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ARTICLE INFO ABSTRACT

Conditional Random Fields (CRFs) are often used to improve the output of an ini-
tial segmentation model, such as a convolutional neural network (CNN). Conventional
CRF approaches in medical imaging use manually defined features, such as intensity
to improve appearance similarity or location to improve spatial coherence. These fea-
tures work well for some tasks, but can fail for others. For example, in medical image
segmentation applications where different anatomical structures can have similar inten-
sity values, an intensity-based CRF may produce incorrect results. As an alternative,
we propose Posterior-CRF, an end-to-end segmentation method that uses CNN-learned
features in a CRF and optimizes the CRF and CNN parameters concurrently. We val-
idate our method on three medical image segmentation tasks: aorta and pulmonary
artery segmentation in non-contrast CT, white matter hyperintensities segmentation in
multi-modal MRI, and ischemic stroke lesion segmentation in multi-modal MRI. We
compare this with the state-of-the-art CNN-CRF methods. In all applications, our pro-
posed method outperforms the existing methods in terms of Dice coefficient, average
volume difference, and lesion-wise F1 score.
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1. Introduction

After the breakthrough of deep learning in computer vision
(Krizhevsky et al., 2012; He et al., 2016; Long et al., 2015),
deep convolutional neural networks (CNNs) and their variants
(Ronneberger et al., 2015; Cigek et al., 2016; Kamnitsas et al.,
2017) quickly started to dominate medical image segmentation,
outperforming traditional machine learning methods in many
applications (Yu et al., 2016; Bakas et al., 2018; Kuijf et al.,
2019; Maier et al., 2015). To refine the prediction from the
CNN, it is common to combine CNN with a conditional ran-
dom field (CRF) (Krdhenbiihl and Koltun, 2011). By model-
ing pairwise relationships and interactions between voxel-wise

*Corresponding author. Email addresses: s.chen.2@erasmusmec.nl (S.
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variables over the whole image, the CRF can improve the co-
herence of the segmentation. In previous work, CRFs based
on predefined features such as intensity similarity and spatial
coherence have been used as an efficient post-processing tech-
nique or trained in an end-to-end manner in a recurrent neural
network to refine the CNN outputs (Chen et al., 2017; Dou et al.,
2017; Kamnitsas et al., 2017; Zheng et al., 2015).

Most often, a CRF uses a combination of voxel intensity
and voxel location as pairwise potentials. Although this works
well in several computer vision applications (Zheng et al., 2015;
Schwing and Urtasun, 2015), there can be challenges in other
applications. The approach assumes that voxels that have simi-
lar intensity and are close to each other in the image are likely
to belong to the same class. There are many applications among
others in medical image analysis in which this assumption does
not hold. For example, the intensity-based features of the CRF
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Fig. 1. Different CRF-based approaches For each graph: (a) Post-
processing CRF (Chen et al., 2017; Kamnitsas et al., 2017); (b) End-to-end
training CRF with predefined features (Zheng et al., 2015); (c) Proposed
Posterior-CRF, which uses CNN feature maps as CRF reference maps. Best
viewed in color with zoom.

are not sufficient for problems where the intensity is not infor-
mative enough to identify object boundaries, such as the artery
segmentation problem in Figure 2a. The spatial component of
the CREF, on the other hand, requires extra careful tuning when
the CRF is applied to data with isolated small objects, such as
the white matter hyperintensities in Figure 2b, which may be
erroneously removed by excessive smoothing. In stroke lesion
segmentation, a large appearance difference between lesion ob-
jects of the same class also goes against the CRF assumption
that the same class objects should have similar intensity (see
Figure 2c¢).

In this paper, we propose Posterior-CRF, a new learning-
based CRF approach for image segmentation that allows the
CRF to use features learned by a CNN, optimizing the CRF and
CNN parameters concurrently. The learning-based CRF makes
the CNN features update to work best with CRF in an end-to-
end manner. During training, the CRF inference works in the
CNN feature space, which is more likely to contain useful high-
level features for segmentation compared to the original inten-
sity values.

We demonstrate our method in three medical image analy-
sis applications. Our first application is the segmentation of
the aorta and pulmonary artery in non-contrast, non-ECG-gated
chest CT scans. In these images, the aorta and the pulmonary
artery share similar intensity values, which goes against the
CRF assumption that similar classes should share similar in-
tensity (Sedghi Gamechi et al., 2018; Xie et al., 2014). The
boundaries between the objects are not recognizable by inten-
sity alone, making a standard CRF less effective (Figure 2a).
Our second application is the segmentation of white-matter hy-
perintensities in brain MRI. These small objects are sparsely
distributed in the brain (see Figure 2b) and may be removed by
the CRF, which optimizes for the spatial coherence of segmen-
tation. Our third application is the segmentation of ischemic
stroke lesions in brain MRI, which have very heterogeneous in-
tensities and shapes within the same lesion class (Figure 2c).

Contributions

1. We present a new end-to-end trainable algorithm for image
segmentation called Posterior-CRF using learnable features in
CRF pairwise potentials. We explore how the proposed method

affects CNN learning during training.

2. We compare the performance of a fully-connected CRF in
several settings: post-processing, end-to-end training with pre-
defined features, and end-to-end training with learned features.
Ablation experiments are conducted to investigate the influence
of CRF parameters and which level of the CNN feature maps
are more likely to benefit the CRF inference. We found that the
features in the last CNN feature maps provide a more consistent
improvement than features in early CNN layers and predefined
intensity features.

3. We evaluate our methods in three applications: aorta
and pulmonary artery segmentation in non-contrast CT, which
can be used to compute important biomarkers such as the pul-
monary artery to aorta diameter ratio (Sedghi Gamechi et al.,
2018); white matter hyperintensities segmentation in multi-
sequence MRI, which is of key importance in many neurolog-
ical research studies (Kuijf et al., 2019); and ischemic stroke
lesion segmentation in multi-sequence MRI, which can pro-
vide biomarkers for stroke diagnosis (Maier et al., 2015). In
the experiments, the proposed Posterior-CRF outperforms CNN
without CRF, post-processing CRF, end-to-end intensity-based
CREF, and end-to-end spatial-based CRF.

A preliminary version of this work, focused on a single appli-
cation and with less validation, appeared as an extended abstract
in (Chen and de Bruijne, 2018).

2. Related Work

2.1. End-to-end Training of CRF and CNN

CRF is widely used as an efficient post-processing method
to refine the output of CNN segmentation models (for exam-
ple, (Chen et al., 2017; Dou et al., 2017; Kamnitsas et al.,
2017)). However, applying a CRF as post-processing means
that the CNN is not able to adapt its output to the CRF. Zheng
et al. (Zheng et al., 2015) proposed to optimize CNN and CRF
jointly by reformulating the CRF inference as a recurrent neu-
ral network (RNN) operation, such that the CRF weights can
be learned together with the CNN. This approach makes the
unary potentials and the kernel weights in pairwise potentials
trainable, which saves the computational cost of grid search for
other approaches to tune these weights, although the CREF still
works in the predefined fixed feature space. In this paper, we
focus on a new CRF approach where the CRF inference works
in a learning-based CNN feature space.

2.2. Locally-connected CRFs with Learned Potentials

While conventional CRFs use predefined Gaussian edge po-
tentials, the potentials can also be learned through a neural
network. Vemulapalli et al. (Vemulapalli et al., 2016) learn
the pairwise potentials of a Gaussian CRF in a bipartite graph
structure. This approach uses a simpler continuous CRF model
which provides better convergence of mean-field inference than
the conventional discrete CRF models. In this paper, we focus
on the most widely used discrete CRF model which is a natu-
ral fit for the dense segmentation problem. Lin et al. (Lin et al.,
2016), Li et al. (Li and Ping, 2018) and Wang et al. (Wang et al.,
2018a) learn pairwise CRF potentials to model patch-wise (or
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(a)

Fig. 2. Difficult cases for conventional CRF inference in medical image segmentation. (a) Segmentation of arteries in CT: first row shows two axial slices
of the CT scan with red arrows indicating indistinguishable boundaries; second row shows the corresponding ground truth of the aorta (yellow) and
pulmonary artery (green); (b) White matter hyperintensities segmentation in MRI: four examples are shown with the ground truth of the lesions (green),
red arrows indicate small isolated lesions that can be easily removed by CRF; (c) Ischemic stroke lesions segmentation in MRI: first row shows the ground
truth of the lesions (green) where large appearance difference between lesions can be observed (red arrows); second row shows a close-up view of the

lesions. Best viewed in color with zoom.

local) relationships using free form functions learned by neu-
ral network rather than a combination of predefined Gaussians
to calculate the pairwise potentials. The patch-wise potentials
provide a better ability to model the semantic compatibility be-
tween image regions and have different effects compared to
our approach, where we do not consider patch-wise relation-
ships. Our method uses traditional Gaussian edge potentials
(Krihenbiihl and Koltun, 2011) similar to Zheng et al. (Zheng
et al., 2015) which are easier to compute in a fully-connected
manner. Unlike Zheng et al., we derive the potentials from the
feature space learned by a CNN. This allows us to model global
interactions between voxel-wise variables using learning-based
features.

2.3. Other Methods Related to CRF

Next to CRF, there are several other approaches that aim
to model interactive relationships or add global information
to neural networks. Graph neural networks (GNN) (Scarselli
et al., 2008; Selvan et al., 2018) model interactions between
variables by applying graph convolution filters, which allow
them to learn global relationships between voxels. We further
address GNN in the Discussion. The recently proposed non-
local CNN (Wang et al., 2020) uses layer-wise self-attention
(Vaswani et al., 2017; Wang et al., 2018; Yuan et al., 2019) to
make each layer in the network focus on the areas that encoded
the most non-local information in the preceding layer. While
this allows non-local CNNs to model long-range dependencies,
they are unable to model the interactions that can be learned by
a CRF or GNN. In this paper, we focus on the fully-connected
CRF model which is an efficient approach of modeling both in-
teractive relationships and global information.

3. Methodology

Our method consists of two parts that are optimized jointly:
3D CNN and 3D CREF. In Section 3.1, we describe the CNN

model, which provides unary potentials for the CRF inference
as well as features for the pairwise potentials for the proposed
Posterior-CRF. Then we introduce the CRF in Section 3.2. We
show two previously proposed ways to perform CRF inference
using predefined features: post-processing (Section 3.3.1) and
end-to-end training with predefined features (Section 3.3.2).
Our proposed end-to-end training with learned features is pre-
sented in Section 3.4, followed by Section 3.4.1 about the back-
propagation of the proposed learning-based CRF. The mean-
field inference algorithm used in the proposed method is ex-
plained in Appendix Section 8.

3.1. CNN Model

Our CNN model is based on UNet (Ronneberger et al., 2015),
the most widely used network architecture for medical image
segmentation. It has a multi-scale design with skip-connections
that connect the encoding and decoding parts of the network,
which allow the decoding path to use the early, high resolu-
tion feature maps without losing information through pooling.
We use 3D UNet as the basic CNN architecture to provide the
unary potentials for CRF inference as well as features for the
pairwise potentials for the proposed Posterior-CRF. Details of

the network layout used in our experiments are given in Figure
3.

3.2. Conditional Random Fields

In this section, we describe the CRF as proposed in
(Krihenbiihl and Koltun, 2011). In image segmentation, a CRF
models voxel-wise variable x; taking values in {1, ..., C} as a set
of random variables X = {x, ..., xy}, where C is the number
of classes and N is the number of voxels in the image. Dur-
ing training, x; is converted into a soft classification vector of
length C, indicating for each class the probability that the ith
voxel belongs to that class, with the L; norm |x| = 1. x; obey a
Markov property conditioned on a global observation, the im-
age I consisting of variables 7 = {I,...,Iy}. In this paper, I
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Fig. 3. Proposed feature-learning-based CRF using early/later CNN feature maps. The backbone architecture is based on 3D UNet. The skip-connections
concatenate the feature maps from the encoder path with the upsampled ones from the decoder path. The CRF module is placed on top of the CNN and
infers the most likely posterior class probability conditioned on the CRF features. M is the number of input imaging modalities. C is the number of output
classes. Two proposed CRF variants are shown in this figure: 1. Posterior-CRF (red rectangle and arrows), which uses the last CNN layer as CRF reference
maps; 2. FL-CRF-e-1 (blue rectangles and arrows), which uses the first level CNN layer as CRF reference maps. Best viewed in color with zoom.

is the observed 3D CT/MRI scans, with its length given by the
number of imaging modality channels M times the number of
voxels per channel N.

Consider a fully-connected pairwise CRF model (X,I) char-
acterized by a prior Gibbs distribution:

1
PXID) = %CXP(— Z $(Xc D) (1)
ceCy

where = (V, &) is an undirected graph describing the random
field X. Each clique c¢ in a complete set of unary and pairwise
cliques C; in £, and ¢ is the potential for each clique. We seek
a maximum a posteriori probability (MAP) estimation x that
minimizes the corresponding Gibbs energy E(X = x|I):

EX=xD =) oD+ Y ¢(ixiD ()

i<j
MAP(P(XII)) : x* = argminE(X = x|I) 3)

where i and j range from 1 to N. The first term ¢, (x;) in Equa-
tion 2 is the unary potential, which in our case is the current
C length vector of voxel i representing the class probabilities in
the CNN posterior probability maps. The second term ¢, (x;, x;)
is the pairwise potential:

K
p(%i, X)) = (i, X)) ) ek @)
m=1

where p(x;, x;) is the label compatibility function that describes
the interactive influences between different pairs of classes, w;,
is the linear combination weight of different pre-defined kernels
k, and K is the total number of kernels. Each k,, is a modified
Gaussian kernel with specific feature vector f:

S

1 ) i
KE£) = [ [exp( (7 =N -1 ©)

s=1

The feature vector f is defined from S arbitrary feature spaces.
A is a symmetric positive-definite precision matrix that defines
the shape of each kernel. In semantic segmentation, typically a
combination of intensity (/) and position features (p) has been
used (Krihenbiihl and Koltun, 2011; Zheng et al., 2015; Kam-
nitsas et al., 2017):

lpi — pjI? M- LI?
262 262

p(xi, x;) =p(x;, xj)[wiexp(—
(6)
Ipi — pjl?

+ worexp(— T
Y

)]

where the first kernel controlled by w; is called appearance ker-
nel and the second kernel controlled by w, is called smoothness
kernel. The parameters 6,, 63 and 6, control the influence of the
corresponding feature spaces. The appearance kernel is inspired
by the observation that nearby voxels with similar intensity are
likely to be in the same class, while voxels that are either fur-
ther away or have larger intensity difference are less likely to be
in the same class. The smoothness kernel can remove isolated
regions and produce smooth segmentation results (Krahenbiihl
and Koltun, 2011; Kamnitsas et al., 2017). Note that the posi-
tion feature appears in both appearance kernel and smoothness
kernel, where spatial information has different contributions to
each of the two kernels, depending on the spatial standard devi-
ations 6, and 6,.

3.3. CRF with Predefined Features

Conventional CRFs use predefined features, such as the im-
age intensity and spatial position shown in Equation 6. These
features are commonly used in CRFs to encourage intensity and
spatial coherence, based on the assumption that voxels that have
a similar intensity or are close together are likely to belong to
the same class.

We evaluate two state-of-the-art approaches to combine
CRFs with predefined features with a CNN: 1. Apply the CRF
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as post-processing to refine the CNN outputs (Section 3.3.1); 2.
Implement the CRF as a neural network layer that can be trained
together with the CNN in an end-to-end manner (Section 3.3.2).

3.3.1. CRF as Post-processing

After we train a CNN model and get its predictions, we can
apply CRF as a post-processing method to refine the results
(Chen et al., 2017). We refer to this method as Postproc-CRF
(Figure 1a).

3.3.2. End-to-end Training CRF

The CNN and CRF can be combined more elegantly by op-
timizing them together in an end-to-end manner (Zheng et al.,
2015) (Figure 1b), which allows the CRF to influence the CNN
optimization. The end-to-end CRF uses the same pairwise po-
tentials as that in the post-processing CRF (Equation 6). We
refer to this variant as Intensity-CRF.

To investigate the spatial term in the end-to-end CRF, we can
also use only the position features as the CRF feature space,
which means that the CRF layer will only encourage nearby
voxels to have the same class. We implement this CRF by set-
ting the weight of the appearance kernel w; to zero and make it
not trainable. We refer to this method as Spatial-CRF.

3.4. Proposed CRF with Learning-based Features

Our proposed CRF uses a learning-based feature space. We
replace the intensity feature vector / in the CRF kernel (Equa-
tion 6) with the new feature vector F(I) from the CNN feature
maps. The information in these CNN feature maps differs per
level: in the first level of UNet the feature maps contain infor-
mation close to the intensity, while in the last level of the UNet
they contain more context for each voxel and potentially more
class-discriminative information.

We refer to the CRF that uses features learned by CNN as
feature-learning-based CRF (see Figure Ic) and refer to the
specific form of CRF using the features in the last CNN soft-
max layer as Posterior-CRF (see Figure 3).

Unlike the CRFs with predefined features, our CRF takes
CNN feature maps as the reference maps and updates the ran-
dom field X based on F(I) instead of on I directly. Compared to
the original CRF pairwise potential in Equation 6, the feature /
is replaced with F(I) and the new pairwise potential becomes:

Ipi — pjl*
©p(xi, xj) =p(x;, xj)[wy eXP(—TZJ—
o 7
FAD) - FDP pi—pt. P
FO =500 | exp(- PPy
26; 262

3.4.1. Back-propagation of the Learning-based CRF

The back-propagation of the proposed end-to-end feature-
learning-based CRF is shown in Figure 4. There are five steps
within one optimization iteration. Steps 1~3 are the forward
process that generates the output of the CNN. In the 4th step,
CRF weights will adapt to the outputs calculated by the refer-
ence maps and unary maps, both given by CNN feature maps

before back-propagation. In the 5th step, CNN weights are up-
dated to provide new unary maps and reference maps for CRF
for the next iteration. When the optimization converges, both
CNN and CRF weights become stable close to their optimal val-
ues. Note that the mean-field inference in CRF happens in the
forward process (after step 2 and before step 3) and thus con-
tributes to the gradient updates of both CNN and CRF weights.
The derivation of the mean-field inference gradient is omitted
due to the length of the paper and can be found in Section 4.2
of the paper by Zheng et al. (Zheng et al., 2015).

1)

CNN features
as reference maps

,,,,,,,,,,,,, Forward without trainable weights

Forward with trainable weights
@[ @ - Backward with gradient
CRE ®~@ Step of optimization in one iteration
CNN features
as unary maps @ I @

Output

Fig. 4. One end-to-end optimization iteration of the proposed CRF method.
Best viewed in color with zoom.

4. Experiments

In this section, we present experiments to evaluate the pro-
posed method and compare it to the baseline methods: 3D
UNet, Post-processing CRF, Intensity-CRF, and Spatial-CRF.
Implementation details are discussed in Section 4.1, followed
by the experimental settings (Section 4.2), the description of
the datasets and pre-processing (Section 4.3), data augmenta-
tion and training details (Section 4.4) and evaluation metrics
(Section 4.5).

4.1. Implementation

4.1.1. CNN Implementation

We implement all the algorithms in the TensorFlow frame-
work. The detailed CNN architecture for the experiments is
shown in Figure 3. All convolution layers use ReLU as the
activation function except for the last output layer, which uses
softmax to produce the final probability maps. For a fair com-
parison, the 3D UNet architecture that is tuned for the CNN
baseline method is applied to all the CRF methods in Table 3.
The 5-layer depth of UNet (tuned from 3 to 6) and 32 base
feature maps (tuned from 8 to 64) are tuned based on all three
datasets.

All segmentation models are optimized by minimizing the
Dice loss (Isensee et al., 2020):

Cy,C
2 el u;v;

de = - - - - ¢
|Cl &4 Dier i + Xier V§

®)
where 1 is the predicted probability that voxel i belongs to the

cth class. ! is the true label. The loss is minimized using the
Adam optimizer (Kingma and Ba, 2014).
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4.1.2. CRF Implementation

In CRF, mean-field approximation can be used to calculate
the maximum a posteriori probability (MAP) of the inference.
We use an efficient approximation algorithm for mean-field in-
ference (Krahenbiihl and Koltun, 2011; Monteiro et al., 2018)
built on a fast high-dimensional filtering using the permutohe-
dral lattice (Adams et al., 2010) that allows voxel-wise fully-
connected CRF to be iteratively computed in linear time. For a
fair comparison, all the CRF methods in this paper are imple-
mented in 3D fully-connected manner. The codes are publicly
available: https://github.com/ShuaiChenBIGR/Posterior-CRF.

4.2. CRF Settings

4.2.1. Post-processing CRF

For Postproc-CRF, we fix the label compatibility u in Equa-
tion 6 to the identity matrix, which means that the CRF does
not model label-specific interaction. In the case of multi-modal
input, each imaging modality has a specific 63 to control the
strength of the intensity term.

4.2.2. End-to-end CRF with Predefined Features

We consider two forms of end-to-end CRFs with predefined
features: Intensity-CRF uses intensity of the input image I and
position information as its feature space. Spatial-CRF uses only
the position information (the smoothness term in Equation 6).
The label compatibility is a C X C parameter matrix which is op-
timized during training to allow the CRF to learn the label com-
patibility automatically. The weights w; of the appearance ker-
nel for Intensity-CRF and w, of the spatial kernel for Spatial-
CRF are C x C matrices, which we restrict to diagonal matrices
because the relationship between classes is already covered by
the label compatibility matrix. Inner product is calculated by
multiplying the matrices. For simplicity, only one 6 is applied
for all modalities.

4.2.3. End-to-end CRF with Learned Features

The proposed Posterior-CRF uses the last softmax layer of
the CNN as its reference map. The hyperparameters are the
same as end-to-end CRF with predefined features. Note that
Posterior-CRF is a special case of the feature-learning-based
CRF. We can also use early CNN feature maps as CRF refer-
ence maps. An ablation study investigating other CRF variants
can be seen in Section 5.4.

4.2.4. CRF Parameters

Parameters in the post-processing CRF for each dataset were
obtained by grid search on the validation set and are shown
in Table 1. We computed results with 500 different configu-
rations of Postproc-CRF on each dataset for grid-search. Pa-
rameters in the end-to-end CRFs (Intensity-CRF, Spatial-CRF,
Posterior-CRF) are initialized with the same values as were
used in post-processing CRE. Although the end-to-end CRF ap-
proaches have the ability to learn CRF weights automatically
during training, we initialize all CRF approaches in the same
way to facilitate visualization of the evolution of CRF parame-
ters during training (see Figure 5). We study the sensitivity to
different CRF parameter initializations in Section 5.3.

The initial label compatibility matrix is set to an identity ma-
trix and can be optimized during training. In the multi-modality
case, the initial value of 8 is averaged over all modalities. The
initial values for each dataset are shown in Table 2.

4.2.5. Computation Costs of CRF

The training and testing time of the proposed CRF method
is the same as Intensity-CRF but a bit slower than Spatial-CRF,
since there is no bilateral term in Spatial-CRF. Although the
proposed CRF uses CNNs features to compute the pairwise po-
tential, the gradients only flow through the unary map path but
not the reference map path which is the same as that in tradi-
tional Intensity-CRF. Therefore, there is no additional time and
memory cost of the proposed method compared to traditional
end-to-end CRF approaches with fixed feature space. Post-
processing CREF is after the CNN training and takes more time
for inference compared to the end-to-end CRFs, since the infer-
ence is done by CPU but not GPU.

4.3. Datasets and Preprocessing

We evaluate the proposed method on three segmentation
problems: CT arteries, MRI white matter hyperintensities, and
MRI ischemic stroke lesions. We chose these problems to study
the generalizability of the method as these applications differ a
lot in object shapes and appearances, imaging modalities, and
suffer from different problems (see Fig. 2).

4.3.1. CT Arteries Dataset

We use 25 non-contrast lung CT scans from 25 different
subjects enrolled in the Danish Lung Cancer Screening Trial
(DLCST) (Pedersen et al., 2009). The selection of the 25 sub-
jects was completely random and it was done before the de-
velopment of this algorithm for an unrelated study. The aorta
and pulmonary artery were manually segmented by a trained
observer (ZS). Images have an anisotropic voxel resolution of
0.78mm % 0.78mm X 1.00mm and are of size 512x512 with on
average 336 slices (range 271-394). The 25 scans are split into
three parts of 10, 5, and 10 scans for training, validation, and
testing respectively. Due to the limitation of GPU memory, we
first crop the original CT images and only keep the axial central
part of 256 x 256 voxels for all slices. Then, 3D patches of the
size 256 x 256 X 16 are extracted from the cropped images. All
training patches have 80% overlap in z-axis between neighbor-
ing patches to mitigate border effects. In total, there are 840 3D
patches for training. We use the original CT intensities without
normalization.

4.3.2. MRI White Matter Hyperintensities (WMH) Dataset
The White Matter Hyperintensities (WMH) Segmentation
Challenge (Kuijf et al., 2019) provided images from 60 subjects
(T1 and FLAIR) acquired from three hospitals and manually
segmented for background and white matter hyperintensities.
We randomly split these in 36 subjects for training, 12 for vali-
dation, and 12 for testing. For each subject, we cropped/padded
MRI images into a constant size 200 x 200 x Z, where Z is the
number of slices in the image. We use Gaussian normalization
to normalize the intensities inside the brain mask in each image
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Table 1. Post-processing CRF parameters for each dataset. Search range
indicates the range of parameter values explored during grid search.

Datasets CT Arteries WMH  ISLES  Search range
W 6.39 3.85 9.75 (0.1, 10)
O 4.09 4.46 8.74 (0.1, 10)
0 for CT 1.10 - - (0.1, 10)
05 for T1 - 7.01 9.26 (0.1, 10)
05 for T2 - - 9.73 (0.1, 10)
0 for FLAIR - 2.64 2.36 (0.1, 10)
03 for DWI - - 6.85 (0.1, 10)
Wy 3.40 1.41 2.34 (0.1, 10)
0, 4.83 0.11 1.35 (0.1, 10)
Iterations 3 1 2 (1,5)

to zero mean and unit standard deviation. We extract training
patches of size 200 x 200 x 16 with 80% overlap in z-axis be-
tween patches. In total, there are 528 3D patches for training.

4.3.3. MRI Ischemic Stroke Lesions (ISLES) Dataset

The ISLES 2015 Challenge (Maier et al., 2017) is a pub-
lic dataset of diverse ischemic stroke cases. There are 4 MRI
sequences available for each patient (T1, T2, FLAIR, and
DWI). We use the sub-acute ischemic stroke lesion segmen-
tation (SISS) dataset (28 subjects) with the lesion labels for
experiments and randomly split them as 14 for training, 7 for
validation and 7 for testing. The images are cropped/padded to
the size 200 x 200 x Z. Gaussian normalization is applied for
normalizing the intensities in each image. Training patches of
the size 200200 16 with 80% overlap in z-axis are extracted.
In total, there are 560 3D patches for training.

4.4. Data Augmentation and Training Details

The network is trained on all mini-batches (each mini-batch
contains one 3D patch). For each 3D patch in the current mini-
batch we apply 3D random rotation sampled from ([-5,5],[-
5,5],[-10,10]) degrees, shifting ([-24,24],[-24,24],[-7,7]) vox-
els, as well as random horizontal (left and right) flipping. We
stopped training when the validation loss is not decreasing any-
more and chose the model that achieved the best validation
performance. The experiments are run on an Nvidia GeForce
GTX1080 GPU. The average training time is 5~10 hours for
one CNN baseline model and 1~2 hours more when the CRF
layer is added.

4.5. Evaluation Metrics

We use four voxel-wise metrics of segmentation quality:
Dice similarity coefficient (DSC), indicating the relative over-
lap with the ground truth (larger is better); 95th percentile Haus-
dorff distance (H95), showing the extremes in contour distance
from ground truth to the prediction (smaller is better); Aver-
age volume difference (AVD) as a percentage of the difference
between ground truth volume and segmentation volume over
ground truth volume (smaller is better), and Recall score (larger
is better). For the lesion segmentations (WMH and ISLES),

Table 2. Initial end-to-end CRF parameters for each dataset.

Methods wi 0, s w» 0, Iterations
CT Arteries

Spatial-CRF - - - 340 4.83 3

Others 639 409 1.10 340 4383 3
WMH

Spatial-CRF - - - 141 0.11 1

Others 385 446 483 141 0.11 1
ISLES

Spatial-CRF - - - 234 135 2

Others 9.75 874 705 234 1.35 2

we additionally assess accuracy of lesion detection by comput-
ing the lesion-wise Recall and lesion-wise F1 score (larger is
better). The lesion-wise metrics use the 3D connected compo-
nents, while the voxel-wise metrics do not use 3D connected
components. The correct detection of a lesion is determined
by the overlap (at least one voxel) of the 3D components. F1
score is equivalent to lesion-wise Dice score and is calculated
by 2*(precision*recall)/(precision+recall), where precision is
calculated by true positives/(true positives+false positives).

5. Results

5.1. Segmentation Results

Table 3 shows the segmentation results for all three datasets.
In most metrics, Posterior-CRF had the best performance in all
datasets. For all datasets, CNN without CRF provides good
baseline results, which indicates that 3D UNet is an efficient ar-
chitecture to extract useful features for segmentation in these
applications. Intensity-CRF performed worse on DSC than
Posterior-CRF (statistically significant in aorta segmentation
and WMH segmentation), which reveals the limitation of in-
tensity features. Among all end-to-end CRF methods, Spatial-
CRF performs worst for all datasets except ISLES. From these
results, we conclude that spatial coherence alone is not suffi-
cient and often detrimental to segmentation accuracy, and that
the CNN features in the last layer are more informative for CRF
than the intensity features in the original images.

CRFs that depend strongly on intensity-based features have
difficulties detecting objects that are similar in intensity. Exam-
ples of this problem can be observed in the segmentations for
the CT arteries and ISLES datasets (Figure 6). In CT arteries
segmentation, the aorta and pulmonary artery have very similar
intensities, which causes most of the methods in our experi-
ments to sometimes misclassify part of the aorta as pulmonary
artery. This is especially true for Post-processing CRF but also
for Intensity-CRF.

Posterior-CRF achieves a DSC segmentation overlap of
95.4% and an H9S5 lower than 2.87mm in aorta segmentation,
which is significantly better than all other methods on this
dataset. We argue that this is because the features from the
last CNN feature maps are more informative than the intensity-
based features, which allows the CRF inference to focus on re-
fining the object boundary without expanding into neighboring
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= Intensity-CRF
Spatial-CRF
= Posterior-CRF

Fig. 5. CRF parameters during training in WMH dataset. The initial values of the CRF parameters can be found in Table 2. Best viewed in color with

zoom.

class voxels with similar intensities. The Posterior-CRF also
gives a performance improvement in the segmentation of the
pulmonary artery, but this is not always statistically significant.
One reason is that the blurred boundary between the aorta and
pulmonary artery often results in the oversegmentation of pul-
monary artery, the errors in pulmonary artery are emphasized
because the overall pulmonary artery volume is lower. An-
other reason could be the curved shape of the pulmonary artery,
which makes the results vary a lot between patients.

We see similar behavior on the ISLES dataset. The intensity
boundaries of the large ischemic stroke lesions are ambiguous
and their appearance varies a lot between lesions. Most of the
methods fail to segment the boundaries accurately (see Figure
6 ISLES). Post-processing CRF hardly solves the problem and
performs slightly worse than CNN. Posterior-CRF achieves bet-
ter (while less significant due to the large prediction variance
between samples) segmentation performance on DSC, AVD,
lesion-wise F1.

A properly tuned spatial component of the post-processing
CRF can benefits CT arteries and ischemic stroke lesion seg-
mentation (Appendix Section 9, Figure 2 (a) and (c)). However,
it can cause problems to white matter hyperintensities no mat-
ter how we try to tune it (Appendix Section 9, Figure 2 (b)),
where we can see a positive w, always leads to a decreased
performance since the spatial smoothing contributes to remove
both isolated true positives and false positives if they are small
enough. The complete SHAP analysis will be discussed in Ap-
pendix Section 9.

The negative effect of the spatial smoothing results in the
low average lesion-wise recall score in WMH segmentation for
Postproc-CRF (34.8%) and can be observed in the WMH seg-
mentation results (see Figure 6). In this case, Postproc-CRF is
always worse than vanilla CNN (within our grid-search range).
This is because the scenario where post-processing CRF has
no influence (with both w; and w, set to zero) was not in-
cluded in the grid search range (0.1,10). Intensity-CRF has a
higher lesion-wise average recall than CNN baseline (68% to
64.8%) but a lower (not significantly) voxel-wise recall (77.5%
to 79.8%): although it detects more correct lesions than CNN
due to the intensity features, its use of spatial features causes it

to undersegment individual lesions (see Figure 6). Spatial-CRF
also suffers from this problem, with a high lesion-wise recall of
68.8% but low lesion-wise F1 of 65.7%.

For CT arteries, the proposed method performs better than
the state-of-the-art (Sedghi Gamechi et al., 2018) in aorta seg-
mentation (0.95 vs. 0.94) and worse in pulmonary segmentation
(0.89 vs. 0.92). Note that five-fold cross-validation is applied
in (Sedghi Gamechi et al., 2018) and in this paper we apply
five random data splits, which may lead to different test data.
Unlike in (Sedghi Gamechi et al., 2018), we do not cut the pul-
monary artery prediction from the bottom level. In some cases,
our method produces segments that extend beyond the man-
ual annotations, which leads to a lower Dice performance. For
WMH, the proposed method performs slightly worse than the
best performance in the leaderboard using 5 2D UNet ensem-
bles (0.78 vs. 0.81) using the same test data. The top 3 methods
in the leaderboard are all 2D UNet ensembles (0.81 vs. 0.80
vs. 0.80), which shows a well-tuned UNet can provide strong
baseline performance for WMH segmentation. The best non-
ensemble approach is brain atlas guided attention UNet which
is more comparable to the proposed method (0.79 vs. 0.78).
For ISLES, note that the test sets used in this paper are different
from the ones that are used to calculate the leaderboard per-
formance. The performance of the proposed method using 14
training images is quite comparable to the best performance in
the leaderboard (0.61 vs. 0.59), which is the only CNN-based
method (Kamnitsas et al., 2017) among the top-3 methods in
Dice metrics (0.59 vs. 0.55 vs. 0.47).

5.2. Optimization of the End-to-end CRF

We show the evolution of the trainable CRF parameters in
one data split of WMH dataset in Figure 5. For the four param-
eters in the 2 X 2 compatibility matrix ¢ and the two diagonal
spatial kernel weights w,, Spatial-CRF falls into different local
optimal values compared to other CRF methods, probably be-
cause different parameter scaling due to the lack of the appear-
ance kernel. In contrast, Intensity-CRF and Posterior-CRF con-
verged to similar optimal values for ¢ and w;,. For the two diag-
onal bilateral kernel weights in w; that control the appearance
kernel, Intensity-CRF and Posterior-CRF converged to two dif-
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Table 3. Results. Mean (standard deviation). The best results are marked in bold. Each experiment is repeated 5 times with different random data split.
The last two colomns are lesion-wise metrics. *: significantly better than CNN baseline (p<0.05). °: significantly worse than Posterior-CRF (p<0.05).
P-values are calculated by two-sided paired t-test. All CRF methods are implemented in 3D fully-connected manner and share the same CNN architecture

and hyperparameters.

Methods DSC H95(mm) AVD(%) Recall Recall(lesion) Fl1(lesion)
CT Arteries: Aorta
CNN baseline  0.9291(0.02)°  5.5560(1.96)° 6.8780(4.17)° 0.8993(0.03)° N/A N/A
Postproc-CRF  0.9264(0.02)°  5.1591(1.59)° 8.5326(4.81)° 0.8878(0.04)° N/A N/A
Intensity-CRF  0.9457(0.01)*° 3.2802(0.77)*°  3.1967(2.58) 0.9548(0.02)* N/A N/A
Spatial-CRF ~ 0.9188(0.02)°  7.6562(3.98)° 6.1013(5.13)° 0.8939(0.05)° N/A N/A
Posterior-CRF  0.9538(0.01)*  2.8699(0.86)* 2.3688(2.29)* 0.9555(0.02)* N/A N/A
CT Arteries: Pulmonary Artery
CNN baseline  0.8510(0.05)°  10.3000(4.87)°  16.7687(12.60)° 0.8867(0.09) N/A N/A
Postproc-CRF  0.8561(0.05) 10.0052(5.22)°  13.7071(10.26)°  0.8698(0.09)° N/A N/A
Intensity-CRF  0.8773(0.04)*  8.9208(3.09)* 11.8671(8.66)*  0.9079(0.06) N/A N/A
Spatial-CRF  0.8558(0.06)°  10.5672(5.19)°  13.7399(13.47)  0.8603(0.09)° N/A N/A
Posterior-CRF  0.8935(0.04)*  7.6635(3.92)* 8.9245(7.07)* 0.8979(0.07) N/A N/A
WMH

CNN baseline  0.7557(0.13)°  6.5015(9.87)° 28.3351(45.64)°  0.7977(0.14)  0.6476(0.14) 0.6648(0.11)°
Postproc-CRF  0.6970(0.17)°  8.8659(7.79)° 35.0786(22.69)° 0.5947(0.20)° 0.3476(0.16)°  0.4831(0.16)°

Intensity-CRF
Spatial-CRF

0.7706(0.10)°
0.7602(0.11)°

4.9403(4.58)
5.8469(5.82)°

15.6263(16.44)*
23.5154(25.76)°

0.7751(0.12)
0.7831(0.13)

0.6803(0.15)*
0.6876(0.14)*

0.6705(0.10)°
0.6569(0.11)°

Posterior-CRF  0.7887(0.09)* 4.2972(3.87)*  14.8427(12.66)* 0.7707(0.12) 0.6670(0.14)  0.6952(0.10)*
ISLES

CNN baseline  0.5795(0.28)  27.6725(25.58) 72.3048(121.12) 0.6590(0.31) 0.7586(0.33)  0.4941(0.35)

Postproc-CRF  0.5621(0.31)  19.5302(20.72)  59.1030(85.99)  0.6132(0.34)  0.6518(0.39)  0.5545(0.36)

Intensity-CRF  0.5758(0.26)  46.6002(32.17)° 65.9278(68.98)  0.6397(0.30)  0.7350(0.33)  0.4094(0.31)°

Spatial-CRF  0.5898(0.26)  31.1519(29.50) 93.1006(171.83) 0.6794(0.28)  0.7848(0.31)  0.4945(0.34)

Posterior-CRE  0.6075(0.24)  25.1834(23.27) 47.5171(38.34)  0.6501(0.29) 0.7443(0.31) _ 0.5625(0.32)

ferent optimal values. This suggests that different CRF feature
spaces contribute mostly through the appearance kernel and less
through the compatibility matrix or the spatial kernel. Inter-
estingly, for the second diagonal bilateral weight w(lz), there is
a different trend of Posterior-CRF compared to Intensity-CREF,
which may indicate that at the early training stage Posterior-
CRF uses similar feature space like that in Intensity-CRF, but
at the later stage it finds and learns another set of features that
may help categorize the lesion class better, which are more re-
liable than the original intensity features.

5.3. Influence of CRF Hyperparameters

We conduct experiments to investigate the influence of CRF
hyperparameters on both end-to-end CRF with predefined fea-
tures and the proposed CRF with learned features.

Trainable CRF parameters. The CRF weights y, w;, and
w; in the end-to-end CRF learning can be automatically up-
dated together with CNN weights. We run Intensity-CRF and
Posterior-CRF using WMH datasets with five different initial-
izations of CRF weights randomly sampled from the search
scale with all other parameters the same as in Table 2. The
CNN initializations are the same for all experiments. The re-
sults in Table 4 show that Intensity-CRF and Posterior-CRF
converge to similar optimal points across different initializa-
tions. Spatial-CRF shows higher variances across experiments
and is less stable to the change of initializations. Posterior-CRF
is more robust to changes in initialization, achieving higher av-
erage performance and smaller standard deviations compared to

Intensity-CRF and Spatial-CRF.

Table 4. Performance (Dice score) across 5 different initializations of CRF
weights on WMH dataset.

Methods
Mean (std)

Posterior-CRF
0.7833 (0.003)

Intensity-CRF
0.7570 (0.008)

Spatial-CRF
0.7507 (0.02)

Empirically tuned parameters.The CRF standard deviation
parameters 6, and 6,, controlling the spatial terms, and 6 con-
trolling the appearance term, were tuned empirically to give
the best results for post-processing CRF. We here test, for
WMH segmentation, five different values of 6,, 63, and 6, for
Intensity-CRF and Posterior-CRF and five different values of
0, for Spatial-CRF within the search scale. All other parame-
ters are the same as in Table 2. The results are shown in Fig-
ure 7. We can see that Posterior-CRF is more robust to 6, and
6 and has consistently better performance than Intensity-CRF
within the search scale, suggesting that Posterior-CRF parame-
ters are more easy to tune. All CRF methods degenerate perfor-
mance when 8, becomes larger and show the best performance
when using a similar value as that in the grid search for post-
processing CRF. Spatial-CRF is more robust to 6, compared to
other CRF methods and has similar performance as CNN base-
line with larger 6,. This indicates that large 6, reduces the CRF
effect and the spatial term may introduce more incorrect seg-
mentation when there is also an appearance term in the end-to-
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Fig. 6. Example segmentation results. From left for each row: (1) Original image (2) Manual annotation (3) CNN baseline (4) Postproc-CRF (5) Intensity-
CREF (6) Spatial-CRF (7) Posterior-CRF. Aorta is colored with yellow and the pulmonary artery is green, white matter hyperintensities and ischemic stroke
lesions in yellow. Red/blue rectangles indicate areas with over/under segmented voxels and the orange rectangle indicates another branch of pulmonary
artery whose annotation starts in the next few slices and merged with the main branch gradually. In the WMH example (second row), only detections
that do not overlap with any ground truth voxel (false positive lesions) or ground truth lesions for which no voxel is detected (false negative lesions) are
highlighted, and in the zoomed patches red and blue voxels indicate false positive and false negative lesions respectively. Better viewed in color with zoom.

== Intenstiy-CRF == Posterior-CRF == Intenstiy-CRF == Posterior-CRF
w= POstproc-CRF == == CNN == POStproc-CRF == == CNN
0.80 0.80

Spatial-CRF == Intensity-CRF
= Posterior-CRF == Postproc-CRF
= = CNN

Fig. 7. Dice performance of varying 6 for CRF methods on WMH dataset.
CNN result is shown as the black dash line. Purple crosses indicate the
values used in Table 4. Best viewed in color with zoom.

end CRF like Intenity-CRF and Posterior-CRF.

5.4. Influence of Hierarchical CNN Features as CRF Reference
Maps

We conduct experiments to investigate which level of fea-
tures — earlier or deeper in the network — are more useful for
the feature-learning-based CRF. We implement nine variants of
feature-learning-based CRF with different levels of CNN fea-
ture maps as reference maps in the same 3D UNet architecture.

For example, the method FL-CRF-e-1 indicates the feature-
learning-based CRF using the level 1 feature maps in the UNet
encoder path as CRF reference maps. The implementation de-
tail of FL-CRF-e-1 is shown in Figure 3. To reduce the com-
putational cost and keep the same layer capacity as Posterior-
CREF, the 32-channel (or more in deeper layers) feature maps
are encoded into C-channel feature maps and go through a soft-
max layer as the CRF reference maps. Since there is no gradi-
ent flowing back through the reference map path, we optimize
the softmax layer with the segmentation loss directly in order
to preserve as much semantic information as possible. Note
that for CRF methods that use deeper CNN layers as reference
maps, such as FL-CRF-e-2 to FL-CRF-d-2, we upsample the
reference maps to the original image scale using nearest neigh-
bor interpolation and optimize them with the segmentation loss,
similar to FL-CRF-e-1.

The results are shown in Figure 8. Note that if we use the
CNN input as CRF reference maps, it turns into Intensity-CRF;
if we use the last CNN layer as CRF reference maps, it turns
into Posterior-CRF. In the figure, we can see that all feature-
learning-based CRF approaches (including Posterior-CRF) out-
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Fig. 8. Dice performance of end-to-end CRFs using different CNN feature
maps in an independent run on WMH dataset. Different blocks indicate
different level of CNN feature maps used as CRF reference maps. Best
viewed in color with zoom.

perform Intensity-CRF and the overall Dice performance in the
decoder path is better than that in the encoder path, indicating
that CNN learned features are more useful to the CRF infer-
ence than intensity is and later CNN features are more useful
than early features. The performance degenerates towards the
middle part of the UNet (from FL-CRF-e-1 to FL-CRF-e-5 and
FL-CRF-d-1 to FL-CRF-d-4) but fluctuates at the 2nd/3rd level.
We argue that this may be due to the pooling effect which en-
ables CNN to extract higher-level features but loses the spatial
information at the same time. Posterior-CRF achieves the best
performance among all variants and we argue that this is be-
cause the last CNN layer are more likely to contain more useful
information for CRF inference and it still keeps the same spatial
scale as the original image.

5.5. Evolution of CNN and CRF Outputs

The concurrent optimization of CNN and CRF in our end-to-
end models allows the CNN and CREF to interact during train-
ing. We observed that this has a strong effect on what the CNN
learns in the early training epochs. Figure 9 shows the evolu-
tion of CNN and CRF outputs for three typical examples. The
baseline CNN without CRF converges quickly and focuses on
the large lesions, already producing a fairly sparse output after
the first epoch. The end-to-end models converge more slowly,
and in this case the output of the CNN is influenced by the
choice of CRF mostly in the early stage of training. For ex-
ample, the CNN in the Intensity-CRF model initially tends to
highlight voxels with similar intensity as the foreground (1 to
20 epoch), while the CNN in the Spatial-CRF model preserves
the spatial coherence between voxels and outputs many small
groups of voxels (5 epoch). The CNN in the Posterior-CRF
model first focuses on the coarse area that might contain the
target lesions (1 to 5 epoch) and then refine the prediction grad-
ually to the ground truth (5 to 20 epoch). Eventually, all models
converge to a result close to the ground truth.

6. Discussion

In this paper, we explored efficient methods to combine the
global inference capabilities of a CRF with the feature extrac-
tion from a CNN. Our end-to-end approach optimizes the CRF
and CNN at the same time, and allows the two components

of the approach to cooperate in learning effective feature rep-
resentations. This gives our method an advantage over tradi-
tional CRFs that only use the original image intensities and po-
sition information. Intensity-based features can be suboptimal
for problems where the intensity does not provide sufficient in-
formation to find the object boundaries, for example because
the contrast between objects is too small.

Unlike other CRF methods, our Posterior-CRF uses adap-
tive learning-based features that are learned by the CNN and
can combine spatial and appearance information in a way that
suits the CRF. The results show our method can achieve stable,
good performance across a range of segmentation applications
and imaging modalities. FL-CRF variants that use early CNN
features in Section 5.4 achieve in-between performance be-
tween Intensity-CRF and Posterior-CREF, using learning-based
features that range from more similar to intensity to more sim-
ilar to posterior probability maps. Finally, we found that inte-
grating learned features into the CRF model reduces the need to
fine-tune CRF parameters, making the method easier to apply
than CRF methods with predefined features.

6.1. Interaction between CRF and CNN

Figure 9 leads to the counter-intuitive observation that, at
least initially, the CNNs in end-to-end models seem to imitate
the CRF instead of complementing it. For example, the CNN
output in Intensity-CRF highlights the ground truth, but also
finds areas with similar intensities, producing something that
looks very similar to the original image (20 epoch). The CNN
output in Spatial-CRF selects the ground truth but also includes
clusters of voxels in other areas (5 epoch).

This effect can be explained by the way the CNN and CRF
interact during training. In Intensity-CRF and Spatial-CRF, the
only interaction between CRF and CNN takes place through the
unary map (Figure 4, step 5, green arrow). For example, con-
sider how this works in the Intensity-CRF. In WMH segmenta-
tion, the ground truth is usually high-intensity area. However,
for the voxels with high intensities but not the target lesions, it
is difficult to get both low pairwise CRF potentials and low seg-
mentation loss, since labeling them as non-lesion goes against
the CRF assumption that voxels with similar high-intensities
are more likely to be the lesion class. For convenience, we call
these voxels as hard voxels, indicating the voxels that do not fit
the CRF assumption. In order to keep the correctly segmented
lesions and reduce the CRF effect on the hard voxels at the same
time, the CNN tends to provide unary maps that 1) highlight the
ground truth area for lower segmentation loss, and 2) look sim-
ilar to the CRF reference maps on the hard voxels for lower
pairwise CRF potentials. In the later stage of training, CNN is
encouraged to push the confidence of its outputs even further
to minimize unary potentials and thus prevent CRF from undo-
ing segmentation improvement on the hard voxels. From Fig-
ure 9, we can see that there are many hard voxels in Intensity-
CRF (1 to 20 epoch, areas that look like the original image) and
Spatial-CRF (5 epoch, clusters of voxels that do not belong to
the ground truth) which may harm the segmentation. This indi-
cates that the predefined features may not be the optimal feature
space for the end-to-end CRF.
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Fig. 9. Evolution of CNN and CRF outputs during training. The CNN output maps and CRF results for WMH segmentation in 3 different MRI images
(columns) are shown at, from top row to bottom row, epoch 1, 5, 20, and the best epoch. The best epoch is chosen when the model shows the best validation
performance till the end of training (usually at 50~80 epoch). FLAIR: the input FLAIR image of the current training sample. GT: ground truth. CNN
baseline: the last layer (softmax output) of CNN. Intensity-CRFE, Spatial-CRF, Posterior-CRF: the probability maps before/after the CRF layer at different

epochs during training. Best viewed with zoom.

In the Posterior-CRF model, the CRF inference happens
within the CNN feature space, which can improve the inter-
action between CNN and CRF. First, the features learned by
CNN during training may contain information that is more use-
ful for segmentation than that in the predefined features, which
makes CRF benefit most from the CNN features. Second, using
the learning-based features as CRF reference maps avoids the
CRF assumption of the predefined features which may intro-
duce many hard voxels, e.g., Intensity-CRF and Spatial-CRF,
as discussed in the previous paragraph. With fewer hard voxels,
the CNN in Posterior-CRF may provide better unary maps for
the CRF inference.

6.2. Posterior-CRF vs. Mean-field Network

The mean-field approximation (MFA) in Posterior-CRF is
somewhat similar to that in Mean-field networks (MFN) (Li
and Zemel, 2014), since both methods use it to get the poste-
rior probabilities of the variables. Therefore, MFN could be a
promising alternative to the MFA process in our method. MFN
has the advantage that it utilizes each layer of the network as an
iteration of MFA, which has the advantage of allowing more re-
laxation on parameters and provides some efficiency improve-

ments. This makes the idea of formulating Posterior-CRF as
a feed-forward network like MFN very attractive. There are,
however, a few limitations that would need to be solved.

The first limitation is in training. MFN is designed to provide
a faster and more flexible way to obtain the prediction of MFA,
by fitting a powerful function that predicts the real MFA result.
To train an MFN, we first need to acquire the ground truth cal-
culated by conventional mean-field iterations, which takes time
during training but saves time during inference. On the other
hand, Posterior-CRF provides a flexible and adaptive feature
space for the conventional MFA, speeding up the procedure by
applying Gaussian convolution in the message passing updates.
As a result, the thing Posterior-CRF does is difficult to repli-
cate with a MFN because the feature space of a Posterior-CRF
changes during training, while MFN requires a predefined fea-
ture space to get the ground truth.

The second limitation is the tradeoff between dense inference
and computation cost in the MFN. In its feed-forward network
implementation, the computation cost increases exponentially
when more neighbor nodes and number of layers are included,
which limits its ability to model dense prediction problems such
as segmentation tasks.
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6.3. Posterior-CRF vs. Graph Neural Networks

The proposed Posterior-CRF shares some similarities with
graph neural networks (GNN) (Scarselli et al., 2008; Selvan
et al., 2018): both approaches aim to model interactions be-
tween variables within a graph model. The difference is that
Posterior-CRF pre-defines the global relationship between vari-
ables through the mean-field assumptions and solves the maxi-
mum a posteriori problem, whereas GNN learns the global vari-
able relationship by applying graph convolution filters and map-
ping the input graph to the output graph (Selvan et al., 2018).

It could be interesting to combine the global view of the
Posterior-CRF and the more local view of the GNN. The
Posterior-CRF might benefit from using a GNN to replace its
CNN component for feature extraction. The graph-based net-
work may extract better features for Posterior-CRF than a CNN,
which is not designed to extract unary and pairwise features for
a graphical model. Similarly, the GNN may benefit from the
efficient message passing of the Posterior-CRF, which would
allow it to use the local graph-based features as CRF features
for global interactive modeling in a computationally efficient
way.

6.4. Limitations

In this paper, we show that the proposed Posterior-CRF
method has benefits in the three medical imaging applications.
Considering the medical imaging datasets are usually small
largely because the manual annotations are very expensive to
make, difference between Posterior-CRF and UNet may be
smaller in larger training sets. But we know from literature that
Intensity-CRF helps in some computer vision applications with
large training sets (e.g., 10k 2D images or even more), it would
be promising to test our method on these datasets. This is con-
sidered as our future work.

In Section 5.3, we show that Posterior-CRF is robust to dif-
ferent CRF initializations and hyperparameters. However, the
standard deviation parameters still require careful tuning, espe-
cially for 6, in the spatial term. 6, is sensitive to the image scale
of different datasets and the size of the target object in differ-
ent applications. Nevertheless, we recommend the researchers
to use the default (or optimal if it is available) setting of post-
processing CRF as a reference for tuning Posterior-CRF rather
than random initialization. Posterior-CRF is more robust to 6,
and 6 compared to Intensity-CRF, which facilitates exhaustive
tuning of these parameters.

The computational expense of the CRF also restricts the
choice of applications. Compared to UNet (~5 mins for 1 epoch
in WMH experiment), there is around 20% training time in-
creased on average when applying a CRF layer on top of the
network (~6 mins for 1 epoch). All end-to-end CRFs share sim-
ilar computational costs. Given that Posterior-CRF uses poste-
rior probability maps as its reference maps, it can become com-
putationally expensive in multi-class segmentation problems.
For a similar reason, Intensity-CRF and Postproc-CRF can be-
come expensive when there are too many imaging modalities in
the input channels M.

In the experiments, we use a plain 3D UNet as the back-
bone network for all methods. The training pipeline and hyper-
parameters are determined empirically and kept the same for

all datasets, which could be suboptimal compared to elaborate
automatic configuration strategies like nnU-Net (Isensee et al.,
2020). On the WMH dataset we therefore checked the perfor-
mance of nnU-Net (3D version without ensembling). Average
Dice score of nnU-net (0.77) was slightly higher than our CNN
baseline (0.76, difference not statistically significant) but lower
than the proposed posterior CRF using the CNN baseline as
a backbone (0.79), which performed significantly better than
the CNN baseline (see Table 3). Though our experiments have
been limited to a standard 3D U-net architecture, We expect that
posterior CRF can improve results of other segmentation archi-
tectures and other hyperparameter settings (such as nnU-net) as
well.

7. Conclusions

In conclusion, we present a novel end-to-end segmentation
method called Posterior-CRF that uses learning-based, class-
informative CNN features for CRF inference. The proposed
method is evaluated in three medical image segmentation tasks,
including different MRI/CT imaging modalities and covering a
range of object sizes, appearances and anatomical classes. In
the quantitative evaluation, our method outperforms end-to-end
CRF with early CNN features, end-to-end CRF approaches with
predefined features, post-processing CRF, as well as a baseline
CNN with similar architecture. In two of the three applica-
tions, our method significantly improves the segmentation per-
formance. The qualitative comparison demonstrates that our
method has good performance on segmenting blurred bound-
aries and very small objects.
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Supplementary Material

8. Mean-field Inference

Mean-field inference is an efficient approximation to comput-
ing distribution Q(X) instead of the real CRF distribution P(X),
which could be done in an iterative algorithm 1 (see also Figure
10). X is the random field w.r.t the current 3D image patch 1.

reference map "
pairwise . transform e
o o
message | local
CNN output passing | | piie CRF output
— 2 iteration
unary end
U — 0 < 0 by Y
next
iteration

Fig. 10. Mean-field approximation in the end-to-end CRF layer. There are
two inputs of the CRF layer, where U is the CNN probability maps as the
unary maps and the pairwise distribution are calculated by the initialized
distribution Q and the reference map I. The updated distribution Y is the
output of the layer at the end of the iteration. Best viewed in color with
zoom.

There are three main steps inside the inference iteration. First
is message passing, which is the most calculation-intense step
that could be expressed as a convolution operation on all the
pairwise kernels k and the initialized Q(X). An efficient way
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Algorithm 1 Mean-field inference in fully-connected CRF

Oi(x)<Ui(x),i=1,2,...N

while not reach max iteration number do
O™ (x) — X jui KM (8, £)Q;(xi) for all m
0" (x) & Tier k™ (i, D) Sy 0™ O (1)
Qi(x;) < exp{ — @u(x;) — Qi(x))}
normalize Q;(x;)

end while

> Initialize O(X)

> Message Passing
> Compatibility Transform
> Local Update

to perform high-dimensional convolution is using permutohe-
dral lattice algorithm (Adams et al., 2010). In compatibility
transform as the second step, all the convolution results Ql(.m)(x,-)
are weighted by ™ in different sort of kernels and shared be-
tween labels to a varied extent, depending on the compatibility
u between these labels. At last, Q(X) will be updated by the
calculated pairwise potential and used as the input for the next
iteration.

9. SHAP Analysis of Post-processing CRF

We conduct SHAP (SHapley Additive exPlanations) (Lund-
berg and Lee, 2017) analysis on the post-processing CRF grid
search results to investigate the contribution of each individ-
ual CRF parameter to the segmentation performance. With this
analysis, we show that it is difficult to tune traditional CRF pa-
rameters to achieve a consistent performance improvement on
different applications, and our proposed method does not re-
quire tuning parameters. Moreover, the analysis shows the im-
portance of each modality to each dataset, which can be au-
tomatically adapted in the proposed method but not in tradi-
tional methods. The model is trained using XGBoost (Chen and
Guestrin, 2016) for 100 iterations using a learning rate of 0.5,
0.01, and 0.01 for CT Arteries, WMH, and ISLES respectively.
Note that the SHAP analysis results can only be explained un-
der the assumption of the current parameter search scales and
XGBoost models.

The results are shown in Figure 11. The summary plot in the
left sub-graph shows an overview of all parameter sets with the
most important parameters on top of the list. For each dataset,
the best and worst parameter settings are shown in the right sub-
graph. For all datasets, the post-processing quality is affected
most by the spatial parameters w, and 6,, and less by the inten-
sity parameters per modality 6.

The results on the CT arteries data (Figure 11a left) are more
stable (with smaller SHAP values) than the results for WMH
and ISLES, indicating that the post-processing CRF can hardly
change the CNN output of the artery segmentation (see Figure
6 in the paper as an example).

In the WMH dataset, looking at independent parameter
contributions, low values for spatial parameters w,, 6, (less
smoothing), and a smaller number of iterations lead to an im-
proved performance. This is not unexpected, because white
matter lesions are sparsely distributed and spatial smoothing
tends to remove small lesions. Too strong spatial correlations
(either large weight w, or small 8,) will remove true positives

as well (see Figure 6 in the paper). The summary plot (Fig-
ure 11b left) shows, as expected, that the FLAIR image has a
larger impact on the model than the T1 image. Table 1 also
shows a smaller 5 selected (corresponding to higher influence)
for FLAIR.

Similar trends can be found for the ISLES dataset (Figure
l11c). Spatial parameters w, and 6, are important to tune and
high values can strongly harm the performance. The summary
plot shows that the DWI image has a larger impact on the model
than T1, T2, and FLAIR. In Table 1, 63 for FLAIR and DWI
are smaller than 6 for T1 and T2, which means that FLAIR
and DWI images are more informative for the segmentation of
ischemic stroke lesions.
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Grid Search Analysis in CT Arteries dataset Grid Search Analysis in WMH dataset Grid Search Analysis in ISLES dataset
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Fig. 11. SHAP analysis of the grid search results. See Section 9 for an explanation. Upper sub-graphs: summary plots of all parameter sets evaluated during
grid search. Positive SHAP values indicates a positive contribution to the performance and vice versa. The legend (feature value bar) shows the search
range for each parameter. This reveals for example that lower values of w; lead to better segmentation performance for all datasets. Lower sub-graphs: the
best (1st row) and worst (2nd row) parameter sets for each dataset. Red bar represents positive contribution to the performance and blue bar is negative
contribution. Base value is the average DSC of all grid search results and output value is the DSC in the parameter set depicted. Best viewed in color with
zoom.



