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ABSTRACT

Text-guided image editing is a rapidly growing field due to the development of large
diffusion models. In this work, we present an effective approach to address the key
step of real image editing, known as “inversion”, which involves finding the initial
noise vector that reconstructs the input image when conditioned on a text prompt.
Existing works on conditional inversion is often unstable and inaccurate, leading to
distorted image manipulation. To address these challenges, our method starts by
analyzing the inconsistent assumptions and accumulative errors that contribute to
the ill-posedness of mathematical inverse problems. We then introduce learnable
latent variables as bias correction to approximate invertible and bijective inversion.
We perform latent trajectory optimization with a prior to fully invert the image
by optimizing the bias correction on the unconditional text prompt and initial
noise vector. Our method is based on the publicly Stable Diffusion model and is
extensively evaluated on a variety of images and prompt editing, demonstrating high
accuracy, robustness, and quality compared to state-of-the-art baseline approaches.

1 INTRODUCTION

The foundation of text-guided image editing is inversion, which requires running the reverse of the
generative process. That is, finding the initial noise vector that produces the input image when passed
through the diffusion process. Inversion has been studied considerably for generative adversarial
networks (GANs), i.e., GAN inversion (Cheng et al., 2022; Xia et al., 2022; Zhu et al., 2020), but has
not yet been completely resolved for text-guided diffusion models. A naive solution is proposed by
adding Gaussian noise to the input image and then performing a predefined number of diffusion steps
using denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020), but it results in significant
distortions (Hertz et al., 2022). Instead of DDPMs, denoising diffusion implicit models (DDIMs)
are seen as a more effective way for inversion (Song et al., 2020a). DDIMs invent a particular
parameterization of the diffusion process, that creates a smooth, deterministic, and reversible mapping
between images and their latent representations (Dhariwal & Nichol, 2021; Preechakul et al., 2022;
Kwon et al., 2022; Wu et al., 2022). Therefore, one is able to perform the diffusion process in the
reverse direction, that is deterministically noising an image to obtain the initial noise x0 → xT

instead of xT → x0.

Although DDIM inversion produces promising results, it is not sufficiently accurate in many cases,
specifically when classifier-free guidance (Nichol et al., 2021; Ho & Salimans, 2022) is applied. This
is mainly due to a distortion-editability trade-off (Tov et al., 2021; Hertz et al., 2022) where reducing
the prompt influence improves reconstruction performance but limits the ability to perform significant
manipulations through text. However, classifier-free guidance with a large scale is often necessary for
non-trivial semantic edits to real images. Such a large guidance scale amplifies the accumulated errors
caused by ordinary differential equation (ODE) discretization (Song et al., 2020a; Su et al., 2022)
in DDIM such that the obtained noise vector might violate the assumption of Gaussian distribution
(Ho et al., 2020; Song et al., 2020b;a). These drawbacks make the DDIM inversion difficult to be
bijective and invertible as both properties are critical to achieving exact reconstruction while retaining
semantic text-guide editing capabilities.

This paper proposes an effective inversion approach that mitigates the barriers associated with DDIM
inversion given classifier-free guidance in real image editing. To achieve this feat, we mathematically
formulate the DDIM inversion by solving an ill-posed inverse problem, which is originally non-
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bijective and non-invertible. We recognize the ill-posedness induced by classifier-free guidance
and accumulated error during inversion and uniformly define them as information loss. Hence we
introduce learnable latent variables to encode intrinsic information between input images x0 and
noise vectors xT . To this end, an augmented formulation is built to convert ill-posed inversion to
bijective inversion, as shown in Fig. 1. We then identify the learnable latent variables by analyzing the
key components of DDIM inversion. Although all works focus on conditional text-based guidance,
we observe the substantial effect induced by the unconditional part in classifier-free guidance. Hence,
we correct the empty text embeddings by adding a learnable latent variable, which is referred to as
“text bias correction”. Similarly, the accumulated errors from noise latent vectors can be addressed by
adding another learnable latent, which is referred to as “noise bias correction”. We optimize both
introduced latent variables to address the augmented inversion problem, i.e., to fully invert the input
image and prompt.

2 METHOD

2.1 AUGMENTED DDIM INVERSION

DDIM Inversion

Non-bijective Bijective

Augmented DDIM inversion

Latent variable 
for correction
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Figure 1: Augmented DDIM inversion (ADI).

In the mathematical perspective, conditional DDIM
inversion can be seen as solving ill-posed inverse
problems where the mapping between input image
x0 and latent Gaussian variables xT are non-bijective
and the denoising process is non-invertible, as shown
in Fig. 1. Such ill-posedness refers to a mismatch be-
tween input image x0 and reconstruction x∗

0, which is
typically caused by “information loss”, which refers
to the inconsistency, violation of assumptions, accumulative errors induced by inversion.

Inspired by solving inverse problems via invertible neural networks (Ardizzone et al., 2018), we
introduce new latent variables z to capture the information loss such that the conditional DDIM
inversion is invertible. To achieve this goal, an augmented inverse problem is formulated based on
such a bijective mapping:

xT = Fθ(x0, z;P), x∗
0 = F−1

θ (xT , z,P) (1)

where F is a encoder function of x0 and z parametrized by a DDIM model with parameters θ, P
is the textual prompt related to CP and C∅. Leveraging the benefits of latent variable z, augmented
DDIM inversion becomes fully invertible and bijective. More specifically, our goal is to exactly
reconstruct an input image x0 conditioning on text guidance P with additional latent variable z via
augmented DDIM inversion xT → x∗

0, which yields to x∗
0 = x0.

More specifically, the information loss mainly results from classifier-free guidance and is partially
caused by the accumulated error in each diffusion step. We exploit the key feature of the classifier-free
guidance, where the result is highly affected by the unconditional prediction. Therefore, we propose
to optimize the empty textual embedding by introducing a learnable bias correction, while keeping
the conditional textual embedding unchanged. We also observe that a large guidance scale amplifies
the accumulated error such that the obtained noise vector does not satisfy the Gaussian assumption.
This issue decreases the ability to edit using the particular noise vector. To address this challenge,
we define a correct noise vector by x̃T = xT + zT where zT is a learnable latent variable that is
referred to as a noise bias correction. Combining the two bias correction together, z = (z∅, zT ), our
augmented DDIM inversion is fully formulated and can be solved by latent trajectory optimization.

2.2 LATENT TRAJECTORY OPTIMIZATION WITH A PRIOR

Augmented DDIM inversion provides a promising alternative for accurate reconstruction given
conditional classifier-free guidance. Optimizing the bias correction terms z = (z∅, zT ) is the key
aspect of this solution. Inspired by GAN inversion studies, we seek to perform a more efficient
optimization consisting of the following three key components:

• Trajectory optimization. The reversed DDIM produces a T steps diffusion trajectory {xt}T0
between the image encoding x0 to a Gaussian noise vector xT . Instead of pursuing a direct
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matching of the reconstruction, i.e., x∗
0 ≈ x0 at the last step via backward diffusion, we propose to

optimize the entire trajectory such that the reconstructed trajectory {x∗
t }T0 is close as possible to

the original trajectory {xt}T0 , i.e., x∗
t ≈ xt, t = 0, ..., T . This is defined by min ∥x∗

t−1 − xt−1∥22
where xt−1 is the intermediate result of the optimization.

• Optimization with a prior. Recent work uses random noise vectors for each iteration of their
optimization, aiming at mapping every noise vector to a single image. This method is inefficient
and probably suboptimal. Instead, we see to perform a more local optimization by identifying
a good starting point guided by “prior” knowledge — we observed that using DDIM inversion
with guidance scale λ = 1 provides a rough approximation of the original image which is highly
editable but far from accurate. Thus we refer to this initial DDIM inversion trajectory x∗

T with
λ = 1 as our trajectory starting point and then perform our trajectory optimization around it with a
guidance scale, λ > 1, enabling high editing capability.

• Multiple starts strategy. Differing from the trajectory starting points, we note that latent op-
timization at z with gradient descent is sensitive to the initial starting points. It is likely that
converged solutions z∗ = (z∗∅, z

∗
T ) may fall into one of many local minima rather than the global

optimum solution. Therefore, we incorporate multiple initializations with several ‘hops’ within
each initialization to more effectively sample through the local minima. In practice, we choose the
one that minimizes the initial loss as starting point to perform optimization.

3 EXPERIMENTS
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Figure 2: Comparison of diffusion inversion.

Experiment setting Our framework is general and
can be combined with different state-of-the-art large
models, but here we use Stable Diffusion (Rombach
et al., 2022) training on LAION-5B datasets (Schuh-
mann et al., 2022). We have used a subset of 200 im-
ages and captions pairs selected from the MS-COCO
dataset (Chen et al., 2015) and TEdBench dataset
(Kawar et al., 2022). The baseline methods include
DDIB (Su et al., 2022) and CycleDiffusion (Wu &
De la Torre, 2022) and we use the same hyperpa-
rameters to conduct a fair comparison given similar
computing and memory costs.

For our method in Stable Diffusion trained model, we
use T = 50 steps for DDIM inversion and m = 10
iterations for each timestamp. The guidance scale for
latent-TOP is G = 7.5 which is the default value used
by (Nichol et al., 2021). We generate 20 samples
to perform multiple start initialization for text and
noise bias correction. Note that we divide the entire
optimization procedure into two steps: (1) obtain
the prior trajectory via DDIM inversion and save the
sequence and (2) execute the separate optimization
by loading the saved trajectory information. Using this way, we achieve to finish the algorithm by
using 1-2 minutes on V100 with 16G GPU memory.

Results Figure 2 shows the results for DDIM inversion. DDIB (Su et al., 2022) clearly fails to recon-
struct the input images due to instability and inherent limitations of DDIM inversion. CycleDiffusion
(Wu & De la Torre, 2022) seems better than DDIB (Su et al., 2022) and provides an approximate
reconstruction of input images but is still struggling with exactly recovering some details, e.g., the
posture of the teddy bear. The fourth and fifth rows in Figure 2 offer our solution for DDIM inversion
where the accuracy outperforms the other two baseline methods.

3.1 ROBUSTNESS TO IMAGE PERTURBATION

Out latent-TOP provides a promising inversion reconstruction with high accuracy but one may ask
whether our method is robust to a small perturbation in either image pixel level or text caption prompt.
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… a brown toy 
bear

… a teddy bear 
doing pushups

A torn up teddy 
bear

Figure 3: (Left) Noise perturbation on images. Given the fixed input source caption (”A photo of a
baby”), we compare the inversion given various noise perturbations added to the input image. (Right)
Prompt perturbation on text. Given the same input image, we compare the inversion under different
source prompt guidance.

Here, we first investigate the robustness of our method on image perturbation, see Fig.3. In this
case, we start from the clean input image and gradually add Gaussian noise with a variety of levels,
including σ = 5, 10, 20 (pixel value ranging from 0 to 255). Given the same source prompt, we
compare the reconstruction performance given noisy image inputs. Similar to the accuracy results,
DDIB (Su et al., 2022) is clearly far away from the right inversion path where much information is
lost, e.g., background, baby’s hat, posture, and close, even though only a tiny perturbation is applied.
When noise increases, DDIB (Su et al., 2022) fails to recognize the color style. CycleDiffusion (Wu
& De la Torre, 2022) provides competitive results, specifically when the noise level is low. Although
some details are not exactly covered, it greatly outperforms DDIB (Su et al., 2022). When the noise
increases to 20, we expect our algorithm can recover the original input while capturing the noise style.
A larger noise makes the inversion difficult but still preserves the global semantics and local details.
Our method achieves superior performance but CycleDiffusion (Wu & De la Torre, 2022) starts to
display distortion in some local details.

3.2 ROBUSTNESS TO TEXT PERTURBATION

Our method requires an input source caption as a prompt, so it is natural to analyze the sensitivity of
chosen caption. Here we use the teddy bear as an example, keeping the input image unchanged but
changing the original source caption in different ways. It’s a non-trivial task to assign a reasonable
and specific caption without introducing any bias or imprecise information when we see an image for
the first time. The extreme case is sampling a random caption from the dataset for each image but it is
undesired for text-based editing clearly. Figure 3 shows the inversion results using multiple captions.
For example, we replace the “teddy bear” with “brown toy bear” or use “torn up” instead of “photo”.
Our method shows strong robustness in defending these perturbations applied on textual prompts, i.e.,
source caption. This is due to the advantages of textual bias correction, which optimizes the empty
text prompt to match different conditional textual prompts.

4 CONCLUSION

This paper provides a novel inversion method by formulating an augmented inversion problem with
learnable bias corrections. We address this inversion problem through an efficient latent trajectory
optimization with a prior. Leveraging the benefits of three core components in latent-TOP, we
significantly improve optimization efficiency, convergence, and stability. By evaluating various input
real images, source captions, and target prompt, our method achieves impressive performance on
inversion accuracy, robustness to perturbation on text and noise, as well as real image editing.
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A APPENDIX

A.1 BACKGROUND

A.1.1 DIFFUSION MODELS

Diffusion Denoising Probabilistic Models (DDPM) (Sohl-Dickstein et al., 2015; Ho et al., 2020) aim
at modeling a distribution pθ(x0) to approximate the data distribution q(x0). The forward process
performs a progressing procedure from x0 to xT via a Markov chain, where we generate the latent
variables x1, ...,xT by gradually adding noise to the data via Gaussian transition. When T is large
enough, the last noise vector xT nearly follows an isotropic Gaussian distribution.

The forward process has a simple closed-form solution that expresses the latent variable xt, t ∈
{0, ..., T} as a linear combination of noise and x0 (Ho et al., 2020):

xt =
√
αtx0 +

√
1− αtϵt, ϵt ∼ N (0, I), (2)

where αt is referred to as the noising schedule which defines the amount of noise present at each
intermediate timestep, 0 = αT < αT−1 < ..., < α1 < α0 = 1. Each refinement step consists of an
application of a neural network fθ(x, t) on the current sample xt, followed by a random Gaussian
noise perturbation, obtaining xt−1. The network is trained for a simple denoising objective, aiming
for fθ(xt, t) = ϵ

(t)
θ (xt) ≈ ϵt.

Sampling from distribution q(x0) is defined by a reverse process, from isotropic Gaussian noise xT

to data, which is refined iteratively through t ≤ T passes through the network. There are various
sampling strategies (Song et al., 2020a; Nichol & Dhariwal, 2021) that define the process of merging
the noise prediction ϵ

(t)
θ (xt) and current sample xt to produce the previous sample xt−1. The final

x0 sample is the resultant generated image.

A.1.2 DDIM INVERSION

Unlike the commonly used DDPM, the generative sampling process in DDIMs is defined in a
non-Markovian manner,

xt−1 =

√
αt−1

αt
xt +

(√
1− αt−1

αt−1
−
√

1− αt

αt

)
ϵ
(t)
θ (xt) (3)

which can be used for inversion, based on the assumption that the ordinary differential equation
(ODE) process can be reversed in small steps:

xt+1 =

√
αt+1

αt
xt +

(√
1− αt+1

αt+1
−
√

1− αt

αt

)
ϵ
(t)
θ (xt). (4)

Thus, the diffusion process is performed in the reverse direction, deterministically noising an image
to obtain the initial noise vector. In other words, DDIM inversion achieves x0 → xT instead of
xT → x0.

Empirically, the error of DDIM inversion is reasonably small since Eq. 4 can be treated as an Euler
method over the following ODE, which is up to discretization errors of the ODE solvers:

dx̂(t) = ϵ
(t)
θ

(
x̂(t)√
σ2 + 1

)
dσ(t) (5)

where x̂ = x/
√
α and σ =

√
1− α/

√
α. However, in practice, a slight error is incorporated in every

step, and eventually, the accumulated error might be non-negligible. In some cases, the obtained
noise vector might be out of the Gaussian assumption (see the examples in Section 4).
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A.1.3 CONDITIONAL DDIM INVERSION

For unconditional diffusion models, DDIM inversion succeeds given negligible errors. However, the
goal of text-guided diffusion models is to generate an output image given conditioning textual prompt
P . The critical challenge is how to amplify the effect induced by the conditional text. To this end, a
classifier-free guidance prediction (Ho & Salimans, 2022; Nichol et al., 2021) is introduced

ϵ̃
(t)
θ = ϵ

(t)
θ (xt, C∅) + G · (ϵ(t)θ (xt, CP)− ϵ

(t)
θ (xt, C∅)) (6)

where CP = Ψ(P) is the conditional textual embedding, C∅ = Ψ(“ ”) is the empty embedding,
which is referred to as the unconditional textual guidance, and G is the guidance scale, which adjusts
the balance between conditional prediction ϵ

(t)
θ (xt, CP) and unconditional prediction ϵ

(t)
θ (xt, C∅).

Thus the unconditional DDIM in Eq. equation 3 can be naturally extended to the conditional formula-
tion:

xt−1 = ξt · xt + ϕt · ϵ̃(t)θ (xt, CP , C∅) (7)

where ξt =
√

αt−1/αt and ϕt =
√
(1− αt−1)/αt−1 −

√
(1− αt)/αt. The above denoising

process is approximately invertible as claimed in DDIM (Song et al., 2020a). Hence, conditional
DDIM inversion can be performed by

xt =
xt−1

ξt
− ϕt

ξt
· ϵ̃(t)θ (xt) ≈

xt−1

ξt
− ϕt

ξt
· ϵ̃(t)θ (xt−1) (8)

where xt is approximately reversible from xt−1. The success of the approximation in Eq. equation 8
relies on the linearization assumption ϵ̃

(t)
θ (xt) ≈ ϵ̃

(t)
θ (xt−1), which corresponds to reversing the

first-order ODE solver (Su et al., 2022; Song et al., 2020b). Although higher-order ODE solvers can
stabilize the generative and reverse processes, DDIM inversion with these ODE solvers still relies
on the strength of the linearization assumption (Wallace et al., 2022). This assumption works for
the unconditional DDIM models, but it fails in conditional DDIM inversion since the classifier-free
guidance G · (ϵ(t)θ (xt, CP)− ϵ

(t)
θ (xt, C∅)) is not consistent across time steps (Nichol et al., 2021). A

trade-off solution is to decrease the guidance scale G, e.g., from 7.5 to 1.0, for stabilization and better
reconstruction accuracy, but it damages the strength of conditional editing in practice.

Moreover, as noted in the prompt-to-prompt work (Hertz et al., 2022), the DDIM inversion is unstable
in many cases, specifically encoding from x0 to xT and back often results in inexact reconstructions
of the input images. This might be explained by our observation that image editing and manipulations
through text using Stable Diffusion models (Rombach et al., 2022) require classifier-free guidance
with a large guidance scale, and such a guidance scale amplifies the accumulated error. That is to say,
an increase in corruption is correlated with the strength of the conditioning.

A.2 RELATED WORK

Many works utilized GANs to perform a variety of image manipulations. Inversion has been
well studied for GANs (Xia et al., 2022; Zhu et al., 2020), ranging from encoder-based methods
(Richardson et al., 2021), latent-based optimization (Abdal et al., 2019; 2020), to fine-tuning of the
models (Alaluf et al., 2022). However, these studies have limitations in editing a given real image
while preserving the details of unedited parts.

Diffusion models show remarkable results for image manipulation tasks, e.g., image-to-image
translation (Choi et al., 2021; Zhao et al., 2022). A desirable property of image translation is the
cycle consistency (Zhu et al., 2017; Park et al., 2020). DDIB (Su et al., 2022) enforces exact cycle
consistency by encoding an input image using DDIM inversion with a source class (or text) and
decoding it back conditioned on the target class (or text) but often fails to retain the semantic structures
precisely. CycleDiffusion (Wu & De la Torre, 2022) uses a deterministic DPM encoder to enable
zero-shot image translation and editing by leveraging text-to-image diffusion models. However, the
editing performance is sensitive to the choice of pre-defined prompt even though cycle consistency is
satisfied. SDEit (Meng et al., 2021) adds intermediate noise to an image, then denoises it using a
diffusion process conditioned on the desired edit, which is struggling with global edits.

Prompt-to-Prompt (Hertz et al., 2022) alters a text-to-image editing by manipulating cross-attention
layers, providing more control over synthesized images, and can be extended to real image editing
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when DDIM inversion offers meaningful attention maps (Mokady et al., 2022). DiffEdit (Couairon
et al., 2022) edits real/synthetic images using automatically generated masks for regions of the input
image. DiffusionCLIP (Kim et al., 2022) edits image by using a combination of DDIM inversion, large
model gradients, and model fine-tuning. Imagic demonstrates impressive editing results leveraging
the Imagen model (Saharia et al., 2022) but also requires the restrictive fine-tuning of the model. SINE
(Zhang et al., 2022) proposes model-based guidance with a patch-based fine-tuning scheme. Unlike
these recent works, our method does not require fine-tuning the entire model, avoiding damaging the
trained models for each image. More recently, EDICT (Wallace et al., 2022) proposes an exact DDIM
inversion scheme via affine coupling layers but its computational cost is twice that of a baseline
DDIM process due to double loops. Our method is more efficient as we only need to fine-tune the
learnable latent via a local optimization guided by prior trajectory.
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