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ABSTRACT

Vision Transformers (ViTs) have become popular in computer vision tasks. Back-
door attacks, which trigger undesirable behaviours in models during inference,
threaten ViTs’ performance, particularly in security-sensitive tasks. Although back-
door defences have been developed for Convolutional Neural Networks (CNNs),
they are less effective for ViTs, and defences tailored to ViTs are scarce. To address
this, we present Interleaved Ensemble Unlearning (IEU), a method for finetuning
clean ViTs on backdoored datasets. In stage 1, a shallow ViT is finetuned to have
high confidence on backdoored data and low confidence on clean data. In stage
2, the shallow ViT acts as a “gate” to block potentially poisoned data from the
defended ViT. This data is added to an unlearn set and asynchronously unlearnt via
gradient ascent. We demonstrate IEU’s effectiveness on three datasets against 11
state-of-the-art backdoor attacks and show its versatility by applying it to different
model architectures.

1 INTRODUCTION

Vision Transformers (ViTs, Dosovitskiy et al. (2021)) have emerged as a powerful alternative to
Convolutional Neural Networks (CNNs) for a wide range of computer vision tasks. ViTs have
achieved state-of-the-art performance in various downstream tasks such as image classification,
object detection, and semantic segmentation (Thisanke et al., 2023; Shehzadi et al., 2023). However,
the widespread deployment of ViTs have also raised concerns about their vulnerability to adversarial
threats, particularly backdoor attacks, which typically modify images and/or labels in the training
dataset to trigger attacker-controlled undesirable behaviour during inference (Gu et al., 2019; Sub-
ramanya et al., 2024; Yuan et al., 2023). Backdoor attacks such as the BadNets attack in Gu et al.
(2019) can compromise model behaviour by embedding malicious triggers during training, leading to
security risks in real-world applications. As ViTs become increasingly popular in security-sensitive
domains such as autonomous driving and face recognition (Lai-Dang, 2024; Tran et al., 2022), it is
important to understand these vulnerabilities and develop robust backdoor defences for ViTs.

ViTs are often pretrained using self-supervised learning (SSL) on large datasets and then finetuned to
be deployed on specific tasks. Backdoor defences have been proposed to defend foundation models
pretrained on large datasets and can either prevent backdoor injection during the SSL process or
encourage removal of backdoors after pretraining (Tejankar et al., 2023; Bie et al., 2024); these
thwart backdoor attacks that occur during pretraining, such as a practical real-world attack on web-
scraped datasets in Carlini et al. (2024) and an SSL-specific imperceptible attack Zhang et al. (2024).
The finetuning process for adapting ViTs to downstream tasks using supervised learning is equally
vulnerable to backdoor attacks. The rationale behind developing ViT-specific defences for finetuning
are two-fold: Mo et al. (2024) shows that there are few defences specifically designed for ViTs for
image classification in existing literature (Doan et al. (2023) and Subramanya et al. (2024) being
notable examples of such defences); in addition, although existing defences designed for CNNs can
defend ViTs after modifying the defence implementations, they still lead to high ASR and/or low CA
when defending different flavours of ViTs (Tables 4 & 5 in Mo et al. (2024)).

To fill the gap, this work propose a novel backdoor defence that uses an ensemble of two ViTs to
perform interleaved unlearning on potentially poisoned data, demonstrating superior performance
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Figure 1: Overview of our defence, IEU. The red poisoned module and blue robust module are
represented by fp and fr, respectively. Shaded boxes are conditions; underlined text represent actions.
The lock icon indicates a frozen network. The blue network is shielded from poisoned images by the
red network and the blue network unlearns potentially poisoned data. Unaugmented images are used
for fp during both stages. Please refer to Section 3 for a summary of notations.

on ViTs compared to previous SOTA methods. Informed by the designs in Liu et al. (2024) and Li
et al. (2021b), we use a shallow ViT denoted by the “poisoned module” to defend the main ViT, which
we call the “robust module”. Our design IEU has two stages as shown in Figure 1. In stage 1, the
poisoned module (fp), a shallow ViT, is tuned on the attacker-controlled finetuning data. Intuitively,
shortcut learning (Geirhos et al., 2020) leads fp to learn shortcuts in the dataset, which are most
prevalent in poisoned images. In addition, the simplicity of fp discourages it from learning clean
data that have fewer shortcuts. Therefore, the poisoned module is confident (where confidence is the
maximum class probability max[σ(ŷp)] predicted by fp) when classifying poisoned data and not
confident otherwise. In stage 2, images pass through the tuned fp, which either queues data onto the
unlearn set or allows the defended main ViT (the robust module) to learn data normally based on
the confidence threshold cthresh. Whenever the unlearn set accumulates enough potentially poisoned
data, a batch is unlearnt by the robust module using a dynamic unlearning rate. Instead of using a
pre-determined unlearn set, our defence accumulates the unlearn set during stage 2. The benefits
are two-fold: compared to using ABL’s (Li et al., 2021b) method which isolates poisoned samples
using the defended model, finetune-time unlearn set accumulation using fp ensures that the robust
module learns as little poisoned data as possible; in addition, online accumulation of Dul is adaptive
in the sense that the frequency of unlearning is high when more potentially poisoned images are
encountered, quickly erasing the impact of a large number of poisoned data. In addition, we argue
that core concepts developed in our method, namely applying interleaved unlearning, can defend
other model architectures in image classification. Here are our main contributions:

• We propose the universally applicable and novel interleaved unlearning framework as a backdoor
defence. The defence, incorporated into IEU, alternates between learning benign data and unlearn
backdoored data. We show that our IEU is successful without requiring high-precision isolation of
poisoned data and performs especially well on ViTs.

• We empirically demonstrate that our design out-performs existing state-of-the-art defences on
challenging datasets using 11 backdoor attacks by comparing to SOTA methods such as ABL and
I-BAU (Li et al., 2021b; Zeng et al., 2021b); Attack Success Rate (ASR) improved by 33.83% and
31.46% on average for TinyImageNet and CIFAR10, respectively, while maintaining high Clean
Accuracy (CA).

• We demonstrate IEU’s universality by successfully defending ViT variants and CNN architectures
(Table 8). Furthermore, we show that IEU successfully repels an adaptive attack (Table 18).

• We explore potential points of failure of unlearning-based defence mechanisms to defend against
weak attacks where “weakness” corresponds to lower ASR. We propose potential solutions to
address these failures. In our opinion, weak attacks are as insidious as powerful attacks.

2 RELATED WORK

Backdoor Attacks. Attackers aim (a) to induce a specific classification when the input is perturbed
by an attacker-specified transformation and (b) to maintain normal performance when images without
a backdoor trigger are classified (Gu et al., 2019). Often, the attacker achieves the two goals by
injecting poisoned images into the training set. Backdoor attacks for both SSL (Zhang et al., 2024;
Sun et al., 2024; Saha et al., 2022; Li et al., 2023a; Jia et al., 2022) and supervised learning (Chen
et al., 2017; Liu et al., 2018b; Nguyen & Tran, 2021; Li et al., 2021a) have been proposed. There
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are three categories of backdoor attacks for supervised learning, which is the learning phase that this
work defends: dirty-label attacks which includes visible and invisible attacks (Tan & Shokri, 2020;
Lin et al., 2020; Doan et al., 2021), clean-label attacks which do not modify the label of backdoored
images (Gao et al., 2023b; Zeng et al., 2023; Turner et al., 2019), and clean-image attacks which only
modify data labels (Rong et al., 2024; Chen et al., 2023). Authors have also developed ViT-specific
backdoor attacks. For example, Zheng et al. (2023) inserts a Trojan into a ViT checkpoint, while Lv
et al. (2021) modifies the finetuning procedure by using an attacker-specified loss function.

Backdoor Defences. Defenders aim to ensure that backdoor images do not trigger attacker-specified
model behaviour whilst maintaining high CA. A popular class of defences is model reconstruction
where defenders cleanse poisoned models of backdoors (Liu et al., 2017; 2018a). Works in this
category aim to remove backdoor neurons and include Neural Attention Distillation (NAD, Li et al.
(2021c)), Adversarial Neuron Pruning (ANP, Wu & Wang (2021)) Adversarial Weight Masking
(AWM, Chai & Chen (2022)), Shapley-estimation based few-shot defence (Guan et al., 2022), and
Reconstructive Neuron Pruning (RNP, Li et al. (2023b)). Another such cleansing defence, I-BAU
(Zeng et al., 2021b) connects the two optimisation problems in the minimax formulation of backdoor
removal using an implicit hypergradient. Certified backdoor defences have also been developed
(Weber et al., 2023). Another broad class of defences involves reconstructing the trigger in order to
unlearn backdoor images. Notable examples include Neural Cleanse (Wang et al., 2019), DeepInspect
(Chen et al., 2019) which checks for signs of backdooring without a reserved clean set, and BTI-DBF
(Xu et al., 2024) which decouples benign features for backdoor trigger inversion. Tuning clean
models on backdoored datasets (Borgnia et al., 2021; Wang et al., 2022a;b; Zhang et al., 2023) is
also popular and is most related to our IEU. Additionally, methods such as Anti-Backdoor Learning
(ABL, Li et al. (2021b)) and ASD (Gao et al., 2023a) focus on isolating poisoned data.

ViT-Specific Backdoor Defences. Few backdoor defences are specifically designed for defending
ViTs during tuning (Mo et al., 2024) and existing defences that have CNNs in mind perform worse
on ViTs. Two notable defences are Doan et al. (2023) where backdoor images are identified using
patch-processing, and Subramanya et al. (2024) which is a test-time defence that uses GradRollout
(Gildenblat (2020), an interpretation method for ViTs) to block high-attention patches in images.

Machine Unlearning (Xu et al., 2023a) focuses on removing data from models due to privacy
reasons; additionally, unlearning is also useful for removing unwanted associations between certain
undesirable features and labels, making it useful for backdoor defence as shown in Li et al. (2021b).

3 METHOD

In this section, we first define our threat model and describe IEU in detail. We conclude this section
by briefly exploring the drawbacks of using a fixed-size unlearn set Dul.

Threat model. We focus on finetuning ViTs for image classification tasks and assume that the
pretrained model checkpoint initially given to the defender is not benign. We follow the threat model
of Li et al. (2021b). We assume that the finetuning procedure is controlled by the defender, which
means attacks that modify finetuning loss or the model’s gradient (Lv et al., 2021; Bagdasaryan &
Shmatikov, 2021) are out of scope. On the other hand, finetuning data is gathered from untrusted
sources and may contain backdoor data. The attacker knows the model architecture and the pretrained
checkpoint’s parameter values, and may poison the finetuning dataset by modifying images and/or
labels. The defender aims to tune a benign checkpoint for downstream tasks using Dtune and does not
know the distribution/proportion of backdoor data in the attacker-supplied Dtune.

Notations. The finetuning set Dtune may contain an unknown proportion of backdoor samples; this
proportion (i.e., poisoning rate) is denoted by α. The defender unlearns data in the unlearn set Dul,
whose size as a fraction of Dtune is defined as α̂ = |Dul| ÷ |Dtune|. The two sub-networks in the
ensemble are the poisoned module and robust module, denoted by fp and fr, respectively. Data
points (x,y) ∈ Dtune, which consist of unaugmented (xnoAug) and augmented (xyesAug) views of the
original image (as in “data augmentation”), and potentially poisoned data points (xp̂,yp̂) ∈ Dul

are used to finetune and defend fr, respectively. For simplicity, we use x to denote images when
data augmentation is not relevant. The logits produced by the two modules are referred to as
ŷp = fp(x ;θp) and ŷr = fr(x ;θr), where θp,θr are the potentially tunable parameters of fp and
fr, respectively. The two logits vectors ŷp and ŷr combine to form the logits vector ŷ based on mθp
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(Equation 1). We use σ(·) and ℓ(·, ·) to represent the softmax function and the cross-entropy loss,
respectively. The confidence threshold 0 < cthresh < 1 determines whether an image is asynchronously
unlearned or immediately learned. The number of classes in Dtune is denoted by Nc for CIFAR10,
GTSRB, and TinyImageNet, respectively. The learning rates used to finetune fr and unlearn xp̂ are
lrtune and lrul, respectively.

3.1 INTERLEAVED ENSEMBLE UNLEARNING (IEU)

Overview. Figure 1 summarises our method, which has two stages. During stage 1, the poisoned
module fp(· ;θp) is pre-finetuned using finetuning data Dtune. During stage 2, fp is used to determine
whether incoming data is learned by the robust module fr(· ;θr) or added to Dul for asynchronous
unlearning based on the unlearn rate lrul in Equation 3.

Stage 1: Isolating backdoored data by pre-finetuning the poisoned module fp. This step applies
vanilla tuning (for hyperparameters see Table 11) using Dtune on fp(· ;θp), where θp is initialised as
the first few layers of a pretrained checkpoint. Stage 1 solves the following optimisation problem:
minθp

ExnoAug∼Dtune [ℓ(fp(xnoAug ;θp),y)], where ℓ(·, ·) is the cross entropy loss, y is the one-hot
ground truth vector, and fp is the poisoned module. As explained in Section 1, the intuition of
overfitting fp on poisoned data is based on shortcut learning (Geirhos et al., 2020). These shortcuts
are found in backdoored images, where the attacker-specified trigger acts as an easily identifiable
artifact that causes fp to easily learn the connection between the trigger and attacker-specified label.
Therefore, the tuned fp is likely to be confident when predicting images with the trigger. The poisoned
module fp is designed to be complex enough to learn shortcuts and shallow enough to avoid learning
much from benign data. The goal is for max(σ(fp(xnoAug ;θp))) to be small for clean images and
large for backdoor images after stage 1. Note that the poisoned module is replaceable by other
methods (Doan et al., 2023; Li et al., 2021b; Gao et al., 2023a) that isolate backdoored data and fp is
not absolutely necessary for interleaved unlearning.

Stage 2: Apply Interleaved Unlearning on the robust module fr. This stage optimises the objective
in Equation 2, minimising the loss on clean data and maximising the loss on poinsoned data; θr is
initialised as a pretrained checkpoint. During this stage, θp is frozen and only θr is tuned. The logits
ŷp = fp(xnoAug ;θp) for the unaugmented view of each image is produced by fp in order to compute
maximum class probability max(σ(ŷp)), which is then compared to cthresh to determine whether the
data point should be learned by fr or added onto Dul. If max(σ(ŷp)) is above cthresh, the data point is
added to Dul. Otherwise, fr learns the augmented views as in regular finetuning. To prevent poisoned
data from being learned, we apply logit masking on the output logits of fr and fp (Equation 1)

mθp = 1x<cthresh(max(σ(fp(xnoAug ;θp)))), where ŷ = ŷp(1−mθp) + ŷrmθp (1)
where mθp is the binary logit mask, 1x<cthresh(x) is the indicator function, y is the ground truth, ŷ
is the logits vector, and ŷp = fp(xnoAug ;θp), ŷr = fr(xyesAug ;θr) are the logits produced by fp
and fr, respectively. When xnoAug is detected by fp as a potentially poisoned image, the logits for
optimising the “Learning” objective in Equation 2 come from fp; otherwise, ŷ = ŷr. In other words,
optimising the “Learning” objective (Equation 2) requires both fp and fr to contribute to the logits.

min
θr

Ex∼Dtune [ℓ(ŷ,y)]︸ ︷︷ ︸
Learning

−Exp̂∼Dul [ℓ(fr(x
p̂ ;θr),y

p̂)]︸ ︷︷ ︸
Unlearning

(2)

The unlearn set Dul accumulates data until it has enough data for one batch containing potentially
poisoned images (xp̂,yp̂), which is then unlearnt by fr during finetuning. Unlike the continuously
decaying learning rate lrtune used for normal finetuning, the unlearning rate lrul doesn’t depend on
just the decay schedule. Given lrtune which follows the cosine annealing decay schedule, the (k−1)th

batch with potentially poisoned images (xp̂
k−1,y

p̂
k−1), the number of classes in the dataset Nc, and

the robust module fr(· ;θr), the dynamic unlearning rate for the current batch (xp̂
k,y

p̂
k) is defined in

Equation 3 and can be viewed as a function of cross entropy loss of the previous batch of potentially
poisoned images ℓ(fr(x

p̂
k−1 ;θr),y

p̂
k−1).

lrul
k = lrtune ·

(
1k>0(k) ·max

[
6− exp

[
−
(
ln(Nc)− ℓ(fr(x

p̂
k−1 ;θr),y

p̂
k−1)÷

√
2
)]

, 0.2
]
+ 1k=0(k)

)
(3)

The two indicator functions ensure lrul
k = lrtune when k = 0, which occurs at an epoch’s beginning.

The term that scales lrtune in Equation 3 is an exponentially decreasing function with respect to in-
creasing loss ℓ(fr(x

p̂
k−1 ;θr),y

p̂
k−1), causing lrul

k to be large when the previous batch xp̂
k−1 produces
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low cross entropy loss on fr. This keeps the backdoor from being learned by fr. Although it is
shown in Table 9 that using lrul

k = c · lrtune for some c ∈ R+ performs better than using Equation 3,
one benefit of defining lrul

k using a fixed function is that lrul
k is no longer a hyperparameter that

needs to be tuned. In addition to the “Learning” objective, interleaved unlearning optimises the
“Unlearning” objective in Equation 2, which is implemented using gradient ascent performed on fr
given (xp̂,yp̂) ∈ Dul. See Algorithm 1 in Appendix B for a precise description of stage 2.

3.2 WHY NOT A FIXED-SIZED UNLEARN SET?

In this subsection, we argue that, for IEU, isolating a variable fraction of the training set as the
poisoned set leads to better performance. Authors in ABL (Li et al., 2021b) isolate a fixed fraction
(called “risol”) of the tuning set where 0 ≤ risol ≤ 1 (they used risol = 0.01). In their method, images
whose cross entropy loss rank amongst the lowest risol fraction of Dtune is collected to form Dul of
size α̂ = risol. ABL uses techniques such as Local Gradient Ascent (LGA) or loss Flooding on the
defended model to encourage poisoned images to have low loss. Compared to using risol (ABL), there
are two main advantages for using cthresh (our method) to produce the unlearn set in our method: (a)
the effectiveness (FPR or FNR) of our isolation method is not significantly affected by the value of
the poisoning rate α, which is unknown to the defender (Table 1), and (b) the unlearn set size varies
as α varies, which increases defence success using IEU since a high proportion of poisoned data
should be added to Dul for low ASR and high CA (α̂i ÷ α ∈ {0.9, 1.0} in Table 2).

Table 1: Performance of the two methods when evaluated on detecting poisoned finetuning data
(CIFAR10). Five poisoned module (fp) instances are pre-finetuned for 10 epochs at 2 · 10−4 learning
rate with different poisoning rate α; cthresh and risol are fixed at 0.95 and 0.1, respectively. Each cell
shows the FPR/FNR values as percentages (“positive” means “poisoned”).

Attack Selection Method α = 0.02 0.05 0.10 0.15 0.20

BadNets-white risol 8.68/25.30 6.42/22.04 0.80/7.22 0.03/33.49 0.00/50.00
cthresh 9.16/24.90 5.67/22.84 5.62/5.30 6.09/10.25 4.71/5.17

ISSBA risol 8.59/21.00 5.60/6.44 0.62/5.54 0.00/33.33 0.00/50.00
cthresh 6.27/25.40 6.79/5.76 5.55/2.58 6.51/1.48 5.68/0.48

Table 2: Performance of models that are defended during stage 2 using IEU with hand-crafted unlearn
sets Dul

i of varying sizes (α̂i) as a fraction of the original finetune set Dtune. The poisoning rate
is fixed at α = 0.1 and the sizes of Dul

i as a fraction of Dtune are α̂i ∈ (0.01, 0.02, 0.05, 0.1, 0.2).
A hand-crafted unlearn set Dul

i consists entirely of poisoned data if α̂i ÷ α ≤ 1 and includes all
poisoned data if α̂i ÷ α ≥ 1. All values here are expressed in percentages.

Size ratio (α̂i ÷ α): 0.1 0.2 0.5 0.9 1.0 2.0

Dataset Attack ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA

CIFAR10
BadNets-white 10.09 98.18 9.89 97.58 6.41 96.30 0.88 97.94 0.88 98.28 0.67 97.83
ISSBA 100.00 98.31 100.00 98.18 0.00 96.94 0.00 97.99 0.00 98.23 0.00 98.16
Smooth 95.32 98.24 82.28 97.93 0.06 97.00 0.77 97.98 0.94 98.24 0.11 97.90

TinyImageNet
BadNets-white 0.32 61.95 0.01 57.89 0.00 54.03 0.00 63.43 0.00 65.95 0.00 37.18
ISSBA 57.84 64.94 0.15 58.70 0.00 22.50 0.00 38.63 0.16 46.97 0.05 16.37
Smooth 93.51 68.37 77.33 64.84 0.00 55.93 0.00 61.95 0.01 66.28 0.00 38.86

Table 1 shows that the FPR/FNR are similar for both risol and cthresh at low poisoning rate. However,
as α increases, using risol causes more poisoned data to be left out of Dul. For example, at α = 0.2
and risol = 0.1 (meaning α̂i ÷ α = 0.1 ÷ 0.2 = 0.5), the FNR is 50%. This results in instability
during defence and worse performance as shown in Table 2 (column 0.5) since a large fraction of
poisoned data is not in Dul. As less poisoned data is included in Dul, our defence becomes less
effective with ASR increasing and CA decreasing (Table 2). Since using a fixed risol leaves many
poisoned images outside of Dul when α > risol, we use cthresh to select a variable-sized Dul.

We show in Table 15 (Appendix C) that our shallow fp is not compatible with LGA/Flooding when
tuning with CIFAR10/TinyImageNet; however, applying LGA/Flooding during stage 1 is helpful
when using IEU with GTSRB.
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4 EXPERIMENTS

See Appendix A for more details regarding baselines, attacks, datasets and defence parameters.

Baselines. We use three baseline methods for comparison with our defence. Specifically, we compare
against I-BAU (Zeng et al., 2021b), ABL (Li et al., 2021b), and AttnBlock (Subramanya et al., 2024)
which is a ViT-specific defence. We report results for AttnBlock in Appendix A.2 due to high ASR.
I-BAU and ABL are state-of-the-art general defences not specifically designed for ViTs; authors
in (Wang et al., 2022a) suggest that I-BAU is the most competitive baseline compared to others.
We attempt and fail to reproduce the RNP defence (Li et al., 2023b) for ViTs despite following
recommendations in Mo et al. (2024) to mask features of linear layers instead of those of norm layers.

Attacks. We evaluate the performance of our design on 11 backdoor attacks. Specifically, we consider
9 out of 10 attacks in Wang et al. (2022a): BadNets-white (white lower-right corner), BadNets-pattern
(grid pattern in lower-right corner) (Gu et al., 2019), Blended (Chen et al., 2017), l0-inv, l2-inv (Li
et al., 2021a), Smooth (Zeng et al., 2021a), Trojan-SQ, Trojan-WM (Liu et al., 2018b), and a clean
label attack, SIG (Barni et al., 2019). In addition, we consider the sample-specific invisible attack
ISSBA (Li et al., 2021d) and an image transformation-based attack BATT (Xu et al., 2023b). Please

Table 3: Performance of IEU compared to no defence, ABL (Li et al., 2021b), I-BAU (Zeng et al.,
2021b) given as percentages. Averages of each column are given in the last row for that dataset and
best/second-best values are bolded/underlined. See Appendix A.2 for AttnBlock results.

Dataset Attack No Defence I-BAU ABL IEU (ours)
ASR CA ASR CA ASR CA ASR CA

CIFAR10

BadNets-white 97.51 98.36 10.12 95.86 9.7 98.11 0.96 98.19
BadNets-pattern 100.0 98.23 91.84 92.16 100.0 97.4 0.0 98.22
ISSBA 100.0 98.13 9.46 92.96 100.0 37.62 0.33 98.35
BATT 100.0 98.28 21.68 95.86 90.05 97.94 0.02 98.23
Blended 100.0 98.39 21.0 93.92 25.04 97.82 0.0 98.27
Trojan-WM 99.99 98.32 79.94 94.16 99.91 97.97 0.0 98.15
Trojan-SQ 99.7 98.31 68.26 94.62 99.62 98.27 0.04 98.22
Smooth 99.76 98.24 16.26 94.0 9.31 97.12 0.09 97.77
l0-inv 100.0 98.34 10.28 93.24 0.04 97.12 0.0 98.19
l2-inv 99.98 98.41 9.98 93.4 8.62 98.1 0.44 98.24
SIG 98.49 88.75 9.16 94.38 97.94 88.44 0.0 87.67
Average 99.58 97.43 31.63 94.05 58.2 91.45 0.17 97.23

GTSRB

BadNets-white 95.7 95.63 5.48 99.1 4.09 92.83 2.22 83.26
BadNets-pattern 100.0 96.44 5.46 98.17 4.09 93.76 0.0 95.11
ISSBA 99.99 95.91 5.48 99.48 3.63 93.15 2.81 86.48
BATT 100.0 96.18 6.08 99.58 2.29 92.79 7.4 88.38
Blended 100.0 96.95 11.24 97.75 0.0 92.95 6.83 89.25
Trojan-WM 100.0 92.75 5.26 98.11 0.0 75.16 8.87 91.81
Trojan-SQ 99.85 94.91 5.48 99.61 99.6 81.99 2.85 89.02
Smooth 99.79 96.29 27.5 99.74 3.46 92.36 15.37 88.45
l0-inv 100.0 96.76 5.44 99.7 100.0 94.96 0.0 88.81
l2-inv 100.0 93.93 9.06 99.71 77.79 96.03 20.26 83.67
SIG 99.52 91.41 2.92 38.32 95.53 83.49 0.0 77.39
Average 99.53 95.2 8.13 93.57 35.5 89.95 6.06 87.42

TinyImageNet

BadNets-white 98.51 61.46 0.48 51.06 0.24 59.19 0.12 66.35
BadNets-pattern 100.0 62.72 75.72 55.04 0.25 60.59 0.0 66.62
ISSBA 99.62 63.1 87.18 0.66 0.08 57.56 0.05 40.6
BATT 99.98 66.66 89.8 60.16 0.02 62.36 3.07 64.15
Blended 100.0 70.21 65.22 61.38 0.0 64.06 0.0 66.41
Trojan-WM 99.96 69.89 90.68 60.9 99.31 68.92 0.0 67.33
Trojan-SQ 99.79 63.56 97.5 57.46 99.74 63.04 0.0 67.28
Smooth 99.35 68.58 4.62 60.68 0.03 61.74 0.17 66.03
l0-inv 100.0 63.14 99.76 54.48 99.99 44.29 0.0 65.89
l2-inv 99.82 65.43 0.44 59.32 0.04 57.92 0.01 64.5
SIG 67.99 71.65 19.04 63.58 83.67 59.04 7.77 71.71
Average 96.82 66.04 57.31 53.16 34.85 59.88 1.02 64.26
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refer to Appendix A.1 for visualisations of backdoored images. Although ViT-specific backdoor
attacks exist in literature (Zheng et al., 2023; Lv et al., 2021), we did not include these attacks due to
their focus on inference-time attacks. Moreover, they use threat models that are incompatible with
ours. For example, Zheng et al. (2023) injects a trigger at inference-time (which does not concern
finetuning), while Lv et al. (2021) modifies the finetuning procedure (which is controlled by the
defender in our threat model) by using an attacker-specified loss function.

Datasets and default parameters. We used three datasets to evaluate our defence (CIFAR10
Krizhevsky (2009), GTSRB Houben et al. (2013), and TinyImageNet1 Deng et al. (2009)). Defence
parameters are shown in Appendix A.2.

4.1 MAIN RESULTS

We show the results of our IEU compared to other baselines in Table 3. Our method’s ASR out-
performs I-BAU by 31.46 percentage points (pp) on CIFAR10 and out-performs ABL by 33.83pp on
TinyImageNet. In addition, our IEU’s CA for CIFAR10 and TinyImageNet are generally better than
the corresponding values of the baselines. Our method has the lowest ASR in all attacks and 9 out of
11 attacks in CIFAR10 and TinyImageNet, respectively. Moreover, our method produces the highest
CA for 9 out of 11 attacks for both CIFAR10 and TinyImageNet. We explore the limitations of IEU
in Section 5 for weaker attacks and for the GTSRB dataset. Note that I-BAU uses the highest amount
of GPU memory (39 GB on an NVIDIA A100) when compared to ABL and IEU (≤ 20 GB).

4.2 ABLATION STUDY ON HYPERPARAMETERS

The importance of logit masking is shown in Table 4, which demonstrates performance degradation
of IEU when logit masking is not used. Without logit masking, fr both learns and unlearns (xp̂,yp̂) ∈
Dul, which by default is not learned in IEU. If the robust module performs poorly on potentially
poisoned data because of asynchronous unlearning, the absence of logit masking allows the model to
relearn the poisoned data during parameter updates for finetuning. Therefore, the model repeatedly
learns and unlearns the same data, resulting in low performance on non-poisoned data. This reasoning
also guides our decision to use fp instead of fr to isolate xp̂ for Interleaved Unlearning.

Table 4: Performance of IEU without applying logit masking during finetuning. Leaving out logit
masking means that ŷ = ŷr is used instead of using Equation 1. All values given in percentages.

Dataset BATT BadNets-white ISSBA Smooth

ASR CA ASR CA ASR CA ASR CA

CIFAR10 0.00 79.75 0.61 81.49 0.00 83.42 0.00 64.06
TinyImageNet 0.36 56.12 0.01 28.85 0.00 11.98 0.00 26.49

Table 5: Performance of IEU when finetuned using Dtune with different poisoning rate values using
CIFAR10, α = {0.02, 0.05, 0.1, 0.15, 0.2}. All values given in percentages.

Attack α = 0.02 0.05 0.10 0.15 0.20

ASR CA ASR CA ASR CA ASR CA ASR CA

BadNets-white 1.30 88.27 1.22 94.05 0.96 98.19 0.81 97.14 1.16 97.85
ISSBA 0.04 91.78 0.00 96.78 0.33 98.35 0.16 98.15 0.00 98.10

Defence performance for varying poisoning rate is shown in Table 5. We test a wide range of
poison rates to determine the effectiveness of IEU under different attack settings. Overall, our IEU is
able to defend against backdoor attacks with both high and low poisoning rate. The decrease in CA
when poisoning rate is low is due to the worse performance of fp at detecting potentially poisoned
samples as shown in Table 1. We believe that better isolation methods for collating Dul (Doan et al.,
2023) will result in higher CA.

Effects of different confidence threshold values are shown in Table 6. As one of the important
hyperparameters in our IEU, varying cthresh does not significantly affect model performance for both

1Used in Stanford’s course CS231N. Download: http://cs231n.stanford.edu/tiny-imagenet-200.zip
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CIFAR10 and TinyImageNet. Looking at the “Poison” and “Clean” columns of Table 6, we generally
see less data (ether poisoned or clean) having maximum class probability above the confidence
threshold as cthresh increases. Based on this observation, we argue that the performance of IEU
remains stable even as Dul decreases in size.

Table 6: Performance of IEU with cthresh ∈ {0.9, 0.95, 0.99}. The values in the “Poison” and “Clean”
columns correspond to the percentage of poisoned and clean data, respectively, that’s classified as
poisoned data by fp for the corresponding cthresh. Note that cthresh = 0.95 is the default setting. All
values given in percentages.

Dataset cthresh
BATT BadNets-white Smooth

ASR CA Poison Clean ASR CA Poison Clean ASR CA Poison Clean

CIFAR10
0.90 0.06 94.42 94.51 13.61 0.81 97.47 95.71 11.53 0.05 96.79 97.23 15.16
0.95 0.02 98.23 95.83 7.10 0.96 98.19 95.00 5.62 0.09 97.77 95.81 7.79
0.99 1.74 98.09 90.68 0.78 1.27 98.09 92.70 0.55 0.32 97.98 90.76 1.26

TinyImageNet
0.90 6.73 65.31 92.68 0.52 0.12 65.10 89.45 0.48 0.00 66.03 92.27 0.88
0.95 3.07 64.15 88.48 0.11 0.12 66.35 87.44 0.21 0.17 66.03 89.30 0.41
0.99 1.10 65.41 92.19 0.00 0.12 65.35 82.03 0.01 2.45 64.65 80.17 0.07

The complexity of the poisoned module as represented by the depth of fp significantly affects the
defence performance of IEU as shown in Table 7. As the depth of fp increases, it becomes more
complex and more adept at learning non-poisoned samples. Since fp is confident about a larger
number of clean images, this causes the number of clean data in Dul to become higher and reduces
the amount of data learned by fr. Therefore, as fp becomes deeper, CA decreases since the robust
module unlearns more clean data (rows for CIFAR10 and TinyImageNet of Table 7). This effect
is especially pronounced for simpler datasets (e.g., CIFAR10) because simpler datasets are more
easily learned given the same model complexity, leading to more clean images being directed to Dul.
Tuning cthresh for different depth leads to better performance as shown in the last two rows of Table 7.

Table 7: Performance of IEU with varying poisoned module depth. The cthresh values used for the
last three rows are chosen after inspecting the distribution of maximum class probability values
max(σ(fp(x ;θp)) using poisoned training data. All values given in percentages.

Depth (cthresh) BadNets-white Blended ISSBA

ASR CA ASR CA ASR CA

CIFAR10
1 (0.95) 0.96 98.19 0.00 98.27 0.33 98.35
2 (0.95) 1.30 56.09 0.00 86.49 0.00 87.90
3 (0.95) 0.00 18.04 0.00 64.83 0.00 34.21

TinyImagenet
1 (0.95) 0.12 66.35 0.00 66.41 0.05 40.60
2 (0.95) 0.02 60.26 0.00 63.77 0.04 37.68
3 (0.95) 0.01 59.11 0.00 61.80 0.12 36.50

CIFAR10
(Variable cthresh)

2 (0.99) 0.92 97.65 0.00 92.10 0.00 98.25
3 (0.998) 0.82 92.79 0.00 98.20 0.00 98.02

4.3 ABLATION STUDY ON DEFENCE DESIGN

We demonstrate that IEU works well for Vision Transformer variants and CNN architectures
in Table 8. We evaluate IEU where the following Vision Transformer variants are used as the robust
module: CaiT-XXS (Touvron et al., 2021b), DeiT-S (Touvron et al., 2021a), PiT-XS (Heo et al., 2021),
ViT-S (default architecture, Dosovitskiy et al. (2021)), and XCiT-Tiny (El-Nouby et al., 2021). In
addition, we use ResNet-18 (He et al., 2015) and WideResNet-50-2 (Zagoruyko & Komodakis, 2017)
to evaluate our defence on non-ViT architectures. The Interleaved Ensemble Unlearning framework
generally performs well for most architectures. In addition, IEU trains high-performing models when
α = 0 where Dtune is clean (see “No Attack” column of Table 8).

The effects of using constant unlearning rate is shown in Table 9. Our defence is slightly more
effective when lrul and lrtune differ by a small constant factor (first three rows of CIFAR10 &
TinyImageNet in Table 9). However, on average there is only a small difference between the
performance of Dynamic and constant lrul. For example, Dynamic lrul on average achieves 65.97%
CA on TinyImageNet, only 2.48pp lower than the best CA at lrul = lrtune; ASR is comparable. To
have fewer hyperparameters, we use Dynamic lrul instead of lrul = c · lrtune for hyperparameter c.
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Table 8: Performance of IEU with different model architectures using CIFAR10. The penultimate
column showcases CA when applying IEU on clean Dtune. The “No Defence” column uses BadNets-
white as the attack and is tuned without defence. The first layer of ViT-S is used as the poisoned
module for all models. We use cthresh = 0.99 for “No Attack” since this choice mounts an effective
defence as shown in Table 6. All values given in percentages.

Variant BATT BadNets-white ISSBA Smooth No Attack No Defence

ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA

CaiT-XXS 0.01 97.01 0.98 97.07 0.76 97.11 1.20 97.09 - 97.40 96.80 97.09
DeiT-S 0.25 97.83 1.00 97.94 0.32 98.22 2.05 97.83 - 98.21 96.96 97.96
PiT-XS 0.09 96.44 1.14 96.62 4.73 96.74 3.53 96.66 - 96.78 96.70 96.66
ViT-S 0.02 98.14 0.93 97.95 0.06 98.15 0.09 97.61 - 97.87 97.34 98.12
XCiT-Tiny 0.96 87.72 0.99 87.67 1.04 85.47 4.66 83.96 - 92.48 95.07 91.79

ResNet-18 0.35 90.99 7.22 91.68 6.37 91.00 6.38 91.45 - 92.45 94.25 91.73
VGG-11 3.19 88.86 8.39 90.22 11.63 89.45 9.70 73.78 - 91.22 95.36 90.59

Table 9: Performance of IEU using different ways of computing lrul. Average ASR/CA across rows
are shown in the last column. Dynamic lrul is computed using Equation 3. All values given in
percentages.

Dataset lrul BATT BadNets-white Smooth Trojan-WM l0-inv Average

ASR CA ASR CA ASR CA ASR CA ASR CA ASR CA

CIFAR10

1 · lrtune 0.02 98.02 0.72 97.97 0.05 98.01 0.00 93.84 0.00 97.76 0.20 96.96
2 · lrtune 0.01 93.95 0.72 93.16 0.04 93.56 0.00 85.59 0.00 88.57 0.19 91.56
4 · lrtune 0.00 79.37 0.63 83.16 0.01 70.43 0.00 70.50 0.00 76.45 0.16 75.87
Dynamic 0.02 98.23 0.96 98.19 0.09 97.77 0.00 98.15 0.00 98.19 0.27 98.09

TinyImageNet

1 · lrtune 2.47 67.21 0.15 68.72 0.03 68.79 0.00 69.07 0.00 68.04 0.66 68.45
2 · lrtune 0.02 66.87 0.05 63.68 0.02 63.66 0.00 67.04 0.00 60.93 0.02 65.31
4 · lrtune 0.00 63.38 0.07 47.53 0.00 51.10 0.00 49.08 0.00 29.72 0.02 52.77
Dynamic 3.07 64.15 0.12 66.35 0.17 66.03 0.00 67.33 0.00 65.89 0.84 65.97

5 DISCUSSION AND LIMITATIONS
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Figure 2: Maximum class probabil-
ity max(σ(fp(x ;θp)) CDF based
on logits produced by the poisoned
module on clean and poisoned data
for the ISSBA attack on GTSRB
where fp is tuned with (top) and
without (bottom) LGA in stage
1. Dotted horizontal lines show
percentages of clean/poisoned data
whose max(σ(fp(x ;θp)) lie below
0.95.

The Interleaved Unlearning Framework is a high-performing
defence for tuning benign models on backdoored datasets.
The impact is that this novel framework is an improvement
for ViTs in terms of stability and performance over existing
unlearning-based methods that aim to cleanse models after
tuning on backdoored data.

Why do we use Local Gradient Descent (LGA) to tune fp on
the GTSRB dataset? Since the GTSRB dataset contains easily-
learnt associations between benign images and their labels, the
small learning capacity of fp still learns a significant amount
of benign features. LGA unlearns data whose cross entropy
loss is below a threshold γ. This means that benign data whose
loss does not quickly decrease past an appropriately-chosen
γ will be unlearned when ℓ(·, ·) ≈ γ. In contrast, the loss
of backdoored data quickly decreases to around zero, where
unlearning has a smaller effect due to the small magnitude
of the gradient (fp overfits on poisoned images, meaning that
the parameters θp are close to optimal. Hence, the gradient
on poisoned data is close to zero). Unlearning benign data
whose loss is larger and for which θp is far from optimal
leads to a greater effect as the magnitude of the gradient is
greater. Therefore, using LGA to tune fp causes benign data
to not be learnt, thus preventing clean images from being
unlearnt during interleaved unlearning. This is verified in
Figure 2, where without LGA the percentage of clean data
whose maximum class probability exceeds 95% is 14.6pp
higher compared to tuning with LGA.
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Weakness [a] The weaker the attack, the worse the defender’s performance. We believe that
defending/detecting weak attacks is as important as defending strong attacks. A key difficulty in
designing performant unlearning-based backdoor defence methods is identifying and mitigating weak
attacks. An example of a relatively weak attack is WaNet (Nguyen & Tran, 2021), and as shown in
Table 10, the two unlearning-based methods (our IEU and ABL) we consider are less performant.
Weakness [a] and [b] have a similar root cause. Both weaknesses are caused by a less effective fp
for isolating backdoored data. This effect is also seen to a smaller extent against the clean label SIG
attack (Barni et al., 2019) on TinyImageNet, where the ASR without defence is ≈ 68%. As shown
in Table 3, although ASR for SIG when defended using IEU is the lowest when comparing across
different defences, the ASR for SIG is higher compared to the ASR on other attacks when defending
using our IEU.

Solutions for weakness [a]. A better isolation method can be used in place of fp, such as in Doan
et al. (2023). We surmise that using Doan et al. (2023)’s isolation method would make interleaved
unlearning even more effective: although our IEU does not require poisoned data isolation rate to be
close to 100% (see the ASR and CA values in Table 6 where adjacent “Poison” values are ≈ 80%
and Table 2 where α̂i ÷ α ∈ {0.5, 0.9}), a more effective isolation method causes the robust module
to learn less backdoored data and unlearn less clean data.

Table 10: Performance of different backdoor defences on the WaNet
attack (Nguyen & Tran, 2021) using the CIFAR10 dataset. Best and
second-best values are bolded and underlined, respectively. All values
are reported in percentages.

No Defence I-BAU ABL IEU

ASR CA ASR CA ASR CA ASR CA

72.81 97.39 10.26 90.24 0.00 10.00 26.01 94.17
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Figure 3: max(σ(fp(x ;θp))
CDF on clean/poisoned data
for WaNet using CIFAR10.

Weakness [b] Instability during defence in stage 2 occurs when defending the VGG-11 model
architecture against the Smooth attack. The instability causes NaN loss values during finetuning.

Potential solutions for weakness [b]: either (1) using lrul = c · lrtune for hyperparameter c instead of
the Dynamic lrul explained in Equation 3 or (2) replacing ℓ(fr(x

p̂
k−1 ;θr),yk−1) with a weighted

moving average of successive cross entropy losses in Equation 3 may prevent instabilities from being
introduced when alternating between finetuning and unlearning steps.

6 CONCLUSION

This work presents a novel and highly effective method for finetuning benign ViTs on backdoored
datasets called Interleaved Ensemble Unlearning (IEU). We use a small and shallow ViT (the poisoned
module) to distinguish between clean and backdoored images and show that alternating between
learning clean data and unlearning poisoned data during defence is an effective way of preserving
high clean accuracy whilst foiling the backdoor attack. We demonstrate that our defence is effective
for complicated real-world datasets and discuss ways to make IEU more robust.

Impact. This paper’s impact goes beyond developing a backdoor defense that works particularly
well on ViTs. We believe that the Interleaved Unlearning framework, which extends ABL (Li et al.,
2021b) and Denoised PoE (Liu et al., 2024), can be used to tune benign models with a great variety
of different model architectures. In addition, we encourage future work to consider and remedy the
weaknesses we point out in Section 5 for unlearning-based backdoor defences.
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A MORE IMPLEMENTATION DETAILS

A.1 BACKDOOR ATTACK DETAILS

For SIG (Barni et al., 2019) we poison 100% of the chosen target class regardless of the dataset.
We mostly base our data poisoning code on BackdoorBox’s attacks (Li et al., 2023c); for attacks
that are not available in BackdoorBox, we adapt our code from the attack authors’ source code.
We modify the code for BATT (Xu et al., 2023b) implemented in BackdoorBox by moving the
attacker-specified transformation to before the data augmentation step. For ISSBA (Li et al., 2021d),
one encoder/decoder pair is trained for each of the three datasets. Figure 4 shows visualisations of
backdoored images on CIFAR10. Throughout the paper, the target class used by the attacker is class
1.

No Attack BadNets-white BadNets-pattern ISSBA BATT Blended

Trojan-WM Trojan-SQ Smooth l0-inv l2-inv SIG

Figure 4: Visualisation of backdoored images (CIFAR10).

A.2 BACKDOOR DEFENCE DETAILS

The data augmentations used for finetuning without defence and in our method (IEU) are based on
the augmentations in Atito et al. (2021) where drop perc and drop replace are set to 0.3 and
0.0, respectively. Three views of each image are produced: an unaugmented image, a clean crop
with only colour jitter, and a corrupted crop with colour jitter and patch-based corruption. We used
the pretrained checkpoint in Atito et al. (2021) for finetuning. Note that only the non-corrupted
view is used to finetune models when demonstrating the effectiveness of IEU with different model
architectures in Table 8. Each image’s spatial dimension is 224× 224 pixels. For all experiments
except for those found in Table 8, ViT-S is used as the base architecture: patch size of the ViT is
16× 16; we use embed dim = 384, num heads = 6, mlp ratio = 4, and LayerNorm (Ba
et al., 2016).

Finetuning without defence. On all datasets, the ViT is finetuned for 10 epochs using the Adam
(Kingma & Ba, 2015) optimizer with initial learning rate 2 · 10−5 and a cosine annealing learning
rate scheduler that terminates at 1 · 10−6, weight decay using a cosine annealing scheduler starting
from 0.04 and increasing to 0.1, and effective batch size 128 (recall that the two augmented views of
each image is used during finetuning).

Table 11: Defence parameters used for CIFAR10/TinyImageNet and GTSRB. Parameters for CI-
FAR10/TinyImageNet have never been tuned (i.e., they were set to these values prior to running any
experiments with IEU).

Dataset Stage 1 used LGA Stage 1 Epochs/Warmup Stage 1 lr cthresh lr decay

GTSRB Yes 10/Yes 2 · 10−4 0.9 No
CIFAR10/TinyImageNet No 10/Yes 2 · 10−4 0.95 No

Our method (IEU). For stage 1, the differences in the hyperparameters used for CI-
FAR10/TinyImageNet and GTSRB to pre-finetune the poisoned module are shown in Table 11.
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A weight decay of 0.0 is applied to the poisoned module throughout stage 1 and no data augmen-
tations are applied. If learning rate warmup is used, the learning rate scheduler performs a linear
warmup for one epoch starting from lr = 0. The batch size is 64. Recall that poisoned module is a
shallow ViT of depth 1. For stage 2, we use the same parameters during finetuning as for finetuning
without defence. Please refer to Section 3 and Equation 3 for an explanation of the unlearning rate
lrul.

ABL. Since the model architecture we use is different compared to the architectures used in Li et al.
(2021b), we perform hyperparameter tuning using the BadNets-white attack on all three datasets. The
isolation ratio risol (fraction of Dtune to unlearn) is set to 0.01 and every image in Dul is poisoned by
default since we verify that LGA/Flooding can accurately select poisoned images on BadNets-white
using CIFAR10. Table 12 shows the ABL hyperparameter tuning results for all three datasets. We
choose 5 · 10−7, 1 · 10−6, 2 · 10−7 as the unlearning rate for CIFAR10, GTSRB, and TinyImageNet,
respectively. In addition, we use the Adam optimiser.

Table 12: Hyperparameter tuning for ABL on CIFAR10, GTSRB, and TinyImageNet. Bolded are
reasonably good values that correspond to our choices for unlearning lr.

Unlearning lr CIFAR10 GTSRB TinyImageNet

ASR CA ASR CA ASR CA

5.0 · 10−8 97.29 98.40 - - 97.80 61.34
1.0 · 10−7 97.02 98.41 - - 95.61 61.06
2.0 · 10−7 96.19 98.38 94.53 95.56 0.25 59.29
3.0 · 10−7 85.64 98.37 93.85 95.49 0.03 57.30
5.0 · 10−7 9.63 98.08 83.84 95.46 0.00 45.52
1.0 · 10−6 7.00 94.73 4.84 93.56 0.00 3.06
2.0 · 10−6 - - 0.00 83.11 - -
3.0 · 10−6 - - 0.00 72.39 - -
5.0 · 10−6 0.00 84.78 0.00 36.74 0.00 0.50
1.0 · 10−5 0.00 10.00 0.00 3.56 0.00 0.50
5.0 · 10−5 0.00 10.00 0.00 3.56 0.00 0.50
1.0 · 10−4 0.00 10.00 0.00 0.95 0.00 0.50

I-BAU. We also perform hyperparameter tuning for I-BAU (Zeng et al., 2021b) for the same reasons
above. Following suggestions in the appendix of Wang et al. (2022a), we tune outer lr ∈
{5 · 10−4, 1 · 10−4, 5 · 10−5, 1 · 10−5, 5 · 10−6} and inner lr ∈ {0.1, 1, 5, 10, 20} for CIFAR10
and TinyImageNet. GTSRB is not separately tuned since good eprformance is reached using
CIFAR10’s hyperparameters. We choose as the hyperparameters (outer lr,inner lr) = [(5 ·
10−5, 5), (5 · 10−5, 5), (5 · 10−5, 10)] for CIFAR10, GTSRB, and TinyImageNet, respectively. In
addition, we use the Adam optimiser as the outer optimiser for I-BAU. For every dataset, 5000 images
from the testing set are used for the unlearning step (unlloader in their code). Note that 5000
clean images taken from the testing set is the default setup in the defence code of I-BAU.

AttnBlock. This is the defence referred to as the “Attn Blocking” defence in Subramanya et al.
(2024). We use GradRollout (Gildenblat, 2020) to compute the interpretation map on image x Imap(x)
using the backdoored checkpoint and find the coordinates of the interpretation map’s maximum
max(Imap(x). A 30× 30 patch centred at the coordinates max(Imap) is zeroed out from the original
image x to form x′. If this centred patch goes outside of the image, the patch is shifted so that it is
on the image’s border. Then, the backdoored checkpoint is used to classify x′. The results for the
test-time interpretation-informed defence proposed in Subramanya et al. (2024) is shown in Table 13.
Generally, the defence does not defend against the non-patch-based attacks evaluated in our work.

A.3 HARDWARE RESOURCES

Most experiments are conducted on one NVIDIA A100 GPU. A few experiments are (and can be)
conducted on one NVIDIA Quadro RTX 6000 GPU. We did not reproduce I-BAU (Zeng et al., 2021b)
on the RTX 6000 GPU due to GPU memory constraints.
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Table 13: Performance of AttnBlock

Attack CIFAR10 GTSRB TinyImageNet

ASR CA ASR CA ASR CA

BadNets-white 34.71 98.21 29.05 94.73 54.35 60.21
BadNets-pattern 12.61 98.06 22.03 94.2 7.55 61.2
ISSBA 100.0 97.93 100.0 94.13 99.27 61.82
BATT 99.99 98.0 100.0 94.63 99.99 65.42
Blended 99.99 98.15 100.0 94.8 100.0 68.94
Trojan-WM 99.98 98.13 99.98 91.35 99.97 68.82
Trojan-SQ 99.48 98.09 99.47 94.06 99.63 61.97
Smooth 99.72 97.99 99.71 94.66 99.17 67.54
l0-inv 100.0 98.1 100.0 95.14 100.0 62.1
l2-inv 99.99 98.2 100.0 92.77 99.78 64.33
SIG 98.35 88.53 99.43 90.42 68.36 70.41

Average 85.89 97.22 86.33 93.72 84.37 64.8

B ALGORITHM FOR STAGE 2

The steps for Stage 2 of IEU is shown in Algorithm 1.

Algorithm 1 Stage 2 of IEU: Defending fr

1: Input: tuned poisoned module fp(· ;θp), potentially poisoned finetuning set Dtune, pretrained
benign fr(· ;θr), optimizer for finetuning Optimtune, optimizer for unlearning Optimul, number
of epochs, and learning rate schedule lrtune.

2: Output: tuned robust module fr(· ;θr) that is benign.
3: for every epoch do
4: Initialise Dul to be an empty queue to store potentially poisoned images.
5: for every batch (xb,yb) ∈ Dtune do ▷ The subscript ‘b’ indicates a batch.
6: Compute ŷb using equation 1, fp, and fr for this batch.
7: Compute the cross entropy loss ℓ(ŷb,yb).
8: Update θr using Optimtune to optimise for the “Learn” section of Equation 2.
9: Update lrtune based on the learning rate schedule.

10: Add all (xb,i,yb,i) ∈ (xb,yb) that satisfies max(σ(fp(xb,i ;θp))) > cthresh to Dul.
11: if a batch (xp̂

b ,y
p̂
b ) ∈ Dul is ready then

12: Compute ℓ(fr(x
p̂
b ;θr),y

p̂
b ) and lrul based on Equation 3.

13: Update θr using Optimul to optimise for the “Unlearn” section of Equation 2 and
record lrul for the next batch.

14: Dequeue the current batch (xp̂
b ,y

p̂
b ) from Dul.

15: end if
16: end for
17: end for
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C ABLATION STUDY (CONT’D)

Noisy logits. Table 14 shows the effects of adding normally distributed zero-mean noise to ŷp when
accumulating the unlearn set. Whether noise is added or not has almost no effect on the model
performance.

Table 14: Performance of IEU on CIFAR10 when adding normally distributed zero-mean noise with
different variances to ŷp after computing mθp , i.e., mθp is still defined according to Equation 1 but
max(σ(ŷp + n)) > cthresh where n ∼ N (0, σ2) is used to determine whether x belongs in Dul. This
creates a mismatch between the data added onto Dul (unlearned by fr) and the data learned by fr.

Variance BATT BadNets-white ISSBA Smooth

ASR CA ASR CA ASR CA ASR CA

0.0 0.02 98.23 0.96 98.19 0.33 98.35 0.09 97.77
0.1 0.02 98.09 0.93 98.23 0.10 98.43 0.08 97.85
0.5 0.02 98.21 0.88 98.13 0.35 98.36 0.04 97.64
1.0 0.01 98.15 0.95 98.09 0.05 98.30 0.05 97.91
2.0 0.02 96.82 0.94 98.17 0.46 98.30 0.06 97.95

The effect of using LGA/Flooding in conjunction with our poisoned module is shown in Table 15.
The short-hand fp & M means applying method M when tuning fp during stage 1 of our method.
Given the high FNR for most attacks with CIFAR10 and TinyImageNet when using LGA/Flooding
together with our fp, we argue that using poisoned module is orthogonal to LGA/Flooding for
isolating poisoned data on these two datasets. However, we find that fp alone is not enough to defend
fr when using the GTSRB dataset. The simplicity of the GTSRB dataset explains why LGA/Flooding
is necessary to isolate poisoned data successfully: a simpler dataset leads to fp to learn the benign
features more quickly, but at a slower pace compared to backdoored images. This causes the fp to be
insufficient in detecting backdoored images. Therefore, LGA/Flooding is used to ensure a large gap
between the poisoned module’s confidence on backdoored and benign data.

Table 15: Comparison of the three configurations’ (LGA, Flooding, neither method) ability to distin-
guish between poisoned and clean data when used in conjunction with our fp during prefinetuning.
The fp is prefinetuned using default parameters (Table 11). The flooding/LGA parameter is set to
γ = 1.5, γ = 1.0, γ = 3.0 for CIFRA10, GTSRB, and TinyImageNet, respectively. Each cell shows
the FPR/FNR values as percentages (positive means “poisoned”).

Method CIFAR10 TinyImageNet GTSRB

BadNets-white ISSBA Smooth BadNets-white ISSBA Smooth BadNets-white ISSBA Smooth

fp & Flooding 0.00/99.98 0.00/57.76 0.00/99.54 0.03/20.07 0.01/64.66 0.12/15.89 11.51/22.07 8.38/34.89 10.32/18.69
fp & LGA 0.00/99.98 0.00/65.84 0.00/97.86 0.03/20.07 0.12/67.32 0.12/15.89 11.51/22.07 8.38/34.89 10.32/18.69
fp & Neither 5.62/5.30 5.58/2.10 7.90/3.14 0.21/11.97 0.15/22.59 0.42/9.83 44.72/14.86 42.63/5.71 44.36/3.45

We note the detailed settings of stage 1 for the data presented in Table 15 here. Experiments for
CIFAR10, TinyImageNet, and GTSRB with LGA/Flooding use the default parameters presented in
Table 11. The stage 1 settings used for GTSRB with fp & Neither method (last row) are different:
we use 5 epochs and no learning rate warmup during stage 1 pre-finetuning, 1 · 10−3 as the stage 1
learning rate, cthresh = 0.998. We tune on BadNets-white the parameters for GTSRB where only fp
is used (no LGA/Flooding) in Stage 1 to reach an acceptably low FNR and FPR. Note that the stage
1 poisoned module in Table 16 for the “fp Only” column is tuned using the same settings as fp &
Neither as explained above. The fp & LGA column in Table 16 follows default parameters.

The improvement of IEU when using LGA (see Li et al. (2021b)) during Stage 1 for GTSRB is
shown in Table 16. Generally, the ASR with LGA is marginally higher than without LGA except for
ISSBA, where using LGA improves the ASR by almost 100pp. This marignal increase in ASR is
accompanied by a significant increase in CA compared to tuning the poisoned module without LGA.

Our IEU defence successfully defends when using different attacker-specified trigger labels as
shown in Table 17.
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Table 16: Comparison of performance of IEU on GTSRB with and without LGA during Stage 1.
Note that cthresh = 0.9 when using LGA (γ = 1) and cthresh = 0.95 without LGA. All values given in
percentages.

Attack fp & LGA fp Only Difference

ASR CA ASR CA ASR CA

BadNets-white 2.22 83.26 0.93 82.07 +1.29 +1.19
BadNets-pattern 0.00 95.11 0.00 88.53 0.00 +6.58
ISSBA 2.81 86.48 100.00 93.52 -97.19 -7.04
BATT 7.40 88.38 0.03 93.47 +7.37 -5.09
Blended 6.83 89.25 8.76 81.20 -1.93 +8.05
Trojan-WM 8.87 91.81 3.12 86.54 +5.75 +5.27
Trojan-SQ 2.85 89.02 0.07 77.29 +2.78 +11.73
Smooth 15.37 88.45 6.15 84.52 +9.22 +3.93
l0-inv 0.00 88.81 0.00 87.48 0.00 +1.33
l2-inv 20.26 83.67 12.85 87.50 +7.41 -3.83
SIG 0.00 77.39 0.21 72.07 -0.21 +5.32

Table 17: Effectiveness of IEU when faced with different trigger labels ∈ {0, 1, 3, 5, 8} when trained
and evaluated on the CIFAR10 dataset using three attacks. Note that we use class label 1 as the
default target label for every experiment other than those found in this table. All values given in
percentages.

Target Label BadNets-white ISSBA Smooth

ASR CA ASR CA ASR CA

0 0.71 92.28 0.10 98.43 0.07 97.71
1 0.96 98.19 0.33 98.35 0.09 97.77
3 0.51 97.88 0.03 98.36 0.10 93.87
5 0.37 97.53 0.00 98.35 0.05 97.71
8 0.19 94.51 0.00 98.14 0.01 97.51

D POTENTIAL ADAPTIVE ATTACK

This section investigates how IEU performs when faced with a backdoor attack that is designed
to bypass our IEU. This setting is more challenging for defenders, since the attacker can take
countermeasures that are specifically designed to evade IEU. Our defense mechanism uses the
poisoned module to filter out highly confident data which are then classified as backdoored data. A
potential attack would be one that makes the backdoor trigger more hidden to induce the stage 1
poisoned module to make incorrect classifications.

A previous work (Mo et al., 2024) designed such an attack, named “Channel Activation Attack”
(abbreviated CAT), whose aim is to produce adversarial perturbations to encourage the channel
activation patterns of benign and backdoored images to appear more similar. This serves as an
adaptive attack against our defence. We use a gray-box setting, where the attacker has full access
to a version of the poisoned module that the defender has tuned using the same exact setting as the
defender would use during normal application of IEU. With a tuned version of fp, the attacker adds
adversarial perturbations onto existing backdoor attacks to evade detection. Using the adversarially
perturbed backdoor data, we apply our IEU framework to defend the robust module. We apply the
CAT attack on five different standard backdoor attacks. The results are shown in Table 18, which
demonstrates that our method successfully defends the CAT attack.

We use a very similar attack setup as attack’s original authors in Mo et al. (2024) (γ = 0.6 for the loss
function in their Equation 3; 10 iterations and an ℓ2-norm budget of ϵ = 16÷ 255 for the Projected
Gradient Descent attack). However, we did not apply random masking to the perturbations. Please
refer to Figure 5 to visualise the original backdoored image, the CAT-perturbed backdoor image, and
the difference between the two.
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Table 18: IEU’s performance against the CAT attack proposed in Mo et al. (2024) for both CIFAR10
and TinyImageNet.

Dataset Attack IEU No Defense

ASR CA ASR CA

CIFAR10

CAT+BadNets-pattern 0.00 98.27 100.00 97.77
CAT+BadNets-white 0.74 94.90 94.72 98.31
CAT+Blended 0.00 98.28 99.96 98.38
CAT+Smooth 0.10 97.87 98.88 98.33
CAT+Trojan-SQ 0.02 98.25 99.66 98.44

TinyImageNet

CAT+BadNets-pattern 0.00 68.32 100.00 69.77
CAT+BadNets-white 0.04 69.43 95.96 70.09
CAT+Blended 0.00 65.58 99.97 70.46
CAT+Smooth 0.01 68.10 92.47 70.34
CAT+Trojan-SQ 0.00 66.66 99.63 70.71

Original With Perturbation Perturbation Original With Perturbation Perturbation

Figure 5: CAT attack example backdoor images, perturbed backdoor images, and adversarial pertur-
bations (scaled by 5000). Left three: CIFAR10; right three: TinyImageNet.
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Figure 6: Maximum class probability max(σ(fp(x ;θp)) CDF based on logits produced by the
poisoned module on clean and poisoned data for the ISSBA attack on the three datasets. Dotted
horizontal lines show percentages of clean/poisoned data whose max(σ(fp(x ;θp)) lie below 0.95.

Weakness [c] Worse performance on less complex datasets (e.g., GTSRB). Our IEU fails against
ISSBA on the GTSRB dataset when tuning fp without LGA (shown in Table 15) and underperforms
on GTSRB in general. We suggest that this happens because the GTSRB dataset is easily learnt by
fp. Evidence is shown in Figure 6, which plots the CDF of the maximum class probability values for
poisoned/clean data for all three datasets using the ISSBA attack where LGA is not used when tuning
fp in stage 1. Compared to CIFAR10 and TinyImageNet, clean images from the GTSRB dataset
is only marginally more difficult to learn than backdoored GTSRB images. In Figure 6, a higher
proportion of clean data has max(σ(fp(x ;θp)) > 0.95 and a lower proportion of poisoned data has
max(σ(fp(x ;θp)) > 0.95 for GTSRB when compared to the other two datasets. Therefore, using a
shallow ViT as the poisoned module is insufficient for discerning poisoned data from clean data for
GTSRB. This led us to use LGA when tuning fp when using the GTSRB dataset.

Solutions for weakness [c]: please refer to solutions for weakness [a] in Section 5. Additionally,
using LGA also solves this problem.
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