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Abstract

Deep neural network classifiers for dysarthria
severity face limitations regarding inter-
pretability and treatment guidance. To over-
come these, we introduce CLINIC-GENIE,
an explainable two-stage framework con-
sisting of: (1) CLassification model using
INtegrated Information from Clinically ex-
plainable acoustic features and speech rep-
resentations (CLINIC), a dysarthria sever-
ity classification model combining acous-
tic and speech embeddings with Clinically
Explainable Acoustic Features (CEAFs) for
enhanced interpretability and performance;
and (2) Generation of Explanations from
Numerical features using Interpretability and
patient Examples (GENIE), a module trans-
lating numerical data, such as CEAFs and
their Shapley values, into intuitive natural lan-
guage explanations via a large language model.
In the severity classification experiments on
the DDK dataset, CLINIC achieved a bal-
anced accuracy of 0.952, a 17.3% improvement
over using CEAFs alone. In evaluation of the
generated diagnosis, certified speech-language
pathologists rated explanations from CLINIC-
GENIE highly, with an average fidelity score
of 4.94, confirming enhanced clinical utility
through intuitive, human-like interpretations.
These results demonstrate that CLINIC-GENIE
enhances clinical utility by improving classifi-
cation accuracy and providing intuitive, human-
like explanations. The code will be made pub-
licly available on GitHub.

1 Introduction

Dysarthria is a motor speech disorder characterized
by impaired articulation, phonation, and resonance
resulting from neurological damage (Duffy et al.,
2012). Clinical assessment of its severity is essen-
tial for formulating appropriate treatment plans and
monitoring disease progression (Joshy and Rajan,
2021). However, continuous monitoring of treat-
ment and disease progression by clinical patholo-

gists is resource-intensive. For this reason, research
on automatic dysarthria severity diagnosis using
deep learning has been actively pursued.

Recent deep learning approaches have primar-
ily focused on severity prediction alone, utilizing
only one or two types of features such as mel-
spectrograms (Suhas et al., 2020; Joshy and Rajan,
2023; Rathod et al., 2023), Wav2Vec 2.0 represen-
tations (Baevski et al., 2020), or Mel-Frequency
Cepstral Coefficients (MFCC) (Hernandez et al.,
2020; Bhattacharjee et al., 2023; Yeo et al., 2022).

While these methods enable accurate prediction
of dysarthria presence and severity directly from
speech, relying on such limited feature sets can
overlook the complexity of speech disorders, and
these black-box models lack the interpretability es-
sential for clinical applications. These models have
limited clinical applicability because they fail to
explain the specific factors influencing their pre-
dictions. Therefore, explainable Al (XAI) is re-
garded as a prerequisite for safely integrating Al-
based decision-support systems into clinical prac-
tice (Mancini et al., 2024; Shen et al., 2025).

To address this lack of explainability, we fo-
cused on the diadochokinetic (DDK) task among
dysarthria assessment tools. The DDK task—rapid
repetition of syllables like ’pa-ta-ka’—remains clin-
ically valuable due to its ability to measure oral
motor control without requiring linguistic compe-
tence, making it suitable even for severely impaired
speakers (Wang et al., 2009; Segal et al., 2022). Fur-
thermore, this task allows us to leverage features
that speech-language pathologists (SLPs) actually
use when providing explanations to patients.

In this study, we term these features Clinically
Explainable Acoustic Features (CEAFs) and pro-
pose a ClLassification model using INtegrated
Information from CEA and speech representations
(CLINIC) that utilizes them. CLINIC incorporates
12 CEAFs along with speaker gender as inputs, in
addition to mel-spectrograms and Wav2Vec 2.0 em-



beddings, to accurately diagnose dysarthria sever-
ity. Simultaneously, through Shapley values of the
CEAFs, our model can provide information about
which acoustic characteristics influence the predic-
tion and how these features relate to clinically val-
idated pathophysiological mechanisms (Shapley,
1953; Lundberg and Lee, 2017).

In clinical practice, it is crucial that patients with
dysarthria recognize any issues in their own speech,
as this awareness is a key factor in determining ap-
propriate rehabilitation strategies and establishing
effective treatment plans. However, the severity
of dysarthric speech cannot be determined by any
single acoustic feature, and these features do not
vary in a strictly linear fashion, which limits the
utility of simple interpretive approaches such as
rule-based methods. For example, a high value on
a particular acoustic feature cannot be immediately
deemed abnormal; instead, it is more important to
consider whether that value is relatively abnormal
in light of interactions with factors such as the pa-
tient’s gender or other characteristics. Interpretive
validity is enhanced not by absolute values alone,
but by determining whether a feature represents a
relative outlier within a population sharing simi-
lar demographic attributes. Accordingly, a natural
language explanation module called Generation
of Explanations from Numerical features using
Interpretability and patient Examples (GENIE) is
proposed in this study. GENIE combines attribu-
tiion (Shapley value) analysis with RAG-based
(Lewis et al., 2020) case retrieval to translate nu-
meric prediction contributions into patient-friendly
explanations. In GENIE, similar cases are retrieved
based on CLINIC outputs and an evaluation metric
termed CEAFs. Medical prompts are then utilized
to generate large language model (LLM)-based nat-
ural language explanations, thereby providing pa-
tients with intuitive and clinically meaningful nar-
ratives. The generated explanations were validated
through automated evaluation using G-EVAL(Liu
et al., 2023) as well as expert assessments by SLPs.
By converting complex numeric information into
clinically interpretable explanations, this approach
was found to enhance the transparency and trust-
worthiness of the Al model.

The primary contributions of our work are as
follows:

e CLINIC: Clinically Explainable Acoustic
Features (CEAFs), derived from the assess-
ment criteria used by speech-language pathol-

ogists in real-world clinical setting, were em-
ployed to enhance the interpretability of the
model. Additionally, integrating CEAFs with
mel-spectrogram and Wav2Vec 2.0 embed-
dings led to improved severity classification
performance.

* GENIE: enables effective interpretation of
the patient’s complex and nonlinear speech
characteristics by quantitatively assessing the
contribution of each feature and generating
precise, persuasive explanations through com-
parison with similar patient cases.

* Integrated Medical Speech Analysis Frame-
work (CLINIC-GENIE). To the best of our
knowledge, this study presents the first imple-
mentation of a medical speech analysis frame-
work that integrates classification (CLINIC),
attribution of CEAFs (Shapley values), and
natural language explanation (GENIE) into a
single pipeline. By unifying analytical com-
ponents that were previously addressed sepa-
rately in explainable Al (XAI) research, this
framework introduces a novel XAl approach
that simultaneously satisfies both interpretabil-
ity and clinical applicability.

2 Related Work

2.1 Deep Learning for Dysarthria and Other
Speech-Based Disease Classification

Various studies have explored automatic methods
for analyzing speech with dysarthria samples.
Traditionally, MFCC (Hernandez et al., 2020;
Bhattacharjee et al., 2023; Yeo et al., 2022), mel-
spectrograms (Suhas et al., 2020; Joshy and Rajan,
2023; Rathod et al., 2023), or self-supervised
representations (e.g., Wav2Vec 2.0, HuBERT
(Hsu et al., 2021)) (Sanjay et al., 2024; Samptur
et al., 2024) have typically been employed as
input features, while some researchers have used
additional speech features (e.g., FO) or combined
them with MFCC (Hernandez et al., 2020; Yeo
et al., 2022; van Bemmel et al.). From a model
architecture perspective, these features are com-
monly fed into DNN-based classifiers (Hernandez
et al., 2020; Bhattacharjee et al., 2023; Yeo et al.,
2022; Suhas et al., 2020; Joshy and Rajan, 2023;
Rathod et al., 2023; Sanjay et al., 2024), which
leverage either acoustic representations (e.g.,
MFCC or mel-spectrogram) or self-supervised
representations to predict dysarthria severity.
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Figure 1: The overall architecture of CLINIC-GENIE. CLINIC: From the DDK audio input, three representations
are derived: a mel-spectrogram, the raw audio waveform, and CEAFs extracted by the CEAFs Extractor. These
features are integrated within the Dysarthria Severity Assessment Model to predict dysarthria severity. GENIE:
The resulting CEAF vector is employed as a query to a vector database so that acoustically similar patient cases
can be retrieved. The retrieved cases, together with the Shapley values, severity, and CEAFs are assembled into a
Diagnosis Prompt Generator and provided to a LLM-based Diagnosis Explanation Generator.

These approaches achieved plausible performance,
lacking explainability for their predictions.

2.2 Explainability in Deep Learning Models

To enhance interpretability, Shapley values (Shap-
ley, 1953; Lundberg and Lee, 2017) were intro-
duced, assigning fair and transparent contributions
to features based on cooperative game theory. Sim-
ilarly, Integrated Gradients (Sundararajan et al.,
2017) and DeepLIFT (Shrikumar et al., 2017) com-
pare inputs against a baseline capturing relative
feature importance or activation differences to clar-
ify how each feature influences predictions of the
model.

However, in medical and healthcare settings, sim-
ply using these XAl method to identify “which fac-
tors influenced the outcome” may not be sufficient.
Models in these contexts must utilize data in ways
that closely align with real clinical evidence and
be easily understood by patients, as these aspects
directly impact treatment decisions (Markus et al.,
2021; Amann et al., 2020).

2.3 Translating Numerical Data into Natural
Language Explanations

Some studies leverage LLMs to convert numerical
data into natural language explanations. For exam-
ple, iPrompt (Singh et al., 2022) proposes an al-
gorithm that automatically generates explanations
using LLLMs to clarify patterns in data. In addi-
tion, there has been research on converting Shapley
values into more accessible natural language ex-

planations, thereby making the prediction process
clearer to a broader audience (Zeng, 2024).

2.4 Large Language Models in Healthcare

LLMs have recently emerged as powerful tools in
healthcare applications, offering new capabilities
for generating clinical explanations, interpreting
medical data, and supporting healthcare profession-
als in decision-making processes (Thirunavukarasu
et al., 2023; Nazi and Peng, 2024).

RAG (Lewis et al., 2020) combines LLM with
retrieval systems to provide more accurate and reli-
able explanations. Before generating explanations,
RAG retrieves relevant clinical data to ensure that
the explanations are factual and precise (Xiong
et al., 2024). This approach is crucial for providing
personalized dysarthria diagnoses and treatment
plans, where limited clinical data are available.

3 Interpretable Dysarthria Diagnosis
System

Figure 2 provides an overview of the CLINIC-
GENIE, which consists of two main compo-
nents: (1) CLINIC, a severity classification model
that incorporates CEAFs and mel-spectrogram
and Wav2Vec 2.0 representations extracted from
dysarthric speech, and (2) GENIE, a natural-
language explanation generator that using a large
language model.

3.1 CLINIC: A Seveity Classification Model
The CLINIC integrates CEAFs with mel-
spectrogram and Wav2Vec 2.0 representations
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Figure 2: Overall structure of CLINIC. (a) Dysarthria Severity Assessment Model integrates CEAFs with rep-
resentations derived from mel-spectrograms and raw audio (via Wav2Vec 2.0). Each representation is encoded
separately, and their embeddings are concatenated into a single vector, subsequently fed into the Classifier Head
for classification (b) The architecture of the CEAFs Extractor, which derives speaker characteristics information
by analyzing DDK audio input through acoustic analysis, LSTM-based syllable segmentation, and CNN-based

intelligibility classification.

to effectively capture complementary aspects of
dysarthric speech. Specifically, mel-spectrograms
encode detailed local acoustic characteristics
(Hershey et al., 2017), whereas Wav2Vec 2.0
embeddings provide global contextual information
by modeling broader temporal dependencies
within speech signals (Baevski et al., 2020).
Additionally, CEAFs enable clinically meaningful
interpretations of acoustic features, facilitating
a rational assessment process and enhancing the
model’s explainability.

3.1.1 CEAFs: Clinically Explainable Acoustic
Features

Two types of DDK tasks, Alternating Motion
Rate (AMR) and Sequential Motion Rate (SMR),
are used to extract key characteristics relevant to
dysarthria evaluation (Darley et al., 1969; Duffy
etal., 2012). AMR assesses articulatory speed and
consistency by repeating the same syllable(e.g.,
/pa/, ta/, or /ka/), SMR evaluates the ability
to rapidly transition between different articula-
tory positions using syllable sequences, such as
/pataka/(Darley et al., 1969; Duffy et al., 2012).
These tasks provide insights into the coordina-
tion, speed, and consistency of articulatory move-
ments, which are essential for accurately assessing
dysarthria severity (Darley et al., 1969; Dufty et al.,
2012).

Table 1 presents 12 CEAFs along with their defi-
nitions and the corresponding extraction methods
which are illustrated in Figure 2 (b). CEAFs were

derived from two primary sources: the Mayo Clinic
rating system (Darley et al., 1969), a widely recog-
nized framework for dysarthria evaluation, which
provided the basis for feature extraction, and Neu-
roSpeech (Orozco-Arroyave et al., 2018), a soft-
ware tool for automated DDK analysis, which was
used to derive the CEAFs. Together, these features
enable a comprehensive evaluation of phonatory,
prosodic, and articulatory aspects within the DDK
task. CEAFs were extracted using acoustic analy-
sis, an LSTM-based syllable segmentation model,
and a CNN-based intelligibility classifier (Oh et al.,
2023), as detailed in Appendix B.

3.1.2 Dysarthria Severity Assessment

Figure 2 (a) illustrates the architecture of the pro-
posed dysarthria severity assessment model, which
integrates multiple acoustic features using a joint
representation learning approach (Huang et al.,
2020).

CEAFs measured from the DDK task, along with
gender information, were normalized using min-
max scaling to mitigate scale discrepancies. The
normalized features were subsequently processed
through a fully connected layer to generate embed-
ding vectors.

Features are extracted from the mel-spectrogram
using a ResNet (He et al., 2016) model, captur-
ing averaged characteristics across the frequency
and time axes. These features are utilized as em-
bedding vectors. The Wav2Vec 2.0 (Baevski et al.,
2020) model processes raw audio signals to gener-



Characteristic Definition Extraction Method
FO variability (st) Variance of the fundamental frequency (semitones)

FO variability (Hz) Variance of the fundamental frequency (Hz)

Avg. energy (dB) Mean signal energy Acoustic Analysis
Energy variability (dB) Standard deviation of energy

Max. energy (dB) Maximum signal energy

DDK rate (syll/s) Number of syllables per second

DDK mean duration (ms) Average syllable duration

DDK regularity Standard deviation of syllable durations

Number of pauses per second
Average pause duration

Pause rate (pauses/s)
Pause mean dur. (ms)
Pause regularity

Standard deviation of pause durations

Intelligibility score

Listener’s understanding of the spoken content at the syllable level

Table 1: Clinically Explainable Acoustic Features (CEAFs) automatically extracted from the DDK task.

ate frame-level representation vectors, which are
subsequently used as embedding vectors for raw au-
dio. Specifically we utilized the publicly released
wav2vec2-large-xlIsr-53 pre-trained model (Con-
neau et al., 2021). Pre-training on roughly 56k h
of speech across 53 languages enable to captur-
ing the complex acoustic cues of dysarthria. Pre-
vious studies have demonstrated that combining
mel-spectrogram and Wav2Vec 2.0 features en-
hances the ability to capture both local and global
information. In this study, Wav2Vec 2.0 embed-
dings derived from raw audio are fused with mel-
spectrogram feature vectors extracted from the
ResNet model through an attention based mech-
anism. The fused representations are utilized as in-
put features for the dysarthria severity assessment
model.

Three embedding vectors are concatenated into
a single vector: a CEAF vector, a mel-spectrogram
vector, and a fused vector that combines the mel-
spectrogram and Wav2Vec 2.0 representations.
This concatenated vector is forwarded to the final
classifier head, which predicts the probabilities of
dysarthria severity. A weighted categorical cross
entropy loss function (Cui et al., 2019) is employed
during training to mitigate data imbalance.

3.1.3 Extraction Shapley Values

Shapley values quantify how much each feature
contributes to the model output by contrasting the
prediction obtained with the feature at its actual
value against the prediction when that feature is
fixed at a baseline (typically its expected value).
The original formulation of Shapley values is de-
tailed in Appendix A

If we can determine how strongly each CEAF
influences the predicted severity, we can capture

valuable cues for diagnosing dysarthria. Using the
CLINIC, we first obtain the predicted severity and
then compute Shapley values to extract the numeri-
cal contribution of each CEAF. The following sec-
tion explains how these numerical scores are trans-
formed into natural-language explanations.

3.2 GENIE: A Natural Language Explanation
Generator

GENIE is a LLM module that combines previ-
ously predicted severity with Shapley values to
produce patient-specific diagnostic narratives. Us-
ing RAG, the module retrieves prior cases with
comparable assessment profiles and contrasts their
CEAFs, thereby generating fine-grained, clinician-
oriented explanations that highlight each patient’s
salient deficits and recommended focal points.

3.2.1 Retrieval of Analogous Patient Cases

The retrieval component operates entirely at infer-
ence time, with no additional training required. For
each test instance, we construct a structured feature-
based query from the CLINIC output. Specifically,
we form a dictionary mapping each CEAFs name
to its numeric value, and we include the predicted
severity under the key finalprediction. The vec-
tor database Dpp = {di,...,dy} is constructed
from the training set, with each patient represented
as a document d; containing that patient’s CEAFs
vector and ground-truth severity. Each document
d; is embedded as a 3,072-dimensional vector rep-
resentation eq; using (text-embedding-3-large
model) model, and all such document embeddings
are stored and indexed using ChromaDB (Contrib-
utors, 2023) with a Hierarchical Navigable Small
World index (Malkov and Yashunin, 2018). The
test-time query dg, is similarly embedded as eq,,,
and cosine similarity is computed between the

LSTM-based Syllable segmentation

CNN-based Intelligibility Classifier



Severity CEAFsonly CEAFs + Mel CEAFs+ Wav2Vec 2.0 CLINIC (ours)
0 (Healthy) 0.750 1.000 1.000 1.000
1 (Mild to Moderate) 0.837 0.980 0.898 0.857
2 (Severe) 0.750 0.500 0.500 1.000
Balanced Acc. 0.779 0.827 0.799 0.952

Table 2: Accuracy by severity and input configuration.

query and each document embedding:
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Finally, the top-k most similar documents are
selected as relevant patient cases, which are then
used to construct prompts for input to a Diagnosis
Prompt Generator.

3.2.2 Diagnosis Prompt Generator

The diagnosis prompt generator uses four types
of input as conditions: (1) the severity prediction
from the CLINIC, (2) the numeric values of the
CEAFs, (3) the Shapley values corresponding to
each CEAF, and (4) relevant patient cases. The
prompt generator is conditioned on the four task-
specific DDK severity scores and is additionally
provided with the patient’s final severity, which is
obtained through majority voting over those scores.
For each patient, severity for the four DDK tasks
is predicted by the CLINIC module, and a final
severity label is assigned based on majority voting
among these predictions. In clinical practice, it is
essential for patients to understand which aspects of
their condition require improvement. While CEAFs
sufficiently describe the patient’s acoustic profile,
they are insufficient to identify the most influential
features affecting the patient. Therefore, Shapley
values are incorporated to explicitly highlight the
features that contribute most significantly. The core
prompt components are in Appendix H and a full
example prompt is provided in Appendix L.1.

3.2.3 LLM-based Diagnosis Explanation
Generator

Using the prompt generated by the diagnosis
prompt generator, the LLM-based Diagnosis Ex-
planation Generator employs OpenAl GPT-4o0
(OpenAl, 2025) to synthesize a diagnostic ex-
planation spanning four clinical dimensions of
dysarthria—phonation, articulation, prosody, and
overall severity. The generator analyzes the CEAF
values in conjunction with their corresponding
Shapley attributions, thereby smoothing the under-

lying information and identifying which acoustic
features exert the greatest influence and which re-
main deficient for the patient. The system prompt
instructs the LLM to (i) interpret the provided in-
puts, (ii) discuss each CEAF in proportion to its
Shapley value, and (iii) produce a patient-friendly
diagnostic report in Korean. By explicitly decom-
posing the reasoning process into these sequen-
tial steps, the module is operated in a chain-of-
thought (Wei et al., 2022) paradigm. To ensure
consistency and mitigate hallucinations in the gen-
erated text, a fixed prompt template is employed
and the generation temperature is set to 0.1.

4 Experiment

4.1 Dataset

The dataset consists of 59 healthy controls (HCs)
and 321 patients, totaling 380 participants aged
between 20 and 84 years. The healthy controls
and patients were recruited in collaboration with
[anonymized for review]. The data collection pro-
cess, including recordings of the DDK task and
clinical assessments, was approved by the Institu-
tional Review Board (IRB) of the participating in-
stitutions, and informed consent was obtained from
all participants. To collect corpus for dysarthria
assessment, recordings of the DDK task were gath-
ered from the speakers. DDK utterances consist
of repeated syllables such as ‘pa’, ‘ta’, ‘ka’, and
‘pataka’. Clinical data, including dysarthria sever-
ity and gender, were also collected. The severity of
dysarthria is categorized into three levels: Healthy
(0), Mild to Moderate (1), and Severe (2). A neuro-
surgeon assessed and labeled the severity using the
National Institute of Health Stroke Scale (NIHSS)
criteria (Kwah and Diong, 2014). The HCs were
classified as severity 0, while patients were cat-
egorized as severity 1 or 2. In total, the dataset
comprises 1,536 utterances, collected from 59 in-
dividuals with a severity 0, 290 with a severity 1,
and 31 with a severity 2, including 239 male and
141 female speakers. Because obtaining data from
patients with severity 2 is challenging in real-world



clinical settings, the number of participants in this
category is relatively small. For severity classifi-
cation evaluation, we conducted testing using 244
utterances from 61 speakers (31 males and 30 fe-
males) who were not included in the training and
validation process of the CLINIC. Among them,
8 speakers were labeled with severity 0, 49 with
severity 1, and 4 with severity 2. Throughout the en-
tire dataset, patient IDs were used instead of names
to ensure anonymity.

4.2 Dysarthria Severity Assessment

To examine how best to exploit CEAFs informa-
tion, we ran four ablation experiments under a
unified classifier head. First every speech-derived
representation (mel-spectrogram, Wav2Vec 2.0
features, or both) is routed through the embed-
ding procedure described in 3.2. Then these em-
bedding vectors are passed through a fully con-
nected (FC) layer, producing a 128-dimensional
vector. The 13-dimensional CEAFs vector follows
a parallel two-layer FC path that also produces a
128-dimensional embedding. Detailed experiment
method and model configurations for all variants
are provided in Appendix C and Appendix D, sep-
arately. Test set accuracies for each severity are
summarized in Table 2.

4.2.1 Results

As Table 2 shows, leveraging CEAFs with addi-
tional speech representations generally improved
performance over using CEAFs alone. Providing
patients with accurate and timely diagnoses is crit-
ically important (Ball et al., 2015), especially for
those with severe severity. Therefore, when select-
ing our model, we considered not only the overall
performance but also how accurately it predicted
the severity 2. Although models using CEAFs and
mel-spectrograms performed well for patients with
severity 1, they accurately predicted only half of the
severity 2 cases. In contrast, the CLINIC success-
fully identified all severity 2 patients. Therefore,
we selected the CLINIC as our final system. More
detailed results, including the confusion matrix, can
be found in Appendix E.

4.3 Effectiveness of GENIE in Generalization

The experiment was designed to determine whether
each component of the GENIE is indispensable. To
verify explanatory effectiveness, two evaluation
protocols, automated and human expert evaluation,
were applied, and the text for each pipeline was
generated with GPT-40 using k£ = 3.

4.3.1 Medical Explanation Evaluator

Medical Explanation Evaluator framework was de-
veloped to automatically assess the generated texts
by GENIE. The framework, instantiated with GPT-
40, applies the g-eval (Liu et al., 2023) methodol-
ogy on the full test set and evaluates each method’s
outputs across five metrics on a 0—100 scale. We set
the generation temperature to 0.1. To ensure ethical
integrity and fairness, the reported results represent
the average values obtained from five repeated runs.
The selection criteria and descriptions of the met-
rics are presented in Appendix G. Among the eval-
uation metrics, Semantic Equivalence and Fidelity
were selected as the major criteria because they
indicate how faithfully the generated explanations
reflect clinical reasoning. Consistency, Relevance,
and Patient-friendliness were designated as minor
criteria. The detailed prompt used for the Evaluator
can be found in Appendix 1.2.

Reference data were compiled by three SLPs
after they listened to the patient recordings in the
test set. Textual descriptions were produced for five
aspects: severity, phonation, prosody, articulation,
and overall assessment. Examples of the reference
data can be found in Appendix J.

According to the table 3, the vanilla baseline
provides only CEAFs to the LLM in the first row.
Semantic Equivalence was observed at 62.95 and
Fidelity at 61.43, the bottom values for each metric.
CLINIC integration: CLINIC directly contributed
to improvements in nearly every metric, yielding
markedly closer alignment with clinical judgments
than the baselines.

RAG-based contextualisation: When RAG was
added to the CLINIC-only system, increases
were observed in both Semantic Equivalence and
Fidelity, indicating that contextual information
supplied by similar patient cases endowed the
explanations with richer content and stronger
semantic coherence.

Exposure of Shapley attributions: When Shapley
values were introduced, every metric increases by
a further two to three points, and near-maximal
values were achieved across the board. Notably,
Semantic Equivalence reached 83.93 and Fidelity
79.38, confirming that an explicit disclosure of
the model’s reasoning maximised the perceived
trustworthiness of the generated explanations.



Configuration Mean Scores

CEAFs Model for Pred. Severity RAG Shap Semantic Eq. Fidelity Consistency Relevance Patient—friendliness
(0] X X X 62.95 61.43 78.75 71.95 79.93
(0] CEAFs + Mel o (0] 82.23 77.23 89.37 85.00 92.43
(0] CEAFs + Wav2Vec 2.0 o (0] 82.68 77.77 88.93 84.36 91.57
(0] CLINIC X X 77.95 73.57 86.07 81.32 89.66
(0] CLINIC ¢] X 81.34 76.43 87.41 83.57 90.23
(0] CLINIC o o 83.93 79.38 89.38 85.39 91.30

Table 3: Component-wise ablation results for GENIE in the dysarthria-specific automatic evaluation. Presence
(O) or absence (X) indicates whether each module is included. “Model for Pred. Severity” denotes the model that
produced the predicted severity. An “X” indicates that no predicted-severity component is included at all. RAG
shows whether similar-patient inputs are provided, and Shap shows whether Shapley values are included. Scores are
reported on a 0—100 scale for five quality metrics generated by the LLM. Detailed descriptions of the prompt are

provided in Appendix 1.2.

Configuration Mean Ratings
CEAFs Model for Pred.Severity RAG Shap Semantic Eq. Fidelity Consistency Relevance Patient-friendliness
(0] X X X 3.81 4.47 4.94 4.64
(0] CEAFs + Mel (0] (0] 4.50 4.31 5.00 4.56
(0] CEAFs + Wav2Vec 2.0 (0] o 4.83 4.94 5.00 4.50
(0] CLINIC X X 4.86 4.56 4.89 4.67
(0] CLINIC (0] X 4.89 4.75 5.00 4.67
O CLINIC O (0] 4.94 4.92 5.00 4.69

Table 4: Component-wise ablation results for the CLINIC-GENIE based on human expert evaluation(1-5 Likert).

4.3.2 Human Expert Evaluation

An expert evaluation was conducted in which 12
patients, randomly selected at a rate of four per
severity, were assessed. Three SLPs first listened
to each patient’s DDK voice recording and then
rated the explanations generated by each method
on four metrics, using a 1-5 Likert scale. Because
the explanations were evaluated directly by clinical
pathologists, the Semantic Equivalence metric used
in automatic evaluation was omitted. As shown in
Table 4, the GENIE configuration that integrates
CLINIC prediction, RAG retrieval, and Shpley val-
ues attribution achieves the best performance under
expert review. Its Fidelity score rises from 3.81 in
the baseline to 4.94, an improvement of almost 30
percent. The high agreement between expert eval-
uation scores and the automatic evaluation results
in Table 3 supports the reliability of the evaluation
metrics. Both Table 3 and Table 4 show that the
lowest scores were obtained by the vanilla base-
line model using only CEAFs, while the highest
scores were achieved by the pipeline proposed in
this paper. Additionally, the relative score distri-
butions between the two evaluations are largely
similar. Although differences in evaluation meth-
ods cause some variance in absolute scores, the

relative rankings and score trends remain consis-
tent, demonstrating the reliability of the proposed
automatic evaluation system.

5 Conclusion

An integrated framework, CLINIC-GENIE, is pro-
posed for the simultaneous classification and expla-
nation of DDK speech. By combing CEAFs, mel-
spectrograms, and Wav2Vec 2.0 representations,
the CLINIC module attains a balanced accuracy
of 0.952 and correctly identifies all severe cases.
The GENIE module combines Shapley attributions
with RAG-retrieved analogous cases to generate
patient-oriented explanations covering four clinical
dimensions: phonation, articulation, prosody, and
overall severity and achieves top scores on nearly
every automatic and expert metric. These results
suggest that the framework can help clinicians and
patients intuitively understand the rationale behind
Al decisions, thereby accelerating early diagnosis
and personalized rehabilitation planning while mit-
igating the wider societal burden of dysarthria care.

6 Limitations

The clinical corpus used in this study is imbalanced
across severities, with markedly fewer speakers



in the severity 2. This scarcity can constrain the
model capacity. Future work will focus on enlarg-
ing and rebalancing the dataset—particularly by
recruiting more severe speakers or exploring data-
augmentation strategies to mitigate this limitation.
Additionally, our framework is trained and evalu-
ated solely on DDK speech. Its ability to generalize
to more natural speech has not yet been verified.
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A Shpely Values Formulation

The contribution for feature ¢ is defined as :

ISIHE] = |S] = 1)!
]!

>

SCF\{i}

S(fF(SU{i}) = f(5))

2
following the original Shapley value formula-
tion (Shapley, 1953) and its adaptation for model
explanations (Lundberg and Lee, 2017), where F'
denotes the full set of features, .S is a subset not con-
taining ¢, and f(-) represents the expected model
output when only the features in the given set are
known (with the others marginalized).

B CEAFs Extraction Method

This appendix provides detailed descriptions of the
methods used to extract CEAFs, including acoustic
analysis, an LSTM-based syllable segmentation
model, and a CNN-based intelligibility classifier.
Acoustic analysis was performed using the
Praat software(Boersma and Weenink). The LSTM-
based model quantified the rate, duration, and regu-
larity of pronunciation and respiration by segment-
ing audio into speech and non-speech frames. The
model consists of 16 LSTM layers and a fully con-
nected (FC) layer. Raw audio signals were con-
verted into spectrograms and fed into the model,
which classified each frame as speech or non-
speech. Frame-level predictions were aggregated
into segment-level results by grouping consecutive
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frames with identical classifications. Speech seg-
ments shorter than 0.07 seconds were classified as
silence, and silence segments longer than 0.14 sec-
onds were used to calculate the pause rate. These
threshold values (0.07 and 0.14 seconds) were de-
termined based on the best performance observed
on the training set. The silence threshold of 0.14
seconds was determined based on previous AMR
task research, which found that healthy adults pro-
duce syllables at an average rate of approximately
0.143 seconds per syllable(Schuessler, 2010). The
intelligibility classifier employs a ResNeXt-based
CNN model(Oh et al., 2023) to classify speech
samples into one of five ordinal intelligibility lev-
els, ranging from 1 (least intelligible) to 5 (most
intelligible).

C Experiments Details

For the dysarthria severity assessment model, the
dataset was divided into training, validation, and
testing sets following an 8:1:1 ratio, stratified by
severity levels. The model was trained using the
AdamW (Loshchilov and Hutter, 2018) optimizer
with a learning rate of 0.00003. Model selection
was performed on the validation set using macro-
F1. For each model, we predicted a severity for
every utterance and then applied majority voting
across all utterances produced by a given patient to
derive that patient’s final dysarthria severity.

D Classification Model Configuration

The detailed information about the models used in
the severity assessment experiments is provided in
Table 5. All models share an identical CEAFs layer
structure, takes as input the 12 CEAFs along with
the speaker’s gender. The classifier heads adapt to
the dimensionality of the combined features (128-
dim for model with only CEAFs, 256-dim for oth-
ers). This design allows us to systematically assess
how different speech representations contribute to
dysarthria severity classification performance.

In Table 5, the "Mel-Path" and "W2V Path"
columns indicate the processing pipelines for mel-
spectrogram and Wav2Vec 2.0 representations, re-
spectively, showing how these inputs are integrated
into the overall model architecture.

E Detailed Result

The confusion matrices of the severity classifica-
tion results for 4.2 are illustrated in Fig. 3.
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Figure 3: Confusion matrices of severity classification results for four different feature combinations: (a) CEAFs
Only, (b) CEAFs + mel-spectrogram, (c) CEAFs + Wav2Vec 2.0, and (d) CLINIC.
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Table 5: Detailed architecture of the proposed models for dysarthria severity classification. (BN: Batch Normaliza-
tion)

Model Architecture
1. Only CEAFs CEAFs Layer: 13 — 128 — BN, Dropout — 128 — BN, Dropout
’ ’ Classifier: 128 — 128 — 128 — 3 (with BN, ReLU, Dropout 0.3)

CEAFs Layer: Same as Model 1

2. Mel + CEAFs Mel Path: Mel-Spectrogram — ResNet-50 — 2048-dim — Linear — 512 — 128
Classifier: Concat[CEAFs(128), Mel(128)] = 256 — 128 — 128 — 3 (with BN,
ReLU, Dropout 0.3)
CEAFs Layer: Same as Model 1

3. W2V + CEAFs W2V Path: Wav2Vec 2.0 (frozen) — 1024-dim — Linear — 128 — BN — ReL.U

— Dropout — Attention Pool — 128-dim

Classifier: Concat[ CEAFs(128), W2V(128)] =256 — 128 — 128 — 3 (with BN,

ReLU, Dropout 0.3)

CEAFs Layer: Same as Model 1

Mel Path: Mel-Spectrogram — ResNet-50 — 2048-dim — Linear — 749 — BN

— Dropout

W2V Path: Wav2Vec2 — Cross-attention with 749-dim ResNet feature — Linear

1024 — 768 — BN — Dropout — Concat[ResNet(749), W2V (768)] = 1517 — 128

— BN — Dropout

Classifier: Concat[Audio(128), CEAFs(128)] =256 — 128 — 128 — 3 (with BN,

ReLU, Dropout 0.3)

4. CLINIC (Ours)

F K-Shot Experiment caution when incorporating a larger number of ex-
ternal cases.

91.3 G Medical Explanation Evaluator
90 e Metrics
/\_/_/
85.39 Semantic Equivalence: The semantic overlap be-
) 85 83.93 tween the system output and the reference report
§ written by SLPs is quantified. The evaluation con-
80 79.38 siders not only surface level lexical matches but
/\ also whether the patient’s condition is captured
75 comprehensively and accurately.
1shot 3shot 5shot  7shot Fidelity: Agreement between the generated expla-
= Semantic Similarity @ Coherence nation and the clinicians’ own assessment. Omit-
==&==Relevance ==&==Faithfulness ting a clinically observed feature deficit, for in-

e=@= Patient-Centered Communication .
stance, is scored low.

Consistency: Logical agreement between the pre-
dicted severity and the accompanying narrative.
Relevance: Topical adequacy of the text to the task
of dysarthric speech analysis. Irrelevant digressions
are penalised.

Patient-friendliness: Clarity and accessibility of
the explanation for lay readers. Narratives that
avoid technical jargon receive higher scores.

Figure 4: Shot Experiment

Figure 4 presents an ablation study on the num-
ber of similar patient cases provided during gener-
ation. The 3-shot setting yielded the best overall
performance, achieving the highest or near-highest
scores across most evaluation metrics. In contrast,
the 7-shot setting exhibited a slight decline in per-

formance, indicating that increasing the number of  H  Prompt Structure of GENIE
retrieved cases does not necessarily lead to better

generation quality. Notably,Patient-Centered Com- * Sysmsg : Thesysmsgservesasthecomponentde finingthe
munication remained consistently high across all friendlyKoreanreport.

settings, suggesting that the model reliably gen- .

erates patient-friendly explanations regardless of

the number of reference cases. On the other hand, * Explanation for Each Feature: A concise

Faithfulness showed a downward trend as the num- reference text summarises the clinical mean-

ber of shots increased, highlighting the need for ing of each CEAF, allowing the LLM to

13



ground its narrative in domain-appropriate se-
mantics.

Relevant Patient information: The top-%
analogous cases retrieved in the previous stage
provide concrete clinical comparators, thereby
increasing the specificity and credibility of the
generated explanation.

Final OQutput Template: All outputs adhere
to a fixed JSON schema containing the fields
Severity, Phonation, Articulation, Prosody,
Overall, ensuring consistent formatting across
patients.
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I Prompt Templates
I.1 Example of GENIE

This is a detailed example of the diagnosis prompt
generator section of GENIE.

<s>[INST]«SYS»
Role : Please take on the role of a doctor and explain the information in a way that is clear and
reassuring to the patient.

Data Sensitivity and Analysis Guide: I am responsible for analyzing raw patient data to evaluate key
factors related to health status. By quantifying various data categories, such as test results, gender,
age, and individual feature data, I comprehensively assess the patient’s health.

Contextual Understanding and Interpretation Guide: I focus on understanding and evaluating the
context of medical data. This approach ensures that I do not evaluate the data on a superficial level
but instead gain a deep understanding of the context to accurately interpret the analysis results.

Adaptive and Feedback-Oriented Guide: I continuously improve the method of medical data evalua-
tion over time. By incorporating feedback from various sources, I refine the analysis criteria regularly.
For example, I gather feedback from healthcare professionals, patients, and the latest research find-
ings, and use this to continuously modify and improve the data evaluation standards. «/SYS»

Instruction : Analyze the given information to describe the characteristics of the patient. Pred final
severity refers to the severity level of the patient as finally predicted by the DNN.

SHAP value represents the impact of each feature on the classification of severity (a higher value
indicates a greater influence, while a lower value indicates less influence).

For each category, provide explanations focusing on the features that had the greatest impact according
to the SHAP values.

Based on the predicted severity, write the patient explanation in Korean, using simple and intuitive
words that are easy for general patients to understand. Express severity as a numerical value. Rephrase
the explanation using simple, everyday words instead of technical terms. For the articulation section,
please describe the patient’s performance separately for the syllables <puh>, <tuh>, and <kuh>.

Ensure the output follows the Output Template format in JSON file with four keys: (severity, Phona-
tion, Articulation, Prosody, Overall)

Explanation for Each Feature :
<Patient Information>
- speaker : "name of the speaker"
- severity : "severity of dysarthria of the patient (0 - simmilar to normal person, 1 - mild, 2 - severe)"
- age : "age of the patient"
- gender : "gender of the patient (0 - male, 1 - female)"
<ddk low-level features>
- intelligibility : "How clearly a person speaks so that speech is comprehensible to a listener"
- var FO semitones : "Variance of the fundamental frequency in semitones"
- var FO Hz : "Variance of the fundamental frequency in Hz"

- avg Energy : "Average of vocal energy"
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- var Energy : "Standard deviation of vocal energy"

- max Energy : "Maximum value of vocal energy"

- ddk rate : "The number of syllables pronounced per second"

- ddk average : "Average time of each syllables pronounced"

- ddk std : "Standard deviation of the time of each syllables pronounced"
- ddk pause rate : "The number of pause per second"

- ddk pause average : "Average time of each pause"

- ddk pause std : "Standard deviation of the time of each pause"

- task : 2 - repeating "puh”, 3 - repeating "tuh", 4 - repeating "kuh", 5 - repeating "puh tuh kuh"
Severity:

0: Normal

1: Mild to moderate
2: Severe

<Phonation>

This refers to how strong and stable the voice sounds when speaking. For example, if the voice is too
weak, shaky, or sounds breathy, it may indicate a problem with phonation.

<Articulation>

This describes how accurately the lips, tongue, and jaw move to form speech sounds. Imprecise
articulation can cause speech to sound slurred or unclear.

<Prosody>

This includes the rhythm, pitch, and speed of speech, which help convey emotion and naturalness.
When prosody is impaired, speech may sound flat, monotone, or emotionally unexpressive.

Reference Data(information of other patients) :

1 reference data :

Severity : 1, speaker: nia HS0027 severity: 1, gender: 1 task id: 2, intelligibility: 4, var fO
semitones: 73.433, var f0 hz: 29.183, avg energy: 69.307, var energy: 26.122, max energy:
80.175, ddk rate: 2.092, ddk average: 230.313, ddk std: 43.954, ddk pause rate: 0.131, ddk pause
average: 216.875, ddk pause std: 437.475

task id: 3, intelligibility: 4, var fO semitones: 72.326, var {0 hz: 28.265, ...
task id: 4, intelligibility: 4, var fO semitones: 93.234, var 0 hz: 48.798, ...
task id: 5, intelligibility: 4, var fO semitones: 83.135, var fO hz: 38.258, ...

2 reference data :

Severity: 1, speaker: nia HS0159, severity: 1, gender: 1, ddk feature info: ...
3 reference data :

Severity: 1, speaker: nia HS0109, severity: 1, gender: 0, ddk feature info: ...
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Input Data :
speaker: nia HS0079, data info: gender: 1,
ddk feature info:

task id: 2, gender: 1, intelligibility: 4, var fO semitones: 44.034, var fO hz: 13.227, avg energy: 62.455,
var energy: 24.292, max energy: 73.25, ddk rate: 1.213, ddk average: 287.5, ddk std: 110.701, ddk
pause rate: 0.152, ddk pause average: 396.563, ddk pause std: 748.029

task id: 3, gender: 1, intelligibility: 4, var fO semitones: 88.085, var f0 hz: 43.288...
task id: 4, gender: 1, intelligibility: 4, var fO semitones: 62.411, var fO hz: 21.849...
task id: 5, gender: 1, intelligibility: 4, var fO semitones: 97.624, var {0 hz: ...

SHAP Value : ’id’: 'nia HS0079’,

shap class: 0, gender: 0.571, intelligibility: 0.471, var fO semitones: 0.457, var fO hz: 0.505, avg
energy: 0.436, var energy: 0.631, max energy: 0.42, ddk rate: 0.544, ddk average: 0.581, ddk std:
0.515, ddk pause rate: 0.508, ddk pause average: 0.600, ddk pause std: 0.591

shap class: 1, gender: 0.793, intelligibility: 0.618, var fO semitones: 0.499, ...
shap class: 2, gender: 0.182, intelligibility: 0.332, var fO semitones: 0.382, var 0O hz: 0.437, ...

Each Task Pred Severity : ['task’: 2, ’ddk pred severity’: 1, ’task’: 3, ’ddk pred severity’: 1, ’task’:
4, ’ddk pred severity’: 1, ’task’: 5, *ddk pred severity’: 1]

Final Pred Severity : 1

Output Template :
Severity :
Phonation :
Articulation :
Prosody :

Overall :
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L.2 Example of Medical Explanation
Evaluator

This is a detailed example of the Medical Explana-
tion Evaluator prompt.

<s>[INST]«SYS»
Role : Please take on the role of a doctor and explain the information in a way that is clear and
reassuring to the patient.

Data Sensitivity and Analysis Guide: I am responsible for analyzing raw patient data to evaluate key
factors related to health status. By quantifying various data categories, such as test results, gender,
age, and individual feature data, I comprehensively assess the patient’s health.

Contextual Understanding and Interpretation Guide: I focus on understanding and evaluating the
context of medical data. This approach ensures that I do not evaluate the data on a superficial level
but instead gain a deep understanding of the context to accurately interpret the analysis results.

Adaptive and Feedback-Oriented Guide: I continuously improve the method of medical data eval-
uation over time. By incorporating feedback from various sources, I refine the analysis criteria
regularly. For example, I gather feedback from healthcare professionals, patients, and the latest
research findings, and use this to continuously modify and improve the data evaluation standards.

Instruction :

**Hvaluation:** Provide a score (1-100) for each criterion, followed by a brief explanation of why
you assigned that score. Please evaluate whether each feature has been accurately extracted.

Explanation for Each Feature :

<Patient Information>

- speaker : "name of the speaker"

- severity : "severity of dysarthria of the patient (0 - simmilar to normal person, 1 - mild, 2 - severe)"
- age : "age of the patient"

- gender : "gender of the patient (0 - male, 1 - female)"

<ddk low-level features>

- intelligibility : "How clearly a person speaks so that speech is comprehensible to a listener"
- var FO semitones : "Variance of the fundamental frequency in semitones"

- var FO Hz : "Variance of the fundamental frequency in Hz"

- avg Energy : "Average of vocal energy"

- var Energy : "Standard deviation of vocal energy"

- max Energy : "Maximum value of vocal energy"

- ddk rate : "The number of syllables pronounced per second"

- ddk average : "Average time of each syllables pronounced"

- ddk std : "Standard deviation of the time of each syllables pronounced"

- ddk pause rate : "The number of pause per second"

- ddk pause average : "Average time of each pause"

- ddk pause std : "Standard deviation of the time of each pause"
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- task : 2 - repeating "puh", 3 - repeating "tuh", 4 - repeating "kuh", 5 - repeating "puh tuh kuh"
Severity:

0: Normal

1: Mild to moderate

2: Severe

<Phonation>

This refers to how strong and stable the voice sounds when speaking. For example, if the voice is too
weak, shaky, or sounds breathy, it may indicate a problem with phonation.

<Articulation>

This describes how accurately the lips, tongue, and jaw move to form speech sounds. Imprecise
articulation can cause speech to sound slurred or unclear.

<Prosody>

This includes the rhythm, pitch, and speed of speech, which help convey emotion and naturalness.
When prosody is impaired, speech may sound flat, monotone, or emotionally unexpressive.

Evalution:
Evaluate the generated response using the following criteria:

Semantic Similarity (1-100): Does the generated response convey the same meaning as the reference
answer, even if the wording differs? Focus on whether the key ideas and intent are preserved. Please
evaluate whether the severity level determined by the clinical pathologist matches the severity level
predicted by the model. If the severity levels differ between the reference data and the generated data,
assign a lower score.

Coherence (1-100): Evaluate whether the response is well-structured and logically organized. Check
if it reads naturally without grammatical or syntactical errors. Evaluate whether an appropriate
explanation has been generated based on the corresponding severity level.

Relevance (1-100): Evaluate whether the response stays focused on the topic and directly addresses
the prompt. Confirm that patient-related features are appropriately explained without including
unnecessary information.

Faithfulness (1-100): Exaggerations or inaccuracies regarding these features are grounds for point
deductions. Please evaluate whether the severity level determined by the clinical pathologist matches
the severity level predicted by the model. In addition, if key features mentioned in the reference data
are missing from the generated explanation, a penalty should be applied

Patient-friendliness (1-100): Evaluate whether the response minimizes the use of technical jargon
and explains things in simple, easy-to-understand terms. Also, check if any difficult medical termi-
nology is used without explanation.
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Evaluation Form (scores ONLY):
- Semantic Similarity :
- Coherence:
- Relevance:
- Faithfulness:
- Patient-Centered Communication:

Please derive it as a json file according to the output format

Reference Answer :
Severity : 1
Phonation : The voice gradually becomes quieter, accompanied by noticeable tremors.

Articulation : The movements of the tongue, lips, and jaw are slow, and the syllables /puh/, /tuh/, and
/kuh/ were all pronounced slowly. Consonants were pronounced weakly, and there was difficulty in
producing rapid transitions between sounds.

Prosody : The speech rate was consistent, and no significant issues with prosody were observed.

Overall : Due to short phonation, the voice volume decreased during speech, and vocal tremors were
observed. Consonants were pronounced weakly. Therefore, vocal training and speech therapy may be
necessary to achieve more stable phonation.

Generated Response :

Severity : 1

Phonation : Your voice is generally stable, but there may be occasional slight tremors. This may
indicate a minor issue with phonation.

Articulation : The movements of the lips, tongue, and jaw are mostly accurate, but pronunciation may
occasionally sound unclear. This may suggest slight difficulties with articulation.

Prosody : The rhythm and speed of your speech are generally natural.

Overall : Overall, your speaking ability may have slight difficulties, but is generally well maintained.
This is considered a mild issue and is unlikely to significantly interfere with daily life.
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J Reference Data

The following is the reference data written by SLPs
for each severity level. It was actually written in
Korean.

Severity : 0
Phonation : The voice quality, pitch, and volume are all normal with no particular abnormalities.

Articulation : The speech organs such as the tongue, lips, and jaw moved at a normal speed for the
sounds /p/, /t/, /k/, and articulation in connected speech tasks was at an average level.

Prosody : The speech rate was regular, and no particular issues were observed in prosody.

Overall : There appear to be no special problems with speech overall. The voice and articulation are
appropriate for the age group.

Severity : 1
Phonation : The voice gradually becomes quieter, accompanied by noticeable tremors.

Articulation : The movements of the tongue, lips, and jaw are slow, and the syllables /puh/, /tuh/, and
/kuh/ were all pronounced slowly. Consonants were pronounced weakly, and there was difficulty in
producing rapid transitions between sounds.

Prosody : The speech rate was consistent, and no significant issues with prosody were observed.

Overall : Due to short phonation, the voice volume decreased during speech, and vocal tremors were
observed. Consonants were pronounced weakly. Therefore, vocal training and speech therapy may be
necessary to achieve more stable phonation.

Severity : 2
Phonation : Overall, the articulatory organs moved slowly and with limited motion during speech.

Articulation : It was difficult to move the articulatory organs quickly to produce distinct sounds
accurately, resulting in distorted or substituted pronunciation

Prosody : There were many prolonged pauses during speech, causing slow speech rate and disrupted
flow.

Overall : Low speech intelligibility is affected by articulation, phonation, and prosody. Due to the
muscles’ lack of agility and accuracy, the speech flow is disrupted, leading to reduced clarity.
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K Result of GENIE

These are examples of texts generated by GENIE
for each severity level. It was actually written in
Korean.

Severity : 0
Phonation : The patient’s voice is strong and steady. The voice is neither weak, trembling, nor breathy.

Articulation : The patient’s movements of the lips, tongue, and jaw are precise, resulting in clear and
distinct pronunciation. Sounds like <puh>, <tuh>, and <kuh> were pronounced accurately.

Prosody :The patient’s speaking rate, rhythm, and pitch are natural, with good emotional expression.

Overall : The patient’s speaking ability is within the normal range. Pronunciation, voice, and speech
rhythm are all natural and clear. There is no need for concern.

Severity : 1

Phonation : Your phonation is generally stable but may have slight variations. Your voice might be a
bit weak or shaky, but it is not a major concern.

Articulation : Movements of the lips, tongue, and jaw are mostly accurate, though sometimes your
pronunciation may sound unclear. You might experience some difficulty repeating the sounds *puh’,
’tuh’, and "kuh’.

Prosody : The rhythm and speed of your speech are mostly natural, but it may occasionally sound
monotonous. Emotional expression might be somewhat limited.

Overall : Overall, your speaking ability shows mild issues. It should not significantly affect everyday
conversations. Paying a bit more attention to pronunciation and speaking slowly can make your
speech clearer.

Severity : 2
Phonation :The patient’s voice may sound somewhat weak and unstable, indicating possible phonation

issues.

Articulation : The movements of the lips, tongue, and jaw are inaccurate, which can cause unclear
pronunciation. There may be difficulty producing the sounds ’puh’, "tuh’, and ’kuh’.

Prosody : The patient’s speech may sound monotonous and lack emotional expression, suggesting
problems with rhythm and speech rate.

Overall : The patient’s overall speaking ability is assessed as severe. This means difficulties in phona-
tion, articulation, and prosody. However, do not worry. Improvement is possible with appropriate
therapy and practice.
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