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Abstract

While powerful pretrained visual encoders have advanced
many vision tasks, their knowledge is not fully leveraged
by object detectors, especially in few-shot settings. A key
challenge in transferring this knowledge via cross-task dis-
tillation is the semantic mismatch between outputs: clas-
sifiers produce clean probability distributions, while detec-
tor scores implicitly encode both class and objectness. To
address this, we propose a lightweight fine-tuning strategy
guided by a novel, correlation-based distillation loss. This
loss aligns the detector’s relative class preferences with
those of a strong image classifier, effectively decoupling the
learning of class semantics from objectness. Applied to a
state-of-the-art detector, our method consistently improves
performance in a low-data regime, demonstrating an effec-
tive way to bridge the gap between powerful classifiers and
object detectors.

1. Introduction

Deep learning models typically require large amounts of
labeled data to generalize effectively to unseen examples.
However, in many practical scenarios, assembling such a
dataset can be labor-intensive or impractical. To address
this, two main strategies are commonly considered: (1) gen-
erating synthetic training data that approximates the distri-
bution of test images, or (2) training directly on a limited
dataset. Both approaches, however, present challenges for
generalization. Synthetic data may introduce a domain shift
with respect to real test images, while training with limited
data can hinder the model’s ability to learn robust and trans-
ferable representations.

In recent years, the emergence of massively pretrained
visual encoders [8, 15, 16] has significantly advanced
computer vision. Trained on vast corpora, these models
excel in domain generalization [21] and few-shot learn-

ing [19, 24], making them ideal for data-scarce scenarios.
While object detection has benefited from these encoders
in open-vocabulary settings [22], their application to stan-
dard, closed-vocabulary detection has been less explored.
We argue this is due to a fundamental challenge: a direct
transfer of knowledge from a pure classifier to a detector is
non-trivial due to their incompatible output semantics.

Object detection pipelines combine three subtasks: lo-
calization, objectness prediction (does a box contain an ob-
ject?), and classification (what class is the object?). This
decomposition reveals the core of the problem: a classi-
fier’s output is a clean probability distribution over classes,
whereas a detector’s classification scores are implicitly
weighted by its objectness confidence. A standard dis-
tillation loss like Kullback-Leibler divergence would be
confounded by this, penalizing low-confidence predictions
even if their relative class scores are correct.

This work directly addresses this semantic mismatch.
We propose a lightweight, cross-task distillation framework
to enhance few-shot object detectors by leveraging strong
pretrained classifiers. Specifically, our contributions are:
• A novel correlation-based distillation loss specifically de-

signed to align the detector’s class predictions with a
teacher classifier’s by focusing on relative score propor-
tionality, thereby ignoring the confounding objectness
signal.

• A lightweight fine-tuning strategy to integrate this distil-
lation into any pre-existing detector without requiring ar-
chitectural changes or expensive retraining from scratch.

• An empirical validation showing that our method con-
sistently improves a state-of-the-art detector (DINO) in
a low-data regime, outperforming strong baselines.

2. Related work

Closed-Vocabulary Object Detection. Object detection
has evolved through a wide range of architectures, from
two-stage methods like R-CNN and its variants [4, 17]



Figure 1. We first extract the crops from the detection dataset Ddet to create the associated classification dataset Dcls, which we use to train
a teacher classifier Tϕ using a standard cross entropy loss. Then, we distil its knowledge into a student detector Sθ by encouraging the
detector’s class scores pks to be correlated with those of the teacher pkt (τ). To this end, we introduce a novel distillation loss Lcorr.

to single-stage approaches [20]. More recently, Detec-
tion Transformers (DETR) [1] have established a new
paradigm by eliminating hand-crafted components like non-
maximum suppression in favor of a set-based prediction
framework with Hungarian matching. This has spurred nu-
merous improvements: Deformable DETR [25] improves
efficiency and small object handling, while DN-DETR [9]
and DINO [23] use denoising objectives to stabilize training
and boost performance, particularly in low-data regimes.
Given its state-of-the-art performance and stability, we
adopt DINO as the base detector for our experiments.

Open-Vocabulary Object Detection (OVD). A distinct
line of research focuses on OVD, aiming to detect ob-
ject classes specified by arbitrary text prompts at inference
time. These methods typically leverage large-scale vision-
language models (VLMs) like CLIP [16]. Prominent strate-
gies include training detectors from scratch on web-scale
paired data (e.g., GLIP [10]) or fine-tuning a VLM directly
for detection (e.g., OWL [13], OWL-ST [14]). While pow-
erful for generalization, these models can lack the precision
of specialized, closed-vocabulary detectors and their fine-
tuning on small, specific datasets remains an open question.

Knowledge Distillation for Object Detection. Our work
is most related to methods that use knowledge distillation
to improve object detectors. Several OVD methods, such as
ViLD [5] and DetPro [2], distill knowledge from a frozen
VLM into a detector. Their goal is to align the detector’s
region features with the VLM’s text or image embeddings
to impart open-vocabulary capabilities. Our approach dif-
fers in both goal and mechanism. We focus on the closed-
vocabulary, few-shot setting, where the aim is to maximize
performance on a fixed set of classes with limited data. In-
stead of distilling from a general-purpose VLM, we perform
cross-task distillation from a strong image classifier fine-
tuned on the target classes. In this respect, our method bears
some resemblance to [6], which distills classifier knowledge
into a detector via logits- and feature-based losses. How-
ever, unlike their approach, we explicitly tackle the seman-
tic gap between classifier outputs and detector predictions
by designing a new distillation loss tailored to this cross-

task setting.

3. Method
We propose a lightweight fine-tuning procedure to enhance
any pretrained object detector by distilling knowledge from
a strong image classifier. Our approach introduces a novel
cross-task distillation loss designed to handle the semantic
differences between the two tasks. The overall process, il-
lustrated in Figure 1, can be decomposed into two parts: (i)
training an expert teacher classifier on crops derived from
detection annotations, and (ii) fine-tuning the object detec-
tor with a small number of additional epochs using our dis-
tillation loss to transfer the classifier’s knowledge.

3.1. Teacher Classifier Preparation
The first step is to create a high-quality teacher model spe-
cialized for the visual domain and class vocabulary of the
target detection task.

Let the detection dataset be Ddet = {(x(j), B(j))}Nj=1,
where x(j) is an image and B(j) = {(bk, yk)} is a set of
ground-truth bounding boxes and their corresponding class
labels. From this, we construct a derived image classifica-
tion dataset, Dcls = {(x(k)

crop, y(k))}Mk=1, by extracting the
image region x

(k)
crop for every ground-truth box bk across all

images.
The teacher classifier, Tϕ, is constructed by appending a

linear classification head, hϕ, to a powerful pretrained vi-
sual encoder, Eϕ (e.g., CLIP [16] or DINOv2 [15]). The
full set of parameters ϕ = {ϕE , ϕh} is then fine-tuned on
Dcls using a standard cross-entropy loss. Fine-tuning the
entire network, rather than just the head, allows the encoder
to slightly adapt its general-purpose features to the specific
nuances of the objects in our target dataset, resulting in a
more expert teacher.

3.2. Cross-Task Distillation with a Correlation Loss
The second stage involves fine-tuning the student detector,
Sθ, using a distillation loss that aligns its predictions with
the teacher’s. For a given prediction from the detector, we



have a class score vector ps ∈ RK and a bounding box
b ∈ R4. We crop the corresponding image region and feed
it to the teacher classifier to obtain a softened probability
distribution pt(τ) = softmax(Tϕ(xcrop)/τ), where τ is the
distillation temperature.

Addressing the Semantic Mismatch. A critical chal-
lenge arises from the semantic mismatch between the
teacher’s and student’s outputs. The teacher, Tϕ, produces
a clean probability distribution pt(τ) (i.e., |pt(τ)| = 1). In
contrast, the student detector’s scores ps often implicitly en-
code objectness; a prediction with low confidence will have
low scores across all classes, and they will not sum to 1.
For instance, a classifier might output [0.9, 0.05, 0.05] for
classes ’cat’, ’dog’, ’person’. A detector, however, might
predict [0.8, 0.01, 0.01] for a high-confidence cat detec-
tion but [0.1, 0.01, 0.01] for a low-confidence one. Conse-
quently, a standard Kullback-Leibler divergence loss would
be confounded by this, heavily penalizing the detector for
low objectness rather than focusing on the correctness of
the class relationships.

The Correlation Loss. To overcome this, we propose a
novel loss based on Pearson’s correlation coefficient, ρ.
Pearson’s ρ measures the linear relationship between two
sets of data and is invariant to linear transformations (i.e.,
scaling and shifting). This property is ideal for our purpose,
as it makes the loss sensitive only to the relative shape of
the score distributions, not their absolute magnitudes. Our
loss encourages the student’s predictions to be proportional
to the teacher’s:

Lcorr(ps, pt(τ)) = 1− ρ(ps, pt(τ)). (1)

This effectively decouples the learning of class semantics
from the detector’s objectness signal. For detectors that out-
put an additional ”no object” or ”background” class (e.g.,
DETR), we simply apply the loss to the K object class
scores, ignoring the ”no object” logit.

3.3. Two-Stage Training Strategy
Our training process is designed to be efficient and modular.
1. Stage 1: Detector Pre-training. The student detector

Sθ is first trained to convergence on the target dataset
Ddet using only its standard detection loss, Ldet. This
allows the model to learn the fundamental tasks of local-
ization and coarse classification without the influence of
the teacher.

2. Stage 2: Distillation Fine-Tuning. We then fine-tune
the trained detector for a few additional epochs. In this
stage, the model is optimized on a combined objective
that includes both the original detection loss and our pro-
posed distillation loss:

Algorithm 1 Cross-Task Distillation Fine-Tuning

1: Input: Detection dataset Ddet, teacher classifier Tϕ,
pre-trained student detector Sθ.

2: Hyperparameters: Distillation weight λ, temperature
τ , sample size m.

3: for each fine-tuning epoch do
4: for each image x in a batch from Ddet do
5: {bi, pis}ni=1 ← Sθ(x) // Get student predic-

tions
6: Compute standard detection loss Ldet.
7: Let I ← Randomly sample m indices from
{1, . . . , n}.

8: Ldistill ← 0.
9: for k ∈ I do

10: xk
crop ← Crop(x, bk)

11: pkt ← softmax(Tϕ(x
k
crop)/τ) // Get

teacher prediction
12: Ldistill ← Ldistill + (1− ρ(pks , p

k
t ))

13: end for
14: Ltotal ← Ldet + λ(Ldistill/m)
15: Update parameters θ using Ltotal.
16: end for
17: end for
18: return Trained detector parameters θ.

Ltotal = Ldet + λLdistill, (2)

where λ is a hyperparameter balancing the two losses. The
distillation loss Ldistill is computed as the average Lcorr over
a small, randomly sampled subset of m predictions per im-
age to maintain computational efficiency. This two-stage
approach enables our method to be a lightweight add-on to
any off-the-shelf detector without requiring expensive re-
training from scratch. We summarize this stage in Algo-
rithm 1.

4. Experiments
4.1. Experimental Setup
Dataset and Few-Shot Protocol. We conduct experi-
ments on the COCO 2017 dataset [11]. To simulate a few-
shot setting, we use a small fraction of the training data,
retaining only 2% of the train2017 split (2365 images).
All models are evaluated on the full val2017 split. For
our teacher models, we create a corresponding classifica-
tion dataset by cropping the object bounding boxes from
this 2% split and using their class labels.

Models and Baselines. Our student detector is
DINO [23] with a ResNet-50 backbone [7], a state-
of-the-art DETR-variant. For comparison, we use two
primary baselines:



1. DINO (vanilla): The DINO detector trained only on the
2% COCO subset. This is our main baseline to directly
measure the benefit of our distillation method.

2. OWL-ST-FT [14]: A strong open-vocabulary detector
(B/16 and L/14 variants) that we fine-tune on the same
2% data. This baseline assesses how our specialized
approach compares to a powerful generalist model in a
low-data regime.

Our teacher models are strong image classifiers built by
fine-tuning massively pretrained visual encoders (various
CLIP [3, 18] and DINOv2 [15] models) on the derived clas-
sification dataset.

Training and Distillation Details. We follow a two-stage
training process. First, the DINO baseline is trained for 150
epochs on the 2% COCO subset with a learning rate of 1×
10−4, followed by a standard learning rate decay. Second,
we fine-tune this model for an additional 20 epochs with our
proposed distillation loss, using a reduced learning rate of
1 × 10−5. For distillation, we set the loss weight λ = 1,
teacher temperature τ = 3, and use m = 20 predictions
per image, selected via a simple grid search. The teacher
classifiers are trained to convergence on the classification
dataset using the AdamW optimizer [12].

4.2. Main Results
Our Method Boosts Detection Performance. Table 1
presents our main findings. The vanilla DINO baseline,
trained on only 2% of COCO, achieves a respectable
21.29% mAP. Applying our cross-task distillation provides
a significant and consistent boost. Distilling from a CLIP
ViT-H/14 teacher improves performance to 21.98% mAP
(+0.69), while a stronger DINOv2 ViT-g/14 teacher pushes
the performance to 22.37% mAP (+1.08). This demon-
strates that our lightweight fine-tuning strategy effectively
transfers knowledge from powerful classifiers to improve
the detector’s class prediction capabilities.

Comparison with Open-Vocabulary Baseline. Our dis-
tilled models also outperform the fine-tuned open-
vocabulary baseline, OWL-ST-FT. The best-performing
OWL-ST-FT variant (L/14) reaches 20.58% mAP, which is
surpassed by both our vanilla DINO baseline and, more sig-
nificantly, by our distilled models. This suggests that for
few-shot, closed-vocabulary tasks, our approach of special-
izing a strong detector with targeted distillation is more
effective than fine-tuning a general-purpose OVD model.
We hypothesize this is because DINO’s architecture ben-
efits from numerous advances (e.g., query denoising) that
are absent in the simpler OWL-ST model.

Better Teachers Lead to Better Detectors. To validate
our core hypothesis, we analyze the relationship between

Table 1. Main results on COCO val2017 (mAP %) using a 2%
training split. Our distillation method significantly improves the
DINO baseline and outperforms the OWL-ST-FT competitor. The
gain from distillation is shown in red. We did the experiments 5
times (selection of the 2% of COCO, training of the classifier and
detector). The observed variance is primarily due to the choice of
the training split.

Model COCO mAP (%)

Open-Vocabulary Baseline
OWL-ST-FT B/16 18.75 ± 0.28
OWL-ST-FT L/14 20.58 ± 0.26

DINO (vanilla baseline) 21.29 ± 0.33

Our Approach
DINO + Distill from CLIP ViT-H/14 21.98 ± 0.33 (+0.69)
DINO + Distill from DINOv2 ViT-g/14 22.37 ± 0.31 (+1.08)
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Figure 2. Final detection mAP vs. teacher model accuracy. There
is a strong positive correlation, showing that better classifiers lead
to better-distilled detectors.

teacher quality and student performance. Figure 2 plots the
final detection mAP as a function of the teacher’s accuracy
on the classification task. The results show a clear positive
correlation: stronger classifiers consistently lead to larger
improvements in the distilled detector. This highlights the
importance of the teacher’s representational power and con-
firms that our distillation framework effectively harnesses
it.

5. Conclusion
We introduced a cross-task distillation strategy to enhance
few-shot object detectors. By using a novel correlation-
based loss, our method effectively transfers knowledge
from a strong classifier by aligning relative class scores,
overcoming the semantic mismatch between the two tasks.
This lightweight fine-tuning approach yields consistent per-
formance gains on a state-of-the-art detector, demonstrating
a practical way to leverage large-scale pretrained encoders
for closed-vocabulary detection.
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