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Abstract

We study the mediation analysis under the distributed framework, where data are
stored and processed across different worker machines due to storage limitations
or privacy concerns. Building upon the classic Sobel’s test and MaxP test, we in-
troduce the distributed Sobel’s test and distributed MaxP test, respectively. These
tests are both communication-efficient and easy to implement. Theoretical analy-
sis and numerical experiments show that, compared to the global test obtained by
pooling all data together, the proposed tests achieve nearly identical power, inde-
pendent of the number of machines. Furthermore, based on these two distributed
test statistics, many enhanced mediation tests derived from the Sobel’s or MaxP
tests can be easily adapted to the distributed system. We apply our method to
an educational study, testing whether the effect of high school mathematics on
college-level Probability and Mathematical Statistics courses is mediated by Cal-
culus. Our method successfully detects the mediation effect, which would not be
identifiable using data from only the first or second class, highlighting the advan-
tage of our approach.

1 Introduction

Mediation analysis is regarded as a prevalent tool to dissect a mediation relationship between expo-
sures and outcomes, and it has been widely applied in different fields, such as epidemiology [29],
economics [1], psychology [18], education [11], and many others. Baron and Kenny[3] provided
the basis for the advance of mediation analysis. They proposed a conventional regression-based
approach, commonly referred to as the causal steps method, to examine the logical relationships
among exposure, mediator, and outcome variables linking in a causal chain. While the causal steps
method established necessary conditions for causal inference, it did not provide a joint test of the
indirect effect of exposure on the outcome through a mediator. To test the mediation effect, the
classic tests are Sobel’s test [31] and the MaxP test [24]. However, these tests suffer from low sta-
tistical power, as it overlooks the impact of the composite null structure in mediation analysis [25].
To address the aforementioned issues, Nuijten et al.[26] proposed an approach based on Bayesian
models. Zhang[37] developed two data-adaptive tests that outperform both Sobel’s test and MaxP
test. These studies were limited to a small number of mediators. For high-dimensional mediators,
one usually first estimates the proportions of sub-null hypotheses and generates weighted p-values
[7, 8, 10, 17, 23].

In many applications, data is collected independently by numerous agents and organizations. Due to
limitations in resources and concerns about privacy, only summary statistics can be shared between
sites, while raw data remains inaccessible. To address this, distributed learning algorithms have
gained attention in multi-source studies, enabling collaborative analyses without compromising the
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privacy of individual-level data. There has been substantial research on distributed estimation, which
can be categorized into two main approaches: the one-shot average method [6, 13, 14, 32, 38] and
the multi-round iteration method [12, 19, 20, 35, 36]. However, research on distributed statistical
testing is still in its early stages. For example, Battey et al.[4] explored distributed versions of Wald
and Rao’s score tests for sparse high-dimensional schemes. Zhao et al.[39] proposed a distributed
specification test for massive datasets and analyzed the impact of divide-and-conquer strategies on
nonparametric testing. Du et al.[9] addressed one-sample mean testing within distributed frame-
works. Li et al.[22] introduced a distributed conditional independence test aimed at discovering
causal relationships. Cai et al.[5] studied distributed nonparametric goodness-of-fit testing under
differential privacy constraints in a white-noise-with-drift model. In the context of mediation anal-
ysis research, meta-analysis is often employed to combine results from multiple studies. This is
typically done by either computing a weighted average of p-values or test statistics [30], or by av-
eraging the estimated mediation effects using a weighted approach [21]. However, these methods
often lack a detailed and rigorous statistical framework to support their use.

The distributed tests discussed above all rely on a simple weighted average approach. One limitation
of this method is that, when the total sample size N is fixed, the power of the test declines sharply
as the number of data blocks K increases, as shown in the simulation. In this paper, we develop a
distributed framework for testing mediation effects, which overcomes this limitation. Specifically,
our main contributions can be summarized as follows:

• We propose communication-efficient distributed versions of the classic Sobel’s test statistic
TSobel and the MaxP test statistic TMaxP , denoted as TDis

Sobel and TDis
MaxP , respectively. Af-

ter presenting the theoretical properties of these statistics, we provide an easy-to-implement
algorithm. Both theoretical analysis and numerical experiments demonstrate that the pro-
posed tests achieve nearly identical power to the global test, which is obtained by pooling
all data togethera process difficult to implement in practice due to data-sharing limitations.

• Our method lays the foundation for the further development of distributed mediation anal-
ysis. Although the classic Sobel’s and MaxP tests are conservative and underpowered,
primarily because they do not account for the composite null nature of the mediation effect,
many enhanced mediation tests are build upon Sobel’s or MaxP tests. Consequently, the
distributed versions of these enhanced tests can be derived from our distributed Sobel’s or
MaxP tests.

• We apply our method to an educational study, demonstrating that high school mathematics’
effect on college-level Probability and Mathematical Statistics is mediated by Calculus.
The data are sourced from three classes, with only summary information of local data
available from each class due to student privacy concerns. Our distributed test successfully
detects the mediation effect, which would be undetectable using local tests from just the
first or second class.

2 Preliminaries: Mediation Analysis

Let A represent the exposure variable, Y the continuous outcome, M the continuous mediator, and
X ∈ Rp the vector of additional covariates used to adjust for potential confounding. In their seminal
work, Baron and Kenny[3] proposed the following linear structural equation models for the outcome
and mediator:

Y = β0 + βAA+ βM + βT
XX+ ϵY , (1)

M = γ0 + γA+ γT
XX+ ϵM , (2)

where ϵY and ϵM represent error terms with zero means and constant variances, assumed to be
uncorrelated with one another.

The mediation effect is the Natural Indirect Effect (NIE), a concept introduced by [28] and [27],
which quantifies the effect of the exposure on the outcome that is mediated through the mediator.
For continuous mediator and outcome variables, the mediation effect is defined as the product βγ,
where β and γ are the coefficients from the respective equations. Graphically, the mediation effect
corresponds to the NIE conveyed through the chain A → M → Y , as illustrated in the directed
acyclic graph (DAG) in Figure 1. The modern causal inference framework relies on the following
standard identification assumptions to estimate the mediation effect [34, 33].
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Figure 1: The causal graph with
treatment A, outcome Y , mediator
M , and confounder X . γ is the ef-
fect of A on M , and β is the effect
of M on Y .

Figure 2: A distributed framework with K worker
machines connected to a central processor. The k-
th machine computes a local statistic T (k) using its
local data D(k), and then transmits it to the central
processor. The central processor subsequently com-
putes the distributed statistic TDis based on the K
local statistics.

Assumptions

A1. There are no unmeasured exposure-outcome confounders given X;

A2. There are no unmeasured mediator-outcome confounders given (X;A);

A3. There are no unmeasured exposure-mediator confounders given X;

A4. There is no effect of exposure that confounds the mediator-outcome relationship;

A5. There is no exposure and mediator interaction on the outcome.

To test the existence of a mediation effect, we can formalize the problem as a hypothesis testing
problem:

H0 : βγ = 0 versus H1 : βγ ̸= 0. (3)

The null hypothesis is composite and can be decomposed into three disjoint cases:

Case 1. β ̸= 0, γ = 0;Case 2. β = 0, γ ̸= 0;Case 3. β = 0, γ = 0.

The classic tests, Sobel’s test and MaxP test, are constructed from the t-test statistics, Tβ = β̂/σ̂β ,
and Tγ = γ̂/σ̂γ , where β̂ and γ̂ are least squared estimators, and σ̂β and σ̂γ are the estimated

standard errors for β̂ and γ̂, respectively. Under mild regularity conditions, we have Tβ
d−→ N(0, 1)

if β = 0, and Tγ
d−→ N(0, 1) if γ = 0. Building on these two t-statistics, a Wald-type Sobel’s test

statistic [31] is constructed as

TSobel =
β̂γ̂√

γ̂2σ̂2
β + β̂2σ̂2

γ

=
TβTγ√
T 2
β + T 2

γ

.

Alternatively, the MaxP test statistic [24] can be defined as:

TMaxP = max{2− 2Φ(|Tβ |), 2− 2Φ(|Tγ |)},

where Φ(·) is the standard normal cumulative distribution function.

According to [23], in cases 1 and 2, TSobel asymptotically follows N(0, 1), while in case 3, TSobel
asymptotically follows N(0, 1/4). In cases 1 and 2, TMaxP asymptotically follows a uniform distribu-
tion on [0, 1], and in case 3, TMaxP asymptotically follows a Beta(2, 1) distribution. In practice, these
two tests do not account for case 3, making them overly conservative and underpowered. Numer-
ous enhanced tests have been proposed based on these methods, such as those in [17, 7, 23, 8, 10],
though this lies beyond the scope of our discussion.
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3 Distributed Mediation Analysis

In the distributed framework, the total N data are splitted and stored in K worker ma-
chines (locations) connected to a central processor as shown in Figure 2, where D(k) =
(Y (k), A(k),M (k), X(k)) = {(Yki, Aki,Mki, Xki)}nk

i=1 denotes the data in the k-th machine, k =

1, · · · ,K, and N =
∑K

k=1 nk. Assume that there exist positive constants c1 and c2 such that
c1 ≤ infk1,k2

nk1
/nk2

≤ infk1,k2
nk1

/nk2
≤ c2, and K can be either finite or diverging to infinity

as long as K/mink nk → 0 as N → ∞. Each worker machine extracts statistics based on the local
data and transmits it to the central machine. The final statistic is obtained by suitably aggregating
the local statistics.

Note that both the Sobel’s and MaxP tests are based on Tβ and Tγ . To derive the distributed versions
of these tests, we first compute the distributed versions of Tβ and Tγ . Specifically, we calculate the
local values T (k)

β and T
(k)
γ on each machine, transmit them to the central machine, and then obtain

the distributed statistics by weighted averaging:

T β =

K∑
k=1

√
nk

N
T

(k)
β , T γ =

K∑
k=1

√
nk

N
T (k)
γ . (4)

The properties of the distributed T β and T γ are outlined below, based on Lemma 25 of [16].

Proposition 3.1. Under assumptions A1-A5 and with K = o(
√
N), as N → ∞,

T β −
K∑

k=1

√
nk

N

β

σ̂
(k)
β

d−→ N(0, 1), T γ −
K∑

k=1

√
nk

N

γ

σ̂
(k)
γ

d−→ N(0, 1).

Based on T β and T γ , we can construct Sobel’s test and MaxP test in the distributed framework, as
shown below:

TDis
Sobel =

T βT γ√
(T β)2 + (T γ)2

, (5)

and
TDis
MaxP = max{2− 2Φ(|T β |), 2− 2Φ(|T γ |)}. (6)

The asymptotic properties of these distributed statistics are analogous to those of the global statistics,
as demonstrated in the following theorem.

Theorem 3.1. Under Assumptions A1-A5, the null hypothesis, and K = o(
√
N), as N → ∞, we

have the following results.

In Cases 1 and 2,

TDis
Sobel

d−→ N(0, 1), and TDis
MaxP

d−→ Uniform(0, 1).

In Case 3,
TDis
Sobel

d−→ N(0, 1/4), and TDis
MaxP

d−→ Beta(2, 1).

The proof of Theorem 3.1 follows a similar approach to the proofs of Results 1(b) and 2(b) in [23],
and is therefore omitted here. According the theorem, given the significance level α, we reject H0

if |TDis
Sobel| > Z1−α/2 or TDis

MaxP < α, where Z1−α/2 denotes the 1− α/2 percentile of the standard
normal distribution. The distributed test procedure is outlined in Algorithm 1. From the algorithm,
we can observe that each machine only needs to transmit two scalars to the central machine. This
not only minimizes transmission costs but also significantly protects data privacy. The following
theorem demonstrates that the asymptotic power of the distributed test, based on the local summary
statistics, is equivalent to the asymptotic power of the global test that aggregates all the data.

To investigate the power of the two distributed statistics, we first introduce the necessary nota-
tions. Let µβ ≡ E[T β ] =

∑K
k=1

√
nk

N E[T
(k)
β ] and µγ ≡ E[T γ ] =

∑K
k=1

√
nk

N E[T
(k)
γ ]. Ac-

cording to [23], E[T
(k)
β ] ≈ √

nkβ
σM

σY

√
1−R2

M |A,X , E[T
(k)
γ ] ≈ √

nkγ
σA

σM

√
1−R2

A|X , where
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Algorithm 1: The Distributed Test of Mediation Effects.

Step 1. For k = 1, ...,K , compute the local statistics T (k)
β and T

(k)
γ , then transmit them to the

central machine.
Step 2. In the central machine, compute the distributed statistics T̄β and T̄γ using (4), then

compute the distributed Sobel statistic TDis
Sobel and MaxP statistic TDis

MaxP using (5) and (6),
respectively.

Step 3. Given the significance level α, if |TDis
Sobel| > Z1−α/2 or TDis

MaxP < α, reject H0.

σA =
√
V ar(A), R2

A|X and R2
M |A,X are the coefficients of determination by regressing A

on X , and regressing M on (A,XT )T , respectively. Thus, µβ ≈
√
Nβ

σM

σY

√
1−R2

M |A,X

µγ ≈
√
Nγ

σA

σM

√
1−R2

A|X .

Theorem 3.2. Under the same assumptions as in Theorem 3.1, the powers of TDis
Sobel and TDis

MaxP
can be calculated analytically as∫ ∫

{ 1
x2 + 1

y2 ≤ 1
Z1−α/2

}

1

2π
e−

(x−µγ )2

2 −
(y−µβ)2

2 dxdy

and

{Φ(µβ − Z1−α/2) + Φ(−µβ − Z1−α/2)}{Φ(µγ − Z1−α/2) + Φ(−µγ − Z1−α/2)},
respectively.

The proof of Theorem 3.2 is analogous to the proofs of Results 1(c) and 2(c) in [23], and is therefore
not repeated here. Furthermore, the analytical powers of the proposed distributed tests are identical
to the powers of the global tests in [23], provided that K = o(

√
N). This property is also corrob-

orated by subsequent simulations. Notably, for a given total sample size N , the power of our tests
remains unaffected by the number of machines K, as long as K = o(

√
N). This behavior can be

attributed to the fact that T (k)
β and T

(k)
γ (for k = 1, . . . ,K) exhibit an approximately linear form.

In contrast, many test statistics for other hypothesis testing problems (e.g., goodness-of-fit tests)
are degenerate U-statistics, which leads to a reduction in power for their distributed versions as K
increases, as discussed in [39, 2, 6, 15, 5].
Remark 3.1. The condition K = o(

√
N) is commonly used in distributed statistical inference and

federated learning. This is equivalent to K/nk → 0 as nk → ∞, meaning the number of sites K is
much smaller than the sample size within each site. This setup is frequently encountered in practice,
particularly in meta-analysis, where researchers aggregate conclusions from dozens of studies, each
with hundreds or even thousands of data points. When K = o(

√
N) is not satisfied, test power may

decrease, and Type I error could become uncontrollable. In practice, determining this boundary is
quite challenging. Our simulations reveal that when N = 211 and K = 32 (less than

√
N ≈ 45),

our method yields results similar to the global method. However, when K = 64, the difference
between our method and the global method increases. This suggests that our method is somewhat
tolerant of larger values of K. Therefore, we recommend ensuring that K <

√
N/2 in practice,

which should be sufficiently effective.

4 Simulation Studies

In this section, we conduct extensive simulation studies to evaluate the performance of the pro-
posed distributed Sobel test and MaxP test. We generated the p-dimensional exposure variable
A ∼ Bernouli(0.5), the covariate X ∼ N(0,ΣX) with p = 3 and ΣX = (|0.5|j−l)p×p. The
mediator M and the outcome Y were simulated as follows

Y = A+ βM + βT
XX + ϵY , ϵY ∼ N(0, 2), (7)

M = γA+ γT
XX + ϵM , ϵM ∼ N(0, 1), (8)
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where βX = (1,−0.5, 1)T , γX = (0.5, 1,−1)T . Under the null hypothesis, we consider three
scenarios: (1) (β, γ) = (0.2, 0); (2) (β, γ) = (0, 0.2); (3) (β, γ) = (0, 0). Under the alternatives, we
set (β, γ) = (0.2, 0.05), (0.1, 0.1), and (0.05, 0.2). We compared the proposed distributed tests with
the global tests (denoted as TG

Sobel and TG
MaxP ), which use all the data pooled together, the local tests

from the first machine (denoted as T (1)
Sobel and T

(1)
MaxP ), and the simple average tests that average the

K local statistics (denoted as T ave
Sobel =

∑K
k=1

√
nk

N T
(k)
Sobel and T ave

MaxP =
∑K

k=1
nk

N T
(k)
MaxP ). The

significance level α = 0.05. We conducted the tests in R Studio on a MacBook Pro with an M2
CPU, and each experiment was repeated 2,000 times to calculate the empirical sizes and powers of
the tests.

4.1 Balanced Data

In this setting, we set the sample size in each machine are the same, that is, n = N/K. We fix the
total sample size N = 211, and set the number of machines K = 1, 2, 4, 8, 16, 32, 64. The empirical
sizes are presented in Figure 3. We can see that all the tests can control the type I error, while the
empirical sizes of the six tests are close to 0 when β = γ = 0. This is because in this case, the
six tests are too conservative. As the number of machine K increases, the empirical sizes of T (1)

Sobel

and T
(1)
MaxP tends to decrease, while our proposed distributed test are not influenced by K. This is

because for fixed N , as K increases, the sample size in the first machine n will decreases, thus, the
local tests may distance away from their asymptotic null distribution. As contrast, the asymptotic
null distributions of our distributed tests is not influenced by K as long as K = o(n).

Figure 4 shows the empirical powers. As expected, the powers of the local tests (T (1)
Sobel and T

(1)
MaxP )

and average tests (T ave
Sobel and T ave

MaxP ) decrease as K increases, while the proposed distributed test is
less affected by K and performs similarly to the global tests. It is also evident that the performance
of T ave

MaxP is even worse than that of T (1)
MaxP . In the leftmost four plots of Figure 4, we can observe

that when K is large (e.g., K = 64), the power of our method is slightly lower than that of the global
tests. This may be due to the fact that when N is fixed and K is large, the condition K = o(

√
N)

might not be satisfied, causing the distribution of our test statistic to deviate somewhat from the
asymptotic distribution.
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Figure 3: The empirical sizes of the eight tests under three null hypothesis and seven choices of K,
with the total sample size N fixed at 211.

4.2 Unbalanced Data

In this setting, we first generate the local sample sizes nk randomly from 50 to 150 for k =

1, 2, . . . , 32. Then, we generate a total of
∑K

k=1 nk data points. Next, we calculate the local tests
(T (1)

Sobel and T
(1)
MaxP ) based on n1 samples, the global tests (T (G)

Sobel and T
(G)
MaxP ) based on

∑K
k=1 nk

samples, the average tests (T ave
Sobel and T ave

MaxP ) based on the first K local test statistics, and the dis-
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Figure 4: The empirical powers of the eight tests under three alternative hypothesis and seven
choices of K, with the total sample size N fixed at 211.

tributed tests (TDis
Sobel and TDis

MaxP ) based on the first K summary local statistics, for K = 1, 2, . . . , 32.
The empirical sizes and powers are presented in Figures 5 and 6, respectively.

We observe that the sizes of the local tests are close to zero, as they only use n1 samples. As K
increases, the total sample size N also increases, and the empirical sizes of the global tests and
distributed tests approach the nominal significance levels in scenarios 1 and 2. However, in scenario
3 (β = 0, γ = 0), increasing the sample size does not affect the empirical sizes of the Sobel and
MaxP tests. We can also see that the size and power of T ave

MaxP are close to zero, indicating that
averaging the local p-values does not improve the power of the test.

As expected, the powers of the local tests in the first machine are close to zero, and the powers of
the global and distributed tests increase as K increases. Notably, the power of the distributed tests
is nearly identical to that of the global tests, despite using only the local summary statistics. This
highlights the advantage of the proposed distributed tests: they do not require pooling all the data
together, yet they achieve the same performance as the global tests, which pool all the data.
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Figure 5: The empirical sizes of the six tests under three null hypothesis. The number of machines
K increases from 1 to 32 , and the total sample size N increases with K.
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Figure 6: The empirical powers of the six tests under three alternative hypothesis. The number of
machines K increases from 1 to 32, and the total sample size N increases with K.

4.3 Heterogeneous case

While the proposed test primarily focuses on the homogeneous case, we also investigate its behavior
in the heterogeneous setting. In this scenario, we consider a situation where the distribution of X
varies across different centers, and the parameters γ and β differ for each machine, while maintain-
ing the consistency of their signs across all centers. Specifically, we define X(k) ∼ N(µk1p,ΣX),
where µ1, ..., µK ∼i.i.d U(−3, 3), and 1p = (1, ..., 1)T is a p-dimensional vector. The true parame-
ter values for machine k are given by:

βk = 0.05 + e
(k)
β,1, 0.1 + e

(k)
β,2, 0.2 + e

(k)
β,3;

γk = 0.05 + e
(k)
γ,1, 0.1 + e

(k)
γ,2, 0.2 + e

(k)
γ,3,

where e
(k)
β,1, e

(k)
γ,1 ∼i.i.d U(−0.02, 0.02), e

(k)
β,2, e

(k)
γ,2 ∼i.i.d U(−0.04, 0.04), and e

(k)
β,3, e

(k)
γ,3 ∼i.i.d

U(−0.08, 0.08).

The results from this simulation are shown in Figure 7, and are consistent with those obtained in the
homogeneous case (Figure 4). Specifically, our method performs similarly to the global test, with
noticeable differences only when K is particularly large (K = 64). This indicates that our method
is well-suited to handle heterogeneity across centers.

5 Real Data Analysis

We examined the impact of Gaokao mathematics (A) performance on college-level "Probability
and Mathematical Statistics" course grades (Y ), with college "Calculus" course grades serving as
a mediator (M ). The Gaokao is the National Higher Education Entrance DExamination in China,
and the results of the Gaokao are often seen as a key determinant of a student’s future academic
and career opportunities in China. In this study, we sought to explore whether there is a mediating
effect in which Gaokao mathematics performance influences calculus grades, which in turn affect
the grades in the probability and statistics course. This research holds important implications for
both the learning and teaching of Probability and Mathematical Statistics. The confounders (X)
include learning interest and classroom efficiency.

We distributed surveys to three classes at a university. To protect student privacy, the surveys were
organized and the statistical calculations were conducted by the instructors of each class. The results
are as follows.

Class 1: n1 = 34, T (1)
β = 4.654908, T (1)

γ = 1.723737;
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Figure 7: The empirical powers of the eight tests under three alternative hypothesis in heterogeneous
settings, with the total sample size N fixed at 211.

Class 2: n2 = 14, T (2)
β = 0.530207, T (2)

γ = 0.981202;

Class 3: n3 = 17, T (3)
β = 4.829768, T (3)

γ = 3.274552.

The sample sizes of Class 2 and Class 3 are relatively small. Fortunately, the total sample size
N = n1 + n2 + n3 = 65 is sufficient. Although we do not have the original data for each class, the
test results obtained using our proposed method are very close to the results from pooling the original
data from all three classes. Let Disij represent the distributed test using the local test statistics from
classes i and j, for (i, j) = (1, 2), (1, 3), (2, 3), and Dis123 represent the distributed test statistic
using the local test statistics from all three classes. The corresponding p-values for these tests are
shown in Table 1.

Table 1: The p-values of the tests.

Method Class1 Class2 Class3 Dis12 Dis13 Dis23 Dis123
Sobel 0.106 0.6409 0.0067 0.0732 0.0032 0.0152 0.0032
MaxP 0.0848 0.596 0.0011 0.0476 0.001 0.002 0.0007

From this table, we can see that for a given significance level of α = 0.05, when each class is
tested individually, the results are as follows: the tests for Class 1 and Class 2 both fail to detect the
mediation effect with Calculus as the mediator, while the test for Class 3 detects the mediation effect.
However, by combining the test statistics from Class 1 and Class 2 using our proposed method, the
resulting distributed MaxP test yields a p-value < 0.05, indicating the presence of a mediation effect.
This means that although the individual tests for Class 1 and Class 2 failed to detect the mediation
effect, our method, which combines their local test statistics, successfully identified the mediation
effect through the distributed test. Furthermore, the Sobel and MaxP tests for Dis13, Dis23, and
Dis123 all detected the presence of the mediation effect, and the p-values of the Dis123 are the
smallest.

In conclusion, this study successfully identified the mediation effect between Gaokao mathematics
performance, Calculus grades, and Probability and Mathematical Statistics course grades by pooling
test statistics from multiple classes. Despite mixed results from individual class tests, our method
overcame the limitations of small sample sizes and revealed that Gaokao mathematics performance
influences statistics course grades through Calculus. This finding has important implications for
teaching and learning in higher education mathematics courses.

The above results highlight a key application of distributed testing, especially in healthcare settings.
Many hospitals face limitations in data availability due to factors like privacy concerns and regula-
tory restrictions, preventing them from sharing raw data. Our distributed method addresses this by
only requiring hospitals to share test statistics rather than raw data. This allows the detection of me-
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diation effects that might be missed in individual analyses, making it a valuable tool for healthcare
institutions with limited data and privacy constraints.

6 Conclusion

In this article, we construct a distributed framework for mediation analysis. Building on Sobel’s
and MaxP tests, we introduce their distributed version, which are communication-efficient and easy
to implement. Theoretical analysis and experiments show that the distributed tests achieve nearly
identical power to global tests as long as K = o(

√
N). We apply our method to an educational

study, demonstrating its ability to detect a mediation effect that would not be identifiable using data
from only the first or second class, highlighting the advantage of our approach.

There are still several limitations. First, the Sobel’s and MaxP tests are conservative and under-
powered, and focus on one-dimensional mediator, so the proposed distributed test inherits these
disadvantages. Fortunately, there are several enhanced tests based on Sobel’s or MaxP tests, and
therefore, their distributed versions can be easily derived from our distributed Sobel’s or MaxP tests.
For instance, suppose there are J candidate mediator variables M1, . . . ,Mj , leading to J hypothesis
tests H0j : βjγj = 0. Let TG

MaxP,j represents the global test statistics for the j-th test. Dai et al. [7]
propose the HDMT method, which constructs the test statistic:

THDMT,j = (π̂01 + π̂10)T
G
MaxP,j + π̂00(T

G
MaxP,j)

2,

where π̂01, π̂10, and π̂00 are the estimated proportions of (βj = 0, γj ̸= 0), (βj ̸= 0, γj = 0),
and (βj = 0, γj = 0) across all J tests, respectively. In the distributed framework, TG

MaxP,j can
be replaced by the proposed distributed test statistic TDis

MaxP,j , and π̂01 can be approximated by the

simple average 1
K

∑K
k=1 π̂

(k)
01 .

Second, our study assumes that the outcome Y is continuous. If Y is binary, we could fit a logistic
model

logit(Pr(Y = 1|A,M,X)) = β0 + βAA+ βMM + βT
XX

instead of the linear model in equation (1), and compute the local maximum likelihood estimate
(MLE) of β, from which we could derive the distributed T β based on the MLE. However, as shown
in [19], the properties of the distributed T β may be influenced by K. Therefore, improvements to
our method are needed. These directions will be explored in future work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: [TODO]The claims are supported with theoretical and empirical results.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: [TODO]We have discussed the limitations in the last paragraph in section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [No]
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Justification: [TODO]The assumptions are listed, but the complete proofs are not provided,
as they are analogous to the proofs of Results 1 and 2 in [23] and are therefore omitted here.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: [TODO]The code provided in the supplemental materials can be used to
reproduce results in both simulation study and real data anaalysis.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: [TODO]The code is in the supplementary matarials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: [TODO]All steps for data generation, model fitting, evaluation, etc., are dis-
cussed in Section 4. Full details provided with the code.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [No]
Justification: [TODO]The outcome in our simulation is the empirical power of a test, and
error bars are typically not used in this context.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: [TODO]We have provided the information in the first paragraph in Section
4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: [TODO]We conduct in the paper conform, in every respect, with the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: [TODO]We have discussed the societal impacts of the work in Introduction.
We believe that our distributed framework for testing mediation effects does not have any
negative societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

16

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [TODO]The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: [TODO]The paper does not utilize existing assets. Instead, the real applica-
tion relies on the summarized information from the survey.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: [TODO] The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: [TODO]The paper does not involve crowdsourcing nor research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [TODO] The paper does not involve crowdsourcing nor research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [TODO]The LLM is used only for writing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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