
Diagnosis of Dysarthria Severity and Explanation Generation Using
XAI-Enhanced CLINIC-GENIE on Diadochokinetic Tasks

Anonymous ACL submission

Abstract001

Deep neural network classifiers for dysarthria002
severity face limitations regarding inter-003
pretability and treatment guidance. To over-004
come these, we introduce CLINIC-GENIE,005
an explainable two-stage framework con-006
sisting of: (1) CLassification model using007
INtegrated Information from Clinically ex-008
plainable acoustic features and speech rep-009
resentations (CLINIC), a dysarthria sever-010
ity classification model combining acous-011
tic and speech embeddings with Clinically012
Explainable Acoustic Features (CEAFs) for013
enhanced interpretability and performance;014
and (2) Generation of Explanations from015
Numerical features using Interpretability and016
patient Examples (GENIE), a module trans-017
lating numerical data, such as CEAFs and018
their Shapley values, into intuitive natural lan-019
guage explanations via a large language model.020
In the severity classification experiments on021
the DDK dataset, CLINIC achieved a bal-022
anced accuracy of 0.952, a 17.3% improvement023
over using CEAFs alone. In evaluation of the024
generated diagnosis, certified speech-language025
pathologists rated explanations from CLINIC-026
GENIE highly, with an average fidelity score027
of 4.94, confirming enhanced clinical utility028
through intuitive, human-like interpretations.029
These results demonstrate that CLINIC-GENIE030
enhances clinical utility by improving classifi-031
cation accuracy and providing intuitive, human-032
like explanations. The code will be made pub-033
licly available on GitHub.034

1 Introduction035

Dysarthria is a motor speech disorder characterized036

by impaired articulation, phonation, and resonance037

resulting from neurological damage (Duffy et al.,038

2012). Clinical assessment of its severity is essen-039

tial for formulating appropriate treatment plans and040

monitoring disease progression (Joshy and Rajan,041

2021). However, continuous monitoring of treat-042

ment and disease progression by clinical patholo-043

gists is resource-intensive. For this reason, research 044

on automatic dysarthria severity diagnosis using 045

deep learning has been actively pursued. 046

Recent deep learning approaches have primar- 047

ily focused on severity prediction alone, utilizing 048

only one or two types of features such as mel- 049

spectrograms (Suhas et al., 2020; Joshy and Rajan, 050

2023; Rathod et al., 2023), Wav2Vec 2.0 represen- 051

tations (Baevski et al., 2020), or Mel-Frequency 052

Cepstral Coefficients (MFCC) (Hernandez et al., 053

2020; Bhattacharjee et al., 2023; Yeo et al., 2022). 054

While these methods enable accurate prediction 055

of dysarthria presence and severity directly from 056

speech, relying on such limited feature sets can 057

overlook the complexity of speech disorders, and 058

these black-box models lack the interpretability es- 059

sential for clinical applications. These models have 060

limited clinical applicability because they fail to 061

explain the specific factors influencing their pre- 062

dictions. Therefore, explainable AI (XAI) is re- 063

garded as a prerequisite for safely integrating AI- 064

based decision-support systems into clinical prac- 065

tice (Mancini et al., 2024; Shen et al., 2025). 066

To address this lack of explainability, we fo- 067

cused on the diadochokinetic (DDK) task among 068

dysarthria assessment tools. The DDK task—rapid 069

repetition of syllables like ’pa-ta-ka’—remains clin- 070

ically valuable due to its ability to measure oral 071

motor control without requiring linguistic compe- 072

tence, making it suitable even for severely impaired 073

speakers (Wang et al., 2009; Segal et al., 2022). Fur- 074

thermore, this task allows us to leverage features 075

that speech-language pathologists (SLPs) actually 076

use when providing explanations to patients. 077

In this study, we term these features Clinically 078

Explainable Acoustic Features (CEAFs) and pro- 079

pose a CLassification model using INtegrated 080

Information from CEA and speech representations 081

(CLINIC) that utilizes them. CLINIC incorporates 082

12 CEAFs along with speaker gender as inputs, in 083

addition to mel-spectrograms and Wav2Vec 2.0 em- 084
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beddings, to accurately diagnose dysarthria sever-085

ity. Simultaneously, through Shapley values of the086

CEAFs, our model can provide information about087

which acoustic characteristics influence the predic-088

tion and how these features relate to clinically val-089

idated pathophysiological mechanisms (Shapley,090

1953; Lundberg and Lee, 2017).091

In clinical practice, it is crucial that patients with092

dysarthria recognize any issues in their own speech,093

as this awareness is a key factor in determining ap-094

propriate rehabilitation strategies and establishing095

effective treatment plans. However, the severity096

of dysarthric speech cannot be determined by any097

single acoustic feature, and these features do not098

vary in a strictly linear fashion, which limits the099

utility of simple interpretive approaches such as100

rule-based methods. For example, a high value on101

a particular acoustic feature cannot be immediately102

deemed abnormal; instead, it is more important to103

consider whether that value is relatively abnormal104

in light of interactions with factors such as the pa-105

tient’s gender or other characteristics. Interpretive106

validity is enhanced not by absolute values alone,107

but by determining whether a feature represents a108

relative outlier within a population sharing simi-109

lar demographic attributes. Accordingly, a natural110

language explanation module called Generation111

of Explanations from Numerical features using112

Interpretability and patient Examples (GENIE) is113

proposed in this study. GENIE combines attribu-114

tiion (Shapley value) analysis with RAG-based115

(Lewis et al., 2020) case retrieval to translate nu-116

meric prediction contributions into patient-friendly117

explanations. In GENIE, similar cases are retrieved118

based on CLINIC outputs and an evaluation metric119

termed CEAFs. Medical prompts are then utilized120

to generate large language model (LLM)-based nat-121

ural language explanations, thereby providing pa-122

tients with intuitive and clinically meaningful nar-123

ratives. The generated explanations were validated124

through automated evaluation using G-EVAL(Liu125

et al., 2023) as well as expert assessments by SLPs.126

By converting complex numeric information into127

clinically interpretable explanations, this approach128

was found to enhance the transparency and trust-129

worthiness of the AI model.130

The primary contributions of our work are as131

follows:132

• CLINIC: Clinically Explainable Acoustic133

Features (CEAFs), derived from the assess-134

ment criteria used by speech-language pathol-135

ogists in real-world clinical setting, were em- 136

ployed to enhance the interpretability of the 137

model. Additionally, integrating CEAFs with 138

mel-spectrogram and Wav2Vec 2.0 embed- 139

dings led to improved severity classification 140

performance. 141

• GENIE: enables effective interpretation of 142

the patient’s complex and nonlinear speech 143

characteristics by quantitatively assessing the 144

contribution of each feature and generating 145

precise, persuasive explanations through com- 146

parison with similar patient cases. 147

• Integrated Medical Speech Analysis Frame- 148

work (CLINIC-GENIE). To the best of our 149

knowledge, this study presents the first imple- 150

mentation of a medical speech analysis frame- 151

work that integrates classification (CLINIC), 152

attribution of CEAFs (Shapley values), and 153

natural language explanation (GENIE) into a 154

single pipeline. By unifying analytical com- 155

ponents that were previously addressed sepa- 156

rately in explainable AI (XAI) research, this 157

framework introduces a novel XAI approach 158

that simultaneously satisfies both interpretabil- 159

ity and clinical applicability. 160

2 Related Work 161

2.1 Deep Learning for Dysarthria and Other 162

Speech-Based Disease Classification 163

Various studies have explored automatic methods 164

for analyzing speech with dysarthria samples. 165

Traditionally, MFCC (Hernandez et al., 2020; 166

Bhattacharjee et al., 2023; Yeo et al., 2022), mel- 167

spectrograms (Suhas et al., 2020; Joshy and Rajan, 168

2023; Rathod et al., 2023), or self-supervised 169

representations (e.g., Wav2Vec 2.0, HuBERT 170

(Hsu et al., 2021)) (Sanjay et al., 2024; Samptur 171

et al., 2024) have typically been employed as 172

input features, while some researchers have used 173

additional speech features (e.g., F0) or combined 174

them with MFCC (Hernandez et al., 2020; Yeo 175

et al., 2022; van Bemmel et al.). From a model 176

architecture perspective, these features are com- 177

monly fed into DNN-based classifiers (Hernandez 178

et al., 2020; Bhattacharjee et al., 2023; Yeo et al., 179

2022; Suhas et al., 2020; Joshy and Rajan, 2023; 180

Rathod et al., 2023; Sanjay et al., 2024), which 181

leverage either acoustic representations (e.g., 182

MFCC or mel-spectrogram) or self-supervised 183

representations to predict dysarthria severity. 184
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Figure 1: The overall architecture of CLINIC-GENIE. CLINIC: From the DDK audio input, three representations
are derived: a mel-spectrogram, the raw audio waveform, and CEAFs extracted by the CEAFs Extractor. These
features are integrated within the Dysarthria Severity Assessment Model to predict dysarthria severity. GENIE:
The resulting CEAF vector is employed as a query to a vector database so that acoustically similar patient cases
can be retrieved. The retrieved cases, together with the Shapley values, severity, and CEAFs are assembled into a
Diagnosis Prompt Generator and provided to a LLM-based Diagnosis Explanation Generator.

These approaches achieved plausible performance,185

lacking explainability for their predictions.186

187

2.2 Explainability in Deep Learning Models188

To enhance interpretability, Shapley values (Shap-189

ley, 1953; Lundberg and Lee, 2017) were intro-190

duced, assigning fair and transparent contributions191

to features based on cooperative game theory. Sim-192

ilarly, Integrated Gradients (Sundararajan et al.,193

2017) and DeepLIFT (Shrikumar et al., 2017) com-194

pare inputs against a baseline capturing relative195

feature importance or activation differences to clar-196

ify how each feature influences predictions of the197

model.198

However, in medical and healthcare settings, sim-199

ply using these XAI method to identify “which fac-200

tors influenced the outcome” may not be sufficient.201

Models in these contexts must utilize data in ways202

that closely align with real clinical evidence and203

be easily understood by patients, as these aspects204

directly impact treatment decisions (Markus et al.,205

2021; Amann et al., 2020).206

2.3 Translating Numerical Data into Natural207

Language Explanations208

Some studies leverage LLMs to convert numerical209

data into natural language explanations. For exam-210

ple, iPrompt (Singh et al., 2022) proposes an al-211

gorithm that automatically generates explanations212

using LLMs to clarify patterns in data. In addi-213

tion, there has been research on converting Shapley214

values into more accessible natural language ex-215

planations, thereby making the prediction process 216

clearer to a broader audience (Zeng, 2024). 217

2.4 Large Language Models in Healthcare 218

LLMs have recently emerged as powerful tools in 219

healthcare applications, offering new capabilities 220

for generating clinical explanations, interpreting 221

medical data, and supporting healthcare profession- 222

als in decision-making processes (Thirunavukarasu 223

et al., 2023; Nazi and Peng, 2024). 224

RAG (Lewis et al., 2020) combines LLM with 225

retrieval systems to provide more accurate and reli- 226

able explanations. Before generating explanations, 227

RAG retrieves relevant clinical data to ensure that 228

the explanations are factual and precise (Xiong 229

et al., 2024). This approach is crucial for providing 230

personalized dysarthria diagnoses and treatment 231

plans, where limited clinical data are available. 232

3 Interpretable Dysarthria Diagnosis 233

System 234

Figure 2 provides an overview of the CLINIC- 235

GENIE, which consists of two main compo- 236

nents: (1) CLINIC, a severity classification model 237

that incorporates CEAFs and mel-spectrogram 238

and Wav2Vec 2.0 representations extracted from 239

dysarthric speech, and (2) GENIE, a natural- 240

language explanation generator that using a large 241

language model. 242

3.1 CLINIC: A Seveity Classification Model 243

The CLINIC integrates CEAFs with mel- 244

spectrogram and Wav2Vec 2.0 representations 245
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Figure 2: Overall structure of CLINIC. (a) Dysarthria Severity Assessment Model integrates CEAFs with rep-
resentations derived from mel-spectrograms and raw audio (via Wav2Vec 2.0). Each representation is encoded
separately, and their embeddings are concatenated into a single vector, subsequently fed into the Classifier Head
for classification (b) The architecture of the CEAFs Extractor, which derives speaker characteristics information
by analyzing DDK audio input through acoustic analysis, LSTM-based syllable segmentation, and CNN-based
intelligibility classification.

to effectively capture complementary aspects of246

dysarthric speech. Specifically, mel-spectrograms247

encode detailed local acoustic characteristics248

(Hershey et al., 2017), whereas Wav2Vec 2.0249

embeddings provide global contextual information250

by modeling broader temporal dependencies251

within speech signals (Baevski et al., 2020).252

Additionally, CEAFs enable clinically meaningful253

interpretations of acoustic features, facilitating254

a rational assessment process and enhancing the255

model’s explainability.256

3.1.1 CEAFs: Clinically Explainable Acoustic257

Features258

Two types of DDK tasks, Alternating Motion259

Rate (AMR) and Sequential Motion Rate (SMR),260

are used to extract key characteristics relevant to261

dysarthria evaluation (Darley et al., 1969; Duffy262

et al., 2012). AMR assesses articulatory speed and263

consistency by repeating the same syllable(e.g.,264

/pa/, /ta/, or /ka/), SMR evaluates the ability265

to rapidly transition between different articula-266

tory positions using syllable sequences, such as267

/pataka/(Darley et al., 1969; Duffy et al., 2012).268

These tasks provide insights into the coordina-269

tion, speed, and consistency of articulatory move-270

ments, which are essential for accurately assessing271

dysarthria severity (Darley et al., 1969; Duffy et al.,272

2012).273

Table 1 presents 12 CEAFs along with their defi-274

nitions and the corresponding extraction methods275

which are illustrated in Figure 2 (b). CEAFs were276

derived from two primary sources: the Mayo Clinic 277

rating system (Darley et al., 1969), a widely recog- 278

nized framework for dysarthria evaluation, which 279

provided the basis for feature extraction, and Neu- 280

roSpeech (Orozco-Arroyave et al., 2018), a soft- 281

ware tool for automated DDK analysis, which was 282

used to derive the CEAFs. Together, these features 283

enable a comprehensive evaluation of phonatory, 284

prosodic, and articulatory aspects within the DDK 285

task. CEAFs were extracted using acoustic analy- 286

sis, an LSTM-based syllable segmentation model, 287

and a CNN-based intelligibility classifier (Oh et al., 288

2023), as detailed in Appendix B. 289

3.1.2 Dysarthria Severity Assessment 290

Figure 2 (a) illustrates the architecture of the pro- 291

posed dysarthria severity assessment model, which 292

integrates multiple acoustic features using a joint 293

representation learning approach (Huang et al., 294

2020). 295

CEAFs measured from the DDK task, along with 296

gender information, were normalized using min- 297

max scaling to mitigate scale discrepancies. The 298

normalized features were subsequently processed 299

through a fully connected layer to generate embed- 300

ding vectors. 301

Features are extracted from the mel-spectrogram 302

using a ResNet (He et al., 2016) model, captur- 303

ing averaged characteristics across the frequency 304

and time axes. These features are utilized as em- 305

bedding vectors. The Wav2Vec 2.0 (Baevski et al., 306

2020) model processes raw audio signals to gener- 307
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Characteristic Definition Extraction Method

F0 variability (st) Variance of the fundamental frequency (semitones)

Acoustic Analysis
F0 variability (Hz) Variance of the fundamental frequency (Hz)
Avg. energy (dB) Mean signal energy
Energy variability (dB) Standard deviation of energy
Max. energy (dB) Maximum signal energy

DDK rate (syll/s) Number of syllables per second

LSTM-based Syllable segmentation

DDK mean duration (ms) Average syllable duration
DDK regularity Standard deviation of syllable durations
Pause rate (pauses/s) Number of pauses per second
Pause mean dur. (ms) Average pause duration
Pause regularity Standard deviation of pause durations

Intelligibility score Listener’s understanding of the spoken content at the syllable level CNN-based Intelligibility Classifier

Table 1: Clinically Explainable Acoustic Features (CEAFs) automatically extracted from the DDK task.

ate frame-level representation vectors, which are308

subsequently used as embedding vectors for raw au-309

dio. Specifically we utilized the publicly released310

wav2vec2-large-xlsr-53 pre-trained model (Con-311

neau et al., 2021). Pre-training on roughly 56k h312

of speech across 53 languages enable to captur-313

ing the complex acoustic cues of dysarthria. Pre-314

vious studies have demonstrated that combining315

mel-spectrogram and Wav2Vec 2.0 features en-316

hances the ability to capture both local and global317

information. In this study, Wav2Vec 2.0 embed-318

dings derived from raw audio are fused with mel-319

spectrogram feature vectors extracted from the320

ResNet model through an attention based mech-321

anism. The fused representations are utilized as in-322

put features for the dysarthria severity assessment323

model.324

Three embedding vectors are concatenated into325

a single vector: a CEAF vector, a mel-spectrogram326

vector, and a fused vector that combines the mel-327

spectrogram and Wav2Vec 2.0 representations.328

This concatenated vector is forwarded to the final329

classifier head, which predicts the probabilities of330

dysarthria severity. A weighted categorical cross331

entropy loss function (Cui et al., 2019) is employed332

during training to mitigate data imbalance.333

3.1.3 Extraction Shapley Values334

Shapley values quantify how much each feature335

contributes to the model output by contrasting the336

prediction obtained with the feature at its actual337

value against the prediction when that feature is338

fixed at a baseline (typically its expected value).339

The original formulation of Shapley values is de-340

tailed in Appendix A341

If we can determine how strongly each CEAF342

influences the predicted severity, we can capture343

valuable cues for diagnosing dysarthria. Using the 344

CLINIC, we first obtain the predicted severity and 345

then compute Shapley values to extract the numeri- 346

cal contribution of each CEAF. The following sec- 347

tion explains how these numerical scores are trans- 348

formed into natural-language explanations. 349

3.2 GENIE: A Natural Language Explanation 350

Generator 351

GENIE is a LLM module that combines previ- 352

ously predicted severity with Shapley values to 353

produce patient-specific diagnostic narratives. Us- 354

ing RAG, the module retrieves prior cases with 355

comparable assessment profiles and contrasts their 356

CEAFs, thereby generating fine-grained, clinician- 357

oriented explanations that highlight each patient’s 358

salient deficits and recommended focal points. 359

3.2.1 Retrieval of Analogous Patient Cases 360

The retrieval component operates entirely at infer- 361

ence time, with no additional training required. For 362

each test instance, we construct a structured feature- 363

based query from the CLINIC output. Specifically, 364

we form a dictionary mapping each CEAFs name 365

to its numeric value, and we include the predicted 366

severity under the key finalprediction. The vec- 367

tor database DDB = {d1, . . . , dn} is constructed 368

from the training set, with each patient represented 369

as a document di containing that patient’s CEAFs 370

vector and ground-truth severity. Each document 371

di is embedded as a 3,072-dimensional vector rep- 372

resentation edi using (text-embedding-3-large 373

model) model, and all such document embeddings 374

are stored and indexed using ChromaDB (Contrib- 375

utors, 2023) with a Hierarchical Navigable Small 376

World index (Malkov and Yashunin, 2018). The 377

test-time query dQ is similarly embedded as edQ , 378

and cosine similarity is computed between the 379
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Severity CEAFs only CEAFs + Mel CEAFs + Wav2Vec 2.0 CLINIC (ours)

0 (Healthy) 0.750 1.000 1.000 1.000
1 (Mild to Moderate) 0.837 0.980 0.898 0.857
2 (Severe) 0.750 0.500 0.500 1.000

Balanced Acc. 0.779 0.827 0.799 0.952

Table 2: Accuracy by severity and input configuration.

query and each document embedding:380

sim(edQ , edi) =
edQ · edi
|edQ ||edi |

(1)381

Finally, the top-k most similar documents are382

selected as relevant patient cases, which are then383

used to construct prompts for input to a Diagnosis384

Prompt Generator.385

3.2.2 Diagnosis Prompt Generator386

The diagnosis prompt generator uses four types387

of input as conditions: (1) the severity prediction388

from the CLINIC, (2) the numeric values of the389

CEAFs, (3) the Shapley values corresponding to390

each CEAF, and (4) relevant patient cases. The391

prompt generator is conditioned on the four task-392

specific DDK severity scores and is additionally393

provided with the patient’s final severity, which is394

obtained through majority voting over those scores.395

For each patient, severity for the four DDK tasks396

is predicted by the CLINIC module, and a final397

severity label is assigned based on majority voting398

among these predictions. In clinical practice, it is399

essential for patients to understand which aspects of400

their condition require improvement. While CEAFs401

sufficiently describe the patient’s acoustic profile,402

they are insufficient to identify the most influential403

features affecting the patient. Therefore, Shapley404

values are incorporated to explicitly highlight the405

features that contribute most significantly. The core406

prompt components are in Appendix H and a full407

example prompt is provided in Appendix I.1.408

3.2.3 LLM-based Diagnosis Explanation409

Generator410

Using the prompt generated by the diagnosis411

prompt generator, the LLM-based Diagnosis Ex-412

planation Generator employs OpenAI GPT-4o413

(OpenAI, 2025) to synthesize a diagnostic ex-414

planation spanning four clinical dimensions of415

dysarthria—phonation, articulation, prosody, and416

overall severity. The generator analyzes the CEAF417

values in conjunction with their corresponding418

Shapley attributions, thereby smoothing the under-419

lying information and identifying which acoustic 420

features exert the greatest influence and which re- 421

main deficient for the patient. The system prompt 422

instructs the LLM to (i) interpret the provided in- 423

puts, (ii) discuss each CEAF in proportion to its 424

Shapley value, and (iii) produce a patient-friendly 425

diagnostic report in Korean. By explicitly decom- 426

posing the reasoning process into these sequen- 427

tial steps, the module is operated in a chain-of- 428

thought (Wei et al., 2022) paradigm. To ensure 429

consistency and mitigate hallucinations in the gen- 430

erated text, a fixed prompt template is employed 431

and the generation temperature is set to 0.1. 432

4 Experiment 433

4.1 Dataset 434

The dataset consists of 59 healthy controls (HCs) 435

and 321 patients, totaling 380 participants aged 436

between 20 and 84 years. The healthy controls 437

and patients were recruited in collaboration with 438

[anonymized for review]. The data collection pro- 439

cess, including recordings of the DDK task and 440

clinical assessments, was approved by the Institu- 441

tional Review Board (IRB) of the participating in- 442

stitutions, and informed consent was obtained from 443

all participants. To collect corpus for dysarthria 444

assessment, recordings of the DDK task were gath- 445

ered from the speakers. DDK utterances consist 446

of repeated syllables such as ‘pa’, ‘ta’, ‘ka’, and 447

‘pataka’. Clinical data, including dysarthria sever- 448

ity and gender, were also collected. The severity of 449

dysarthria is categorized into three levels: Healthy 450

(0), Mild to Moderate (1), and Severe (2). A neuro- 451

surgeon assessed and labeled the severity using the 452

National Institute of Health Stroke Scale (NIHSS) 453

criteria (Kwah and Diong, 2014). The HCs were 454

classified as severity 0, while patients were cat- 455

egorized as severity 1 or 2. In total, the dataset 456

comprises 1,536 utterances, collected from 59 in- 457

dividuals with a severity 0, 290 with a severity 1, 458

and 31 with a severity 2, including 239 male and 459

141 female speakers. Because obtaining data from 460

patients with severity 2 is challenging in real-world 461
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clinical settings, the number of participants in this462

category is relatively small. For severity classifi-463

cation evaluation, we conducted testing using 244464

utterances from 61 speakers (31 males and 30 fe-465

males) who were not included in the training and466

validation process of the CLINIC. Among them,467

8 speakers were labeled with severity 0, 49 with468

severity 1, and 4 with severity 2. Throughout the en-469

tire dataset, patient IDs were used instead of names470

to ensure anonymity.471

4.2 Dysarthria Severity Assessment472

To examine how best to exploit CEAFs informa-473

tion, we ran four ablation experiments under a474

unified classifier head. First every speech-derived475

representation (mel-spectrogram, Wav2Vec 2.0476

features, or both) is routed through the embed-477

ding procedure described in 3.2. Then these em-478

bedding vectors are passed through a fully con-479

nected (FC) layer, producing a 128-dimensional480

vector. The 13-dimensional CEAFs vector follows481

a parallel two-layer FC path that also produces a482

128-dimensional embedding. Detailed experiment483

method and model configurations for all variants484

are provided in Appendix C and Appendix D, sep-485

arately. Test set accuracies for each severity are486

summarized in Table 2.487

4.2.1 Results488

As Table 2 shows, leveraging CEAFs with addi-489

tional speech representations generally improved490

performance over using CEAFs alone. Providing491

patients with accurate and timely diagnoses is crit-492

ically important (Ball et al., 2015), especially for493

those with severe severity. Therefore, when select-494

ing our model, we considered not only the overall495

performance but also how accurately it predicted496

the severity 2. Although models using CEAFs and497

mel-spectrograms performed well for patients with498

severity 1, they accurately predicted only half of the499

severity 2 cases. In contrast, the CLINIC success-500

fully identified all severity 2 patients. Therefore,501

we selected the CLINIC as our final system. More502

detailed results, including the confusion matrix, can503

be found in Appendix E.504

4.3 Effectiveness of GENIE in Generalization505

The experiment was designed to determine whether506

each component of the GENIE is indispensable. To507

verify explanatory effectiveness, two evaluation508

protocols, automated and human expert evaluation,509

were applied, and the text for each pipeline was510

generated with GPT-4o using k = 3.511

4.3.1 Medical Explanation Evaluator 512

Medical Explanation Evaluator framework was de- 513

veloped to automatically assess the generated texts 514

by GENIE. The framework, instantiated with GPT- 515

4o, applies the g-eval (Liu et al., 2023) methodol- 516

ogy on the full test set and evaluates each method’s 517

outputs across five metrics on a 0–100 scale. We set 518

the generation temperature to 0.1. To ensure ethical 519

integrity and fairness, the reported results represent 520

the average values obtained from five repeated runs. 521

The selection criteria and descriptions of the met- 522

rics are presented in Appendix G. Among the eval- 523

uation metrics, Semantic Equivalence and Fidelity 524

were selected as the major criteria because they 525

indicate how faithfully the generated explanations 526

reflect clinical reasoning. Consistency, Relevance, 527

and Patient-friendliness were designated as minor 528

criteria. The detailed prompt used for the Evaluator 529

can be found in Appendix I.2. 530

Reference data were compiled by three SLPs 531

after they listened to the patient recordings in the 532

test set. Textual descriptions were produced for five 533

aspects: severity, phonation, prosody, articulation, 534

and overall assessment. Examples of the reference 535

data can be found in Appendix J. 536

According to the table 3, the vanilla baseline 537

provides only CEAFs to the LLM in the first row. 538

Semantic Equivalence was observed at 62.95 and 539

Fidelity at 61.43, the bottom values for each metric. 540

CLINIC integration: CLINIC directly contributed 541

to improvements in nearly every metric, yielding 542

markedly closer alignment with clinical judgments 543

than the baselines. 544

RAG-based contextualisation: When RAG was 545

added to the CLINIC-only system, increases 546

were observed in both Semantic Equivalence and 547

Fidelity, indicating that contextual information 548

supplied by similar patient cases endowed the 549

explanations with richer content and stronger 550

semantic coherence. 551

Exposure of Shapley attributions: When Shapley 552

values were introduced, every metric increases by 553

a further two to three points, and near-maximal 554

values were achieved across the board. Notably, 555

Semantic Equivalence reached 83.93 and Fidelity 556

79.38, confirming that an explicit disclosure of 557

the model’s reasoning maximised the perceived 558

trustworthiness of the generated explanations. 559

560
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Configuration Mean Scores

CEAFs Model for Pred. Severity RAG Shap Semantic Eq. Fidelity Consistency Relevance Patient–friendliness

O X X X 62.95 61.43 78.75 71.95 79.93
O CEAFs + Mel O O 82.23 77.23 89.37 85.00 92.43
O CEAFs + Wav2Vec 2.0 O O 82.68 77.77 88.93 84.36 91.57
O CLINIC X X 77.95 73.57 86.07 81.32 89.66
O CLINIC O X 81.34 76.43 87.41 83.57 90.23

O CLINIC O O 83.93 79.38 89.38 85.39 91.30

Table 3: Component-wise ablation results for GENIE in the dysarthria-specific automatic evaluation. Presence
(O) or absence (X) indicates whether each module is included. “Model for Pred. Severity” denotes the model that
produced the predicted severity. An “X” indicates that no predicted-severity component is included at all. RAG
shows whether similar-patient inputs are provided, and Shap shows whether Shapley values are included. Scores are
reported on a 0–100 scale for five quality metrics generated by the LLM. Detailed descriptions of the prompt are
provided in Appendix I.2.

Configuration Mean Ratings

CEAFs Model for Pred.Severity RAG Shap Semantic Eq. Fidelity Consistency Relevance Patient–friendliness

O X X X - 3.81 4.47 4.94 4.64
O CEAFs + Mel O O - 4.50 4.31 5.00 4.56
O CEAFs + Wav2Vec 2.0 O O - 4.83 4.94 5.00 4.50
O CLINIC X X - 4.86 4.56 4.89 4.67
O CLINIC O X - 4.89 4.75 5.00 4.67

O CLINIC O O - 4.94 4.92 5.00 4.69

Table 4: Component-wise ablation results for the CLINIC-GENIE based on human expert evaluation(1–5 Likert).

4.3.2 Human Expert Evaluation561

An expert evaluation was conducted in which 12562

patients, randomly selected at a rate of four per563

severity, were assessed. Three SLPs first listened564

to each patient’s DDK voice recording and then565

rated the explanations generated by each method566

on four metrics, using a 1–5 Likert scale. Because567

the explanations were evaluated directly by clinical568

pathologists, the Semantic Equivalence metric used569

in automatic evaluation was omitted. As shown in570

Table 4, the GENIE configuration that integrates571

CLINIC prediction, RAG retrieval, and Shpley val-572

ues attribution achieves the best performance under573

expert review. Its Fidelity score rises from 3.81 in574

the baseline to 4.94, an improvement of almost 30575

percent. The high agreement between expert eval-576

uation scores and the automatic evaluation results577

in Table 3 supports the reliability of the evaluation578

metrics. Both Table 3 and Table 4 show that the579

lowest scores were obtained by the vanilla base-580

line model using only CEAFs, while the highest581

scores were achieved by the pipeline proposed in582

this paper. Additionally, the relative score distri-583

butions between the two evaluations are largely584

similar. Although differences in evaluation meth-585

ods cause some variance in absolute scores, the586

relative rankings and score trends remain consis- 587

tent, demonstrating the reliability of the proposed 588

automatic evaluation system. 589

5 Conclusion 590

An integrated framework, CLINIC-GENIE, is pro- 591

posed for the simultaneous classification and expla- 592

nation of DDK speech. By combing CEAFs, mel- 593

spectrograms, and Wav2Vec 2.0 representations, 594

the CLINIC module attains a balanced accuracy 595

of 0.952 and correctly identifies all severe cases. 596

The GENIE module combines Shapley attributions 597

with RAG-retrieved analogous cases to generate 598

patient-oriented explanations covering four clinical 599

dimensions: phonation, articulation, prosody, and 600

overall severity and achieves top scores on nearly 601

every automatic and expert metric. These results 602

suggest that the framework can help clinicians and 603

patients intuitively understand the rationale behind 604

AI decisions, thereby accelerating early diagnosis 605

and personalized rehabilitation planning while mit- 606

igating the wider societal burden of dysarthria care. 607

6 Limitations 608

The clinical corpus used in this study is imbalanced 609

across severities, with markedly fewer speakers 610

8



in the severity 2. This scarcity can constrain the611

model capacity. Future work will focus on enlarg-612

ing and rebalancing the dataset—particularly by613

recruiting more severe speakers or exploring data-614

augmentation strategies to mitigate this limitation.615

Additionally, our framework is trained and evalu-616

ated solely on DDK speech. Its ability to generalize617

to more natural speech has not yet been verified.618
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A Shpely Values Formulation847

The contribution for feature i is defined as :848

ϕi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |! · (f(S ∪ {i})− f(S))

(2)849

following the original Shapley value formula-850

tion (Shapley, 1953) and its adaptation for model851

explanations (Lundberg and Lee, 2017), where F852

denotes the full set of features, S is a subset not con-853

taining i, and f(·) represents the expected model854

output when only the features in the given set are855

known (with the others marginalized).856

B CEAFs Extraction Method857

This appendix provides detailed descriptions of the858

methods used to extract CEAFs, including acoustic859

analysis, an LSTM-based syllable segmentation860

model, and a CNN-based intelligibility classifier.861

Acoustic analysis was performed using the862

Praat software(Boersma and Weenink). The LSTM-863

based model quantified the rate, duration, and regu-864

larity of pronunciation and respiration by segment-865

ing audio into speech and non-speech frames. The866

model consists of 16 LSTM layers and a fully con-867

nected (FC) layer. Raw audio signals were con-868

verted into spectrograms and fed into the model,869

which classified each frame as speech or non-870

speech. Frame-level predictions were aggregated871

into segment-level results by grouping consecutive872

frames with identical classifications. Speech seg- 873

ments shorter than 0.07 seconds were classified as 874

silence, and silence segments longer than 0.14 sec- 875

onds were used to calculate the pause rate. These 876

threshold values (0.07 and 0.14 seconds) were de- 877

termined based on the best performance observed 878

on the training set. The silence threshold of 0.14 879

seconds was determined based on previous AMR 880

task research, which found that healthy adults pro- 881

duce syllables at an average rate of approximately 882

0.143 seconds per syllable(Schuessler, 2010). The 883

intelligibility classifier employs a ResNeXt-based 884

CNN model(Oh et al., 2023) to classify speech 885

samples into one of five ordinal intelligibility lev- 886

els, ranging from 1 (least intelligible) to 5 (most 887

intelligible). 888

C Experiments Details 889

For the dysarthria severity assessment model, the 890

dataset was divided into training, validation, and 891

testing sets following an 8:1:1 ratio, stratified by 892

severity levels. The model was trained using the 893

AdamW(Loshchilov and Hutter, 2018) optimizer 894

with a learning rate of 0.00003. Model selection 895

was performed on the validation set using macro- 896

F1. For each model, we predicted a severity for 897

every utterance and then applied majority voting 898

across all utterances produced by a given patient to 899

derive that patient’s final dysarthria severity. 900

D Classification Model Configuration 901

The detailed information about the models used in 902

the severity assessment experiments is provided in 903

Table 5. All models share an identical CEAFs layer 904

structure, takes as input the 12 CEAFs along with 905

the speaker’s gender. The classifier heads adapt to 906

the dimensionality of the combined features (128- 907

dim for model with only CEAFs, 256-dim for oth- 908

ers). This design allows us to systematically assess 909

how different speech representations contribute to 910

dysarthria severity classification performance. 911

In Table 5, the "Mel-Path" and "W2V Path" 912

columns indicate the processing pipelines for mel- 913

spectrogram and Wav2Vec 2.0 representations, re- 914

spectively, showing how these inputs are integrated 915

into the overall model architecture. 916

E Detailed Result 917

The confusion matrices of the severity classifica- 918

tion results for 4.2 are illustrated in Fig. 3. 919
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(a) CEAFs Only (b) CEAFs + mel-spectrogram

(c) CEAFs + Wav2Vec 2.0 (d) CLINIC (Ours, CEAFs + mel-spectrogram + Wav2Vec 2.0)

Figure 3: Confusion matrices of severity classification results for four different feature combinations: (a) CEAFs
Only, (b) CEAFs + mel-spectrogram, (c) CEAFs + Wav2Vec 2.0, and (d) CLINIC.
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Table 5: Detailed architecture of the proposed models for dysarthria severity classification. (BN: Batch Normaliza-
tion)

Model Architecture

1. Only CEAFs CEAFs Layer: 13 → 128 → BN, Dropout → 128 → BN, Dropout
Classifier: 128 → 128 → 128 → 3 (with BN, ReLU, Dropout 0.3)

2. Mel + CEAFs
CEAFs Layer: Same as Model 1
Mel Path: Mel-Spectrogram → ResNet-50 → 2048-dim → Linear → 512 → 128
Classifier: Concat[CEAFs(128), Mel(128)] = 256 → 128 → 128 → 3 (with BN,
ReLU, Dropout 0.3)

3. W2V + CEAFs
CEAFs Layer: Same as Model 1
W2V Path: Wav2Vec 2.0 (frozen) → 1024-dim → Linear → 128 → BN → ReLU
→ Dropout → Attention Pool → 128-dim
Classifier: Concat[CEAFs(128), W2V(128)] = 256 → 128 → 128 → 3 (with BN,
ReLU, Dropout 0.3)

4. CLINIC (Ours)

CEAFs Layer: Same as Model 1
Mel Path: Mel-Spectrogram → ResNet-50 → 2048-dim → Linear → 749 → BN
→ Dropout
W2V Path: Wav2Vec2 → Cross-attention with 749-dim ResNet feature → Linear
1024 → 768 → BN → Dropout → Concat[ResNet(749), W2V(768)] = 1517 → 128
→ BN → Dropout
Classifier: Concat[Audio(128), CEAFs(128)] = 256 → 128 → 128 → 3 (with BN,
ReLU, Dropout 0.3)

F K-Shot Experiment920

Figure 4: Shot Experiment

Figure 4 presents an ablation study on the num-921

ber of similar patient cases provided during gener-922

ation. The 3-shot setting yielded the best overall923

performance, achieving the highest or near-highest924

scores across most evaluation metrics. In contrast,925

the 7-shot setting exhibited a slight decline in per-926

formance, indicating that increasing the number of927

retrieved cases does not necessarily lead to better928

generation quality. Notably,Patient-Centered Com-929

munication remained consistently high across all930

settings, suggesting that the model reliably gen-931

erates patient-friendly explanations regardless of932

the number of reference cases. On the other hand,933

Faithfulness showed a downward trend as the num-934

ber of shots increased, highlighting the need for935

caution when incorporating a larger number of ex- 936

ternal cases. 937

G Medical Explanation Evaluator 938

Metrics 939

Semantic Equivalence: The semantic overlap be- 940

tween the system output and the reference report 941

written by SLPs is quantified. The evaluation con- 942

siders not only surface level lexical matches but 943

also whether the patient’s condition is captured 944

comprehensively and accurately. 945

Fidelity: Agreement between the generated expla- 946

nation and the clinicians’ own assessment. Omit- 947

ting a clinically observed feature deficit, for in- 948

stance, is scored low. 949

Consistency: Logical agreement between the pre- 950

dicted severity and the accompanying narrative. 951

Relevance: Topical adequacy of the text to the task 952

of dysarthric speech analysis. Irrelevant digressions 953

are penalised. 954

Patient-friendliness: Clarity and accessibility of 955

the explanation for lay readers. Narratives that 956

avoid technical jargon receive higher scores. 957

H Prompt Structure of GENIE 958

• Sysmsg : Thesysmsgservesasthecomponentdefiningthemodel′spersona, anditwasgeneratedbyanLLM.Instruction: ThesystempromptdirectstheLLMto(i)interprettheinput, (ii)describeeachCEAFinproportiontoitsShapleyvalue, and(iii)produceapatient−
friendlyKoreanreport.

• 959

• Explanation for Each Feature: A concise 960

reference text summarises the clinical mean- 961

ing of each CEAF, allowing the LLM to 962
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ground its narrative in domain-appropriate se-963

mantics.964

• Relevant Patient information: The top-k965

analogous cases retrieved in the previous stage966

provide concrete clinical comparators, thereby967

increasing the specificity and credibility of the968

generated explanation.969

• Final Output Template: All outputs adhere970

to a fixed JSON schema containing the fields971

Severity, Phonation, Articulation, Prosody,972

Overall, ensuring consistent formatting across973

patients.974
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I Prompt Templates

I.1 Example of GENIE975

This is a detailed example of the diagnosis prompt976

generator section of GENIE.977

Example of GENIE Prompt

<s>[INST]«SYS»
Role : Please take on the role of a doctor and explain the information in a way that is clear and
reassuring to the patient.

Data Sensitivity and Analysis Guide: I am responsible for analyzing raw patient data to evaluate key
factors related to health status. By quantifying various data categories, such as test results, gender,
age, and individual feature data, I comprehensively assess the patient’s health.

Contextual Understanding and Interpretation Guide: I focus on understanding and evaluating the
context of medical data. This approach ensures that I do not evaluate the data on a superficial level
but instead gain a deep understanding of the context to accurately interpret the analysis results.

Adaptive and Feedback-Oriented Guide: I continuously improve the method of medical data evalua-
tion over time. By incorporating feedback from various sources, I refine the analysis criteria regularly.
For example, I gather feedback from healthcare professionals, patients, and the latest research find-
ings, and use this to continuously modify and improve the data evaluation standards. «/SYS»

Instruction : Analyze the given information to describe the characteristics of the patient. Pred final
severity refers to the severity level of the patient as finally predicted by the DNN.

SHAP value represents the impact of each feature on the classification of severity (a higher value
indicates a greater influence, while a lower value indicates less influence).

For each category, provide explanations focusing on the features that had the greatest impact according
to the SHAP values.

Based on the predicted severity, write the patient explanation in Korean, using simple and intuitive
words that are easy for general patients to understand. Express severity as a numerical value. Rephrase
the explanation using simple, everyday words instead of technical terms. For the articulation section,
please describe the patient’s performance separately for the syllables <puh>, <tuh>, and <kuh>.

Ensure the output follows the Output Template format in JSON file with four keys: (severity, Phona-
tion, Articulation, Prosody, Overall)

Explanation for Each Feature :
<Patient Information>

- speaker : "name of the speaker"

- severity : "severity of dysarthria of the patient (0 - simmilar to normal person, 1 - mild, 2 - severe)"

- age : "age of the patient"

- gender : "gender of the patient (0 - male, 1 - female)"

<ddk low-level features>

- intelligibility : "How clearly a person speaks so that speech is comprehensible to a listener"

- var F0 semitones : "Variance of the fundamental frequency in semitones"

- var F0 Hz : "Variance of the fundamental frequency in Hz"

- avg Energy : "Average of vocal energy"

978
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- var Energy : "Standard deviation of vocal energy"

- max Energy : "Maximum value of vocal energy"

- ddk rate : "The number of syllables pronounced per second"

- ddk average : "Average time of each syllables pronounced"

- ddk std : "Standard deviation of the time of each syllables pronounced"

- ddk pause rate : "The number of pause per second"

- ddk pause average : "Average time of each pause"

- ddk pause std : "Standard deviation of the time of each pause"

- task : 2 - repeating "puh", 3 - repeating "tuh", 4 - repeating "kuh", 5 - repeating "puh tuh kuh"

Severity:

0: Normal

1: Mild to moderate

2: Severe

<Phonation>

This refers to how strong and stable the voice sounds when speaking. For example, if the voice is too
weak, shaky, or sounds breathy, it may indicate a problem with phonation.

<Articulation>

This describes how accurately the lips, tongue, and jaw move to form speech sounds. Imprecise
articulation can cause speech to sound slurred or unclear.

<Prosody>

This includes the rhythm, pitch, and speed of speech, which help convey emotion and naturalness.
When prosody is impaired, speech may sound flat, monotone, or emotionally unexpressive.

Reference Data(information of other patients) :

1 reference data :
Severity : 1 , speaker: nia HS0027 severity: 1, gender: 1 task id: 2, intelligibility: 4, var f0
semitones: 73.433, var f0 hz: 29.183, avg energy: 69.307, var energy: 26.122, max energy:
80.175, ddk rate: 2.092, ddk average: 230.313, ddk std: 43.954, ddk pause rate: 0.131, ddk pause
average: 216.875, ddk pause std: 437.475

task id: 3, intelligibility: 4, var f0 semitones: 72.326, var f0 hz: 28.265, . . .

task id: 4, intelligibility: 4, var f0 semitones: 93.234, var f0 hz: 48.798, . . .

task id: 5, intelligibility: 4, var f0 semitones: 83.135, var f0 hz: 38.258, . . .

2 reference data :
Severity: 1, speaker: nia HS0159, severity: 1, gender: 1, ddk feature info: . . .

3 reference data :
Severity: 1, speaker: nia HS0109, severity: 1, gender: 0, ddk feature info: . . .
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Input Data :
speaker: nia HS0079, data info: gender: 1,

ddk feature info:

task id: 2, gender: 1, intelligibility: 4, var f0 semitones: 44.034, var f0 hz: 13.227, avg energy: 62.455,
var energy: 24.292, max energy: 73.25, ddk rate: 1.213, ddk average: 287.5, ddk std: 110.701, ddk
pause rate: 0.152, ddk pause average: 396.563, ddk pause std: 748.029

task id: 3, gender: 1, intelligibility: 4, var f0 semitones: 88.085, var f0 hz: 43.288...

task id: 4, gender: 1, intelligibility: 4, var f0 semitones: 62.411, var f0 hz: 21.849...

task id: 5, gender: 1, intelligibility: 4, var f0 semitones: 97.624, var f0 hz: ...

SHAP Value : ’id’: ’nia HS0079’,

shap class: 0, gender: 0.571, intelligibility: 0.471, var f0 semitones: 0.457, var f0 hz: 0.505, avg
energy: 0.436, var energy: 0.631, max energy: 0.42, ddk rate: 0.544, ddk average: 0.581, ddk std:
0.515, ddk pause rate: 0.508, ddk pause average: 0.600, ddk pause std: 0.591

shap class: 1, gender: 0.793, intelligibility: 0.618, var f0 semitones: 0.499, . . .

shap class: 2, gender: 0.182, intelligibility: 0.332, var f0 semitones: 0.382, var f0 hz: 0.437, . . .

Each Task Pred Severity : [’task’: 2, ’ddk pred severity’: 1, ’task’: 3, ’ddk pred severity’: 1, ’task’:
4, ’ddk pred severity’: 1, ’task’: 5, ’ddk pred severity’: 1]

Final Pred Severity : 1

Output Template :
Severity :

Phonation :

Articulation :

Prosody :

Overall :
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I.2 Example of Medical Explanation979

Evaluator980

This is a detailed example of the Medical Explana-981

tion Evaluator prompt.982

Example of Medical Explanation Evaluator Prompt

<s>[INST]«SYS»
Role : Please take on the role of a doctor and explain the information in a way that is clear and
reassuring to the patient.

Data Sensitivity and Analysis Guide: I am responsible for analyzing raw patient data to evaluate key
factors related to health status. By quantifying various data categories, such as test results, gender,
age, and individual feature data, I comprehensively assess the patient’s health.

Contextual Understanding and Interpretation Guide: I focus on understanding and evaluating the
context of medical data. This approach ensures that I do not evaluate the data on a superficial level
but instead gain a deep understanding of the context to accurately interpret the analysis results.

Adaptive and Feedback-Oriented Guide: I continuously improve the method of medical data eval-
uation over time. By incorporating feedback from various sources, I refine the analysis criteria
regularly. For example, I gather feedback from healthcare professionals, patients, and the latest
research findings, and use this to continuously modify and improve the data evaluation standards.

Instruction :
**Evaluation:** Provide a score (1-100) for each criterion, followed by a brief explanation of why
you assigned that score. Please evaluate whether each feature has been accurately extracted.

Explanation for Each Feature :

<Patient Information>

- speaker : "name of the speaker"

- severity : "severity of dysarthria of the patient (0 - simmilar to normal person, 1 - mild, 2 - severe)"

- age : "age of the patient"

- gender : "gender of the patient (0 - male, 1 - female)"

<ddk low-level features>

- intelligibility : "How clearly a person speaks so that speech is comprehensible to a listener"

- var F0 semitones : "Variance of the fundamental frequency in semitones"

- var F0 Hz : "Variance of the fundamental frequency in Hz"

- avg Energy : "Average of vocal energy"

- var Energy : "Standard deviation of vocal energy"

- max Energy : "Maximum value of vocal energy"

- ddk rate : "The number of syllables pronounced per second"

- ddk average : "Average time of each syllables pronounced"

- ddk std : "Standard deviation of the time of each syllables pronounced"

- ddk pause rate : "The number of pause per second"

- ddk pause average : "Average time of each pause"

- ddk pause std : "Standard deviation of the time of each pause"

983
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- task : 2 - repeating "puh", 3 - repeating "tuh", 4 - repeating "kuh", 5 - repeating "puh tuh kuh"

Severity:

0: Normal

1: Mild to moderate

2: Severe

<Phonation>

This refers to how strong and stable the voice sounds when speaking. For example, if the voice is too
weak, shaky, or sounds breathy, it may indicate a problem with phonation.

<Articulation>

This describes how accurately the lips, tongue, and jaw move to form speech sounds. Imprecise
articulation can cause speech to sound slurred or unclear.

<Prosody>

This includes the rhythm, pitch, and speed of speech, which help convey emotion and naturalness.
When prosody is impaired, speech may sound flat, monotone, or emotionally unexpressive.

Evalution:
Evaluate the generated response using the following criteria:

Semantic Similarity (1-100): Does the generated response convey the same meaning as the reference
answer, even if the wording differs? Focus on whether the key ideas and intent are preserved. Please
evaluate whether the severity level determined by the clinical pathologist matches the severity level
predicted by the model. If the severity levels differ between the reference data and the generated data,
assign a lower score.

Coherence (1-100): Evaluate whether the response is well-structured and logically organized. Check
if it reads naturally without grammatical or syntactical errors. Evaluate whether an appropriate
explanation has been generated based on the corresponding severity level.

Relevance (1-100): Evaluate whether the response stays focused on the topic and directly addresses
the prompt. Confirm that patient-related features are appropriately explained without including
unnecessary information.

Faithfulness (1-100): Exaggerations or inaccuracies regarding these features are grounds for point
deductions. Please evaluate whether the severity level determined by the clinical pathologist matches
the severity level predicted by the model. In addition, if key features mentioned in the reference data
are missing from the generated explanation, a penalty should be applied

Patient-friendliness (1-100): Evaluate whether the response minimizes the use of technical jargon
and explains things in simple, easy-to-understand terms. Also, check if any difficult medical termi-
nology is used without explanation.

984
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Evaluation Form (scores ONLY):
- Semantic Similarity :

- Coherence:

- Relevance:

- Faithfulness:

- Patient-Centered Communication:

Please derive it as a json file according to the output format

Reference Answer :
Severity : 1

Phonation : The voice gradually becomes quieter, accompanied by noticeable tremors.

Articulation : The movements of the tongue, lips, and jaw are slow, and the syllables /puh/, /tuh/, and
/kuh/ were all pronounced slowly. Consonants were pronounced weakly, and there was difficulty in
producing rapid transitions between sounds.

Prosody : The speech rate was consistent, and no significant issues with prosody were observed.

Overall : Due to short phonation, the voice volume decreased during speech, and vocal tremors were
observed. Consonants were pronounced weakly. Therefore, vocal training and speech therapy may be
necessary to achieve more stable phonation.

Generated Response :
Severity : 1

Phonation : Your voice is generally stable, but there may be occasional slight tremors. This may
indicate a minor issue with phonation.

Articulation : The movements of the lips, tongue, and jaw are mostly accurate, but pronunciation may
occasionally sound unclear. This may suggest slight difficulties with articulation.

Prosody : The rhythm and speed of your speech are generally natural.

Overall : Overall, your speaking ability may have slight difficulties, but is generally well maintained.
This is considered a mild issue and is unlikely to significantly interfere with daily life.

985
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J Reference Data986

The following is the reference data written by SLPs987

for each severity level. It was actually written in988

Korean.989

Reference data for patients with severity level 0

Severity : 0

Phonation : The voice quality, pitch, and volume are all normal with no particular abnormalities.

Articulation : The speech organs such as the tongue, lips, and jaw moved at a normal speed for the
sounds /p/, /t/, /k/, and articulation in connected speech tasks was at an average level.

Prosody : The speech rate was regular, and no particular issues were observed in prosody.

Overall : There appear to be no special problems with speech overall. The voice and articulation are
appropriate for the age group.

990

991

Reference data for patients with severity level 1

Severity : 1

Phonation : The voice gradually becomes quieter, accompanied by noticeable tremors.

Articulation : The movements of the tongue, lips, and jaw are slow, and the syllables /puh/, /tuh/, and
/kuh/ were all pronounced slowly. Consonants were pronounced weakly, and there was difficulty in
producing rapid transitions between sounds.

Prosody : The speech rate was consistent, and no significant issues with prosody were observed.

Overall : Due to short phonation, the voice volume decreased during speech, and vocal tremors were
observed. Consonants were pronounced weakly. Therefore, vocal training and speech therapy may be
necessary to achieve more stable phonation.

992

Generated text for patients with severity level 2

Severity : 2

Phonation : Overall, the articulatory organs moved slowly and with limited motion during speech.

Articulation : It was difficult to move the articulatory organs quickly to produce distinct sounds
accurately, resulting in distorted or substituted pronunciation

Prosody : There were many prolonged pauses during speech, causing slow speech rate and disrupted
flow.

Overall : Low speech intelligibility is affected by articulation, phonation, and prosody. Due to the
muscles’ lack of agility and accuracy, the speech flow is disrupted, leading to reduced clarity.

993
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K Result of GENIE994

These are examples of texts generated by GENIE995

for each severity level. It was actually written in996

Korean.997

Generated text for patients with severity level 0

Severity : 0

Phonation : The patient’s voice is strong and steady. The voice is neither weak, trembling, nor breathy.

Articulation : The patient’s movements of the lips, tongue, and jaw are precise, resulting in clear and
distinct pronunciation. Sounds like <puh>, <tuh>, and <kuh> were pronounced accurately.

Prosody :The patient’s speaking rate, rhythm, and pitch are natural, with good emotional expression.

Overall : The patient’s speaking ability is within the normal range. Pronunciation, voice, and speech
rhythm are all natural and clear. There is no need for concern.

998

Generated text for patients with severity level 1

Severity : 1

Phonation :Your phonation is generally stable but may have slight variations. Your voice might be a
bit weak or shaky, but it is not a major concern.

Articulation : Movements of the lips, tongue, and jaw are mostly accurate, though sometimes your
pronunciation may sound unclear. You might experience some difficulty repeating the sounds ’puh’,
’tuh’, and ’kuh’.

Prosody : The rhythm and speed of your speech are mostly natural, but it may occasionally sound
monotonous. Emotional expression might be somewhat limited.

Overall : Overall, your speaking ability shows mild issues. It should not significantly affect everyday
conversations. Paying a bit more attention to pronunciation and speaking slowly can make your
speech clearer.

999

Reference data for patients with severity level 2

Severity : 2

Phonation :The patient’s voice may sound somewhat weak and unstable, indicating possible phonation
issues.

Articulation : The movements of the lips, tongue, and jaw are inaccurate, which can cause unclear
pronunciation. There may be difficulty producing the sounds ’puh’, ’tuh’, and ’kuh’.

Prosody : The patient’s speech may sound monotonous and lack emotional expression, suggesting
problems with rhythm and speech rate.

Overall : The patient’s overall speaking ability is assessed as severe. This means difficulties in phona-
tion, articulation, and prosody. However, do not worry. Improvement is possible with appropriate
therapy and practice.

1000
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