers, 2019):

emb(v)← encode(v),∀v ∈ Vi; emb(e)← encode(e),∀e ∈ Ei (5)
These semantic embeddings enable the model to capture the nuanced relationships between entities
and facilitate reasoning over the KG.

To progressively enrich the question-related knowledge in response to the evolving sub-queries, the
structured graph g′i at each iteration i is merged into an evolving KG GQ = (VQ, EQ) specific to the
main question Q:

GQ ← GQ ∪ g′i (6)
After enriching GQ with the new knowledge, we plan (§3.1) for the next step. Based on GQ and the
chain of previous subqueries and their associated graph information, the model decides whether to
generate another focused subquery for additional retrieval or to proceed with answering (§3.3) if the
accumulated knowledge is sufficient.

4
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3.3 KNOWLEDGE-AUGMENTED ANSWERING

When answering is triggered, the modelM generates an answer A to the main question Q either
conditioned on knowledge graph GQ and subquery chain (q0, g0), ..., (qi, gi) when retrieval-and-
structuring was processed, or directly when no retrieval is needed.

If no retrieval is needed (p0 = [NO_RETRIEVAL]), the answer is generated directly:

A←M(∅;INSTAns; ∅;Q) (7)

Otherwise, after iterative knowledge enrichment concludes with [SUFFICIENT] plan or the maxi-
mum iteration is reached, the answer is generated using encoded KG (GQ) and subquery chain:

A←M(GNN(GQ);INSTAns; [q0, g0, ..., qi, gi];Q) (8)

where INSTAns is the answering instruction (as shown in Figure 17). M attends to knowledge in
GQ and subquery chain to generate accurate, coherent answers. This structured conditioning enables
systematic reasoning grounded in the assembled knowledge.

3.4 STURCTURE-AWARE MULTITASK LEARNING

Graph Encoder & 
Projector

Text Embedder

𝑮𝑸 [𝑞!, 𝑔!, … , 𝑞" , 𝑔"]
…

𝑸

…

…

Answer 𝑨

Graph LLM

Answering

Graph Encoder & 
Projector Text Embedder

𝑮𝑸 [𝑞!, 𝑔!, … , 𝑞" , 𝑔"]
…

…

𝑸

…

Graph LLM

Planning

shared parameters

INSTAns

INSTPlan

[NO_RETRIEVAL] 
/ [SUFFICIENT] 
/ [SUBQ]	𝒒𝒊"𝟏

Figure 2: Structure-Aware Multitask Learning
for the Graph LLM in RAS. A single LLM is
trained with both planning and answering tasks in
a parameter-efficient way (fine-tuning the graph
components with LoRA (Hu et al., 2022)).

The RAS framework is trained through a multitask
setup that unifies knowledge-aware planning and
knowledge-augmented answering under a standard
next-token prediction objective.

Each training instance corresponds to either a plan-
ning task or an answering task, selected randomly:

⋄ Planning: Input: current encoded question-
specific KG GQ, planning instruction INSTPlan
(shown in Figure 16), subquery-triples history
([q0, g0, ..., qi, gi]), main question Q. Output:
next plan pi+1.
⋄ Answering: Input: final encoded question-

specific KG GQ, answering instruction
INSTAns (shown in Figure 17), subquery-
triples history ([q0, g0, ..., qi, gi]), main question
Q. Output: final answer A.

The modelM used in RAS is based on Graph LLM,
an architecture adapted from prior work (Perozzi
et al., 2024; He et al., 2024). Note: This multi-
task training setup is applied to open-source setting,
while we test RAS under closed-source setting (see
Appendix F.1) in Section 4 as well.

4 EXPERIMENTS

4.1 SETTINGS

Training Data & Setting. We develop HotpotQA-SUBQ, a dataset constructed based on HotpotQA
(Yang et al., 2018), to train our model’s action planning and answering capabilities. Our dataset
creation begins with document filtering: using Claude-3.5-Sonnet (Anthropic, 2024), we identify and
retain only the supporting documents necessary for answering the main question, removing irrelevant
content. For each supporting document dj , we then iteratively generate a subquery qj , considering
the main question, previous subqueries, and supporting documents. During iteration j, when more
supporting documents remain, we create training samples with input {q0, g0, ..., qj , gj , Q} and output
label “[SUBQ] qj+1”, where gk represents triples extracted from document dk, and Q is the main
question. For the final supporting document, we label the sample as “[SUFFICIENT]”. To identify
queries that can be answered directly, we test our base LLM (LLaMA-2-7B) on HotpotQA’s main
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queries without context. For correctly answered queries, we create training samples with the main
question Q as input and “[NO_RETRIEVAL]” as the output label. Additionally, to ensure fair
comparison with existing approaches, we incorporate the subset of Arc-Easy (2,147 samples) and
ASQA (3,897 samples) from Self-RAG’s training data, resulting in 208k training samples in total.
We place detailed training data processing, dataset statistics, and data samples in Appendix C. For
efficient inference, we train a text-to-triples model ft2t on the WikiOFGraph dataset (Kim et al.,
2024a) using LLaMA-3.2-3B-Instruct as the base model (see Appendix D), and deploy it using vLLM
for optimized runtime performance. We present our hyperparameter study of each component in
Appendix J. Knowledge Sources. We employ faiss (Douze et al., 2024) for efficient vector searching
over the dense index. Following the Self-RAG (Asai et al., 2023), we utilize the Wikipedia 2018
(Izacard et al., 2023) by default, while specifically using the Wikipedia 2020 for PopQA to access
more recent information. To optimize retrieval efficiency, we partition the index into five segments.

Test Datasets & Metrics & Compared Baselines. We conduct comprehensive evaluations on
diverse knowledge-intensive tasks following previous studies (Asai et al., 2023; Lyu et al., 2024b).
The evaluation encompasses three categories of datasets: (1) open-domain short-form generation
datasets: TriviaQA (Joshi et al., 2017), PopQA (Mallen et al., 2022), and 2WikiMultihopQA (Ho
et al., 2020); (2) closed-set task datasets: PubHealth (Zhang et al., 2023a) and ARC-Challenge (Clark
et al., 2018); and (3) long-form generation datasets: ALCE-ASQA (Gao et al., 2023; Stelmakh et al.,
2022) and ELI5 (Fan et al., 2019). For evaluation metrics, we maintain consistency with prior work
(Asai et al., 2023; Mallen et al., 2022; Lyu et al., 2024b), employing “golden match” accuracy for
PopQA and TriviaQA, token-level F1 score for 2WikiMultihopQA, accuracy for PubHealth and
ARC-Challenge, and ROUGE-LSum alongside MAUVE score (Pillutla et al., 2021) for ASQA
and ELI5. Our comparative analysis includes three baseline categories: models without retrieval
augmentation, incorporating Claude 3.5 Sonnet as a state-of-the-art closed-source baseline; models
with single retrieval over top-5 documents, including Claude 3.5 Sonnet, and SuRe (Kim et al.,
2024b), a leading retrieve-and-summarize method; and models with self-reflective retrieval, including
leading approaches Self-RAG (Asai et al., 2023), RPG (Lyu et al., 2024b), Search-R1 (Jin et al.,
2025), and s3 (7B searcher combined with SFT’ed 7B generator) (Jiang et al., 2025c). We place more
details of datasets and metrics in Appendices E.1 and E.2, respectively.

Inference Setting. We evaluate RAS using both our trained open-source models (RAS7B/8B,
based on LLaMA-2-7B/LLaMA-3-8B and a Graph Transformer encoder (Shi et al., 2020)) and
the closed-source Claude-3.5-Sonnet model under varied inference settings. For open-source models
(RAS7B/8B), we follow prior work (Asai et al., 2023; Lyu et al., 2024b) and adopt zero-shot inference
across all datasets. For the closed-source model (RASSonnet-3.5), we apply few-shot inference with two
exemplars for ASQA and ELI5, while using zero-shot inference for all other datasets. More details
are provided in Appendices F.1 and F.2.

For PopQA and TriviaQA evaluation, we follow established settings (Asai et al., 2023; Luo et al.,
2023a), incorporating top-five web search engine results as initial retrieved context t0. For ASQA
and ELI5, we maintain methodological consistency with prior work (Lyu et al., 2024b; Asai et al.,
2023; Gao et al., 2023), utilizing their predetermined five-document context. Under these conditions,
we omit plan generation and text retrieval phases, implementing static inference (Asai et al., 2023)
with five fixed iterations. For remaining datasets, we establish a maximum iteration count of
five. Following previous studies, we employ Contriever-MS MARCO (Izacard et al., 2021) as the
primary dense retriever, with BM25 (Robertson et al., 2009) serving as the retrieval mechanism for
2WikiMultihopQA. Across all retrieval processes, we maintain a consistent top-k document selection
of five. We present more details of inference settings in Appendix F.

4.2 RESULTS

Main Result. Our performance evaluation, presented in Table 1, demonstrates that the LLaMA-2-
7B/LLaMA-3-8B model fine-tuned with RAS outperforms existing SFT-based open-source solutions,
including Self-RAG (Asai et al., 2023) and RPG (Lyu et al., 2024b). Notably, compared to the
earlier SOTA models, RAS7B shows a 9.7% improvement in short-form question-answering and a
7.9% gain in long-form generation tasks. Additionally, when applied to Claude-3.5-Sonnet, RAS
consistently achieves superior results compared to single retrieval RAG approaches, including retrieve-
and-summarize approach SuRe (Kim et al., 2024b). We find that sometimes (e.g., on TriviaQA and
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Short-form Closed-set Long-form Generation

Model/Method TQA 2WQA PopQA Pub ARC ASQA ELI5
(acc) (F1) (acc) (acc) (acc) (rouge) (mauve) (rouge) (mauve)

C
lo

se
d-

so
ur

ce
w/o Retrieval
ChatGPT∼175B 74.3 24.8 29.3 70.1 75.3 36.2 68.8 22.8 32.6
Sonnet-3.5∼175B 78.4 40.0 30.2 83.7 88.5 37.0 39.1 21.8 26.5

w/ Single Retrieval (#docs=5)
Sonnet-3.5#docs=1 69.1 41.9 51.5 49.1 88.6 n/a n/a n/a n/a
Sonnet-3.5#docs=5 72.5 53.7 57.3 53.9 87.1 38.8 61.6 20.2 32.3
SuReGPT-4o(Kim et al., 2024b) 72.3 38.1 53.6 57.2 79.6 36.0 74.2 19.2 51.6
SuReSonnet-3.5 76.8 37.6 41.2 62.8 91.6 30.2 69.9 15.4 27.2

w/ Self-Reflective Retrieval
ReActSonnet-3.5 (Yao et al., 2023) 73.4 53.7 55.0 62.2 89.2 38.8 61.6 20.2 32.3
IRCoTSonnet-3.5 (Trivedi et al., 2023) 74.7 54.9 53.2 59.4 92.0 38.8 61.6 20.2 32.3

Retrieval-And-Structuring (ours)
RASSonnet-3.5 77.6 57.7 62.3 71.3 93.9 39.1 70.5 23.3 37.7

O
pe

n-
so

ur
ce

w/o Retrieval
Llama27B 30.5 18.9 14.7 34.2 21.8 15.3 19.0 18.3 32.4
Llama213B 38.5 20.2 14.7 29.4 29.4 12.4 16.0 18.2 41.4
Llama38B 56.1 21.2 26.7 33.2 42.2 17.6 25.0 18.2 39.7

w/ Single Retrieval (#docs=5)
Llama27B 42.5 21.0 38.2 30.0 48.0 22.1 32.0 18.6 35.3
Llama213B 47.0 31.2 45.7 30.2 26.0 20.5 24.7 18.6 42.3
Llama38B 60.4 33.4 48.6 36.5 40.1 23.9 52.1 18.8 40.7
SuRe7B (Kim et al., 2024b) 51.2 20.6 39.0 36.2 52.7 35.8 76.2 16.1 26.6

w/ Self-Reflective Retrieval
Self-RAG7B (Asai et al., 2023) 66.4 25.1 54.9 72.4 67.3 35.7 74.3 17.9 35.6
Self-RAG13B 69.3 26.9 55.8 74.5 73.1 37.0 71.6 18.7 38.5
RPG7B (Lyu et al., 2024b) 65.1 33.6 56.0 73.4 65.4 37.6 84.4 19.1 46.4
Search-R17B (Jin et al., 2025) 63.8 35.2 45.7 69.4 64.4 35.2 72.3 18.4 37.1
s37B+sft (Jiang et al., 2025c) 68.1 37.7 50.1 72.1 66.9 35.4 79.7 18.7 40.5
ReAct7B (Yao et al., 2023) 64.0 25.0 42.7 52.4 59.0 22.1 32.0 18.6 35.3
IRCoT7B (Trivedi et al., 2023) 61.5 27.6 44.3 59.6 61.6 22.1 32.0 18.6 35.3

Retrieval-And-Structuring (ours)
RAS7B 72.7 42.1 58.3 74.7 68.5 37.2 95.2 19.7 47.8
RAS8B 73.8 44.2 57.7 77.6 71.4 37.6 96.2 20.1 54.4

Table 1: Performance Comparison. We highlight the top-2 closed-source models and top-2 open-source
7B models, with the best model in each category underlined for each dataset. RAS is designed for general
open-domain question answering rather than Knowledge Graph Question Answering (KGQA) tasks (Perevalov
et al., 2022); we therefore exclude comparisons with KGQA-specific methods (Sun et al., 2023; Luo et al.,
2023b; Ma et al., 2024). Graph encoding and projection are omitted for RASSonnet-3.5.

PubHealth) single-hop retrieval could not boost LLM’s performance, and even makes it worse, which
demonstrates the necessity of on-demand retrieval, aligning with previous findings.

Although RAS integrates planning and answering in a unified framework, these components can
be decoupled for greater flexibility. Our “role-swapping” study in Figure 3 demonstrates that
performance is primarily constrained by answering capability rather than planning. When Sonnet-3.5
handles planning while RAS7B performs answering, the system achieves 62.4% accuracy on ARC-C,
compared to 93.9% when Sonnet-3.5 performs both tasks. Despite having 60× fewer parameters,
RAS7B achieves planning performance comparable to (and sometimes exceeding) Sonnet-3.5.

We analyze the impact of each component of RAS in Table 2 and provide detailed discussion below.

Effect of Iterative Planning and Retrieval. Comparing the base model with “No Planning” variant
shows that iterative planning provides consistent improvements across all metrics (e.g., +8.8% on
TQA, +9.0% on 2WQA). This demonstrates the importance of dynamically determining retrieval
needs and generating focused sub-queries. Without planning, the model relies on single-pass retrieval,
which may miss crucial information needed for complex reasoning. Also, when turning off retrieval,
the performance degradation is more obvious, due to the knowledge-intensive nature of those datasets.

Effect of Graph Construction and Encoding. The impact of structured knowledge representation
is evident from two ablations. First, “No Text-to-Triple” degrades performance significantly on
all metrics (e.g., -9.0% on 2WQA, -22.2% MAUVE on ASQA), showing the value of essential
information extraction via converting retrieved text into structured triples. Second, removing the
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TQA 2WQA Pub ASQA
(acc) (F1) (acc) (rg) (mv)

RAS7B 72.7 42.1 74.7 37.2 95.2

Training Phase
w/o GraphEncode 70.2 38.4 66.4 33.1 85.0
w/o LoRA 71.5 37.8 54.8 32.8 84.8
w/o Text-to-Triple 70.4 38.2 71.4 36.2 73.8
w/o Multi-Task 68.6 39.2 65.5 36.7 88.9

Inference Phase
w/o Retrieval 56.9 27.4 69.0 31.3 70.6
w/o GraphEncode 68.8 38.7 67.3 36.5 93.6
w/o Planning 66.7 37.8 71.5 37.2 95.2

Table 2: Ablations in Training and Inference
(with RAS7B). Training: “No GraphEncode” re-
moves the graph encoder during training, using only
LoRA-based LLM fine-tuning. “No LoRA” uses
graph token optimization without low-rank adapta-
tion. “No Text-to-Triple” keeps the original retrieved
texts instead of converting them into triples. “No
Multi-Task” trains two models separately handling
planning and answering. Inference: “No Retrieval”
tests direct query answering without any context.
“No GraphEncode” removes graph encoding and pro-
jection during inference, using only textual context.
“No Planning” removes the planning module and runs
single-pass retrieval-structuring-answering pipeline.

TriviaQA 2WikiQA PopQA PubHealth ARC
0

20

40

60

80

Plan: RASSonnet + Ans: RASSonnet
Plan: RAS7B      + Ans: RASSonnet

Plan: RASSonnet + Ans: RAS7B
Plan: RAS7B      + Ans: RAS7B

Figure 3: Role-Swapping Study. We alternate Sonnet-
3.5 and RAS7B on the planning and answering tasks,
and evaluate the overall performance.

10% 30% 50% 70% 100%

65

70

75
TQA

7B
8B

10% 30% 50% 70% 100%

80

90

ASQA-MV

7B
8B

Figure 4: Impact of Graph Information Abundance.
For each sample, we randomly shuffle its associated
triples five times and take different ratios (10%–100%)
of the shuffled data. The performance scores are aver-
aged across these five shuffling runs.

graph encoder (“No GraphToken”) during training or inference consistently hurts performance across
datasets, with particularly large drops on PubHealth (-11.2% and -10.0% respectively). This suggests
that the graph structure encoding helps the model better leverage the knowledge relationships.

Effect of LoRA and Multi-task Learning. Our experiments reveal that parameter-efficient training
strategies significantly impact model performance. Using only graph token optimization without
LoRA leads to substantial degradation (-11.8% on average). A similar observation can be made for
“No Multi-Task” (e.g., 12.3% accuracy degradation on PubHealth), indicating the significance of
jointly training the model on both action planning and answer generation tasks rather than optimizing
for each task separately, supporting findings from prior work (Lyu et al., 2024b). The complementary
effects suggest that while graph-based knowledge representation is valuable, it needs to be combined
with careful parameter tuning and multi-task learning to achieve optimal performance.

Impact of Graph Information Abundance. Figure 4 shows that increasing the amount of structured
graph information consistently improves RAS’s performance across tasks. For TQA, both RAS7B and
RAS8B exhibit approximately linear gains as more triples are retained, with no clear saturation even at
100% information. For ASQA-MV, RAS7B benefits from a sharp improvement between 10% and 30%
graph information, followed by steady increases, while RAS8B maintains a smoother and more stable
growth pattern throughout. These results confirm that RAS effectively leverages structured knowledge
at all levels of availability, and that more complete knowledge graphs consistently translate to stronger
reasoning and generation quality. Additionally, the larger 8B model consistently outperforms the 7B
variant under all conditions, suggesting that scaling the model size further enhances RAS’s ability to
utilize structured knowledge. Interestingly, even partial graphs containing only 30%–50% of triples
already deliver substantial gains over low-information baselines, highlighting RAS’s robustness to
incomplete or partially retrieved knowledge.

Impact of Training Data Volume. Figure 6 demonstrates how training dataset size influences
model performance across different tasks. Considering the computational efficiency, we sampled
2,000 instances each from TQA and 2WQA for evaluation, while maintaining the original sizes

8
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Figure 6: Impact of Training Data Volume on Model Performance. Results for RAS7B (top) and RAS8B
(bottom) illustrate how performance scales with increasing training data.

of other datasets. The results indicate that model performance generally improves with increased
training data volume. Notably, our model achieves competitive performance even with limited
training data - using only 5% (10K instances) of our full dataset, it surpasses previous state-of-
the-art models on TQA, 2WQA, and ELI5. These results suggest both the robustness of our ar-
chitectural design and the effectiveness of our data curation methodology. However, we observed
an exception with the ELI5 dataset, where performance were inconsistent. This irregularity can
be attributed to the inclusion of ASQA training data in our training set, following established
setting from previous research (Asai et al., 2023; Lyu et al., 2024b). Among our test datasets,
ASQA and ELI5 are unique in requiring long-form response generation. The periodic decline
in ELI5 performance suggests that the model’s response generation began to align more closely
with ASQA’s training data distribution, potentially at the expense of ELI5’s distinct characteristics.

Triple Extractor ft2t
Performance Efficiency

TQA 2WQA PopQA (tokens/s)

Flan-T5-Large 70.3 40.7 56.7 166.0
LLaMA-3.2-3B 72.7 42.1 58.3 4,885.3
Claude-3.5-Sonnet 73.8 44.5 60.1 68.2

Table 3: Impact of Triple Extractor Selection. Higher-quality text-
to-triples models lead to better answer generation in RAS. Claude-3.5-
Sonnet achieves the best performance on TriviaQA, 2WikiMultihopQA,
and PopQA. LLaMA-3.2-3B (deployed w/ vLLM) is used in our experi-
ments, selected for its strong balance between accuracy and efficiency.

Impact of Triple Extractor Se-
lection We examine how triple
extraction quality affects RAS
performance using three mod-
els: Flan-T5-Large, LLaMA-
3.2-3B, and Claude-3.5-Sonnet.
As shown in Table 3, higher-
quality extraction consistently
improves results across datasets,
with Claude-3.5-Sonnet achiev-
ing the best accuracy but at sig-
nificantly lower efficiency (1.5e-
2 sec/token vs 2.0e-4 for LLaMA-3.2-3B). These results demonstrate the accuracy-efficiency tradeoff
in triple extraction, with LLaMA-3.2-3B providing the optimal balance for our experiments. Due to
this fast structuring capability, RAS maintains comparable overall efficiency to popular frameworks
like ReAct and IRCoT as shown in Figure 5.

5 CONCLUSION

ReAct IRCoT RPG RAS
0
10
20
30

In
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re
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(s
)

Figure 5: Inference time for 2-retrieval in-
ference on 2WQA, using LLaMA-3-8B on
a single NVIDIA A100 GPU (BF16, batch
size = 1). Results are averaged over 30 runs.

We presented RAS, a framework that dynamically con-
structs question-specific knowledge graphs through itera-
tive retrieval and structured reasoning. Experiments across
seven benchmarks show consistent improvements of up to
6.4% and 7.0% with open-source and proprietary LLMs,
respectively. The modular architecture enables transparent
reasoning and seamless integration with external knowl-
edge sources. Limitations and future work are discussed in
Appendix A. The statement of the LLM usage is placed in
Appendix B. Broader Impacts, safeguards, and used assets
are discussed in Appendix K.
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ETHICS STATEMENT

This work does not involve human subjects, personal data, or sensitive user information. Our
research focuses on algorithmic improvements for knowledge-intensive language model reasoning.
We are mindful of potential ethical concerns, such as risks of misinformation or biased outputs when
deploying retrieval-augmented LLMs. To mitigate these risks, we provide transparent descriptions of
our methods, ablation studies on failure cases, and open-sourcing of code and models to facilitate
community scrutiny. We also discuss broader impacts and safeguards in Appendix K.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure reproducibility. All implementation details, hyperpa-
rameters, and training settings are provided in the main text and Appendices D and F. Train-
ing data construction is detailed in Appendix C. A complete description of datasets, prepro-
cessing pipelines, and evaluation metrics can be found in Appendices E.1 and E.2. We also
include extensive ablation studies and sensitivity analyses in Section 4 to validate robustness.
Our data, code and scripts for reproducing experiments are released anonymously via https:
//anonymous.4open.science/r/RAS-Anonymous and the supplementary materials, with
permanent links to be provided after acceptance. Together, these resources ensure that reviewers and
future researchers can fully reproduce our results.
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A LIMITATIONS & FUTURE WORK

While RAS demonstrates strong performance, several key limitations warrant consideration for future
improvements:

• Knowledge Extraction Quality: The effectiveness of both planning and answer generation
depends on the quality of text-to-triple extraction. Despite using an end-to-end text-to-triples
model for triple extraction, implementing a more sophisticated approach – such as a dedicated
Named Entity Recognition and Relation Extraction (NER-RE) pipeline – could potentially
enhance RAS’s reasoning capabilities and knowledge representation.

• Graph Evolution Strategy: The current approach to evolving knowledge graphs could be
enhanced by incorporating more sophisticated graph pruning and merging strategies. Future
work could explore dynamic graph summarization techniques to maintain the most relevant
information while preventing excessive graph growth during iterations.

• Cross-Domain Adaptability: While RAS performs well on the evaluated tasks, its effectiveness
across highly specialized domains or multilingual settings remains to be investigated. Future
research could focus on developing domain-adaptation techniques and multilingual knowledge
structuring approaches.

• Interactive Refinement: The current implementation lacks mechanisms for interactive refine-
ment of the constructed knowledge graphs. Future versions could incorporate human feedback
loops to improve the quality of knowledge structuring and reasoning paths.

These limitations suggest several promising directions for future research, including improved
knowledge extraction techniques and enhanced graph evolution strategies. A particularly promising
direction is the integration of external knowledge graphs into RAS’s iterative loop, as its graph-based
architecture naturally accommodates the incorporation of established KGs like Wikidata or domain-
specific knowledge bases. This could significantly enhance the system’s reasoning capabilities by
combining dynamically constructed knowledge with curated structured information.

B THE USE OF LARGE LANGUAGE MODELS

In this work, large language models (LLMs) were used solely for drafting and polishing the
manuscript. Their role was limited to grammar correction, phrasing refinement, and enhancing
readability. All research ideas, methodological innovations, theoretical analyses, and experimen-
tal work were entirely conceived, designed, and carried out by the authors. The authors take full
responsibility for the scientific content of the paper.
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C HOTPOTQA-SUBQ DATASET

The source of our dataset is HotpotQA (Yang et al., 2018).1 Our goal is to create a dataset that can let
the model learn the capabilities of subquery generation and answering with intensive knowledge. We
name the dataset as HotpotQA-SUBQ.

The construction of HotpotQA-SUBQ includes three steps: (1) filter out irrelevant/unnecessary
“supporting docs” (§C.1), (2) generate one subquery for each supporting document (§C.2), and (3)
sample labeling (§C.3).

C.1 SUPPORTING DOCUMENT FILTERING

To identify and filter out irrelevant supporting documents from HotpotQA, we employ an instruction-
based approach using Claude 3.5 Sonnet, as shown in Figure 7.

Identify which documents are HELPFUL to answer the question. Output only the document
numbers separated by commas.

Examples:

Example 1 (Some documents are not helpful):
Question: What nationality was James Henry Miller’s wife?
Supporting docs:
1. Margaret "Peggy" Seeger (born June 17, 1935) is an American folksinger. She is also well
known in Britain, where she has lived for more than 30 years, and was married to the singer
and songwriter Ewan MacColl until his death in 1989.
2. Seeger’s father was Charles Seeger (1886−1979), an important folklorist and musicologist;
her mother was Seeger’s second wife, Ruth Porter Crawford.
3. James Henry Miller, better known by his stage name Ewan MacColl, was an English folk
singer and songwriter.
Output: 1,3
Explanation: Only docs 1 and 3 are helpful − doc 1 shows Peggy Seeger (who is American)
was married to Ewan MacColl, and doc 3 confirms Ewan MacColl is James Henry Miller. Doc 2
about Seeger’s parents is not helpful.

Example 2 (All documents are helpful):
Question: The Oberoi family is part of a hotel company that has a head office in what city?
Supporting docs:
1. The Oberoi family is an Indian family that is famous for its involvement in hotels, namely
through The Oberoi Group.
2. The Oberoi Group is a hotel company with its head office in Delhi.
Output: 1,2
Explanation: Both docs are helpful − doc 1 links the Oberoi family to The Oberoi Group, and
doc 2 provides the head office location.

Question: [question]
Supporting docs:
[enumerated_documents]

Output only the helpful document numbers separated by commas:

Figure 7: Prompt used for filtering supporting documents in HotpotQA. The prompt includes
examples to demonstrate the difference between helpful and irrelevant documents. The input parts to
the prompt are highlighted.

The filtering prompt is designed with clear examples that illustrate the criteria for document relevance.
For each HotpotQA sample, we enumerate all supporting documents and use Claude to identify only

1We use the version hotpot_train_v1.1 from https://github.com/hotpotqa/hotpot.
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those that contribute directly to answering the question. After filtering out irrelevant documents, we
filter the question with no supporting documents. This filtering step reduces noise in the training data
and helps focus the model on truly relevant information during sub-query generation.

C.2 SUB-QUERY GENERATION

For sub-query generation, we use the template as follows to generate one subquery per (filtered)
document:

Given this main question and a supporting document, generate a simple sub−query (a
question) that will help retrieve information from the document to answer the main question.

Main Question: [main_question]

Current Document ([topic]):
[document_content]

[If previous queries exist:]
Previously generated sub−queries:
- [sub_query_1]

- [sub_query_2]
...

Write ONE clear and specific question that:
1. Can be answered using ONLY this document
2. Helps retrieve information needed for the main question
3. Is direct and focused on key information from this document

Write only the question, without any explanations or formatting.

Figure 8: Prompt used for subquery generation from HotpotQA. The input parts to the prompt
are highlighted.

The prompt template enforces document-specificity, goal-orientation, and conciseness in sub-query
generation. For iterative querying, we maintain a list of previously generated sub-queries to avoid
redundancy and encourage progressive information gathering.

C.3 SAMPLE LABELING

The sample labeling process transforms the filtered and subquery-augmented HotpotQA examples
into training instances for both the Planning and Answering components. We formalize this process
in Algorithm 1.

The algorithm takes as input the filtered HotpotQA dataset D, base language modelM, and text-
to-triple conversion model ft2t. For each example, we first attempt direct answer generation using
the base LLM (Line 3). If successful, we create [NO_RETRIEVAL] training instances for both the
planning and answering (Lines 4-6).

For examples requiring retrieval, we process each supporting document sequentially:

1. Convert document text to structured triples using ft2t (Line 12)

2. For intermediate documents (i < n):

• Construct input by concatenating previous subquery-graph pairs
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Algorithm 1 HotpotQA-SUBQ Sample Labeling

Require: D: Filtered HotpotQA dataset
Require: M: Base LLM (LLaMA-2-7B)
Require: ft2t: Text-to-triple conversion model
Ensure: Tplan: Training data for Planning
Ensure: Tans: Training data for Answering

1: Initialize Tplan, Tans ← {}, {}
2: for all (Q, {d0, ..., dn}, A) ∈ D do
3: Â←M(Q) ←↩ Direct answer attempt
4: if Â = A then
5: Tplan ← Tplan ∪ {(Q,[NO_RETRIEVAL])}
6: Tans ← Tans ∪ {(Q,A)}
7: continue
8: end if
9: subq0, ..., subqn ← GenerateSubqueries(Q, {d0, ..., dn})

10: G0, ..., Gn ← ∅ ←↩ Initialize graph contexts
11: for i← 0 to n do
12: gi ← ft2t(di) ←↩ Convert text to triples
13: if i < n then
14: input← FormatInput({(subqj , gj)}ij=0, Q)
15: Tplan ← Tplan ∪ {(input,[SUBQ] subqi+1)}
16: else
17: input← FormatInput({(subqj , gj)}nj=0, Q)
18: Tplan ← Tplan ∪ {(input,[SUFFICIENT])}
19: Tans ← Tans ∪ {(input, A)}
20: end if
21: Gi ← Gi−1 ∪ gi ←↩ Accumulate graph context
22: end for
23: end for
24: return Tplan, Tans

• Label with [SUBQ] and next subquery
3. For final document (i = n):

• Include all accumulated context
• Label planning sample as [SUFFICIENT]
• Create answering training instance with ground truth answer

The input formatting function (Lines 14 and 17) follows the template:

[SUBQ] q0
Retrieved Graph Information: g0
[SUBQ] q1
Retrieved Graph Information: g1
...
Question: Q

This process generates two datasets:

• Tplan: Trains the planning ability to determine retrieval needs and generate targeted sub-
queries

• Tans: Trains the answering ability to synthesize final responses from accumulated graph
context

Table 4 illustrates the distribution of our generated datasets. The planning dataset demonstrates
a balanced distribution across three label types: 35% [SUFFICIENT], 55% [SUBQ], and 10%
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[NO_RETRIEVAL]. The answering dataset incorporates both no-retrieval and sufficient cases from
multiple sources. The size of the answering dataset exceeds the combined total of no-retrieval and
sufficient cases from the planning dataset for two reasons: first, we incorporated additional data from
ASQA and Arc-Easy datasets; second, we included no-retrieval cases that were initially filtered out
in step 1 of our process. This comprehensive approach ensures a robust training set for the answering
component.

Our labeling approach ensures that models learn both the iterative nature of complex question
answering and the importance of structured knowledge representation. The complementary training
objectives help develop robust reasoning capabilities while maintaining retrievability of supporting
evidence.

C.4 DATASET STATISTICS

Planning Data Answering Data

# Queries 129,902 78,164 (w/ 3,897 ASQA & 2,147 Arc-Easy)
# Input Tokens (Mean, Median, Max) (338, 301, 1,910) (475, 466, 2,214)
# Output Tokens (Mean, Median, Max) (13, 12, 62) (13, 4, 2,332)
# Subqueries (Min, Mean, Max) (0, 0.8, 5) (0, 1.2, 6)
# [SUFFICIENT] 45,722 –
# [SUBQ] 71,676 –
# [NO_RETRIEVAL] 12,504 –
# [SUBQ] Tokens (Min, Mean, Max) (6, 18.3, 62) –
# Nodes (Mean, Median, Max) (11.6, 11, 56) (11.7, 11, 84)
# Edges (Mean, Median, Max) (21.2, 20, 116) (21.3, 20, 160)

Table 4: Statistics of our constructed HotpotQA-SUBQ dataset.

C.5 DATA EXAMPLES

"input": ”
You are a planner to determine if the question can be answered with current information and output the appropriate label as well as the 
subquery if needed.
Output [NO_RETRIEVAL] if the question can be directly answered with the question itself without any retrieval.
Output [SUBQ] with an subquery for retrieval if still needs a subquery.
Output [SUFFICIENT] if the question can be answered with the provided information.

Question: Given a chat history separated by new lines, generates an informative, knowledgeable and engaging response. ## Input:\n\nI love 
pizza. While it's basically just cheese and bread you can top a pizza with vegetables, meat etc. You can even make it without cheese!\nPizza is 
the greatest food ever! I like the New York style.\nI do too. I like that the crust is only thick and crisp at the edge, but soft and thin in the middle 
so its toppings can be folded in half.\nAbsolutely! I am not that big of a fan of Chicago deep dish though.",

"label": "[NO_RETRIEVAL]"

Figure 9: Training Data Example (Planning – [NO_RETRIEVAL])

"input": ”
You are a planner to determine if the question can be answered with current information and output the appropriate label as well as the 
subquery if needed.
Output [NO_RETRIEVAL] if the question can be directly answered with the question itself without any retrieval.
Output [SUBQ] with an subquery for retrieval if still needs a subquery.
Output [SUFFICIENT] if the question can be answered with the provided information. 

[SUBQ] Where is The Pick Motor Company Limited located?
Retrieved Graph Information: ['(S> Pick Motor Company Limited| P> Alias| O> New Pick Motor Company)', '(S> Pick Motor Company Limited| 
P> Location| O> Stamford, Lincolnshire)', '(S> Pick Motor Company Limited| P> Operational period| O> 1899-1925)', '(S> Pick Motor Company 
Limited| P> Industry| O> Motor vehicle manufacturing)’]

Question: The Pick Motor Company Limited is located in a town on which river ?",

"label": "[SUBQ] Which river is Stamford located on?"

Figure 10: Training Data Example (Planning – [SUBQ])
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"input": ”
You are a planner to determine if the question can be answered with current information and output the appropriate label as well as the 
subquery if needed.
Output [NO_RETRIEVAL] if the question can be directly answered with the question itself without any retrieval.
Output [SUBQ] with an subquery for retrieval if still needs a subquery.
Output [SUFFICIENT] if the question can be answered with the provided information.

[SUBQ] What gaming control board in Ohio is Martin R. Hoke a member of?
Retrieved Graph Information: ['(S> Martin R. Hoke| P> Former position| O> Member of the United States House of Representatives)', '(S> 
Martin R. Hoke| P> Birth date| O> May 18, 1952)', '(S> Martin R. Hoke| P> Occupation| O> Politician)', '(S> Martin R. Hoke| P> State| O> 
Ohio)', '(S> Martin R. Hoke| P> Nationality| O> American)', '(S> Martin R. Hoke| P> Party| O> Republican)', '(S> Martin R. Hoke| P> Member of| 
O> Ohio Casino Control Commission)', '(S> Martin R. Hoke| P> Born| O> 1952)’] 

[SUBQ] What gaming control board provides oversight of Ohio's casinos?
Retrieved Graph Information: [\"(S> Ohio Casino Control Commission| P> Function| O> Provides oversight of the state's casinos)\", '(S> Ohio 
Casino Control Commission| P> Location| O> Ohio)', '(S> Ohio Casino Control Commission| P> Type| O> Gaming control board)', '(S> Ohio 
Casino Control Commission| P> Abbreviation| O> OCCC)’]

Question: Martin R. Hoke, is an American Republican politician, member of which gaming control board in Ohio that provides oversight of the 
state's casinos?
",

"label": "[SUFFICIENT]"

Figure 11: Training Data Example (Planning – [SUFFICIENT])

"input": ”
You are a answerer given a question and retrieved graph information.
Each [SUBQ] is a subquery we generated through reasoning for the question. The retrieved graph information follows each [SUBQ] is relevant 
graph information we retrieved to answer the subquery.
[NO_RETRIEVAL] means the question can be answered with the question itself without any retrieval.
The main question starts with \"Question: \". Please answer the question, with subqueries and retrieved graph information if they are helpful.

[NO_RETRIEVAL]
Question: Which person won the Nobel Prize in Literature in 1961, Ivo Andri or Nicholas Pileggi?",

"label": "Ivo Andri"

Figure 12: Training Data Example (Answering – [NO_RETRIEVAL])

"input": ”
You are a answerer given a question and retrieved graph information.
Each [SUBQ] is a subquery we generated through reasoning for the question. The retrieved graph information follows each [SUBQ] is relevant 
graph information we retrieved to answer the subquery.
[NO_RETRIEVAL] means the question can be answered with the question itself without any retrieval.
The main question starts with \"Question: \". Please answer the question, with subqueries and retrieved graph information if they are helpful.

[SUBQ] What type of athlete is Darold Williamson?
Retrieved Graph Information: ['(S> Darold Williamson| P> Nationality| O> American)', '(S> Darold Williamson| P> Birth date| O> February 19, 
1983)', '(S> Darold Williamson| P> Occupation| O> Track athlete)’]

[SUBQ] What specific skills are included in track and field events?
Retrieved Graph Information: ['(S> Athletics| P> Includes| O> Road running)', '(S> Track and field| P> Includes| O> Throwing)', '(S> Track and 
field| P> Includes| O> Jumping)', '(S> Athletics| P> Includes| O> Cross country running)', '(S> Track and field| P> Categorised under| O> 
Athletics)', '(S> Track and field| P> Includes| O> Running)', '(S> Track and field| P> Venue| O> Stadium with an oval running track enclosing a 
grass field)', '(S> Athletics| P> Includes| O> Track and field)', '(S> Athletics| P> Includes| O> Race walking)', '(S> Track and field| P> Based on 
skills of| O> Running)', '(S> Track and field| P> Based on skills of| O> Jumping)', '(S> Track and field| P> Based on skills of| O> Throwing)’]

Question: Darold Williamson is an athlete in what running and jumping sport?",

"label": "Track and field"

Figure 13: Training Data Example (Answering – [SUFFICIENT])
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D TRAINING DETAILS

D.1 TEXT-TO-TRIPLES MODEL TRAINING

For our text-to-triple conversion model, we fine-tuned a Flan-T5-Large model (Chung et al., 2024)
and a LLaMA-3.2-3B-Instruct model (Grattafiori et al., 2024) to transform raw text passages into
structured knowledge triples. The model processes input text sequences up to 512 tokens in length
and generates structured triples in a standardized format “(S > subject| P> predicate| O> object)”.

Our training dataset WikiOFGraph (Kim et al., 2024a), curated by ChatGPT, comprises 5,851,776
text-triple pairs, with an additional 5,000 samples reserved for validation. Each training instance
consists of a natural language text passage paired with its corresponding set of comma-separated
triples. For example:

Text:
"William Gerald Standridge (November 27, 1953 – April 12, 2014) was an American stock car racing driver. He was a competitor in the 
NASCAR Winston Cup Series and Busch Series.”

Triples:
(S> William gerald standridge| P> Nationality| O> American),
(S> William gerald standridge| P> Occupation| O> Stock car racing driver),
(S> William gerald standridge| P> Competitor| O> Busch series),
(S> William gerald standridge| P> Competitor| O> Nascar winston cup series),
(S> William gerald standridge| P> Birth date| O> November 27, 1953),
(S> William gerald standridge| P> Death date| O> April 12, 2014)

Figure 14: Example of WikiOFGraph data

We implemented the training using the AdamW optimizer with a learning rate of 2e-5, incorporating
linear warmup and decay schedules. The training process ran for 500,000 steps with a batch size of
32 per GPU and gradient accumulation over 4 steps. To optimize training efficiency and memory
usage, we employed mixed-precision training using bfloat16 and applied weight decay at 0.01. The
maximum source and target sequence lengths were set to 512 and 256 tokens respectively.

For evaluation, we primarily relied on ROUGE-1, ROUGE-2, and ROUGE-L scores to assess the
quality of triple generation. We supplemented these metrics with custom triple matching accuracy
measures that consider subject matching, predicate normalization, and object entity alignment.
Validation metrics were computed at 5,000-step intervals throughout training.

The training curves for various metrics are shown in Figure 15, demonstrating steady improvement
in the model’s ability to extract structured knowledge from text. The training of this model was
conducted on eight NVIDIA RTX 6000 with 48GB memory.

0k 50
k

10
0k

15
0k

20
0k

25
0k

30
0k

35
0k

40
0k

45
0k

50
0k

Step

0.0000
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000
0.9000 ROUGE-1

0k 50
k

10
0k

15
0k

20
0k

25
0k

30
0k

35
0k

40
0k

45
0k

50
0k

Step

0.0000
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000
0.8000 ROUGE-2

0k 50
k

10
0k

15
0k

20
0k

25
0k

30
0k

35
0k

40
0k

45
0k

50
0k

Step

0.0000
0.1000
0.2000
0.3000
0.4000
0.5000
0.6000
0.7000

ROUGE-L

Figure 15: Text-to-Triple Model (base model: Flan-T5-Large) Training Curves.
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D.2 MULTITASK TRAINING OF PLANNING AND ANSWERING CAPABILITIES

We employ Graph LLM (Perozzi et al., 2024; He et al., 2024) as our foundational model architecture
and utilize our constructed HotpotQA-SUBQ dataset to train a unified model capable of performing
both graph-conditioned action planning and answer generation through multitask learning.

Since both tasks share an identical architectural foundation, as illustrated in Figure ??, we differentiate
their functionality through specialized instruction sets. For Planning, we employ the following
instruction template:

You are a planner to determine if the question can be answered with current information and
output the appropriate label as well as the subquery if needed.
Output [NO_RETRIEVAL] if the question can be directly answered with the question itself
without any retrieval.
Output [SUBQ] with an subquery for retrieval if still needs a subquery.
Output [SUFFICIENT] if the question can be answered with the provided information.

Figure 16: Instruction INSTPlan for Planning.

For the Answering, we utilize this distinct instruction set:

You are an answerer given a question and retrieved graph information.
Each [SUBQ] is a subquery we generated through reasoning for the question. The retrieved
graph information follows each [SUBQ] is relevant graph information we retrieved to answer the
subquery.
[NO_RETRIEVAL] means the question can be answered with the question itself without any
retrieval.
The main question starts with "Question: ". Please answer the question, with subqueries and
retrieved graph information if they are helpful.

Figure 17: Instruction INSTAns for Answering.

Figure 18: Training loss comparison over one epoch. The plot compares RAS-7B (green) and RAS-8B (orange)
training trajectories. Two additional RAS-7B variants are shown: “continual” (yellow): a continual learning
approach where Answering training precedes Planning training, and “ptune” (purple): a parameter-efficient
variant that only tunes graph tokens without LoRA. The lower and more stable loss curves of the standard RAS
variants demonstrate the effectiveness of joint training with LoRA. We use the last 100 steps for loss smoothing.

For graph encoding, we implement Graph Transformer (Shi et al., 2020), selected for its robust
capability in handling non-fully-connected graphs—a common characteristic of text-extracted triples.
Our base language models comprise LLaMA-2-7B and LLaMA-3-8B, chosen both to maintain
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consistency with previous research (Asai et al., 2023; Lyu et al., 2024b) and to investigate our
framework’s performance scaling across different model capacities.

Our implementation of GraphLLM differs from G-Retriever (He et al., 2024) primarily due to
the distinct nature of our graph structures. While G-Retriever operates on single interconnected
graphs, our framework processes multiple potentially disconnected subgraphs, each corresponding to
different subqueries. To address this architectural difference, we adopt a sequential encoding strategy:
rather than encoding the entire graph at once, we process each subgraph individually using Graph
Transformer, followed by mean pooling across all subgraph embeddings to produce the final encoded
representation.

The training process utilizes 4 NVIDIA RTX 6000 Ada Generation GPUs, each with 48GB memory.
We train all models for 2 epochs using a batch size of 2 and gradient accumulation steps of 2,
implementing a peak learning rate of 1e-5 with a 0.15 warmup ratio and 0.01 decay rate. The
maximum sequence lengths are set to 300 tokens for generation and 2,500 tokens for input, with
training conducted in BFloat16 precision.

E EVALUATION DATASETS & METRICS

E.1 TEST DATASETS

We evaluate RAS on diverse benchmark datasets spanning short-form QA, closed-set tasks, and
long-form generation in the zero-shot setting, aligning with (Asai et al., 2023; Lyu et al., 2024b).
Below we describe each dataset:

Short-form Generation Datasets:

• TriviaQA-unfiltered (TQA) (Joshi et al., 2017): A large-scale QA dataset containing 11,313
question-answer pairs in our test set. The questions are sourced from trivia enthusiasts and
cover diverse topics.

• 2WikiMultiHopQA (2WQA) (Ho et al., 2020): A multi-hop question answering dataset
(with 12,576 samples in test set) that requires models to combine information from multiple
Wikipedia articles to answer questions.

• PopQA (Mallen et al., 2022): A dataset focusing on questions about long-tail entities,
containing 1,399 queries where the monthly Wikipedia page views are less than 100. These
questions test models’ ability to handle queries about less common entities.

Closed-set Tasks:

• PubHealth (Pub) (Zhang et al., 2023a): A dataset for verifying health-related claims.
Models must classify statements as "true" or "false" based on scientific evidence. The
dataset contains 987 test samples.

• ARC-Challenge (ARC) (Clark et al., 2018): A multiple-choice science question dataset
designed to be challenging for models, requiring multi-hop reasoning and background
knowledge. The dataset contains 1,172 test samples.

Long-form Generation Datasets:

• ASQA (Stelmakh et al., 2022): A long-form question answering dataset that requires models
to generate comprehensive answers with proper citation of sources. Models must balance
information completeness with factual accuracy. The dataset contains 948 test samples.

• ELI5 (Fan et al., 2019): A dataset derived from the "Explain Like I’m Five" subreddit,
containing questions seeking straightforward explanations of complex topics. The dataset
contains 1,000 test samples.
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E.2 EVALUATION METRICS

We employ different evaluation metrics appropriate for each task category:

Short-form Generation:

• For PopQA and TriviaQA, we use the "golden match" metric (Asai et al., 2023; Min et al.,
2019; Guu et al., 2020)2, where a prediction p is considered correct if it contains any
normalized version of the ground truth answers G = {g1, ..., gn}:

match(p,G) =

{
1 if ∃g ∈ G : norm(g) ⊆ norm(p)

0 otherwise
(9)

where norm(·) normalizes text by lowercasing, removing articles and punctuation.
• For 2WikiMultiHopQA, we follow RPG (Lyu et al., 2024b)3 to use token-level F1 score

between prediction p and ground truth g:

F1(p, g) = 2 · precision · recall
precision + recall

(10)

where precision and recall are computed over normalized token overlap:

precision =
|tokens(p) ∩ tokens(g)|

|tokens(p)|
(11)

recall =
|tokens(p) ∩ tokens(g)|

|tokens(g)|
(12)

Closed-set Tasks: For both PubHealth and ARC-Challenge, we use accuracy (Asai et al., 2023),
computed as:

accuracy =
|{i : norm(pi) = norm(gi)}|

N
× 100 (13)

where N is the total number of examples.

Long-form Generation: For ASQA and ELI5, we use multiple metrics4:

• ROUGE-L score to measure the longest common subsequence between prediction and
reference (Lin, 2004)

• MAUVE score (Pillutla et al., 2021) to test the generation fluency by comparing the distribu-
tion of generated text against human references

All scores are reported as percentages, multiplied by 100.

2Implementation aligned with https://github.com/AkariAsai/self-rag/blob/main/
retrieval_lm/metrics.py

3Implementation aligned with https://github.com/haruhi-sudo/RPG/blob/main/
retriever/src/evaluation.py

4Implementation aligned with https://github.com/princeton-nlp/ALCE/blob/main/
eval.py
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F INFERENCE & EVALUATION DETAILS

We evaluated RAS using both closed-source and open-source language models. For closed-source
evaluation, we used Claude-3.5-Sonnet (Sonnet-3.5) as our base model. For open-source evaluation,
we tested with both LLaMA-2-7B and LLaMA-3-8B, as shown in the performance table (Table 1).

For the open-source models, we first fine-tuned the GraphLLM architecture on our HotpotQA-SUBQ
dataset (see Section D.2). We then conducted zero-shot knowledge-intensive generation tests. With
Claude-3.5-Sonnet, we used few-shot prompting for both action planning and answer generation
phases. Below, we detail our approach for each model type.

F.1 CLOSED-SOURCE MODEL SETTINGS

For Text-to-Triple Conversion (Figure 19), we instruct the model to extract structured knowl-
edge triples following specific formatting rules. The prompt precisely defines the triple format
as (S > subject | P > predicate | O > object) and provides comprehensive guidelines to ensure
consistent knowledge representation. Key rules include extracting maximal meaningful relationships,
maintaining original entity casing, avoiding pronoun usage, and ensuring clear predicate specification.
The example demonstrates the conversion of a biographical text into structured triples, showing how
complex information about an individual’s life, career, and temporal details can be systematically
decomposed into atomic facts. This standardized format enables reliable knowledge accumulation
and reasoning in subsequent stages of the RAS framework.

Extract relationship triples from the given text. 
Each triple should have exactly one subject (S>), one predicate (P>), and one object (O>).

Rules:
1. Extract as many meaningful triples as possible
2. Each triple must be in format: (S> subject| P> predicate| O> object)
3. Multiple triples should be separated by commas
4. Avoid using pronouns (it/he/she) - always use the actual names
5. Keep all entities in their original case (uppercase/lowercase)
6. Make predicates clear and specific
7. When input is only an entity, output (S> ENTITY| P> is| O> ENTITY) where ENTITY is the entity in the input.
8. [IMPORTANT] Do not include any other text in the output, only the triples or the entity (for the Rule 7 case).

Example Input:
"William Gerald Standridge (November 27, 1953 – April 12, 2014) was an American stock car racing driver. He was a competitor in the 
NASCAR Winston Cup Series and Busch Series."

Example Output:
(S> William gerald standridge| P> Nationality| O> American),
(S> William gerald standridge| P> Occupation| O> Stock car racing driver),
(S> William gerald standridge| P> Competitor| O> Busch series),
(S> William gerald standridge| P> Competitor| O> Nascar winston cup series),
(S> William gerald standridge| P> Birth date| O> November 27, 1953),
(S> William gerald standridge| P> Death date| O> April 12, 2014)

Input Text: 
{text}

Figure 19: Few-shot prompt for text-to-triples transformation with closed-source LLM.

For Planning (Figure 20), we design a comprehensive prompt that guides the model in making
strategic decisions about information retrieval needs. The prompt instructs the model to output one of
three labels based on careful analysis of the current knowledge state: (1) [NO_RETRIEVAL] when
the question can be answered directly, either due to the model’s inherent knowledge or the question’s
nature, (2) [SUBQ] accompanied by a focused subquery when additional information is needed,
or (3) [SUFFICIENT] when the accumulated knowledge is adequate to answer the question. The
prompt includes diverse examples demonstrating different scenarios:

(1) Generating follow-up queries based on partial information (2) Creating new queries when relevant
information is missing (3) Recognizing when accumulated information is sufficient (4) Identifying
questions that don’t require external knowledge (5) Handling common knowledge questions

A key feature of the prompt is its emphasis on query efficiency - it explicitly prohibits generating
redundant subqueries that might retrieve already-known information. This design helps maintain the
system’s efficiency while ensuring comprehensive knowledge gathering.
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You are a planner to determine if the question can be answered with current information (Subquery [PREV_SUBQ] and retrieved graph 
information [PREV_GRAPH_INFO]) and output the appropriate label as well as the subquery if needed.
Output [NO_RETRIEVAL] if the question can be directly answered with the question itself without any retrieval. You are expected to output 
[NO_RETRIEVAL] either if you believe an LLM is knowledgeable enough to answer the question, or if you believe the question type is not 
suitable for retrieval.
Output [SUBQ] with an subquery for retrieval if still needs a subquery. Do not make an similar subquery that has been made before 
([PREV_SUBQ]), as it is very likely to retrieve the same information.
Output [SUFFICIENT] if the question can be answered with the provided information.
The main question starts with "Question: ".

Examples:
------------------------------------------------------------------------------------------------
Example 1 (Use the information in [PREV_GRAPH_INFO] to further generate a new subquery):
Input: 
[PREV_SUBQ] Where is The Pick Motor Company Limited located?
[PREV_GRAPH_INFO] ['(S> Pick Motor Company Limited| P> Alias| O> New Pick Motor Company)', '(S> Pick Motor Company Limited| P> 
Location| O> Stamford, Lincolnshire)', '(S> Pick Motor Company Limited| P> Operational period| O> 1899-1925)', '(S> Pick Motor Company 
Limited| P> Industry| O> Motor vehicle manufacturing)’]
Question: The Pick Motor Company Limited is located in a town on which river ?,

Output:
[SUBQ] Which river is Stamford located on?

------------------------------------------------------------------------------------------------
Example 2 (No relevant information found in [PREV_GRAPH_INFO]):
Input: 
[PREV_SUBQ] What medals did Michael Johnson win in the 1996 Olympics?
[PREV_GRAPH_INFO] ['(S> Michael Johnson| P> Nationality| O> American)', '(S> Michael Johnson| P> Birth date| O> September 13, 1967)', 
'(S> Michael Johnson| P> Sport| O> Track and field)', '(S> Michael Johnson| P> Team| O> United States Olympic team)']
Question: What was Michael Johnson's winning time in the 400m at the 1996 Olympics?

Output:
[SUBQ] What records or times did Michael Johnson set in the 400m at the 1996 Olympic Games?

------------------------------------------------------------------------------------------------
Example 3 (The current information is sufficient to answer the question):
Input: 
[PREV_SUBQ] What gaming control board in Ohio is Martin R. Hoke a member of?
[PREV_GRAPH_INFO] ['(S> Martin R. Hoke| P> Former position| O> Member of the United States House of Representatives)', '(S> Martin R. 
Hoke| P> Birth date| O> May 18, 1952)', '(S> Martin R. Hoke| P> Occupation| O> Politician)', '(S> Martin R. Hoke| P> State| O> Ohio)', '(S> 
Martin R. Hoke| P> Nationality| O> American)', '(S> Martin R. Hoke| P> Party| O> Republican)', '(S> Martin R. Hoke| P> Member of| O> Ohio 
Casino Control Commission)', '(S> Martin R. Hoke| P> Born| O> 1952)’] 
[PREV_SUBQ] What gaming control board provides oversight of Ohio's casinos?
[PREV_GRAPH_INFO] [\"(S> Ohio Casino Control Commission| P> Function| O> Provides oversight of the state's casinos)\", '(S> Ohio Casino 
Control Commission| P> Location| O> Ohio)', '(S> Ohio Casino Control Commission| P> Type| O> Gaming control board)', '(S> Ohio Casino 
Control Commission| P> Abbreviation| O> OCCC)’]
Question: Martin R. Hoke, is an American Republican politician, member of which gaming control board in Ohio that provides oversight of the 
state's casinos?

Output:
[SUFFICIENT]

------------------------------------------------------------------------------------------------
Example 4 (The question is not suitable for retrieval):
Input:
Given a chat history separated by new lines, generates an informative, knowledgeable and engaging response.
##Input:
I love pizza. While it's basically just cheese and bread you can top a pizza with vegetables, meat etc. You can even make it without cheese!
Pizza is the greatest food ever! I like the New York style.
I do too. I like that the crust is only thick and crisp at the edge, but soft and thin in the middle so its toppings can be folded in half. 
Absolutely! I am not that big of a fan of Chicago deep dish though

Output:
[NO_RETRIEVAL]

------------------------------------------------------------------------------------------------
Example 5 (You are knowledgeable enough to answer the question):
Input:
What is the capital of the United States?

Output:
[NO_RETRIEVAL]

------------------------------------------------------------------------------------------------
[VERY IMPORTANT] Please only either output (1) [NO_RETRIEVAL] or (2) [SUBQ] with an concrete subquery for retrieval, or (3) 
[SUFFICIENT] if the question can be answered with the provided information.
[VERY IMPORTANT] Do not output any other text. DO NOT make an identical subquery [SUBQ] that has been made before ([PREV_SUBQ])!

Now, your turn:
Input:
{planner_intput}

Output:

Figure 20: Few-shot prompt for planning with closed-source LLM.
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For Answering (Figure 21), we design a prompt that focuses on synthesizing precise answers
from structured knowledge graphs. The prompt emphasizes selective use of retrieved information -
instructing the model to utilize subqueries and graph information only when relevant to the question
at hand. A distinctive feature of this prompt is its requirement for definitive answers even under
uncertainty or incomplete information, ensuring the model always provides a response.

The prompt includes carefully selected examples demonstrating two key scenarios: direct fact
retrieval (Nobel Prize winner) and complex reasoning across multiple knowledge pieces (athlete’s
sport classification). These examples illustrate how to effectively combine information from multiple
subqueries and their associated graph information to construct accurate answers. The prompt strictly
enforces concise answer generation, requiring only the essential information without additional
explanation or commentary.

You are a answerer given a question and retrieved graph information.
Each [SUBQ] is a subquery we generated through reasoning for the question. The retrieved graph information follows each [SUBQ] is relevant 
graph information we retrieved to answer the subquery.
The main question starts with "Question: ". Please answer the question, with subqueries and retrieved graph information if they are helpful (do 
not use them if they are not helpful).
You must answer the question, even if there's no enough information to answer the question, or you are not sure about the answer.

Examples:
------------------------------------------------------------------------------------------------
Example 1:
Input:
Question: Which person won the Nobel Prize in Literature in 1961, Ivo Andri or Nicholas Pileggi?",

Output:
Ivo Andri

------------------------------------------------------------------------------------------------
Example 2:
[SUBQ] What type of athlete is Darold Williamson?
Retrieved Graph Information: ['(S> Darold Williamson| P> Nationality| O> American)', '(S> Darold Williamson| P> Birth date| O> February 19, 
1983)', '(S> Darold Williamson| P> Occupation| O> Track athlete)’]
[SUBQ] What specific skills are included in track and field events?
Retrieved Graph Information: ['(S> Athletics| P> Includes| O> Road running)', '(S> Track and field| P> Includes| O> Throwing)', '(S> Track and 
field| P> Includes| O> Jumping)', '(S> Athletics| P> Includes| O> Cross country running)', '(S> Track and field| P> Categorised under| O> 
Athletics)', '(S> Track and field| P> Includes| O> Running)', '(S> Track and field| P> Venue| O> Stadium with an oval running track enclosing a 
grass field)', '(S> Athletics| P> Includes| O> Track and field)', '(S> Athletics| P> Includes| O> Race walking)', '(S> Track and field| P> Based on 
skills of| O> Running)', '(S> Track and field| P> Based on skills of| O> Jumping)', '(S> Track and field| P> Based on skills of| O> Throwing)’]
Question: Darold Williamson is an athlete in what running and jumping sport?",

Output:
Track and field

------------------------------------------------------------------------------------------------
[VERY IMPORTANT] Please only output the answer to the question.
[VERY IMPORTANT] Do not output any other text.

Now, your turn:
Input:
{answerer_input}

Output:

Figure 21: Few-shot prompt for answering with closed-source LLM.

In addition, for ASQA and ELI5 with closed-source models (RASSonnet-3.5 and all the other base-
lines (e.g., SuRe) using Sonnet-3.5), we conduct few-shot inference with two in-context learning
demonstrations, aligning with previous study’s (Gao et al., 2023) implementation.56

5https://github.com/princeton-nlp/ALCE/blob/main/run.py
6Exemplars can be found at https://github.com/princeton-nlp/ALCE/tree/main/

prompts
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F.2 OPEN-SOURCE MODEL SETTINGS

For inference with open-source model, we use our GraphLLM trained by Hotpot-SUBQ (see Ap-
pendix D.2), we use 8 NVIDIA RTX 6000 Ada Generation with 48GB memory and CUDA version
12.4. We use Python 3.10, PyTorch 2.1.2, and torch-geometric 2.6.1 throughout all experiments.

For more efficient text retrieval, we split the dense index of the corpus into eight splits, and load them
on eight GPUs with faiss-gpu 1.7.2.7

We set maximum new tokens as 100 for PopQA, TriviaQA, and 2WikiMultihopQA, as 50 for
PubHealth and ARC-Challenge, and as 300 for ASQA and ELI5, aligning with previous study
(Asai et al., 2023; Lyu et al., 2024b). All the generation are configured with batch size of 1.

As we always set the main question as the first subquery, we pre-extract the triples from the context
at the first iteration using our text-to-triple model for batch triple extraction.

We use exact same instructions for planning and answering as we used in training phase, as shown in
Figures 16 and 17.

F.3 INSTRUCTIONS

We use the following task-specific instructions for zero-shot inference:

Dataset Instruction
ARC-C (baseline) Given four answer candidates, A, B, C and D, choose the best answer choice. Please answer with the capitalized

alphabet only, without adding any extra phrase or period.
ARC-C Which is true? Output A, B, C, or D.

PubHealth (baseline) Is the following statement correct or not? Say true if it’s correct; otherwise, say false. Don’t capitalize or add
periods, just say “true” or “false”.

PubHealth Is statement ’true’ or ’false’? Only output ’true’ or ’false’.

ASQA (baseline) Instruction: Write an ACCURATE, ENGAGING, and CONCISE answer for the given question using the retrieved
graph information (some of which might be irrelevant). Use an unbiased and journalistic tone.

ASQA Answer the following question. The question may be ambiguous and have multiple correct answers,
and in that case, you have to provide a long-form answer including all correct answers. [Long Form]

ELI5 (baseline) Instruction: Write an ACCURATE, ENGAGING, and CONCISE answer for the given question using the retrieved
graph information (some of which might be irrelevant). Use an unbiased and journalistic tone.

ELI5 Provide a paragraph-length response using simple words to answer the following question. [Long Form]

Table 5: Task-specific instructions. For short-form QA, we do not use instructions and use the original
questions only.

G COST & EFFICIENCY COMPARISON WITH OTHER GRAPH-BASED RAG
METHODS

Static vs. Dynamic Structuring. Static corpus-level graph methods such as GraphRAG (Edge
et al., 2024) and HippoRAG (Gutiérrez et al., 2024) require building and maintaining large knowledge
graphs offline. This involves millions of LLM calls for entity/relation extraction and summarization,
plus heavy clustering and embedding computation. At the scale of Wikipedia 2018 (roughly 5M
articles, ∼3B tokens), these pipelines incur substantial costs, days of GPU/CPU compute, and
≥50 GB storage overhead. In contrast, our RAS constructs question-specific knowledge graphs
dynamically at inference, eliminating expensive offline indexing. The only extra step is lightweight
triple extraction from retrieved passages, which we implement with a small LLaMA-3B model
accelerated by vLLM (Kwon et al., 2023), achieving throughput of nearly 5K tokens/s (Table 3).

Cost Estimation Methodology. We estimate costs based on empirical data from Microsoft’s
GraphRAG analysis 8 and scale to Wikipedia 2018. Cost estimates assume current API pricing and
may vary significantly based on implementation details, model selection, and optimization strategies.

7All the Wikipedia dumps (2018, 2020) we used are downloaded from https://github.com/
facebookresearch/atlas

8https://techcommunity.microsoft.com/blog/azure-ai-foundry-blog/
graphrag-costs-explained-what-you-need-to-know/4207978

30

https://github.com/facebookresearch/atlas
https://github.com/facebookresearch/atlas
https://techcommunity.microsoft.com/blog/azure-ai-foundry-blog/graphrag-costs-explained-what-you-need-to-know/4207978
https://techcommunity.microsoft.com/blog/azure-ai-foundry-blog/graphrag-costs-explained-what-you-need-to-know/4207978


1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Computation of Indexing Cost. We estimate costs using the following assumptions:

• Corpus size: Wikipedia 2018 ≈ 3B tokens, or ≈5M articles with ∼600 tokens/article.

• GraphRAG pipeline: Based on Microsoft’s empirical analysis showing $0.000011 per word for
GPT-4o-mini.

– For 3B tokens (≈2.25B words), base processing cost: $25k–$30k
– Entity/relation extraction with few-shot prompting increases token usage by 3–5×: $75k–

$150k
– Community summarization for ∼10k communities at $0.02 per community: $200–$500
– Additional overhead (clustering, embeddings, storage): $10k–$25k
– Total GraphRAG: $85k–$175k for GPT-4o-mini; $250k–$500k for GPT-4o

• HippoRAG pipeline: More efficient extraction but still corpus-wide processing.

– Entity extraction: 3B tokens at reduced complexity ≈ $15k–$30k
– Synonym linking and embedding overhead: $5k–$15k
– Graph construction and indexing: $5k–$10k
– Total HippoRAG: $25k–$55k

• RAS pipeline: No offline corpus-wide indexing. Triple extraction uses local LLaMA-3B model.

– Offline indexing cost: $0 (no corpus preprocessing required)
– Runtime triple extraction: Local model inference (negligible marginal cost)
– Total RAS: $0 offline costs

Cost Sensitivity Analysis. Costs vary significantly based on:

• Model selection: GPT-4o costs ≈3× more than GPT-4o-mini

• Chunk size: Smaller chunks (300 vs 1200 tokens) can reduce costs by 30–50%

• Prompt optimization: Well-tuned prompts can reduce token usage by 20–40%

• Processing parameters: Conservative estimates assume non-optimized settings

Quantitative Comparison. Table 6 summarizes estimated costs with uncertainty ranges.

Method Offline LLM Cost Compute Time Storage Ready for RAG?

GraphRAG $85k–$500k (model-dependent) >7 days (distributed) 50–70 GB Yes (community reports)
HippoRAG $25k–$55k (optimized extraction) >3 days (cluster) 30–50 GB Yes (node-passage matrix)
RAS (ours) Negligible Inference-time only Small (triple cache) Yes (dynamic graph)

Table 6: Estimated cost comparison for building knowledge graph indexes at Wikipedia 2018 scale.
Ranges reflect model choice, optimization level, and implementation variations.

Efficiency Visualization. We visualize the contrast in offline indexing cost ranges. RAS requires
no precomputation, while GraphRAG and HippoRAG incur substantial upfront costs.

GraphRAG HippoRAG RAS

1

102
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106

In
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Figure 22: Estimated offline indexing cost ranges
at Wikipedia scale (log scale).

Takeaway. RAS achieves the structured reason-
ing benefits of graphs without any offline index-
ing costs, compared to GraphRAG ($85k–$500k)
and HippoRAG ($25k–$55k). By eliminating up-
front investment requirements and enabling pay-per-
query scaling through local model inference, RAS
makes graph-enhanced RAG accessible for scenar-
ios where large-scale preprocessing is impractical or
cost-prohibitive.
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H SUPPLEMENTARY RESULTS AND ANALYSIS

Higher Performance with More Contexts?
We further examine the performance of Sonnet-3.5 when increasing the number of retrieved docu-
ments. Table 7 compares Sonnet-3.5 under different retrieval depths with RAS-Sonnet.

Method 2WikiMultihopQA (F1) PopQA (Acc) PubHealth (Acc) ARC (Acc)

Sonnet-3.5 (#docs=5) 53.7 57.3 53.9 87.1
Sonnet-3.5 (#docs=10) 55.1 58.5 56.6 87.9
Sonnet-3.5 (#docs=15) 55.4 58.0 56.9 86.9
RAS (Sonnet) 57.7 62.3 71.4 93.8

Table 7: Performance comparison between Sonnet-3.5 under varying context sizes and RAS-Sonnet.

Increasing retrieval depth yields diminishing returns for Sonnet-3.5, while RAS-Sonnet achieves
significantly higher performance with structured, targeted context. This highlights the limitations of
passive context scaling and the benefits of RAS’s organized retrieval strategy.

Error Analysis on Graph Construction
We present two representative cases where the quality of retrieved structured knowledge significantly
impacts final answer generation. These examples are distinct from the qualitative examples shown in
Section I and highlight both successful and failed reasoning paths.

Case 1: Accurate Reasoning with Well-Structured Graph
Question: Who directed the film adaptation of the novel “Tinker Tailor Soldier Spy”?
Subqueries and Graphs:

• [SUBQ] Who directed the film “Tinker Tailor Soldier Spy”?
(S> Tinker Tailor Soldier Spy | P> Film adaptation director | O> Tomas Alfredson),
(S> Tinker Tailor Soldier Spy | P> Release year | O> 2011)

• [SUBQ] Who is Tomas Alfredson?
(S> Tomas Alfredson | P> Occupation | O> Film director)

Answer: Tomas Alfredson (Correct)
Analysis: The subquery identifies the correct adaptation and its director. The structured triple
precisely encodes this relation, allowing the model to reason accurately.

Case 2: Reasoning Failure Due to Spurious or Missing Triples
Question: What invention is Nikola Tesla best known for?
Subqueries and Graphs:

• [SUBQ] What are Nikola Tesla’s major inventions?
(S> Nikola Tesla | P> Known for | O> Earthquake machine),
(S> Nikola Tesla | P> Proposed | O> Death ray),
(S> Nikola Tesla | P> Created | O> Tesla coil)

• [SUBQ] What is a Tesla coil used for?
(S> Tesla coil | P> Used in | O> High-frequency experiments)

Answer: Earthquake machine or death ray (Incorrect)
Analysis: The graph omits the key triple (Nikola Tesla | Invented | Alternating current system),
instead surfacing fringe inventions. This misleads the model into emphasizing less impactful or
speculative work, leading to an incorrect answer.

These examples reveal that RAS makes reasoning pathways more interpretable by structuring retrieved
knowledge explicitly. When failures occur, they can often be traced to identifiable issues in the
extracted triples, such as missing key relations or overemphasis on fringe facts, rather than opaque
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model behavior. This transparency not only facilitates error analysis but also suggests concrete
avenues for improving upstream components like triple extraction or subquery generation, making
RAS a flexible foundation for future refinement.

I QUALITATIVE EXAMPLES

In this section, we show some qualitative examples and running examples of RAS.

Example 1 (PopQA)

[SUBQ] Who was the screenwriter for The Fake?
Retrieved Graph Information:
(S> The Fake | P> Release year | O> 1953), 
(S> The Fake | P> Genre | O> British crime film), 
(S> The Fake | P> Director | O> Godfrey Grayson), 
(S> The Fake | P> Stars | O> Dennis O'Keefe), 
(S> The Fake | P> Stars | O> Coleen Gray), 
(S> The Fake | P> Stars | O> Hugh Williams), 
(S> The Fake | P> Plot concerns | O> American detective solving theft of priceless painting), 
(S> Priceless painting | P> Stolen from | O> Tate Gallery), 
(S> Tate Gallery | P> Located in | O> London) 

[SUBQ] Who wrote the screenplay for the 1953 British crime film The Fake?
Retrieved Graph Information:
(S> Antony Carr | P> Occupation | O> Author),
(S> Antony Carr | P> Genre | O> Crime novels),
(S> Antony Carr | P> Birth year | O> 1916), 
(S> Antony Carr | P> Death year | O> 1995), 
(S> Antony Carr | P> Nationality | O> English), 
(S> Antony Carr | P> Father | O> Robert Carr), 
(S> Robert Carr | P> Occupation | O> Singer), 
(S> Antony Carr | P> Niece | O> Susannah Carr), 
(S> Susannah Carr | P> Occupation | O> Newsreader), 
(S> Susannah Carr | P> Nationality | O> Australian) 

[SUBQ] Who wrote the script or screenplay for the 1953 British crime film The Fake directed by 
Godfrey Grayson?
Retrieved Graph Information:
(S> The Fake | P> Is a | O> British silent drama film), 
(S> The Fake | P> Release year | O> 1927), 
(S> The Fake | P> Directed by | O> Georg Jacoby), 
(S> The Fake | P> Stars | O> Henry Edwards), 
(S> The Fake | P> Stars | O> Elga Brink), 
(S> The Fake | P> Stars | O> Juliette Compton), 
(S> The Fake | P> Based on | O> Play of the same title), 
(S> Play of the same title | P> Written by | O> Frederick Lonsdale), 
(S> Play of the same title | P> Release year | O> 1924), 
(S> The Fake | P> Made at | O> Twickenham Studios), 
(S> Twickenham Studios | P> Located in | O> London)

Question: Who was the screenwriter for The Fake?

Answer: Frederick Lonsdale

Figure 23: An inference example in PopQA dataset.
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Example 2 (TriviaQA)

[SUBQ] Who is the most successful UK solo artist in the USA?
Retrieved Graph Information:
(S> Jay Sean | P> Achievement | O> Most successful male UK urban artist in US chart history), 
(S> Jay Sean | P> Song reached number one | O> Down),
(S> Jay Sean | P> Chart topped | O> Billboard Hot 100), 
(S> Taio Cruz | P> Topped chart | O> US Billboard Hot 100),
(S> Cliff Richard | P> Claimed worldwide sales | O> 260 million), 
(S> Cliff Richard | P> Ranking | O> Second highest selling British male solo artist worldwide),
(S> Elton John | P> Ranking | O> Highest selling British male solo artist worldwide),
(S> Cliff Richard | P> Backing band | O> The Shadows), 
(S> Robbie Williams | P> Chart topper | O> Rock DJ), 
(S> Robbie Williams | P> Collaboration with | O> Kylie Minogue) 

[SUBQ] What are the US chart records or album sales figures for Elton John in the United States? 
Retrieved Graph Information:
(S> Elton John | P> Plays | O> Piano),
(S> Elton John | P> Performs | O> Vocals),
(S> Dee Murray | P> Plays | O> Bass), 
(S> Nigel Olsson | P> Plays | O> Drums), 
(S> Davey Johnstone | P> Plays | O> Electric guitar), 
(S> Paul Buckmaster | P> Arranges | O> Orchestral arrangement), 
(S> Bob Birch | P> Plays | O> Bass guitar), 
(S> Charlie Morgan | P> Plays | O> Drums), 
(S> Charlie Morgan | P> Plays | O> Percussion), 
(S> Guy Babylon | P> Plays | O> Keyboards), 
(S> Matt Springer | P> Ranked | O> Elton John's studio albums), 
(S> Ultimate Classic Rock | P> Employs | O> Matt Springer), 
(S> Daryl Hall & John Oates | P> Nationality | O> American), 
(S> Daryl Hall & John Oates | P> Sold albums in US | O> 13 million), 
(S> Daryl Hall & John Oates | P> Sold singles in US | O> 6 million) 

Question: Who is the most successful UK solo artist in the USA?

Answer: Elton John

Figure 24: An inference example in TriviaQA dataset.
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Example 3 (ASQA)

[SUBQ] Who sang the song i'm coming out?
Retrieved Graph Information: 
(S> Diana Ross | P> Sang | O> I'm Coming Out), 
(S> Bernard Edwards | P> Wrote | O> I'm Coming Out), 
(S> Nile Rodgers | P> Wrote | O> I'm Coming Out), 
(S> Bernard Edwards | P> Produced | O> I'm Coming Out), 
(S> Nile Rodgers | P> Produced | O> I'm Coming Out), 
(S> I'm Coming Out | P> Released on | O> August 22, 1980), 
(S> I'm Coming Out | P> Second single from album | O> Diana), 
(S> Diana Ross | P> Commissioned | O> Chic), 
(S> Stevie J | P> Sampled | O> I'm Coming Out), 
(S> The Notorious B.I.G. | P> Used sample in song | O> Mo Money Mo Problems), 
(S> Marcia Hines | P> Covered | O> I'm Coming Out)
(S> Keyshia Cole | P> Remade | O> I'm Coming Out), 
(S> Iggy Azalea | P> Featured on remake of | O> I'm Coming Out), 
(S> Ariana Grande | P> Sampled in song | O> Break Your Heart Right Back), 
(S> Hella von Sinnen | P> Sampled | O> I'm Coming Out), 
(S> Amerie | P> Covered | O> I'm Coming Out)

[Long Form] Question: Who sang the song I'm coming out?

Ground Truth: "I'm Coming Out" is a song recorded by American singer Diana Ross. It was written and produced by Chic members 
Bernard Edwards and Nile Rodgers, and released on August 22, 1980, as the second single from Ross' self-titled tenth album Diana
(1980). In 2003, American singer Amerie covered "I'm Coming Out" for the soundtrack to the film "Maid in Manhattan". Her version
was released as a single in select European countries and Australia.

Generation: "I'm Coming Out" is a song by American singer Diana Ross. It was written by Bernard Edwards and Nile Rodgers and 
produced by Edwards and Rodgers. The song was released on August 22, 1980 as the second single from Ross's album Diana. The 
song was sampled by Stevie J in his 2005 song "U Don't Know" and by The Notorious B.I.G. in his 1997 song "Mo Money Mo 
Problems". Marcia Hines covered the song for her 1981 album Marcia. Keyshia Cole remade the song for her 2007 album Just Like
You. In 2014, Iggy Azalea featured on a remake of the song. Ariana Grande sampled the song in her 2015 song "Break Your Heart
Right Back".

Example 4 (ELI5)

[SUBQ] What is a stock 'put' and how does it work?
Retrieved Graph Information: 
(S> Put option | P> Is | O> Financial contract), 
(S> Put option | P> Gives buyer | O> Right to sell underlying asset), 
(S> Put option | P> Has | O> Predetermined price), 
(S> Put option | P> Has | O> Expiration date), 
(S> Put option | P> Can be associated with | O> Stocks), 
(S> Put option | P> Can be associated with | O> Commodities), 
(S> Put option buyer | P> Not obligated to | O> Sell at contract price), 
(S> Put option | P> Used for | O> Hedging), 
(S> Put option buyer | P> Bets on | O> Stock price decline)
(S> Put option | P> Has | O> Defined risk)

[Long Form] Question: What is a stock 'put' and how does it work?

Ground Truth: A stock put is a type of stock option, that grants you the option to sell at a specified date for a set price. It's effectively a 
means of protecting stock you own, or for betting against a stock. Let's say you buy an 1 contract for August 140 puts on Apple. That 
means that the date August options expire, you would be able to sell 100 shares at $140 if you so choose. So if Apple drops to $125 
by that time, you'd protect $15/share of gains. This might only cost you $1-2 per share to buy the contract. Or if you simply think the 
stock will fall, the put will increase in value as the strike price approaches "in the money." So that $1-2/sh. you spend to buy the put 
option might be worth $10/share if the stock starts dropping and there's greater likelihood that it'll be below the $140 price. Because 
there is a set expiration date, the values have a relationship to both the underlying stock and the time until the expiration. So a month 
out, the put option that's $10 in the money ($140 put, stock trading at $130) might cost $20 while the day of the expiration it'd be just 
about the difference between option value and stock itself.

Generation: A put option is a financial contract that gives the buyer the right to sell the underlying asset at a predetermined price and
expiration date. The put option buyer is not obligated to sell the asset at the contract price, but they can bet on the stock price decline.

Figure 25: Examples of long-form generation on ASQA and ELI5.
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𝑸: What religion did Marie Curie practice after her marriage to Pierre Curie?

Planning

𝑸NoneINSTNone

[SUBQ] What religion did Marie Curie practice 
after her marriage to Pierre Curie?

(for the first iteration, if retrieval is needed, we 
use the main query itself as the subquery)

Doc 1
“The marriage of Marie Skłodowska and Pierre Curie in 1895 was a civil ceremony, 
reflecting their shared secular worldview... Pierre came from a strongly anti-clerical 
family background... Their letters reveal deep philosophical discussions about the 
relationship between science and faith, with both ultimately embracing an agnostic 
perspective ... After their marriage, the Curies maintained a thoroughly secular 
household, focusing their spiritual energy on their scientific work.”

Doc 2
“The scientific community in Paris that the Curies inhabited was largely secular... 
Following their marriage, Marie and Pierre became central figures in this intellectual 
milieu... Pierre's family, particularly his father Dr. Eugene Curie, had long rejected 
religious orthodoxy in favor of rationalist philosophy... Throughout their married life, 
the Curies maintained this secular orientation, though with a deep sense of wonder 
at the mysteries of nature they studied.”

⋮
Doc 5

⋯⋯

Retrieved Documents 𝒕𝟎

Structuring

(Marie Pierre wedding | type | civil ceremony)
(Marie Pierre wedding | year | 1895)

(Marie Pierre| shared belief | agnostic perspective)
(Curie household | characteristic | secular)

(Marie Curie | married life philosophy | scientific materialism)
(Pierre Curie | family background | anti clerical)

(Eugene Curie | worldview | free thinking)
(Eugene Curie | attitude to religion | rejection)

(Pierre Curie | philosophical stance | scientific rationalism)
(Curie family | focus | scientific work)

(Paris scientific community | worldview | secular)
(Curie family | ethical foundation | moral purpose)

(Marie Curie | belief evolution | Catholic to rationalist)

⋮

Extracted Graph 𝒈𝟎

Subquery 𝒒𝟎

Enrich

Evolving KG 𝑮𝑸

Planning

𝑸INST𝑮𝑸 [𝒒𝟎;𝒈𝟎]

𝒒𝟎 𝒈𝟎 𝑸

[SUBQ] Did Marie and Pierre Curie participate in 
any religious institutions in Paris after 1895?

Subquery 𝒒𝟏

Retrieval

Retrieved Documents 𝒕𝟏

Iteration 0

Iteration 1

Doc 1
"A thorough examination of attendance records from Paris's major Catholic 
institutions between 1895-1906 shows no registration of the Curie family... The 
Saint-Jacques-du-Haut-Pas parish, nearest to their home on rue Lhomond, 
contains no record of their participation... Unlike many prominent families who 
maintained at least ceremonial connections to the Church, the Curies were notably 
absent from all parish activities and sacramental records."

Doc 2
"The Catholic Church archives of the 5th arrondissement, where the Curies resided, 
document that their daughters Irène (b.1897) and Eve (b.1904) were never 
baptized... Annual parish censuses from this period, which typically listed all 
Catholic households, do not mention the Curie family... Their absence from these 
records was unusual for their social standing in Belle Époque Paris." 

⋮
Doc 5

⋯⋯

(Curie family | no registration | paris catholic records 1895-1906) 
(Curie daughters | baptism status | none) 

(Curie family | parish census presence | absent) 
(Curie family | religious institution participation | none) 

(Saint Jacques Parish | location | near Curie home)
(Curie home | address | rue Lhomond)

(Paris society norm | church connection | ceremonial minimum)
(Irene Curie | birth year | 1897)
(Eve Curie | birth year | 1904)

(Lutheran Church | characteristic | attracted scientists)
(Pierre Curie family | historical connection | Protestant)

⋮

Extracted Graph 𝒈𝟏

Enrich

Evolving KG 𝑮𝑸

Structuring

Planning

𝑸INST𝑮𝑸

𝒒𝟎 𝒈𝟎

𝑸

{𝒒𝒋; 𝒈𝒋}𝒋𝒊

𝒒𝟏 𝒈𝟏

[SUFFICIENT] Answering

𝑸INST𝑮𝑸

𝒒𝟎 𝒈𝟎

𝑸

{𝒒𝒋; 𝒈𝒋}𝒋𝒊

𝒒𝟏 𝒈𝟏

Answer 𝑨

After her marriage to Pierre Curie in 1895, Marie 
Curie practiced no religion. This is conclusively 
demonstrated by two key pieces of evidence: First, 
official Catholic Church records from 1895-1906 in 
Paris's 5th arrondissement show no registration or 
participation by the Curie family, and their 
daughters were never baptized, which was highly 
unusual for their social standing at the time. 
Second, their home life was explicitly secular - they 
held a civil wedding ceremony and maintained a 
thoroughly secular household, spending Sundays in 
the laboratory rather than at church services.

Retrieval

Iteration 2

Figure 26: A Running Example of RAS.
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J HYPERPARAMETER STUDY

Table 8: Hyper-parameter study. We highlight the setting used in experiments.

Hyper-parameter Studied Values
Text-to-Triples Model
Batch size {2, 4, 8, 16, 32}
Learning rate {1e-5, 2e-5, 5e-5, 1e-4, 2e-4}

GraphLLM (Action Planner & Answerer)
GNN Setting (for Graph Token)
GNN architecture {GCN, GAT, Graph Transformer}
Hidden dimension {512, 768, 1024, 2048}
Number of layers {2, 3, 4, 5}
Number of heads {4, 6, 8, 12}
Dropout rate {0.05, 0.1, 0.2, 0.3}
Projector intermediate dimension {1024, 2048, 4096}
Projector output dimension 4096
LoRA Setting
LoRA rank (r) {4, 8, 16, 32}
LoRA alpha {8, 16, 32}
LoRA dropout {0.01, 0.05, 0.1, 0.15}
General Setting
Learning rate {1e-6, 2e-6, 5e-5, 1e-4}
Batch size (training) {2, 4, 8, 16, 32}
Batch size (inference) 1
Weight decay {0.001, 0.01, 0.05, 0.1}
Gradient accumulation steps {2, 4, 8, 16}
Gradient clipping {0.1, 0.3, 0.5, 1.0}
Warmup ratio {0.05, 0.1, 0.15, 0.2}
Max text length 2500
Max new tokens Task-specific (see Appendix F.2)

Others
Dense retrieval top-k 5
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K BROADER IMPACTS, SAFEGUARDS, AND ASSETS

Broader Impacts. The RAS framework presents several promising impacts for both research and
practical applications. By transforming unstructured retrieved content into structured, question-
specific knowledge graphs, RAS improves reasoning transparency and factual reliability—qualities
that are especially valuable in education, scientific research, and technical writing. The ability to
explicitly organize retrieved knowledge into interpretable structures also opens up new possibilities
for human-in-the-loop AI systems, enabling users to trace and verify model reasoning paths.

However, several ethical considerations remain. RAS’s reliance on structured knowledge representa-
tions means its effectiveness may be limited in low-resource languages or domains with sparse data.
Additionally, biases present in training data can be preserved or even amplified in structured forms.
Addressing these concerns will require rigorous evaluation across diverse user groups and careful
curation of source corpora. Promoting fairness, transparency, and inclusivity should be core design
goals for future RAS-based systems.

Safeguards. To mitigate potential harms, we propose several safeguards during the development and
deployment of RAS-based systems. First, developers should routinely audit training and retrieval
corpora for biases and factual inconsistencies, and apply data augmentation or counterfactual genera-
tion techniques where appropriate. Second, regular evaluations should be conducted across a diverse
range of tasks, languages, and user demographics to assess any unintended performance disparities.
Third, when applied in sensitive domains, human-in-the-loop oversight should be incorporated to
validate the structured knowledge outputs and final generations. Lastly, transparency measures, such
as providing users with access to intermediate structured knowledge (e.g., the constructed knowledge
graph), can help foster trust and enable error analysis.

Assets Used. To support the development and evaluation of the RAS framework, we utilized a
wide range of publicly available datasets, open-source tools, and pretrained models. All datasets
were selected based on relevance to knowledge-intensive tasks, including question answering and
long-form generation, and were licensed for academic research or distributed under permissive
open-source terms such as MIT, Apache 2.0, and CC BY. Our training and evaluation relied on
benchmark datasets such as HotpotQA, ASQA, TriviaQA, and ARC, while structured knowledge was
derived using models trained on WikiOfGraph. We used open-source infrastructure including FAISS
for retrieval, vLLM for inference optimization, and Graph LLM as our model backbone. For baseline
comparisons, we incorporated implementations from Self-RAG, RPG, and ALCE. Closed-source
models like Claude-3.5-Sonnet were used for performance comparison and triple extraction under
API constraints. Full licensing and usage details are provided in Table 9.
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Asset Source / URL License Usage

HotpotQA https://hotpotqa.github.
io/

MIT Base QA dataset

HotpotQA-SUBQ We constructed from HotpotQA MIT (inherited) Subquery training dataset
ASQA https://github.com/

google-research/language/
tree/master/language/asqa

Apache 2.0 Training and evaluation

Arc-Easy https://allenai.org/data/
arc

AI2 Research
License

Training (subset)

TriviaQA https://nlp.cs.
washington.edu/triviaqa/

CC BY-SA 4.0 Evaluation

PopQA https://huggingface.co/
datasets/akariasai/PopQA

CC BY 4.0 Evaluation

2WikiMultihopQA https://github.com/
Alab-NII/2wikimultihop

Apache 2.0 Evaluation

PubHealth https://huggingface.co/
datasets/bigbio/pubhealth

MIT Evaluation

ARC-Challenge https://allenai.org/data/
arc

AI2 Research
License

Evaluation

ELI5 https://huggingface.co/
datasets/eli5

Apache 2.0 Evaluation

Wikipedia
2018/2020

https://github.com/
facebookresearch/atlas

Creative Com-
mons Public Li-
censes

Knowledge source for retrieval

WikiOfGraph https://github.com/
daehuikim/WikiOFGraph

CC BY 4.0 Triple model training

Claude-3.5-Sonnet https://www.anthropic.com Proprietary Default closed source model
LLaMA-2/3 https://ai.meta.com/llama Meta LLaMA

Community
License

Default open source model

LLaMA-3.2-3B Derived from Meta LLaMA Meta LLaMA
Community
License

Triple extraction

Flan-T5-Large https://huggingface.co/
google/flan-t5-large

Apache 2.0 Triple extractor

Graph LLM Modified from https://github.
com/XiaoxinHe/G-Retriever

Research use Model backbone

Faiss https://github.com/
facebookresearch/faiss

MIT Dense retrieval

vLLM https://github.com/
vllm-project/vllm

Apache 2.0 Optimized inference

Sentence-BERT https://www.sbert.net Apache 2.0 Graph node/edge embedding
Self-RAG Code https://github.com/

AkariAsai/self-rag
MIT Baseline eval

RPG Code https://github.com/
haruhi-sudo/RPG

Research use Baseline eval

Search-R1 Code https://github.com/
PeterGriffinJin/Search-R1

Research use Baseline eval

s3 Code https://github.com/
pat-jj/s3

Research use Baseline eval

ALCE Code https://github.com/
princeton-nlp/ALCE

MIT Eval metrics

Table 9: Assets used in RAS. All assets are licensed or cited for research use or open-source
compatibility.
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