Under review as a conference paper at ICLR 2026

HIDDEN MARKOV MODELING OF REASONING DY-
NAMICS IN LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reasoning in language models involves both explicit steps in the generated
text and implicit structural shifts in hidden states, yet their joint dynamics re-
main largely underexplored. We propose a Hierarchical Hidden Markov Model
(HHMM) that captures these two dimensions: semantic roles and latent depth
regimes. This framework models how reasoning evolves through semantic stages
and how the depth of computation shifts across the network. By linking what
function a step serves to where it arises in the network, our approach provides a
unified lens for both understanding reasoning dynamics and offering insights into
steering strategies. Our analysis reveals consistent patterns: successful reasoning
trajectories follow stable semantic paths and align with well-formed structural an-
chors, whereas failures are characterized by hesitation loops and unstable depth
transitions. We further validate our findings by applying step-aware intervention:
we derive steering vectors from the transition matrices that encourage trajectories
to follow the paths associated with correct reasoning. Across multiple open-source
reasoning models, these targeted nudges consistently convert failing runs into cor-
rect ones without increasing output length.

1 INTRODUCTION

Reasoning models have demonstrated strong capabilities in mathematics, scientific reasoning, and
deliberative problem solving (Jaech et al., 2024} |Chen et al., 2025b). Yet fundamental questions
remain unresolved: when models perform reasoning, how do they integrate both explicit reasoning
expressed in generated text and the implicit reasoning reflected in hidden computations to work
together in solving problems?

Recent studies suggest that reasoning effectiveness depends not only on the correctness of individ-
ual steps but also on their structural roles, with a few “anchor” steps disproportionately shaping
outcomes (Bogdan et al., [2025). Mechanistic studies show that reasoning does not occur uniformly,
but is carried out by specific architectural modules (Cabannes et al.,2024; Dutta et al.| [2024)).

To systematically characterize reasoning in language models, we introduce a Hierarchical Hidden
Markov Model (HHMM) that integrates explicit and implicit reasoning into a single framework. At
the fop level, the model is a Markov chain over explicit reasoning categories, capturing semantic
transitions across generated “thinking” tokens. At the botfom level, conditioned on the top-level
category, the model is a hidden Markov chain over implicit reasoning regimes, which represent how
computation is allocated across layers within each stage. These two levels are not isolated; rather,
they interact hierarchically: semantic roles guide depth allocation, while depth patterns shape se-
mantic progress. This dual perspective allows us to analyze reasoning as trajectories across both
meaning and structure. The HHMM thus provides a principled probabilistic framework that con-
nects what function a step serves with where it arises in the network, offering a unified lens for
understanding reasoning dynamics and designing effective interventions.

Explicit and implicit reasoning interact in systematic ways. At the semantic level, models branch
early into two pathways: a “think-first” route that proceeds step by step through analysis, and a
“commit-early” route that jumps directly to an answer. Failures often occur when trajectories stall in
verification loops rather than progressing to closure. At the structural level, reasoning categories ex-
hibit distinctive depth profiles: final-answer steps trigger shifts mainly in the upper layers, whereas
analysis and verification introduce earlier shifts that alter model behavior. Successful trajectories

Under review as a conference paper at ICLR 2026

“Each apple costs $2. Tom buys
3 apples.”

Setup and Retrieval

“Multiply 3 apples x $2 = $6.”

“Let me double check.”

’ Uncertainty and Verification ‘

“Therefore, Tom pays $6.”

Figure 1: Overview of the Hierarchical Hidden Markov Model (HHMM) framework. At the fop
level, explicit reasoning is modeled as semantic transitions across tagged reasoning steps. At the
bottom level, implicit reasoning is captured through latent regimes that characterize depth allocation
across layers. Together, this hierarchical structure links what function a step serves with where it is
realized in the network, enabling systematic analysis of reasoning trajectories.

1
1
1
1
1
1
1
1
1
1
i ’ Analysis and Computation ‘
1
1
1
1
1
1
1
1
1
1
1

align these two dimensions: stable semantic progress supported by well-formed late-layer anchors.
In contrast, unsuccessful ones diverge, inserting unstable extra shifts or omitting expected ones.

Taken together, these findings suggest that reasoning outcomes are not determined by isolated steps,
but by the overall transition flow. Correct predictions emerge when trajectories follow stable and
well-anchored transitions, while failures arise when transitions deviate into loops or unstable paths.

We validate this view through step-aware interventions. By deriving steering vectors from the tran-
sition matrices, we nudge trajectories toward the transitions associated with correct reasoning and
apply them to model hidden states. Across multiple open-source reasoning models, these targeted
interventions consistently rescue failing runs without increasing output length, confirming that se-
mantic and structural insights jointly shape model behavior.

Our contributions. We introduce HHMM, a structured probabilistic framework that integrates
semantic reasoning stages with structural depth regimes. Using this framework, we show that suc-
cessful reasoning trajectories follow stable semantic paths and align with well-formed structural an-
chors, whereas failures are characterized by hesitation loops and unstable depth transitions. Finally,
we leverage HHMM to construct edge-conditioned steering vectors, demonstrating that targeted
interventions at reasoning boundaries can causally correct errors.

2 METHODOLOGY

To systematically characterize reasoning in language models, we introduce a Hierarchical Hidden
Markov Model (HHMM) that organizes reasoning into two levels (Figure [I). At the top level, the
model is a Markov chain over explicit reasoning categories, capturing semantic transitions across
generated “thinking” tokens. At the botfom level, conditioned on the top-level category, the model is
a hidden Markov chain over implicit reasoning regimes, representing how computation is distributed
across layers within each stage. These two levels are not isolated; rather, they interact hierarchically,
with semantic roles guiding depth allocation and depth patterns shaping semantic progress. The
HHMM thus provides a principled probabilistic framework that unifies these complementary di-
mensions, aligning with annotated reasoning steps while uncovering latent structural patterns that
distinguish successful from failing trajectories.

We segment each generated solution into reasoning steps Si, ..., S using blank-line delimiters.
In parallel, we extract the hidden representations of the first token of each step, forming H €
RUADXTXd where [, is the number of layers and d the hidden dimension, with h;, = Hp; .
denoting the hidden state of layer ¢ for step s;. Before modelling, these hidden vectors are standard-
ized to zero mean and unit variance, and then projected into a dj,.,-dimensional subspace using PCA
(dpca = 64). This preprocessing both stabilizes Gaussian estimation and removes redundant cor-
relations across hidden dimensions, ensuring that the latent regimes capture meaningful structural
variations in depth allocation. Implementation details in Appendix [A]and B}

Under review as a conference paper at ICLR 2026

2.1 Topr LEVEL: EXPLICIT REASONING TRANSITIONS

At the top level, we model the sequence of reasoning steps as semantic transitions, capturing how
the function of each step evolves across the trajectory. For each step s;, we classify its reasoning
function using the same model that produced the solution, prompted with the predefined tag set
C = {final_answer, setup_and_retrieval, analysis_and_computation, uncertainty _and_verification},
yielding alabel ¢; € C (details in Appendix [A). This self-classification approach allows us to capture
what the model itself believes it is doing at each step. For a trajectory comprising 7" steps, each step
is assigned a category label ¢; € 1,...,C. These categorical assignments define a Markov chain
over the sequence of reasoning steps,

T
_ top top
p(Cl:T) = T¢ HAct,l,ct
t=2
where 7P is the start distribution and AP is the transition matrix.

2.2 BOTTOM LEVEL: IMPLICIT REASONING TRANSITIONS

At the bottom level, conditioned on a semantic category c;, the model introduces latent regimes that
characterize how computation is distributed across layers, capturing depth allocation patterns that
vary with the function of the current reasoning step. Each layer index ¢ within step ¢ is associated
with a latent regime variable h;, € {1,..., K}, where K denotes the number of regimes. Intu-
itively, each regime represents a characteristic way the model distributes computation across layers
within a given semantic category. Remaining in the same regime indicates stable, consistent pro-
cessing, while switching regimes highlights points where the layer-wise behavior changes abruptly,
often signaling a shift in how the model is reasoning internally. Every category induces its own
stochastic process over regimes, allowing the model to capture distinct depth allocation patterns for
different reasoning stages:

L
p(ht’O‘L ‘ Ct) = W}(lct?o Agli)./zfuhf,,z’

(=1

with Gaussian emissions,

plheg | hee =k, c)) = Nlhees), ding(o7).

Here, 7(¢) and A(®) are the initial and transition distributions over regimes for category ¢, while ,u,(cc)

and ai(c) define the emission parameters for regime k. This structure allows the model to discover
latent depth allocation patterns within each semantic stage.

The HHMM framework provides a structured lens on reasoning dynamics: semantic transitions
capture what stages of reasoning unfold and how they progress, while structural regimes capture
how computation is internally organized within each stage. By comparing models trained on correct
versus incorrect trajectories, we uncover where and how reasoning paths diverge.

3 EXPERIMENTAL SETUP

Model. We evaluate 4 open-source reasoning models: Qwen3-1.7B (Team) [2025), Bespoke-
Stratos-7B (Labs|,2025), OpenThinker-7B (Guha et al.,[2025), and Llama-3.1-Nemotron-Nano-4B-
v1.1 (Bercovich et al., [2025).

Dataset. Our experiments use: MATH-500 (Lightman et al.,[2023), GPQA-Diamond (Rein et al.,
2024), Weblnstruct-Verified (Ma et al., [2025), and AIME-2024 (HuggingFaceH4, [2024).

Computing. Experiments were run on NVIDIA H100 and H200 GPUs.

Under review as a conference paper at ICLR 2026

4 SEMANTIC REASONING DYNAMICS

To understand how language models reason, three questions naturally arise: Where do reasoning
trajectories tend to flow? What separates successful reasoning paths from failures? And how do
different models differ in their trajectories?

Q1. Where do reasoning trajectories flow?

Reasoning unfolds in structured patterns rather than randomly. As shown in Table [l trajectories
display three recurring motifs: they often stabilize within analysis and answer emission stages,
branch at setup into two alternative pathways, and occasionally take short verification detours that
loop back to analysis.

i) Attractor stages. Analysis_and_computation

and final_answer act as attractors with strong Table 1: Transition probabilities highlight three
self-loops (0.390 and 0.395), far higher than motifs: strong self-loops at final and analysis, bal-
setup _(0-255) or verification (0.206). Once tra- anced exits from sefup to analysis vs. final, and
Jectories enter these states, they rarely leave. a transient verification that mostly feeds back to

ii) Balanced branching. Setup_and._retrieval ~MALYySis-

functions as a fork, with nearly equal proba-
bility of moving to analysis_and_computation Final ~ Setup Analysis Verify
(0.317) or jumping directly to final_answer — Fipal 0.395 0180 0295 0.130
(0.317). This balance reflects two styles: a de- Setup 0317 0255 0317 0.111
liberative “think first” pathway versus a short- Analysis 0299 0.179 0.390 0.132
cut “commit early” pathway. Verify 0.277 0.200 0.318 0.206

iii) Checkpoint loop. Uncer-

tainty_and verification is used as a transient

detour. Transitions from analysis_and_computation into Uncertainty_and_verification are infrequent
(0.132), while returns to analysis_and_computation are common (0.318). Rather than serving as a
destination, verification acts as a loop-back checkpoint.

Q2. What separates success from failure?

Successful runs generally begin in setup_and_retrieval and then reach final_answer efficiently.
This happens either directly (setup—final = 0.329) or indirectly via analysis_and_computation
(setup—analysis = 0.309, followed by analysis—final = 0.323). Once in final_answer, correct
trajectories strongly stabilize (final—final = 0.414).

Table 2: Comparison of start distributions and transition probabilities for correct vs. incorrect tra-
jectories. Correct runs favor two efficient entries from sefup and stabilize in final/analysis, while
incorrect runs dwell in analysis and cycle with verification, with weaker closure in final.

| Correct | Incorrect

| Start Prob Transition Matrix | Start Prob Transition Matrix

| Final = Setup Analysis Verify | Final ~ Setup Analysis Verify
Final 0.201 0.414 0.179 0.286 0.122 0.186 0.378 0.179 0.309 0.135
Setup 0.492 0.329 0.257 0.309 0.105 0.498 0.308 0.257 0.320 0.115
Analysis 0.215 0.323 0.173 0.382 0.122 0.218 0.284 0.183 0.396 0.138
Verify 0.092 0.299 0.192 0.316 0.193 0.098 0.263 0.205 0.321 0.211

In contrast, unsuccessful runs also start in setup_and_retrieval but become stuck in analy-
sis_and_computation, reinforced by a strong self-loop (0.396) and repeated cycling with uncer-
tainty_and_verification (analysis—verification = 0.138, verification—analysis = 0.321). Their
stabilization in final_answer is weaker (final—final = 0.378), showing indecision and incomplete
closure. Table[2]and Figure [2] summarize these differences.

03: Why do models diverge in their reasoning paths?

Divergence reflects both architectural biases and inherited generation styles (Table|3).

Under review as a conference paper at ICLR 2026

Correct Path A: Incorrect Path A:
6-36 0 4 0:320--0.396 0:284 0.378
0.490 0.498 (Setup Anay: < Final
0329 0414 0.320 0128 0.284 0378
Correct Path B: Incorrect Path B: 0:321
(a) Reasoning path for correct prediction: (b) Reasoning path for incorrect prediction:
(Path A) setup—final, (Path A) setup—analysis(loop)—final, (Path B)
(Path B) setup—analysis—final setup—ranalysis— verify—analysis—final.

Figure 2: Contrasting reasoning paths: successful trajectories commit and close; unsuccessful ones
hesitate—looping within analysis/verification before reaching final.

Architectural bias. Qwen-based models (Qwen3, Stratos, Openthinker) exhibit a deliberation-
oriented style: starting in setup, lingering in analysis, and occasionally looping through verifica-
tion. By contrast, Nemotron (LLaMA-based) shows a direct-commit bias, with high probability of
setup—final transitions (0.671) and strong reinforcement once in final (final—final = 0.665). This
reveals a sharp divide between extended deliberation versus confident commitment.

Generation style. Training lineage also shapes characteristic “thinking profiles.” Stratos and
Openthinker, both distilled from R1 with Qwen2.5-7B-Instruct, converge on a balanced pattern:
setup splits between analysis (0.343) and final (0.236), analysis maintains a moderate self-loop
(0.373), and verification is engaged but limited (0.234). Qwen3, built on the same Qwen family
but not follow R1 style, pushes deliberation even further: setup dominates the start distribution
(0.836) and analysis sustains a strong self-loop (0.522). In this way, Stratos and Openthinker in-
herit balanced dynamics from distillation, while Qwen3 diverges toward a more deliberation-heavy
style—highlighting how lineage both transmits and reshapes reasoning patterns.

Table 3: Comparison of key transition statistics across models. Nemotron shows a direct-commit
bias (high setup—final and strong final self-loop), Qwen3 amplifies deliberation (dominant setup
start and persistent analysis), while Stratos and Openthinker converge on a more balanced profile.

Model Start in Setup Setup—Final Setup— Analysis Analysis Self-loop Final Self-loop Verify Self-loop
Nemotron 0.153 0.671 0.178 0.300 0.665 0.090
Qwen3 0.836 0.132 0.409 0.522 0.391 0.273
Stratos 0.490 0.231 0.335 0.367 0.262 0.228
Openthinker 0.496 0.236 0.343 0.373 0.260 0.234

5 STRUCTURAL REASONING DYNAMICS

So far we have examined reasoning through the lens of surface-level semantics. We now turn to the
internal structure of reasoning: how models carve up their depth into distinct processing phases.
To analyze this, we treat the HHMM-decoded phase boundaries as empirical objects that mark
where one depth regime ends and another begins. Our HHMM is trained with C' = 4 top-level cat-
egories (final_answer, setup_and_retrieval, analysis_and_computation, uncertainty_and_verification)
and K = 7 bottom-level regimes per category, where K allows the model to represent fine-grained
micro-states within each semantic stage. A methodological challenge is that architectures differ in
depth: Stratos, Openthinker and Qwen3 have 29 layers, whereas Nemotron has 33. To compare them
fairly, we normalize all layers to a percent-depth scale [0,99], mapping the embedding projection to
0.0 and the final transformer block to 99. Boundaries are then represented as normalized endpoints,
and similarity is measured using Jaccard overlap between endpoint sets.

Q1. Where do models consistently place boundaries?

To highlight stable anchors, we first normalize boundaries to percent depth and apply a two-stage
voting scheme: within each model, a boundary must appear in at least 30% of runs to be kept; across

Under review as a conference paper at ICLR 2026

models, it is included in the consensus set if at least two out of four models agree. This procedure
filters out noise and reveals boundaries that recur reliably across architectures.

Table [lists the consensus splits for each category,

and Figure [3] shows cross-model endpoint similarity. 10
The heatmap quantifies overlap in endpoint placement,
showing strong alignment between Openthinker and ~ "emoton} o0 oo esm 6 08
Stratos, partial alignment with Qwen, and divergence
from Nemotron. Across all categories, boundaries clus- openthinker{ o022 100 050 071 06
ter into four regions: early (0-37), mid (38-71), upper
(72-89), and top (90-99). The exact subdivisions differ qwen| o021 os0 100 | 050 04
by category:
(1) Final_answer has a long early-to-mid phase (0-71) fol- stratos [CCRNNCZNN REENY 100 *
lowed by successive cuts in the upper and top bands.
.. & «8@ & o
(i1) Analysis_and_computation inserts finer granularity, &é\" Qés‘“ RS

o

with multiple cuts in the mid and upper regions.

(i) Setup_and_retrieval mirrors final_answer but with a Fjgyre 3: Cross-model similarity quan-
distinct upper-band pattern. tifies overlap in endpoint placement.

(iv)Uncertainty_and_verification is the only category with
an early split (0-0.37), before converging on the same up-
per and top anchors.

Together, these results show that reasoning “endgames” are highly conserved in the upper layers,
while the early layers differentiate categories: analysis and verification engage early boundaries,
whereas setup and final_answer remain quiescent until later stages.

Table 4: Consensus boundaries (percent depth) across four models. All categories converge on
similar upper and top anchors, while analysis and verification also introduce early splits.

Category Majority Splits (percent depth)

38-71, 7275, 76-82, 83-85, 8689, 90-92, 93-96, 97-99
71,72-78, 79-82, 83-85, 86-89, 90-92, 93-96, 97-99
71,72-75, 7678, 79-82, 83-89, 90-92, 93-96, 97-99

68, 69-71, 72-78, 79-82, 83-85, 86-89, 90-92, 93-96, 97-99

analysis_and_computation 0-37,
final _answer 0-
setup_and_retrieval 0-
uncertainty_and_verification ~ 0-37, 38—

Q2. Do correct and incorrect runs use the same boundaries?

Consensus anchors also reveal systematic differences between correct and incorrect trajectories.
Table[5|summarizes these contrasts. Correct runs converge on a compact set of canonical boundaries,
producing repeatable anchor points across models. Incorrect runs, by contrast, deviate in two ways:
(i) they insert extra boundaries, fragmenting mid-to-upper regions into smaller segments, or (ii) they
collapse structure by omitting established anchors. These deviations are especially pronounced in
analysis_and_computation, where incorrect runs frequently add mid-layer boundaries. For instance,
Nemotron expands from a stable 5-split structure in correct cases to 7 splits in incorrect cases (see
Appendix [E). By contrast, final_answer anchors remain highly conserved: correct and incorrect
trajectories alike converge on nearly identical late-layer closure, differing only in granularity.

Overall, consensus analysis shows that incorrect reasoning is not random noise but reflects sys-
tematic disruptions to canonical depth segmentation: either over-segmentation, which fragments
processing, or under-segmentation, which fails to sustain necessary stages.

6 SEMANTIC TRANSITIONS AS FUNCTIONAL CONTROL POINTS

In the previous sections, we established that the structure of reasoning paths matters. In this section,
we use steering as a validation tool: by deriving vectors from the semantic transition matrix and
applying them as interventions at reasoning boundaries, we test whether nudging trajectories along
these directions can causally alter model performance.

Under review as a conference paper at ICLR 2026

Table 5: Extremum stability summary from consensus anchors: correct vs. incorrect trajectories
differ in canonical split points.

Category Avg. splits (Correct) Avg. splits (Incorrect) A Splits Jaccard Overlap (shared boundaries)
analysis_and_computation 5-9 7-8 -1-+42 Low (11-62%)
final_answer 3-10 7-10 +0—+4 Medium (14-89%)
setup_and_retrieval 6-8 5-9 -2—+2 Medium (33-80%)
uncertainty_and_verification 4-9 5-9 -2—+1 Medium (40-71%)

6.1 BUILD STEERING VECTORS

Edge-conditioned Displacement Vectors. From we know that correct and incorrect trajec-
tories follow distinct semantic transition patterns. To capture and target these divergences, we
construct edge-conditioned displacement vectors. Let ® : R? — R¥ denote the preprocessing
mentioned in For each step s;, we take the final-layer hidden state h; 7, € R% and map it to
z = ®(hy,,) € R*.For every adjacent category pair (a,b) € C x C induced by (ct, ¢11), we
compute displacement vectors d; = 2;+1 — 2, and separate these displacements into two sets:
those from correct trajectories and those from incorrect ones. For correct trajectories, we obtain an
edge-specific vector by averaging all d; along edge (a, b). For incorrect trajectories, instead of using
(a, b) directly, we construct a source-conditioned baseline: the average of displacements originating
from the same source category a, but across all incorrect outgoing edges other than (a, b):

corr __ 1 srcneg 1
:u’a—)b - Ngoﬂ;b § dt7:ua_>b - Nj{m*N;ni;b § dt-

(t: y=corr, cy=a, ct41=b) t: y=inc, c,=a, cy17#b

The A,y is computed as 7, — p5°7% € R, and then normalized. To perform steering in
the model’s hidden space, we inverse preprocess ® and map v,—p = @’1(Aa_>b) € RZ See

Algorithm 1]

Edge Selection from Divergent Transitions. A key question is which transitions should be tar-
geted for steering. Since correct and incorrect trajectories differ most strongly on specific category
transitions, we rank edges by the difference in their transition probabilities, measured as A% — A™MC,
We then consider two strategies:

1) Max-Divergence Edge. Select the single edge with the largest positive difference. For example,
correct trajectories frequently move from setup_and_retrieval to analysis_and_computation, whereas
incorrect ones are more likely to loop within setup_and_retrieval, or to jump prematurely to fi-
nal_answer or uncertainty_and_verification.

ii) Multi-Edge Ensemble. Select the top three edges with the largest positive differences, capturing
a broader set of corrective transitions.

In both cases, the steering vector v, serves as a directional signal: it promotes the desired correct
transition (¢ — b) while counteracting the competing incorrect alternatives.

Steering Protocol. During generation, we apply v,—,; only at step boundaries, detected by the
model producing a blank line delimiter. At the first token after such a boundary, we add v,
directly to the hidden state at the final transformer layer, just before the unembedding to logits.
a > 0 controls the intervention strength, and the update is h < h + avg—p.

We introduce two steering methods. i) In hard steering, the intervention vector is deterministically
taken from the max-divergence edge, i.e., always applying v,—,; from the single highest-ranked
transition. ii) In soft steering, we relax this choice by introducing stochasticity: from the bank of
the top-3 divergent edges {(ar—bx, pi)}, we normalize the scores so that) _, p,, = 1, then sample
an index k ~ Categorical(py, ..., ps) once per batch and apply the corresponding vector vq, —sp, -
This makes steering probabilistic, letting the intervention randomly select among the most divergent
candidates instead of always committing to one.

Under review as a conference paper at ICLR 2026

Algorithm 1: Edge-conditioned steering vector construction

Input: Final-layer states {h; 1 }, categories {c;}, correctness labels y, preprocessing ®, edge
set .
Output: Steering vectors v,_,;, € R%.
for each step t in each trajectory do
2t = q)(ht,L)a 241 = q)(ht+1,L)7 di = ze41 — 2,
if y = corr then
| add d; to bucket (a=c¢, b=c;1) for correct
else
| add d; to bucket (a, b) for incorrect and to source bucket a

or each edge (a,b) € E do

pS°", = mean of correct displacements on (a, b);

e

rcni . . .
Zi: 9 — mean of incorrect displacements from a excluding (a, b);
— i corr srcnegy .,
Aq—p = normalize(pS°, — pu0 =7)s

| Va—b = (I)il(Aa%b);

6.2 INTERVENTION

We inject edge-conditioned vectors into the model’s hidden states at reasoning boundaries and eval-
uate their impact (Table @ Three steering methods are compared: (i) edge-agnostic steering, which
uses a single global vector derived from the overall correct—incorrect contrast and applies it uni-
formly across all transitions, and (ii) the two edge-conditioned steering methods introduced in the
steering protocol. Motivated by our structural analysis, where the final layer consistently forms its
own regime and final-answer steps consolidate in the upper layers, we target the last layer as the
natural site for intervention. The left half of Table @ reports the correction rate, i.e., the fraction of
originally incorrect predictions that are corrected after steering. The right half reports the change
in output length, measured as token counts before and after steering. If edge-conditioned steering
achieves higher correction rates than the edge-agnostic baseline, this provides causal evidence that
choosing the right reasoning path improves model performance.

Table 6: Correction rate (; fraction of originally incorrect predictions corrected after steering) and
false-token count ({; token counts of originally incorrect predictions), averaged over 3 independent
runs. Top values are highlighted.

Model Dataset Steering Correction Rate 1 Tokens |
Edge-Agnostic Soft Steering Hard Steering Baseline Soft Steering Hard Steering

Llama-3.1- MATH-500 0.1081 0.1219 0.1383 1986 1949 1941
Nemotron-Nano- Weblnstruct-Verified 0.0969 0.1181 0.0966 4330 4173 4185
4B-vl.1 GPQA-Diamond 0.1423 0.1653 0.1630 4833 4845 4796
MATH-500 0.2324 0.2443 0.2311 1899 1758 1785
OpenThinker-7B Weblnstruct-Verified 0.2367 0.2408 0.2094 3474 3303 3442
GPQA-Diamond 0.1858 0.1619 0.2126 4340 4155 4204
MATH-500 0.1198 0.1312 0.1175 1998 1983 1982
Qwen3-1.7B Weblnstruct-Verified 0.1091 0.1295 0.1062 3926 3889 3878
GPQA-Diamond 0.0709 0.0792 0.0774 4526 4567 4492
MATH-500 0.2832 0.2962 0.2747 1688 1537 1547
Bespoke-Stratos-7B Weblnstruct-Verified 0.1679 0.1949 0.2065 1532 1424 1507
GPQA-Diamond 0.2431 0.2682 0.1900 2695 2729 2587
Average 0.1664 0.1793 0.1686 3102 3026 3029

Targeted interventions improve accuracy without added tokens. Steering at semantic edges
consistently improves correction rates while leaving output length unaffected. On average, correc-
tion improves from 0.1664 to 0.1793 under soft steering, while false-token counts drop from 3102
to 3026. These results demonstrate that reasoning paths directly affect model performance: targeted
interventions can rescue failures by encouraging trajectories toward the transitions associated with
correct reasoning.

Under review as a conference paper at ICLR 2026

Final-answer transitions are central to success. To identify which transitions matter most, we
analyze the most frequent top-1 edges across models, summarized in Table[7] At the global level, the
dominant transition is uncertainty_and_verification — final_answer. Nemotron and Stratos strongly
favor this same transition, Qwen relies most on analysis_and_computation — final_answer, while
OpenThinker frequently reinforces final_answer — final_answer.

This concentration shows that models succeed
through a set of decisive transitions rather than Typle 7: Most common top-1 semantic transitions
distributing progress evenly across the reason- 5cross models and datasets.

ing graph. Typical patterns include resolv-
ing uncertainty by committing to a final an-

. . . — Scope Top-1 Edge
swer, concluding analysis with a decision, or ; P
. . . Global uncertainty_and_verification — final_answer
relnforcmg an rea(;hed answer for COHSISFenC.Y Nemotron uncertainty_and_verification — final_answer
The steering experiments confirm: reasoning in OpenThinker final_answer — final_answer
LMs is structured by a latent reasoning graph, —~ Qwen analysis_and_computation — final_answer
Stratos uncertainty_and_verification — final_answer

where specific edges serve as functional deci-
sion points that govern success or failure.

7 RELATED WORK

Recent studies highlight that reasoning models can exhibit unintended or deceptive behaviors, un-
derscoring the need for a deeper mechanistic understanding (Baker et al., 2025). Several works
examine which aspects of CoT steps matter. Madaan & Yazdanbakhsh|(2022) disentangle the roles
of textual content and structural patterns, Wang et al.| (2022) show that performance gains often per-
sist even with flawed step content, and [Bogdan et al.[(2025)) find that a small set of “anchor” steps
disproportionately shape final outcomes.

Mechanistic analyses probe the internal processes behind reasoning. |Cabannes et al|(2024) and
Dutta et al.| (2024)) show how architectural components enable stepwise reasoning. Latent multi-hop
phenomena are revealed by Yang et al.| (2024b) and Shalev et al.| (2024])), while |Venhoff et al.[(2025)
demonstrate that steering vectors can capture functional directions in hidden space. Information-
theoretic perspectives provide a complementary lens: |{Ton et al| (2024) analyze CoT dynamics
through entropy and mutual information, while Punjwani & Heck| (2025) explore how neural net-
work weights encode and constrain reasoning capacity. Beyond analysis, several works pursue
interventions. [Chen et al.| (2025a)) introduce training-free latent steering to suppress over-reflection,
while [Venhoff et al.| (2025) show that representation-level modifications can modulate reasoning
style. [Wang et al.| (2025b) propose efficient post-training refinement of latent reasoning, enabling
reasoning improvements without full retraining. Reasoning efficiency survey (Sui et al., [2025) cat-
alog methods to mitigate “overthinking,” and token-level analyses (Wang et al.l [2025a)) identify
sparse high-entropy tokens as critical intervention points. Two concurrent works explicitly model
state-aware dynamics of reasoning. Wu et al.[(2025) frame CoT as a latent-state MDP, training a
transition policy with RL to improve reasoning exploration. |Yu et al.| (2025) cluster final-layer em-
beddings of steps and construct a Markov chain to visualize reasoning motifs. Our work differs by
introducing a hierarchical HMM that integrates explicit semantic roles with hidden layer regimes.
This design ties what function a step serves to where it arises in the network, and further enables
HHMM-informed steering vectors that rescue failing trajectories through structured interventions.

8 CONCLUSION

We introduced a Hierarchical Hidden Markov Model (HHMM) that integrates semantic reason-
ing roles with latent depth regimes, linking what a step does to where it arises in the network.
This dual perspective reveals consistent dynamics: successful trajectories follow stable semantic
paths anchored by well-formed structural boundaries, while failures arise from hesitation loops,
unstable shifts, or missing anchors. Beyond providing an explanatory lens, HHMM also enables
control—steering vectors derived from transition patterns can nudge trajectories toward successful
reasoning paths and reliably rescue failing runs without increasing output length. Taken together,
these results position HHMM as both a framework for understanding reasoning and a foundation for
structured interventions that improve the robustness and reliability of reasoning models.

Under review as a conference paper at ICLR 2026

Ethics Statement. This work adheres to the Code of Ethics. Our experiments use only open-
source models and publicly available datasets under their respective open licenses, with no involve-
ment of human subjects or sensitive data. We identify no foreseeable ethical risks.

Reproducibility Statement. We ensure reproducibility by providing experimental and implemen-
tation details in Section [3]and Appendices Full results with statistical significance are in Ap-
pendices and anonymous source code is included as supplementary material.

REFERENCES

Bowen Baker, Joost Huizinga, Leo Gao, Zehao Dou, Melody Y Guan, Aleksander Madry, Wojciech
Zaremba, Jakub Pachocki, and David Farhi. Monitoring reasoning models for misbehavior and
the risks of promoting obfuscation. arXiv preprint arXiv:2503.11926, 2025.

Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil,
Zach Moshe, Tomer Ronen, Najeeb Nabwani, et al. Llama-nemotron: Efficient reasoning models.
arXiv preprint arXiv:2505.00949, 2025.

Paul C Bogdan, Uzay Macar, Neel Nanda, and Arthur Conmy. Thought anchors: Which 1lm reason-
ing steps matter? arXiv preprint arXiv:2506.19143, 2025.

Vivien Cabannes, Charles Arnal, Wassim Bouaziz, Xingyu Yang, Francois Charton, and Julia
Kempe. Iteration head: A mechanistic study of chain-of-thought. Advances in Neural Infor-
mation Processing Systems, 37:109101-109122, 2024.

Runjin Chen, Zhenyu Zhang, Junyuan Hong, Souvik Kundu, and Zhangyang Wang. Seal: Steerable
reasoning calibration of large language models for free. arXiv preprint arXiv:2504.07986, 2025a.

Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman,
Arushi Somani, Peter Hase, Misha Wagner, Fabien Roger, et al. Reasoning models don’t always
say what they think. arXiv preprint arXiv:2505.05410, 2025b.

Subhabrata Dutta, Joykirat Singh, Soumen Chakrabarti, and Tanmoy Chakraborty. How to
think step-by-step: A mechanistic understanding of chain-of-thought reasoning. arXiv preprint
arXiv:2402.18312, 2024.

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, Ashima Suvarna, Benjamin Feuer, Liangyu
Chen, Zaid Khan, Eric Frankel, Sachin Grover, Caroline Choi, Niklas Muennighoff, Shiye Su,
Wanjia Zhao, John Yang, Shreyas Pimpalgaonkar, Kartik Sharma, Charlie Cheng-Jie Ji, Yichuan
Deng, Sarah Pratt, Vivek Ramanujan, Jon Saad-Falcon, Jeffrey Li, Achal Dave, Alon Albalak,
Kushal Arora, Blake Wulfe, Chinmay Hegde, Greg Durrett, Sewoong Oh, Mohit Bansal, Saadia
Gabriel, Aditya Grover, Kai-Wei Chang, Vaishaal Shankar, Aaron Gokaslan, Mike A. Merrill,
Tatsunori Hashimoto, Yejin Choi, Jenia Jitsev, Reinhard Heckel, Maheswaran Sathiamoorthy,
Alexandros G. Dimakis, and Ludwig Schmidt. Openthoughts: Data recipes for reasoning models,
2025. URL https://arxiv.org/abs/2506.04178.

HuggingFaceH4. Aime_2024 dataset. https://huggingface.co/datasets/
HuggingFaceH4/aime_2024, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv
preprint arXiv:2412.16720, 2024.

Bespoke Labs. Bespoke-stratos: ~ The unreasonable effectiveness of reasoning dis-
tillation. https://www.bespokelabs.ai/blog/bespoke-stratos-the-unreasonable-effectiveness-of-
reasoning-distillation, 2025.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

10

https://arxiv.org/abs/2506.04178
https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://huggingface.co/datasets/HuggingFaceH4/aime_2024

Under review as a conference paper at ICLR 2026

Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhu Chen. General-Reasoner:
Advancing llm reasoning across all domains. arXiv:2505.14652,2025. URL https://arxiv.
org/abs/2505.14652.

Aman Madaan and Amir Yazdanbakhsh. Text and patterns: For effective chain of thought, it takes
two to tango. arXiv preprint arXiv:2209.07686, 2022.

Meta. Llama 3.1 8b instruct. https://huggingface.co/meta—llama/Llama—3.
1-8B—Instruct, 2024. Accessed: 2025-09-24.

Saif Punjwani and Larry Heck. Weight-of-thought reasoning: Exploring neural network
weights for enhanced 1lm reasoning. ArXiv, abs/2504.10646, 2025. URL https://api.
semanticscholar.org/CorpusID:277787278.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqga: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Yuval Shalev, Amir Feder, and Ariel Goldstein. Distributional reasoning in llms: Parallel reasoning
processes in multi-hop reasoning. arXiv preprint arXiv:2406.13858, 2024.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Na Zou, et al. Stop overthinking: A survey on efficient reasoning
for large language models. arXiv preprint arXiv:2503.16419, 2025.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Jean-Francois Ton, Muhammad Faaiz Taufiq, and Yang Liu. Understanding chain-of-thought
in llms through information theory. ArXiv, abs/2411.11984, 2024. URL https://api.
semanticscholar.org/CorpusID:274141313.

Constantin Venhoff, Ivan Arcuschin, Philip Torr, Arthur Conmy, and Neel Nanda. Understanding
reasoning in thinking language models via steering vectors. arXiv preprint arXiv:2506.18167,
2025.

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, You Wu, Luke Zettlemoyer, and Huan Sun.
Towards understanding chain-of-thought prompting: An empirical study of what matters. arXiv
preprint arXiv:2212.10001, 2022.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning. arXiv preprint arXiv:2506.01939, 2025a.

Xinyuan Wang, Dongjie Wang, Wangyang Ying, Haoyue Bai, Nanxu Gong, Sixun Dong, Kun-
peng Liu, and Yanjie Fu. Efficient post-training refinement of latent reasoning in large language
models. ArXiv, abs/2506.08552, 2025b. URL https://api.semanticscholar.org/
CorpusID:279260460.

Junda Wu, Yuxin Xiong, Xintong Li, Zhengmian Hu, Tong Yu, Rui Wang, Xiang Chen, Jingbo
Shang, and Julian McAuley. Ctrls: Chain-of-thought reasoning via latent state-transition. arXiv
preprint arXiv:2507.08182, 2025.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024a.

Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor Geva, and Sebastian Riedel. Do large language
models latently perform multi-hop reasoning? arXiv preprint arXiv:2402.16837, 2024b.

11

https://arxiv.org/abs/2505.14652
https://arxiv.org/abs/2505.14652
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://api.semanticscholar.org/CorpusID:277787278
https://api.semanticscholar.org/CorpusID:277787278
https://arxiv.org/abs/2505.09388
https://api.semanticscholar.org/CorpusID:274141313
https://api.semanticscholar.org/CorpusID:274141313
https://api.semanticscholar.org/CorpusID:279260460
https://api.semanticscholar.org/CorpusID:279260460

Under review as a conference paper at ICLR 2026

Sheldon Yu, Yuxin Xiong, Junda Wu, Xintong Li, Tong Yu, Xiang Chen, Ritwik Sinha, Jingbo
Shang, and Julian McAuley. Explainable chain-of-thought reasoning: An empirical analysis on
state-aware reasoning dynamics. arXiv preprint arXiv:2509.00190, 2025.

12

Under review as a conference paper at ICLR 2026

A DATA PREPROCESSING AND EXPERIMENTAL SETUP

A.1 MODELS

We evaluate five open-source reasoning models, each paired with a classification model where ap-
plicable. All models are run with bfloat16 precision unless otherwise specified. Generation models
use standard reasoning hyperparameters, while classification models are configured with do_sample
= False. Licenses are listed for reproducibility.

Owen3-1.7B (Team, 2025) was used for both generation and classification, with “thinking mode”
enabled for generation and disabled for classification. The parameters were: temperature = 0.6,
top-p = 1.0, top_k = 20, and min_p = 0; classification was run deterministically with do_sample =
False. License: Apache 2.0.

Bespoke-Stratos-7B (Labs},[2025) was paired with Qwen2.5-7B-Instruct (Yang et al.l[2024al) for clas-
sification. The configuration used temperature = 0.6, top_p = 0.95, and deterministic classification
(do_sample = False). License: Apache 2.0 (both models).

OpenThinker-7B (Guha et al.| [2025)) was paired with Qwen2.5-7B-Instruct (Yang et al., [2024a),
using the same settings (temperature = 0.6, top_p = 0.95, and do_sample = False for classification).
License: Apache 2.0 (both models).

Llama-3.1-Nemotron-Nano-4B-v1.1 (Bercovich et al.,[2025) was used for both generation and clas-
sification. “Thinking mode” was enabled for generation and disabled for classification, with param-
eters temperature = 0.6, top_p = 0.95, and deterministic classification (do_sample = False). License:
NVIDIA Open Model License.

Besides above models, LLaMA-3.1-8B-Instruct (Metal 2024) are used only for Weblnstruct-
Verified, with Meta LLaMA 3.1 License.

A.2 DATASETS

Our experiments span 4 benchmarks. Splits, sizes, maximum token cutoffs and licenses are shown
in Table[8] AIME-2024 is excluded from steering analysis due to its small size and difficulty.

Table 8: Datasets used in experiments.

Dataset Split Train Size Test Size Max Tokens License
MATH-500 (Lightman et al.|[2023) test 250 250 2000 MIT
GPQA-Diamond (Rein et al.|[2024) test 100 98 5000 Apache 2.0
Weblnstruct-Verified (Ma et al.|[2025) test 144 144 5000 Apache 2.0
AIME-2024 (HuggingFaceH4/[2024) train 15 - 32768 Apache 2.0

For Weblnstruct-Verified, we additionally filter by: answer_types as Float, Multiple Choice, Integer,
Percentage and difficulties as Primary, Junior High, Senior High.

A.3 PROMPTING
Generation. - Multiple-choice tasks (GPQA) use:

You are answering a multiple-choice question.

Options are labeled A, B, C, and D.

Think step-by-step and show your reasoning.

At the very end, output ONE line exactly in this format:
Final Answer: \boxed{A}

- Open-ended tasks (MATH-500, AIME-2024, WeblInstruct) use:
Answer the following question step-by-step.

At the very end, output exactly one line formatted as:
Final Answer: \boxed{...}

13

Under review as a conference paper at ICLR 2026

Exception: For Stratos on MATH-500, no prompt is used, as this improved performance.

Classification. For sentence-level semantic tagging, all classification models use:

You are an expert in reasoning analysis.

Classify the function of each sentence into one of the following tags:
1. final answer

2. setup_and_retrieval

3. analysis_and_computation

4. uncertainty_and_verification

A.4 PREPROCESSING PIPELINE

We segment each generated solution into reasoning steps using blank-line delimiters, and for every
step we store the hidden representation of its first token across all layers as the step-level hidden
state. Per-step reasoning sequences are constructed and anchored to semantic labels.

A.5 COMPUTING

All experiments were conducted with NVIDIA H100 and H200 GPUs.

B HHMM CONFIGURATIONS

B.1 TRAINING

Data Loading and Filtering Classification labels and step-level hidden states (extracted during
Appendix [A) are loaded. Depending on the configuration, training uses either all samples, only
correct samples, or only incorrect samples.

Feature Preprocessing Step embeddings are standardized with a StandardScaler, then reduced via
PCA to a target dimension of 64 (d,., = 64). PCA is run with the solver option svd_solver="full”.

HHMM Fitting The HHMM is trained with four fixed top-level categories (C' = 4) aligned to
semantic anchors, and seven bottom-level regimes (X = 7) per category. Unless otherwise specified,
training runs for 10 EM iterations (n_iter = 10).

Anchored Top-Level Categories The HHMM is trained in anchored mode, where top-level cate-
gories are fixed by semantic labels. Each reasoning step is assigned one of four canonical categories:
final_answer, setup_and_retrieval, analysis_and_computation, uncertainty_and_verification. These la-
bels are required for every sequence and are coerced into integer IDs (0-3). The top-level start and
transition probabilities are estimated directly from observed label sequences.

Bottom-Level HMMs For each category, a bottom-level HMM with K = 7 regimes is trained to
model the sequence of hidden states across layers. Emissions are diagonal Gaussians with parame-
ters (g, O']%), initialized from a pooled sample of step embeddings. Variances are lower-bounded to
103 for stability.

Expectation-Maximization (EM) Training proceeds via EM for ny,, = 10 iterations: (i) E-
step: For each step, given its fixed category, the bottom HMM runs forward—backward to compute
regime posteriors and sufficient statistics. (i) M-step: Top-level parameters (start and transition)
are updated by normalized counts over fixed labels; bottom-level parameters are re-estimated from
sufficient statistics. Average per-step log-likelihood is monitored across iterations.

B.2 DECODING

Inputs and Preprocessing Restore Anchored decoding operates on two inputs: (1) preprocessed
records containing step-level hidden states and labels, and (2) a HHMM checkpoint that stores model

14

Under review as a conference paper at ICLR 2026

parameters and preprocessing statistics. The original StandardScaler and PCA are reconstructed by
directly restoring their learned attributes, rather than refitting.

Anchored Decoding Bottom-level states are decoded with Viterbi under the fixed top-level cate-
gory path. Anchored decoding constrains the top-level HHMM categories using provided labels and
returns best_regimes_per_step for each sequence, which is the fine-grained bottom-level regime path
assigned by model.

Consensus Layer Ranges To summarize regime allo-
cation across layers, we derive consensus ranges for each Table 9: Example.
top category:

. . Regime Layers
1. Frequency pooling. For each category c, build _

frequency tensors reg_freq[c] € NExK | where 5 0-6
entry (i,7) counts how often regime r is as- 3 7-18
signed at layer . 1 19-22
6 23-25
2. Dominant regime selection. At 0 26-27
each layer 4, choose the regime with 6 28
the largest relative frequency: r* =

arg max, reg_freq[c); /Y., reg_freq[cl; .

3. Range consolidation. Merge consecutive layers
that share the same dominant regime into one in-
terval to obtain compact ranges.

C STEERING VECTOR CONSTRUCTION AND INTERVENTION

C.1 STEERING VECTOR CONSTRUCTION

We provide implementation details for the steering vector construction, which derives steering vec-
tors from HHMM transition matrix and hidden states. These vectors capture directional displace-
ments in representation space that distinguish correct from incorrect reasoning paths.

Input. The build script consumes three inputs: (1) model hidden state, (2) semantic level tran-
sition matrix, and (3) trained preprocessing models containing scaling statistics and optional PCA
components.

Preprocessing. Each hidden state H is standardized using a fitted StandardScaler, then reduced
with PCA to dimension dj., = 64. This yields a single step embedding v; € Réeea per reasoning
step.

Edge statistics. For each category transition (¢ — b) in correct runs, we compute the average
displacement A, ;, = E[v;41 — v]. For incorrect runs, we maintain both edge-conditional and
source-marginal statistics, then construct a source-conditioned negative baseline. Subtracting this
baseline from correct displacements yields contrastive vectors A, ; that emphasize features predic-
tive of successful reasoning.

Baselines. A global baseline is computed by averaging hidden vectors across all steps of correct vs.
incorrect runs, independent of edge structure. This yields a steering direction vgiopa for comparison.

Soft edge weighting. When choose short steering, a json file will be used to specify a combination
of multiple edges with normalized weights, allowing multi-edge steering vectors.

Output. Per-edge steering vectors, baseline vector, and soft steering configuration with normal-
ized probability.

15

Under review as a conference paper at ICLR 2026

C.2 STEERING AT INFERENCE TIME

This section describes how steering vectors are applied during generation.

Goal. Given a hidden-space steering vector v € R? (inverted back to the model’s hidden width
from the PCA/scaler space), we add a small vector axv at chosen transformer layers during decoding
to encourage trajectories associated with successful reasoning.

steering Vectors Steering operates by adding precomputed vectors in the model’s hidden space.
In the hard-steering mode, we load one vector; instead in the soft-steering mode, we instead build
a small bucket of edge-specific vectors, each associated with a probability weight. At inference,
one vector from this bucket is selected by random sampling, and the chosen vector is applied as an
intervention to steer the hidden states.

Injection Mechanism (Forward Hooks) During generation, we register lightweight forward
hooks on the selected blocks. Let h € RBXT*d be the hidden state for last layer for a batch of
size B. When the gate fires (Sec.[C.2)), we update the last token representation for each active batch
slot b:

hyr—1,;: + hpo—1,. + av.

Step-Aware Gating To make steering step-aware, we attach a logits-processor that arms a per-
batch gate when the generated text ends with a blank line. The next token after arming receives the
steering update and the gate resets.

Table 10: Correction rate (1; fraction of originally incorrect predictions corrected after steering, with
standard deviations) and false-token count ({; token counts of originally incorrect predictions, with
standard deviations), average and std over 3 independent runs.

Model Dataset Edge-Agnostic ~ Soft Steering Hard Steering Baseline Soft Steering Hard Steering #False
Corr. Corr. Std Corr. Std Tokens Tokens Std Tokens Std
Llama-3.1- MATH-500 0.1081 0.1219 0.04 0.1383 0.04 1986 1949 14.71 1941 8.86 120
Nemotron-Nano- Weblnstruct-Verified 0.0969 0.1181 0.04 0.0966 0.03 4330 4173 27778 4185 65.18 69
4B-v1.1 GPQA-Diamond 0.1423 0.1653 0.03 0.1630 0.09 4833 4845 5456 4796 77.11 106
MATH-500 0.2324 0.2443 0.07 0.2311 0.02 1899 1758 10.06 1785 29.00 80
OpenThinker-7B Weblnstruct-Verified 0.2367 0.2408 0.03 0.2094 0.04 3474 3303 28388 3442 35.01 96
GPQA-Diamond 0.1858 0.1619 0.08 0.2126 0.04 4340 4155 88.74 4204 125.16 72
MATH-500 0.1198 0.1312 0.01 0.1175 0.02 1998 1983 7.65 1982 10.09 100
Qwen3-1.7B Weblnstruct-Verified 0.1091 0.1295 0.03 0.1062 0.01 3926 3889 9723 3878 5468 125
GPQA-Diamond 0.0709 0.0792 0.04 0.0774 0.02 4526 4567 5588 4492 51.80 81
MATH-500 0.2832 0.2962 0.02 0.2747 0.06 1688 1537 4492 1547 1825 59
Bespoke-Stratos-7B Weblnstruct-Verified 0.1679 0.1949 0.03 0.2065 0.04 1532 1424 13998 1507 46.69 87
GPQA-Diamond 0.2431 0.2682 0.12 0.1900 0.07 2695 2729 25248 2587 101.64 76
Average 0.1664 0.1793 0.1686 3102 3026 3029

D SEMANTIC HHMM TRANSITION ANALYSIS

Goal. We summarize the fop—level (semantic) dynamics of our HHMM by averaging start—state
probabilities and transition matrices across runs, and by contrasting correct vs. incorrect trajectories.

Aggregation. For any slice D, we compute
T = mean,ep T € REXC, S = mean,ep ST € R,

where 7") and S(") are the per—run transition matrix and start distribution. We additionally report
a difference view AT = Teorrect — Tincorrects AS = Scorrect — Sincorrect-

Reading guide (key takeaways). (i) Starts. Most sequences start in setup_and_retrieval (~<0.49);
correct runs show a slightly higher chance to start in final_answer (+1.5pp).

16

Under review as a conference paper at ICLR 2026

(i) Progress toward final_answer. Correct runs are consistently more likely to move into final_answer
from any state (row—wise AT to final_answer is +2.1-3.9pp), with the largest lift from analy-
sis_and_computation (+3.9pp).

(iii) Stalls and detours. Incorrect runs show relatively higher self-loops or detours
into analysis_and_computation/uncertainty _and_verification (negative entries in the to analy-
sis_and_computation/uncertainty _and_verification columns of AT).

E STRUCTURAL HHMM TRANSITION ANALYSIS

This section describes the procedure for aggregating layer “endpoints” (structural boundaries) across
models, subsets.

E.1 PERCENT-DEPTH BINS.

Each absolute endpoint e € [0..L] is mapped to a bin k € [0..B] (with B = 99):
k = round(% - B).

Boundary bins {0, B} are always included.

MODEL_CAPS = {stratos = 29, openthinker = 29, qwen = 29, nemotron = 33}.

E.2 WITHIN-MODEL CONSENSUS VOTING

We compute per-file endpoint sets in [0..B] and then vote across runs. An endpoint u ¢ {0, B} is
kept if
#{runs containing u}

> ENDPOINT THR,
ng

where n ¢ is the number of unique runs. We set ENDPOINT_ THR = 0.3.

E.3 ACROSS-MODEL VOTING

After within-model consensus, endpoints are aggregated across models. Let &, be the voted end-
points for model m. Then keep bins present in at least two models (out of four total).

E.4 CONSENSUS STABILITY SUMMARY (CORRECT VS. INCORRECT)

From the per-subset consensus, we compute stability statistics for each category:

(i) Splits: ngyis = |€] — 1 per subset, model, category, aggregated as averages and min—max across
models.

(ii) A Splits: per model, A = ngllftz - nggﬁz, reported as the extremal range [min A, max A].

(iii) Anchor overlap (Jaccard): anchors are interior endpoints A = £ \ {0, B}. For each model:
_ |Acor N Aincl
|~Acor U Ainc|

We report per-category averages, min—-max, and bucket averages as Low (< 0.5), Medium
([0.5,0.7)), or High (> 0.7).

J

E.5 HEATMAPS
To quantify similarity between models, we construct heatmaps of endpoint overlap. For each pair of

models (m1, my), we compute the histogram overlap of their endpoint distributions in percent-depth
space.

17

Under review as a conference paper at ICLR 2026

Table 11: Mean top—level transition matrices (T). Rows are sources; columns are destinations.

final_answer setup_and retrieval analysis_and _computation uncertainty _and_verification

ALL

final_answer 0.395 0.180 0.295 0.130
setup_and_retrieval 0.317 0.255 0.317 0.111
analysis_and_computation 0.299 0.179 0.390 0.132
uncertainty_and_verification 0.277 0.200 0.318 0.206
CORRECT

final_answer 0.414 0.179 0.286 0.122
setup_and_retrieval 0.329 0.257 0.309 0.105
analysis_and_computation 0.323 0.173 0.382 0.122
uncertainty_and_verification 0.299 0.192 0.316 0.193
INCORRECT

final_answer 0.378 0.179 0.309 0.135
setup_and_retrieval 0.308 0.257 0.320 0.115
analysis_and_computation 0.284 0.183 0.396 0.138
uncertainty_and_verification 0.263 0.205 0.321 0.211

Table 12: Difference matrix AT = Toomect — Lincorrect. POsitive values indicate transitions that are
more likely in correct runs.

final_answer setup_and retrieval analysis_and _computation uncertainty_and_verification

final_answer +0.036 +0.000 -0.023 -0.013
setup_and_retrieval +0.021 -0.000 -0.010 -0.011
analysis_and_computation +0.039 -0.009 -0.013 -0.016
uncertainty_and_verification +0.036 -0.013 -0.005 -0.018

F USE OF LARGE LANGUAGE MODELS.

Large language models (LLMs) were used solely as assistive tools for proofreading and improving
clarity of writing.

18

Under review as a conference paper at ICLR 2026

Table 13: Mean start distributions (5) and difference AS = Scorrect — Sincorrect-

ALL CORRECT INCORRECT
final_answer 0.191 0.201 0.186
setup_and_retrieval 0.494 0.492 0.498
analysis_and_computation 0.220 0.215 0.218
uncertainty _and_verification 0.095 0.092 0.098

Difference AS (Correct — Incorrect): [+0.015, -0.006, -0.003, -0.006]

Table 14: AIME-2024 — Mean top-level transition matrices (T). Rows are sources; columns are

destinations.
final_answer setup_and_retrieval analysis_and_computation uncertainty_and_verification

ALL
final_answer 0.377 0.177 0.329 0.116
setup_and_retrieval 0.305 0.251 0.344 0.099
analysis_and_computation 0.303 0.174 0.401 0.123
uncertainty_and_verification 0.265 0.197 0.339 0.199
CORRECT
final_answer 0.399 0.172 0.321 0.108
setup_and_retrieval 0.327 0.237 0.338 0.097
analysis_and_computation 0.339 0.163 0.389 0.108
uncertainty_and_verification 0.271 0.199 0.347 0.183
INCORRECT
final_answer 0.363 0.181 0.339 0.117
setup_and _retrieval 0.294 0.261 0.344 0.101
analysis_and_computation 0.288 0.178 0.405 0.129
uncertainty_and_verification 0.263 0.199 0.338 0.200

Table 15: AIME-2024 — Difference matrix AT = Thomeet — Lincorrect. POSitive values are more likely

in correct runs.

final answer setup_and retrieval analysis_and _computation uncertainty _and_verification
final_answer +0.036 -0.009 -0.018 -0.009
setup_and_retrieval +0.033 -0.024 -0.006 -0.004
analysis_and_computation +0.051 -0.015 -0.015 -0.021
uncertainty_and_verification +0.008 +0.000 +0.009 -0.017

Table 16: AIME-2024 — Mean start distributions (S) and AS = Seorrect — Sincorrect-

ALL CORRECT INCORRECT
final_answer 0.228 0.231 0.217
setup_and_retrieval 0.506 0.527 0.486
analysis_and_computation 0.150 0.115 0.181
uncertainty_and_verification 0.117 0.126 0.116

Difference AS (Correct — Incorrect): [+0.014,+0.041, -0.066, +0.011]

19

Under review as a conference paper at ICLR 2026

Table 17: GPQA-Diamond — Mean top-level transition matrices (7'). Rows are sources; columns
are destinations.

final answer setup_and retrieval analysis_and _computation uncertainty_and_verification

ALL

final_answer 0.400 0.191 0.252 0.157
setup_and_retrieval 0.313 0.278 0.258 0.150
analysis_and_computation 0.280 0.202 0.337 0.181
uncertainty _and_verification 0.276 0.200 0.274 0.249
CORRECT

final_answer 0412 0.186 0.252 0.149
setup_and_retrieval 0.315 0.300 0.246 0.139
analysis_and_computation 0.287 0.200 0.344 0.169
uncertainty _and_verification 0.298 0.183 0.273 0.245
INCORRECT

final_answer 0.400 0.191 0.251 0.158
setup_and_retrieval 0.313 0.273 0.261 0.154
analysis_and_computation 0.276 0.203 0.337 0.184
uncertainty_and_verification 0.268 0.207 0.274 0.251

Table 18: GPQA-Diamond — Difference matrix AT = Tyorrect — Lincorrect. POsitive values are more
likely in correct runs.

final_answer setup_and_retrieval analysis_and_computation uncertainty_and_verification

final_answer +0.012 -0.005 +0.001 -0.009
setup_and_retrieval +0.003 +0.027 -0.015 -0.014
analysis_and_computation +0.011 -0.003 +0.008 -0.015
uncertainty_and_verification +0.030 -0.023 -0.001 -0.006

Table 19: GPQA-Diamond — Mean start distributions (S) and AS = Scomect — Sincorrect-

ALL CORRECT INCORRECT

final_answer 0.201 0.229 0.188
setup_and _retrieval 0.499 0.499 0.502
analysis_and_computation 0.207 0.191 0.212
uncertainty_and_verification 0.093 0.082 0.098

Difference AS (Correct — Incorrect): [+0.041,-0.004,-0.021,-0.016]

Table 20: MATH-500 — Mean top—level transition matrices (T'). Rows are sources; columns are
destinations.

final_answer setup_and retrieval analysis_and _computation uncertainty_and_verification

ALL

final_answer 0.389 0.196 0.317 0.097
setup_and_retrieval 0.309 0.264 0.353 0.074
analysis_and_computation 0.304 0.183 0.422 0.091
uncertainty _and_verification 0.272 0.225 0.353 0.150
CORRECT

final_answer 0.414 0.194 0.301 0.092
setup_and_retrieval 0.332 0.253 0.347 0.068
analysis_and_computation 0.337 0.173 0.408 0.082
uncertainty_and_verification 0.305 0.214 0.347 0.134
INCORRECT

final_answer 0.349 0.190 0.353 0.107
setup_and_retrieval 0.284 0.273 0.360 0.083
analysis_and_computation 0.268 0.192 0.437 0.103
uncertainty_and_verification 0.241 0.238 0.365 0.157

20

Under review as a conference paper at ICLR 2026

Table 21: MATH-500 — Difference matrix AT = Tiomect — Lincomrect- POSItive values are more likely
in correct runs.

final_answer setup_and_retrieval analysis_and_computation uncertainty_and_verification

final_answer +0.065 +0.003 -0.052 -0.015
setup_and_retrieval +0.048 -0.020 -0.013 -0.015
analysis_and_computation +0.069 -0.019 -0.029 -0.021
uncertainty_and_verification +0.064 -0.024 -0.018 -0.023

Table 22: MATH-500 — Mean start distributions (S) and AS = Seorrect — Sincorrect-

ALL CORRECT INCORRECT

final_answer 0.159 0.155 0.171
setup_and_retrieval 0.446 0.428 0.473
analysis_and_computation 0.310 0.334 0.273
uncertainty_and_verification 0.084 0.083 0.084

Difference AS (Correct — Incorrect): [-0.016,-0.045,+0.061,-0.001]

Table 23: WeblInstruct-Verified — Mean top-level transition matrices (7). Rows are sources;
columns are destinations.

final_answer setup_and retrieval analysis_and _computation uncertainty _and_verification

ALL

final_answer 0.412 0.155 0.283 0.149
setup_and_retrieval 0.342 0.227 0.311 0.120
analysis_and_computation 0.310 0.157 0.402 0.131
uncertainty _and_verification 0.293 0.176 0.303 0.228
CORRECT

final_answer 0.430 0.164 0.269 0.138
setup_and_retrieval 0.342 0.237 0.306 0.115
analysis_and_computation 0.329 0.156 0.388 0.127
uncertainty_and_verification 0.323 0.172 0.297 0.208
INCORRECT

final_answer 0.400 0.153 0.291 0.156
setup_and_retrieval 0.340 0.222 0314 0.123
analysis_and_computation 0.304 0.156 0.405 0.135
uncertainty_and_verification 0.281 0.177 0.307 0.235

Table 24: Weblnstruct-Verified — Difference matrix AT = Tioreet — Lincorrect. POsitive values are
more likely in correct runs.

final answer setup_and retrieval analysis_and _computation uncertainty _and_verification

final_answer +0.030 +0.010 -0.022 -0.018
setup_and_retrieval +0.002 +0.015 -0.008 -0.009
analysis_and_computation +0.024 +0.000 -0.018 -0.007
uncertainty_and_verification +0.042 -0.005 -0.010 -0.027

Table 25: Weblnstruct-Verified — Mean start distributions (S) and AS = Seorrect — Sincorrect-

ALL CORRECT INCORRECT

final_answer 0.177 0.191 0.169
setup_and _retrieval 0.524 0.513 0.531
analysis_and_computation 0.211 0.220 0.207
uncertainty_and_verification 0.088 0.077 0.093

Difference AS (Correct — Incorrect): [+0.022,-0.018,+0.013,-0.017]

21

Under review as a conference paper at ICLR 2026

Table 26: Nemotron — Mean top-level transition matrices (7). Rows are sources; columns are
destinations.

final answer setup_and retrieval analysis_and _computation uncertainty_and_verification

ALL

final_answer 0.665 0.095 0.199 0.041
setup_and_retrieval 0.671 0.119 0.178 0.031
analysis_and_computation 0.548 0.102 0.300 0.050
uncertainty _and_verification 0.549 0.107 0.254 0.090
CORRECT

final_answer 0.671 0.088 0.192 0.048
setup_and_retrieval 0.678 0.108 0.176 0.038
analysis_and_computation 0.583 0.088 0.277 0.053
uncertainty _and_verification 0.585 0.096 0.238 0.081
INCORRECT

final_answer 0.659 0.099 0.204 0.038
setup_and_retrieval 0.663 0.125 0.182 0.030
analysis_and_computation 0.531 0.109 0.311 0.049
uncertainty_and_verification 0.528 0.119 0.264 0.090

Table 27: Nemotron — Difference matrix AT = Toomect — Lincorrect- POSItive values are more likely
in correct runs.

final_answer setup_and_retrieval analysis_and_computation uncertainty_and_verification

final_answer +0.012 -0.011 -0.011 +0.010
setup_and_retrieval +0.015 -0.017 -0.006 +0.008
analysis_and_computation +0.052 -0.021 -0.034 +0.003
uncertainty_and_verification +0.057 -0.023 -0.025 -0.009

Table 28: Nemotron — Mean start distributions (S) and AS = S.orrect — Sincorrect-

ALL CORRECT INCORRECT

final_answer 0.386 0.416 0.368
setup_and _retrieval 0.153 0.148 0.148
analysis_and_computation 0.309 0.299 0.317
uncertainty_and_verification 0.152 0.136 0.167

Difference AS (Correct — Incorrect): [+0.048,-0.000,-0.017,-0.031]

Table 29: Openthinker — Mean top—level transition matrices (1). Rows are sources; columns are
destinations.

final_answer setup_and retrieval analysis_and _computation uncertainty_and_verification

ALL

final_answer 0.260 0.219 0.330 0.190
setup_and_retrieval 0.236 0.259 0.343 0.161
analysis_and_computation 0.244 0.206 0.373 0.176
uncertainty _and_verification 0.244 0.212 0.309 0.234
CORRECT

final_answer 0.285 0.204 0.338 0.174
setup_and_retrieval 0.245 0.262 0.332 0.160
analysis_and_computation 0.267 0.200 0.371 0.162
uncertainty_and_verification 0.252 0.204 0.309 0.235
INCORRECT

final_answer 0.241 0.230 0.330 0.199
setup_and_retrieval 0.230 0.259 0.349 0.163
analysis_and_computation 0.234 0.209 0.374 0.183
uncertainty_and_verification 0.238 0.220 0314 0.227

22

Under review as a conference paper at ICLR 2026

Table 30: Openthinker — Difference matrix AT = Troect — Lincorrect- Positive values are more

likely in correct runs.

final_answer setup_and_retrieval analysis_and_computation uncertainty_and_verification
final_answer +0.044 -0.026 +0.008 -0.026
setup_and_retrieval +0.016 +0.004 -0.017 -0.003
analysis_and_computation +0.033 -0.009 -0.003 -0.021
uncertainty_and_verification +0.014 -0.016 -0.006 +0.008

Table 31: Openthinker — Mean start distributions (S) and AS = Seorect — Sincorrect-

ALL CORRECT INCORRECT
final_answer 0.192 0.205 0.195
setup_and_retrieval 0.496 0.488 0.500
analysis_and_computation 0.198 0.189 0.200
uncertainty_and_verification 0.113 0.119 0.105

Difference AS (Correct — Incorrect): [+0.009,-0.012,-0.011,+0.013]

Table 32: Qwen — Mean top—level transition matrices (7'). Rows are sources; columns are destina-

tions.
final_answer setup_and retrieval analysis_and _computation uncertainty _and_verification

ALL
final_answer 0.391 0.185 0.319 0.105
setup_and_retrieval 0.132 0.371 0.409 0.088
analysis_and_computation 0.174 0.182 0.522 0.123
uncertainty_and_verification 0.083 0.251 0.393 0.273
CORRECT
final_answer 0.429 0.194 0.280 0.097
setup_and_retrieval 0.155 0.374 0.398 0.073
analysis_and_computation 0.196 0.178 0.517 0.109
uncertainty_and_verification 0.108 0.243 0.407 0.241
INCORRECT
final_answer 0.359 0.173 0.358 0.110
setup_and_retrieval 0.110 0.385 0.410 0.096
analysis_and_computation 0.149 0.190 0.528 0.132
uncertainty_and_verification 0.068 0.255 0.386 0.292

Table 33: Qwen — Difference matrix AT = Thomect — Dincorrect. POSItive values are more likely in

correct runs.

final answer setup_and retrieval analysis_and _computation uncertainty _and_verification
final_answer +0.070 +0.021 -0.078 -0.013
setup_and_retrieval +0.045 -0.010 -0.011 -0.023
analysis_and_computation +0.047 -0.013 -0.012 -0.023
uncertainty_and_verification +0.041 -0.011 +0.021 -0.051

Table 34: Qwen — Mean start distributions (S) and AS = Scorrect — Sincorrect-

ALL CORRECT INCORRECT
final_answer 0.003 0.000 0.003
setup_and _retrieval 0.836 0.832 0.853
analysis_and_computation 0.157 0.164 0.140
uncertainty_and_verification 0.005 0.004 0.004

Difference AS (Correct — Incorrect): [-0.003,-0.021,+0.024,-0.000]

23

Under review as a conference paper at ICLR 2026

Table 35: Stratos — Mean top-level transition matrices (T). Rows are sources; columns are desti-
nations.

final_answer setup_and retrieval analysis_and_computation uncertainty_and_verification

ALL

final_answer 0.262 0.219 0.334 0.184
setup_and_retrieval 0.231 0.271 0.335 0.163
analysis_and_computation 0.231 0.225 0.367 0.177
uncertainty _and_verification 0.231 0.227 0.314 0.228
CORRECT

final_answer 0.269 0.230 0.332 0.168
setup_and_retrieval 0.238 0.283 0.331 0.148
analysis_and_computation 0.245 0.227 0.366 0.163
uncertainty _and_verification 0.251 0.226 0.311 0.212
INCORRECT

final_answer 0.253 0.214 0.342 0.191
setup_and_retrieval 0.227 0.261 0.339 0.173
analysis_and_computation 0.222 0.221 0.370 0.186
uncertainty_and_verification 0.219 0.227 0.321 0.234

Table 36: Stratos — Difference matrix AT = Thoeet — Lincorrect. POSitive values are more likely in
correct runs.

final_answer setup_and retrieval analysis_and _computation uncertainty _and_verification

final_answer +0.016 +0.017 -0.010 -0.023
setup_and_retrieval +0.011 +0.022 -0.008 -0.025
analysis_and_computation +0.023 +0.006 -0.005 -0.024
uncertainty_and_verification +0.032 -0.001 -0.010 -0.022

Table 37: Stratos — Mean start distributions (S) and AS = Scorrect — Sincorrect-

ALL CORRECT INCORRECT

final_answer 0.184 0.185 0.178
setup_and_retrieval 0.490 0.498 0.491
analysis_and_computation 0.214 0.208 0.216
uncertainty_and_verification 0.112 0.109 0.115

Difference AS (Correct — Incorrect): [+0.007, +0.007, -0.008, -0.006]

24

Under review as a conference paper at ICLR 2026

Table 38: Per-model x

category X subset consensus (bins 0..99).

subset model category_name segments_bins_0_99

all nemotron analysis_and_computation ~ 0-38—39-41—42-63—64-84—85-93—94-96—97-99

all openthinker analysis_and_computation 0-71—72-82—83-85—86-89—90-92—93-96—97-99

all qwen analysis_and_computation 0-37—38-61—62-68—69-71—72-75—76-85—86-89—90-96—97-99
all stratos analysis_and_computation 0-37—38-71—72-75—76-82—83-85—86-89—90-92—93-96—97-99
all nemotron final_answer 0-35—36-38—39-41—42-60—61-81—82-84—85-90—91-96—97-99
all openthinker final_answer 0-68—69-71—72-78—79-82—83-85—86-89—90-92—93-96—97-99
all qwen final_answer 0-37—38-40—41-61—62-71—72-78—79-85—86-89—90-96—97-99
all stratos final_answer 0-47—A48-71—72-75—76-82—83-85—86-89—90-92—93-96—97-99
all nemotron setup-and_retrieval 0-35—36-41—42-63—64-84—85-90—91-96—97-99

all openthinker setup_and_retrieval 0-68—69-71—72-78—79-82—83-89—90-92—93-96—97-99

all qwen setup_and_retrieval 0-40—41-61—62-65—66-75—76-78—79-85—86-89—90-96—97-99
all stratos setup_and_retrieval 0-37—38-71—72-75—76-82—83-89—90-92—93-96—97-99

all nemotron uncertainty_and_verification 0-41—42-96—97-99

all openthinker uncertainty_and_verification 0-68—69-71—72-78—79-82—83-85—86-89—90-92—93-96—97-99
all qwen uncertainty_and_verification ~ 0-37—38-61—62-68—69-75—76-78—79-82—83-85—86-89—90-96—97-99
all stratos uncertainty_and_verification 0-37—38-68—69-71—72-82—83-89—90-92—93-96—97-99

correct nemotron analysis_and_computation 0-41—42-66—67-84—85-96—97-99

correct openthinker analysis_and_computation 0-37—38-71—72-82—83-85—86-89—90-92—93-96—97-99

correct qwen analysis_and_computation 0-37—38-40—41-61—62-75—76-78—79-85—86-89—90-96—97-99
correct stratos analysis_and_computation 0-68—69-75—76-78—79-82—83-89—90-92—93-96—97-99

correct nemotron final_answer 0-38—39-96—97-99

correct openthinker final_answer 0-37—38-68—69-71—72-82—83-85—86-89—90-92—93-96—97-99
correct qwen final_answer 0-37—38-40—41-61—62-65—66-71—72-75—76-78—79-89—90-96—97-99
correct stratos final_answer 0-71—72-75—76-82—83-89—90-92—93-96—97-99

correct nemotron setup-and_retrieval 0-38—39-41—42-63—64-84—85-96—97-99

correct openthinker setup_and_retrieval 0-71—72-75—76-82—83-92—93-96—97-99

correct gqwen setup-and_retrieval 0-40—41-61—62-65—66-75—76-78—79-89—90-96—97-99

correct stratos setup_and_retrieval 0-71—72-75—76-82—83-85—86-89—90-92—93-96—97-99

correct nemotron uncertainty _and_verification 0-41—42-84—85-96—97-99

correct openthinker uncertainty_and_verification 0-71—72-75—76-82—83-89—90-92—93-96—97-99

correct qwen uncertainty_and_verification 0-40—41-61—62-65—66-75—76-78—79-85—86-89—90-96—97-99
correct stratos uncertainty_and_verification 0-37—38-71—72-82—83-89—90-92—93-96—97-99

incorrect nemotron analysis_and_computation 0-35—36-38—39-60—61-81—82-87—88-96—97-99

incorrect openthinker analysis_and_computation 0-71—72-78—79-85—86-89—90-92—93-96—97-99

incorrect qwen analysis_and_computation 0-37—38-61—62-68—69-75—76-82—83-89—90-96—97-99
incorrect stratos analysis_and_computation 0-71—72-75—76-82—83-85—86-89—90-92—93-96—97-99
incorrect nemotron final_answer 0-41—42-57—58-78—79-87—88-90—91-96—97-99

incorrect openthinker final_answer 0-37—38-68—69-71—72-75—76-82—83-85—86-89—90-92—93-96—97-99
incorrect qwen final_answer 0-37—38-40—41-61—62-71—72-75—76-78—79-85—86-89—90-96—97-99
incorrect stratos final_answer 0-30—31-68—69-78—79-82—83-85—86-92—93-96—97-99
incorrect nemotron setup_and_retrieval 0-38—39-63—64-84—85-96—97-99

incorrect openthinker setup_and_retrieval 0-68—69-75—76-78—79-85—86-89—90-92—93-96—97-99
incorrect qwen setup_and_retrieval 0-37—38-40—41-61—62-71—72-75—76-85—86-89—90-96—97-99
incorrect stratos setup_and_retrieval 0-71—72-82—83-89—90-92—93-96—97-99

incorrect nemotron uncertainty _and_verification = 0-38—39-63—64-84—85-96—97-99

incorrect openthinker uncertainty_and_verification 0-71—72-75—76-85—86-89—90-92—93-96—97-99

incorrect qwen uncertainty_and_verification 0-37—38-40—41-61—62-65—66-71—72-82—83-89—90-96—97-99
incorrect stratos uncertainty_and_verification ~0-71—72-82—83-92—93-96—97-99

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Percent-depth endpoint overlap — final_answer (A7) -

nemotron

0.8
openthinker 0.6
qwen 26 b 1.00 0.75 0.4
0.2
stratos : 073 1400
< 23 0.0
‘o(\ @ $®<\ xO
& S & IS
& N 3
<8 &
R
(a) final answer
Percent-depth endpoint overlap — analysis_and_computd~pr-PALL)

nemotron
0.8

openthinker 06

1.00 0.74 0.4
0.2
0.74 1.00

N & ' ° 0.0

O & o

& & &

< & &
@ &
OQ

(c) analysis and computation

Percent-depth endpoint overlap — setup_and_retriev L0)

nemotron 0:20

0.8
openthinker 06
1.00 0.80 0.4
0.2
stratos 0.2 : 0.80 1.00
0.0
& NG & &
& S & &8
N N 3
N)
QQ
(b) setup and retrieval
Percent-depth endpoint overlap — uncertainty_and_verifid Jor?(ALL)
nemotron
0.8
openthinker 06
qwen{ 016 0.79 1.00 0.79 0.4
0.2
stratos 0.82 0.79 1.00
Q & Q & 0.0
é§ @$ &@ é§
ISR §
N &
QQ

(d) uncertainty and verification

Figure 4: Percent-depth endpoint overlap.

26

	Introduction
	Methodology
	Top Level: Explicit Reasoning Transitions
	Bottom Level: Implicit Reasoning Transitions

	Experimental Setup
	Semantic Reasoning Dynamics
	Structural Reasoning Dynamics
	Semantic Transitions as Functional Control Points
	Build Steering Vectors
	Intervention

	Related Work
	Conclusion
	Data Preprocessing and Experimental Setup
	Models
	Datasets
	Prompting
	Preprocessing Pipeline
	Computing

	HHMM Configurations
	Training
	Decoding

	Steering Vector Construction and Intervention
	Steering Vector Construction
	Steering at Inference Time

	Semantic HHMM Transition Analysis
	Structural HHMM Transition Analysis
	Percent-depth bins.
	Within-Model Consensus Voting
	Across-Model Voting
	Consensus Stability Summary (Correct vs. Incorrect)
	Heatmaps

	Use of Large Language Models.

