
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HIDDEN MARKOV MODELING OF REASONING DY-
NAMICS IN LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reasoning in language models involves both explicit steps in the generated
text and implicit structural shifts in hidden states, yet their joint dynamics re-
main largely underexplored. We propose a Hierarchical Hidden Markov Model
(HHMM) that captures these two dimensions: semantic roles and latent depth
regimes. This framework models how reasoning evolves through semantic stages
and how the depth of computation shifts across the network. By linking what
function a step serves to where it arises in the network, our approach provides a
unified lens for both understanding reasoning dynamics and offering insights into
steering strategies. Our analysis reveals consistent patterns: successful reasoning
trajectories follow stable semantic paths and align with well-formed structural an-
chors, whereas failures are characterized by hesitation loops and unstable depth
transitions. We further validate our findings by applying step-aware intervention:
we derive steering vectors from the transition matrices that encourage trajectories
to follow the paths associated with correct reasoning. Across multiple open-source
reasoning models, these targeted nudges consistently convert failing runs into cor-
rect ones without increasing output length.

1 INTRODUCTION

Reasoning models have demonstrated strong capabilities in mathematics, scientific reasoning, and
deliberative problem solving (Jaech et al., 2024; Chen et al., 2025b). Yet fundamental questions
remain unresolved: when models perform reasoning, how do they integrate both explicit reasoning
expressed in generated text and the implicit reasoning reflected in hidden computations to work
together in solving problems?

Recent studies suggest that reasoning effectiveness depends not only on the correctness of individ-
ual steps but also on their structural roles, with a few “anchor” steps disproportionately shaping
outcomes (Bogdan et al., 2025). Mechanistic studies show that reasoning does not occur uniformly,
but is carried out by specific architectural modules (Cabannes et al., 2024; Dutta et al., 2024).

To systematically characterize reasoning in language models, we introduce a Hierarchical Hidden
Markov Model (HHMM) that integrates explicit and implicit reasoning into a single framework. At
the top level, the model is a Markov chain over explicit reasoning categories, capturing semantic
transitions across generated “thinking” tokens. At the bottom level, conditioned on the top-level
category, the model is a hidden Markov chain over implicit reasoning regimes, which represent how
computation is allocated across layers within each stage. These two levels are not isolated; rather,
they interact hierarchically: semantic roles guide depth allocation, while depth patterns shape se-
mantic progress. This dual perspective allows us to analyze reasoning as trajectories across both
meaning and structure. The HHMM thus provides a principled probabilistic framework that con-
nects what function a step serves with where it arises in the network, offering a unified lens for
understanding reasoning dynamics and designing effective interventions.

Explicit and implicit reasoning interact in systematic ways. At the semantic level, models branch
early into two pathways: a “think-first” route that proceeds step by step through analysis, and a
“commit-early” route that jumps directly to an answer. Failures often occur when trajectories stall in
verification loops rather than progressing to closure. At the structural level, reasoning categories ex-
hibit distinctive depth profiles: final-answer steps trigger shifts mainly in the upper layers, whereas
analysis and verification introduce earlier shifts that alter model behavior. Successful trajectories

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

“Each apple costs $2. Tom buys
3 apples.”

“Multiply 3 apples × $2 = $6.”

“Let me double check.”

“Therefore, Tom pays $6.”

Setup and Retrieval

Analysis and Computation

Uncertainty and Verification

Final Answer

Explicit Semantic Transitions

Transition Matrix

𝐴 =
𝑝!,! ⋯ 𝑝!,#
⋮ ⋱ ⋮
𝑝#,! ⋯ 𝑝#,#

𝜋 = 𝜋! 						…							𝜋#

Start Probability

S A V F

… …
Layer

𝑅$

𝑅%

𝑅#

Implicit Structural Transitions

Figure 1: Overview of the Hierarchical Hidden Markov Model (HHMM) framework. At the top
level, explicit reasoning is modeled as semantic transitions across tagged reasoning steps. At the
bottom level, implicit reasoning is captured through latent regimes that characterize depth allocation
across layers. Together, this hierarchical structure links what function a step serves with where it is
realized in the network, enabling systematic analysis of reasoning trajectories.

align these two dimensions: stable semantic progress supported by well-formed late-layer anchors.
In contrast, unsuccessful ones diverge, inserting unstable extra shifts or omitting expected ones.

Taken together, these findings suggest that reasoning outcomes are not determined by isolated steps,
but by the overall transition flow. Correct predictions emerge when trajectories follow stable and
well-anchored transitions, while failures arise when transitions deviate into loops or unstable paths.

We validate this view through step-aware interventions. By deriving steering vectors from the tran-
sition matrices, we nudge trajectories toward the transitions associated with correct reasoning and
apply them to model hidden states. Across multiple open-source reasoning models, these targeted
interventions consistently rescue failing runs without increasing output length, confirming that se-
mantic and structural insights jointly shape model behavior.

Our contributions. We introduce HHMM, a structured probabilistic framework that integrates
semantic reasoning stages with structural depth regimes. Using this framework, we show that suc-
cessful reasoning trajectories follow stable semantic paths and align with well-formed structural an-
chors, whereas failures are characterized by hesitation loops and unstable depth transitions. Finally,
we leverage HHMM to construct edge-conditioned steering vectors, demonstrating that targeted
interventions at reasoning boundaries can causally correct errors.

2 METHODOLOGY

To systematically characterize reasoning in language models, we introduce a Hierarchical Hidden
Markov Model (HHMM) that organizes reasoning into two levels (Figure 1). At the top level, the
model is a Markov chain over explicit reasoning categories, capturing semantic transitions across
generated “thinking” tokens. At the bottom level, conditioned on the top-level category, the model is
a hidden Markov chain over implicit reasoning regimes, representing how computation is distributed
across layers within each stage. These two levels are not isolated; rather, they interact hierarchically,
with semantic roles guiding depth allocation and depth patterns shaping semantic progress. The
HHMM thus provides a principled probabilistic framework that unifies these complementary di-
mensions, aligning with annotated reasoning steps while uncovering latent structural patterns that
distinguish successful from failing trajectories.

We segment each generated solution into reasoning steps s1, . . . , sT using blank-line delimiters.
In parallel, we extract the hidden representations of the first token of each step, forming H ∈
R(L+1)×T×d, where L is the number of layers and d the hidden dimension, with ht,ℓ = Hℓ,t,:

denoting the hidden state of layer ℓ for step st. Before modelling, these hidden vectors are standard-
ized to zero mean and unit variance, and then projected into a dpca-dimensional subspace using PCA
(dpca = 64). This preprocessing both stabilizes Gaussian estimation and removes redundant cor-
relations across hidden dimensions, ensuring that the latent regimes capture meaningful structural
variations in depth allocation. Implementation details in Appendix A and B.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1 TOP LEVEL: EXPLICIT REASONING TRANSITIONS

At the top level, we model the sequence of reasoning steps as semantic transitions, capturing how
the function of each step evolves across the trajectory. For each step st, we classify its reasoning
function using the same model that produced the solution, prompted with the predefined tag set
C = {final answer, setup and retrieval, analysis and computation, uncertainty and verification},
yielding a label ct ∈ C (details in Appendix A). This self-classification approach allows us to capture
what the model itself believes it is doing at each step. For a trajectory comprising T steps, each step
is assigned a category label ct ∈ 1, . . . , C. These categorical assignments define a Markov chain
over the sequence of reasoning steps,

p(c1:T) = πtop
c1

T∏
t=2

Atop
ct−1,ct

where πtop is the start distribution and Atop is the transition matrix.

2.2 BOTTOM LEVEL: IMPLICIT REASONING TRANSITIONS

At the bottom level, conditioned on a semantic category ct, the model introduces latent regimes that
characterize how computation is distributed across layers, capturing depth allocation patterns that
vary with the function of the current reasoning step. Each layer index ℓ within step t is associated
with a latent regime variable ht,ℓ ∈ {1, . . . ,K}, where K denotes the number of regimes. Intu-
itively, each regime represents a characteristic way the model distributes computation across layers
within a given semantic category. Remaining in the same regime indicates stable, consistent pro-
cessing, while switching regimes highlights points where the layer-wise behavior changes abruptly,
often signaling a shift in how the model is reasoning internally. Every category induces its own
stochastic process over regimes, allowing the model to capture distinct depth allocation patterns for
different reasoning stages:

p(ht,0:L | ct) = π
(c)
ht,0

L∏
ℓ=1

A
(c)
ht,ℓ−1,ht,ℓ

,

with Gaussian emissions,

p(ht,ℓ | ht,ℓ = k, ct) = N
(
ht,ℓ; µ

(c)
k , diag(σ

2(c)
k)

)
.

Here, π(c) and A(c) are the initial and transition distributions over regimes for category c, while µ(c)
k

and σ
2(c)
k define the emission parameters for regime k. This structure allows the model to discover

latent depth allocation patterns within each semantic stage.

The HHMM framework provides a structured lens on reasoning dynamics: semantic transitions
capture what stages of reasoning unfold and how they progress, while structural regimes capture
how computation is internally organized within each stage. By comparing models trained on correct
versus incorrect trajectories, we uncover where and how reasoning paths diverge.

3 EXPERIMENTAL SETUP

Model. We evaluate 4 open-source reasoning models: Qwen3-1.7B (Team, 2025), Bespoke-
Stratos-7B (Labs, 2025), OpenThinker-7B (Guha et al., 2025), and Llama-3.1-Nemotron-Nano-4B-
v1.1 (Bercovich et al., 2025).

Dataset. Our experiments use: MATH-500 (Lightman et al., 2023), GPQA-Diamond (Rein et al.,
2024), WebInstruct-Verified (Ma et al., 2025), and AIME-2024 (HuggingFaceH4, 2024).

Computing. Experiments were run on NVIDIA H100 and H200 GPUs.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 SEMANTIC REASONING DYNAMICS

To understand how language models reason, three questions naturally arise: Where do reasoning
trajectories tend to flow? What separates successful reasoning paths from failures? And how do
different models differ in their trajectories?

Q1. Where do reasoning trajectories flow?

Reasoning unfolds in structured patterns rather than randomly. As shown in Table 1, trajectories
display three recurring motifs: they often stabilize within analysis and answer emission stages,
branch at setup into two alternative pathways, and occasionally take short verification detours that
loop back to analysis.

Table 1: Transition probabilities highlight three
motifs: strong self-loops at final and analysis, bal-
anced exits from setup to analysis vs. final, and
a transient verification that mostly feeds back to
analysis.

Final Setup Analysis Verify

Final 0.395 0.180 0.295 0.130
Setup 0.317 0.255 0.317 0.111
Analysis 0.299 0.179 0.390 0.132
Verify 0.277 0.200 0.318 0.206

i) Attractor stages. Analysis and computation
and final answer act as attractors with strong
self-loops (0.390 and 0.395), far higher than
setup (0.255) or verification (0.206). Once tra-
jectories enter these states, they rarely leave.

ii) Balanced branching. Setup and retrieval
functions as a fork, with nearly equal proba-
bility of moving to analysis and computation
(0.317) or jumping directly to final answer
(0.317). This balance reflects two styles: a de-
liberative “think first” pathway versus a short-
cut “commit early” pathway.

iii) Checkpoint loop. Uncer-
tainty and verification is used as a transient
detour. Transitions from analysis and computation into Uncertainty and verification are infrequent
(0.132), while returns to analysis and computation are common (0.318). Rather than serving as a
destination, verification acts as a loop-back checkpoint.

Q2. What separates success from failure?

Successful runs generally begin in setup and retrieval and then reach final answer efficiently.
This happens either directly (setup→final = 0.329) or indirectly via analysis and computation
(setup→analysis = 0.309, followed by analysis→final = 0.323). Once in final answer, correct
trajectories strongly stabilize (final→final = 0.414).

Table 2: Comparison of start distributions and transition probabilities for correct vs. incorrect tra-
jectories. Correct runs favor two efficient entries from setup and stabilize in final/analysis, while
incorrect runs dwell in analysis and cycle with verification, with weaker closure in final.

Correct Incorrect

Start Prob Transition Matrix Start Prob Transition Matrix

Final Setup Analysis Verify Final Setup Analysis Verify

Final 0.201 0.414 0.179 0.286 0.122 0.186 0.378 0.179 0.309 0.135
Setup 0.492 0.329 0.257 0.309 0.105 0.498 0.308 0.257 0.320 0.115
Analysis 0.215 0.323 0.173 0.382 0.122 0.218 0.284 0.183 0.396 0.138
Verify 0.092 0.299 0.192 0.316 0.193 0.098 0.263 0.205 0.321 0.211

In contrast, unsuccessful runs also start in setup and retrieval but become stuck in analy-
sis and computation, reinforced by a strong self-loop (0.396) and repeated cycling with uncer-
tainty and verification (analysis→verification = 0.138, verification→analysis = 0.321). Their
stabilization in final answer is weaker (final→final = 0.378), showing indecision and incomplete
closure. Table 2 and Figure 2 summarize these differences.

Q3: Why do models diverge in their reasoning paths?

Divergence reflects both architectural biases and inherited generation styles (Table 3).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Setup Analy-
sis Final

Correct Path A:

Correct Path B:
0.329

0.309 0.323 0.414

0.414

0.490

(a) Reasoning path for correct prediction:
(Path A) setup→final,
(Path B) setup→analysis→final

Setup Analy-
sis Final

Incorrect Path A:

Incorrect Path B:

0.320 0.284 0.378

0.378

0.498

0.396

0.320

Verify

0.138
0.321

0.284

(b) Reasoning path for incorrect prediction:
(Path A) setup→analysis(loop)→final, (Path B)
setup→analysis→verify→analysis→final.

Figure 2: Contrasting reasoning paths: successful trajectories commit and close; unsuccessful ones
hesitate—looping within analysis/verification before reaching final.

Architectural bias. Qwen-based models (Qwen3, Stratos, Openthinker) exhibit a deliberation-
oriented style: starting in setup, lingering in analysis, and occasionally looping through verifica-
tion. By contrast, Nemotron (LLaMA-based) shows a direct-commit bias, with high probability of
setup→final transitions (0.671) and strong reinforcement once in final (final→final = 0.665). This
reveals a sharp divide between extended deliberation versus confident commitment.

Generation style. Training lineage also shapes characteristic “thinking profiles.” Stratos and
Openthinker, both distilled from R1 with Qwen2.5-7B-Instruct, converge on a balanced pattern:
setup splits between analysis (0.343) and final (0.236), analysis maintains a moderate self-loop
(0.373), and verification is engaged but limited (0.234). Qwen3, built on the same Qwen family
but not follow R1 style, pushes deliberation even further: setup dominates the start distribution
(0.836) and analysis sustains a strong self-loop (0.522). In this way, Stratos and Openthinker in-
herit balanced dynamics from distillation, while Qwen3 diverges toward a more deliberation-heavy
style—highlighting how lineage both transmits and reshapes reasoning patterns.

Table 3: Comparison of key transition statistics across models. Nemotron shows a direct-commit
bias (high setup→final and strong final self-loop), Qwen3 amplifies deliberation (dominant setup
start and persistent analysis), while Stratos and Openthinker converge on a more balanced profile.

Model Start in Setup Setup→Final Setup→Analysis Analysis Self-loop Final Self-loop Verify Self-loop

Nemotron 0.153 0.671 0.178 0.300 0.665 0.090
Qwen3 0.836 0.132 0.409 0.522 0.391 0.273
Stratos 0.490 0.231 0.335 0.367 0.262 0.228
Openthinker 0.496 0.236 0.343 0.373 0.260 0.234

5 STRUCTURAL REASONING DYNAMICS

So far we have examined reasoning through the lens of surface-level semantics. We now turn to the
internal structure of reasoning: how models carve up their depth into distinct processing phases.
To analyze this, we treat the HHMM-decoded phase boundaries as empirical objects that mark
where one depth regime ends and another begins. Our HHMM is trained with C = 4 top-level cat-
egories (final answer, setup and retrieval, analysis and computation, uncertainty and verification)
and K = 7 bottom-level regimes per category, where K allows the model to represent fine-grained
micro-states within each semantic stage. A methodological challenge is that architectures differ in
depth: Stratos, Openthinker and Qwen3 have 29 layers, whereas Nemotron has 33. To compare them
fairly, we normalize all layers to a percent-depth scale [0, 99], mapping the embedding projection to
0.0 and the final transformer block to 99. Boundaries are then represented as normalized endpoints,
and similarity is measured using Jaccard overlap between endpoint sets.

Q1. Where do models consistently place boundaries?

To highlight stable anchors, we first normalize boundaries to percent depth and apply a two-stage
voting scheme: within each model, a boundary must appear in at least 30% of runs to be kept; across

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

models, it is included in the consensus set if at least two out of four models agree. This procedure
filters out noise and reveals boundaries that recur reliably across architectures.

Figure 3: Cross-model similarity quan-
tifies overlap in endpoint placement.

Table 4 lists the consensus splits for each category,
and Figure 3 shows cross-model endpoint similarity.
The heatmap quantifies overlap in endpoint placement,
showing strong alignment between Openthinker and
Stratos, partial alignment with Qwen, and divergence
from Nemotron. Across all categories, boundaries clus-
ter into four regions: early (0–37), mid (38–71), upper
(72–89), and top (90–99). The exact subdivisions differ
by category:

(i) Final answer has a long early-to-mid phase (0–71) fol-
lowed by successive cuts in the upper and top bands.

(ii) Analysis and computation inserts finer granularity,
with multiple cuts in the mid and upper regions.

(iii) Setup and retrieval mirrors final answer but with a
distinct upper-band pattern.

(iv)Uncertainty and verification is the only category with
an early split (0–0.37), before converging on the same up-
per and top anchors.

Together, these results show that reasoning “endgames” are highly conserved in the upper layers,
while the early layers differentiate categories: analysis and verification engage early boundaries,
whereas setup and final answer remain quiescent until later stages.

Table 4: Consensus boundaries (percent depth) across four models. All categories converge on
similar upper and top anchors, while analysis and verification also introduce early splits.

Category Majority Splits (percent depth)

analysis and computation 0–37, 38–71, 72–75, 76–82, 83–85, 86–89, 90–92, 93–96, 97–99
final answer 0–71, 72–78, 79–82, 83–85, 86–89, 90–92, 93–96, 97–99
setup and retrieval 0–71, 72–75, 76–78, 79–82, 83–89, 90–92, 93–96, 97–99
uncertainty and verification 0–37, 38–68, 69–71, 72–78, 79–82, 83–85, 86–89, 90–92, 93–96, 97–99

Q2. Do correct and incorrect runs use the same boundaries?

Consensus anchors also reveal systematic differences between correct and incorrect trajectories.
Table 5 summarizes these contrasts. Correct runs converge on a compact set of canonical boundaries,
producing repeatable anchor points across models. Incorrect runs, by contrast, deviate in two ways:
(i) they insert extra boundaries, fragmenting mid-to-upper regions into smaller segments, or (ii) they
collapse structure by omitting established anchors. These deviations are especially pronounced in
analysis and computation, where incorrect runs frequently add mid-layer boundaries. For instance,
Nemotron expands from a stable 5-split structure in correct cases to 7 splits in incorrect cases (see
Appendix E). By contrast, final answer anchors remain highly conserved: correct and incorrect
trajectories alike converge on nearly identical late-layer closure, differing only in granularity.

Overall, consensus analysis shows that incorrect reasoning is not random noise but reflects sys-
tematic disruptions to canonical depth segmentation: either over-segmentation, which fragments
processing, or under-segmentation, which fails to sustain necessary stages.

6 SEMANTIC TRANSITIONS AS FUNCTIONAL CONTROL POINTS

In the previous sections, we established that the structure of reasoning paths matters. In this section,
we use steering as a validation tool: by deriving vectors from the semantic transition matrix and
applying them as interventions at reasoning boundaries, we test whether nudging trajectories along
these directions can causally alter model performance.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 5: Extremum stability summary from consensus anchors: correct vs. incorrect trajectories
differ in canonical split points.

Category Avg. splits (Correct) Avg. splits (Incorrect) ∆ Splits Jaccard Overlap (shared boundaries)
analysis and computation 5–9 7–8 -1–+2 Low (11–62%)
final answer 3–10 7–10 +0–+4 Medium (14–89%)
setup and retrieval 6–8 5–9 -2–+2 Medium (33–80%)
uncertainty and verification 4–9 5–9 -2–+1 Medium (40–71%)

6.1 BUILD STEERING VECTORS

Edge-conditioned Displacement Vectors. From §2, we know that correct and incorrect trajec-
tories follow distinct semantic transition patterns. To capture and target these divergences, we
construct edge-conditioned displacement vectors. Let Φ : Rd → Rk denote the preprocessing
mentioned in §2. For each step st, we take the final-layer hidden state ht,L ∈ Rd and map it to
zt = Φ(ht,L) ∈ Rk. For every adjacent category pair (a, b) ∈ C × C induced by (ct, ct+1), we
compute displacement vectors dt = zt+1 − zt, and separate these displacements into two sets:
those from correct trajectories and those from incorrect ones. For correct trajectories, we obtain an
edge-specific vector by averaging all dt along edge (a, b). For incorrect trajectories, instead of using
(a, b) directly, we construct a source-conditioned baseline: the average of displacements originating
from the same source category a, but across all incorrect outgoing edges other than (a, b):

µcorr
a→b =

1
N corr

a→b

∑
(t: y=corr, ct=a, ct+1=b)

dt, µ
srcneg
a→b = 1

N inc
a −N inc

a→b

∑
t: y=inc, ct=a, ct+1 ̸=b

dt.

The ∆a→b is computed as µcorr
a→b − µ

srcneg
a→b ∈ Rk, and then normalized. To perform steering in

the model’s hidden space, we inverse preprocess Φ and map va→b = Φ−1(∆a→b) ∈ Rd. See
Algorithm 1.

Edge Selection from Divergent Transitions. A key question is which transitions should be tar-
geted for steering. Since correct and incorrect trajectories differ most strongly on specific category
transitions, we rank edges by the difference in their transition probabilities, measured as Acorr−Ainc.
We then consider two strategies:

i) Max-Divergence Edge. Select the single edge with the largest positive difference. For example,
correct trajectories frequently move from setup and retrieval to analysis and computation, whereas
incorrect ones are more likely to loop within setup and retrieval, or to jump prematurely to fi-
nal answer or uncertainty and verification.

ii) Multi-Edge Ensemble. Select the top three edges with the largest positive differences, capturing
a broader set of corrective transitions.

In both cases, the steering vector va→b serves as a directional signal: it promotes the desired correct
transition (a→ b) while counteracting the competing incorrect alternatives.

Steering Protocol. During generation, we apply va→b only at step boundaries, detected by the
model producing a blank line delimiter. At the first token after such a boundary, we add va→b

directly to the hidden state at the final transformer layer, just before the unembedding to logits.
α > 0 controls the intervention strength, and the update is h ← h+ α va→b.

We introduce two steering methods. i) In hard steering, the intervention vector is deterministically
taken from the max-divergence edge, i.e., always applying va→b from the single highest-ranked
transition. ii) In soft steering, we relax this choice by introducing stochasticity: from the bank of
the top-3 divergent edges {(ak→bk, pk)}, we normalize the scores so that

∑
k pk = 1, then sample

an index k ∼ Categorical(p1, . . . , p3) once per batch and apply the corresponding vector vak→bk .
This makes steering probabilistic, letting the intervention randomly select among the most divergent
candidates instead of always committing to one.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Algorithm 1: Edge-conditioned steering vector construction
Input: Final-layer states {ht,L}, categories {ct}, correctness labels y, preprocessing Φ, edge

set E.
Output: Steering vectors va→b ∈ Rd.
for each step t in each trajectory do

zt = Φ(ht,L), zt+1 = Φ(ht+1,L), dt = zt+1 − zt;
if y = corr then

add dt to bucket (a=ct, b=ct+1) for correct
else

add dt to bucket (a, b) for incorrect and to source bucket a

for each edge (a, b) ∈ E do
µcorr
a→b = mean of correct displacements on (a, b);

µ
srcneg
a→b = mean of incorrect displacements from a excluding (a, b);

∆a→b = normalize(µcorr
a→b − µ

srcneg
a→b);

va→b = Φ−1(∆a→b);

6.2 INTERVENTION

We inject edge-conditioned vectors into the model’s hidden states at reasoning boundaries and eval-
uate their impact (Table 6). Three steering methods are compared: (i) edge-agnostic steering, which
uses a single global vector derived from the overall correct–incorrect contrast and applies it uni-
formly across all transitions, and (ii) the two edge-conditioned steering methods introduced in the
steering protocol. Motivated by our structural analysis, where the final layer consistently forms its
own regime and final-answer steps consolidate in the upper layers, we target the last layer as the
natural site for intervention. The left half of Table 6 reports the correction rate, i.e., the fraction of
originally incorrect predictions that are corrected after steering. The right half reports the change
in output length, measured as token counts before and after steering. If edge-conditioned steering
achieves higher correction rates than the edge-agnostic baseline, this provides causal evidence that
choosing the right reasoning path improves model performance.

Table 6: Correction rate (↑; fraction of originally incorrect predictions corrected after steering) and
false-token count (↓; token counts of originally incorrect predictions), averaged over 3 independent
runs. Top values are highlighted.

Model Dataset Steering Correction Rate ↑ Tokens ↓

Edge-Agnostic Soft Steering Hard Steering Baseline Soft Steering Hard Steering

Llama-3.1-
Nemotron-Nano-

4B-v1.1

MATH-500 0.1081 0.1219 0.1383 1986 1949 1941
WebInstruct-Verified 0.0969 0.1181 0.0966 4330 4173 4185
GPQA-Diamond 0.1423 0.1653 0.1630 4833 4845 4796

OpenThinker-7B
MATH-500 0.2324 0.2443 0.2311 1899 1758 1785
WebInstruct-Verified 0.2367 0.2408 0.2094 3474 3303 3442
GPQA-Diamond 0.1858 0.1619 0.2126 4340 4155 4204

Qwen3-1.7B
MATH-500 0.1198 0.1312 0.1175 1998 1983 1982
WebInstruct-Verified 0.1091 0.1295 0.1062 3926 3889 3878
GPQA-Diamond 0.0709 0.0792 0.0774 4526 4567 4492

Bespoke-Stratos-7B
MATH-500 0.2832 0.2962 0.2747 1688 1537 1547
WebInstruct-Verified 0.1679 0.1949 0.2065 1532 1424 1507
GPQA-Diamond 0.2431 0.2682 0.1900 2695 2729 2587

Average 0.1664 0.1793 0.1686 3102 3026 3029

Targeted interventions improve accuracy without added tokens. Steering at semantic edges
consistently improves correction rates while leaving output length unaffected. On average, correc-
tion improves from 0.1664 to 0.1793 under soft steering, while false-token counts drop from 3102
to 3026. These results demonstrate that reasoning paths directly affect model performance: targeted
interventions can rescue failures by encouraging trajectories toward the transitions associated with
correct reasoning.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Final-answer transitions are central to success. To identify which transitions matter most, we
analyze the most frequent top-1 edges across models, summarized in Table 7. At the global level, the
dominant transition is uncertainty and verification → final answer. Nemotron and Stratos strongly
favor this same transition, Qwen relies most on analysis and computation → final answer, while
OpenThinker frequently reinforces final answer → final answer.

Table 7: Most common top-1 semantic transitions
across models and datasets.

Scope Top-1 Edge

Global uncertainty and verification → final answer
Nemotron uncertainty and verification → final answer
OpenThinker final answer → final answer
Qwen analysis and computation → final answer
Stratos uncertainty and verification → final answer

This concentration shows that models succeed
through a set of decisive transitions rather than
distributing progress evenly across the reason-
ing graph. Typical patterns include resolv-
ing uncertainty by committing to a final an-
swer, concluding analysis with a decision, or
reinforcing an reached answer for consistency.
The steering experiments confirm: reasoning in
LMs is structured by a latent reasoning graph,
where specific edges serve as functional deci-
sion points that govern success or failure.

7 RELATED WORK

Recent studies highlight that reasoning models can exhibit unintended or deceptive behaviors, un-
derscoring the need for a deeper mechanistic understanding (Baker et al., 2025). Several works
examine which aspects of CoT steps matter. Madaan & Yazdanbakhsh (2022) disentangle the roles
of textual content and structural patterns, Wang et al. (2022) show that performance gains often per-
sist even with flawed step content, and Bogdan et al. (2025) find that a small set of “anchor” steps
disproportionately shape final outcomes.

Mechanistic analyses probe the internal processes behind reasoning. Cabannes et al. (2024) and
Dutta et al. (2024) show how architectural components enable stepwise reasoning. Latent multi-hop
phenomena are revealed by Yang et al. (2024b) and Shalev et al. (2024), while Venhoff et al. (2025)
demonstrate that steering vectors can capture functional directions in hidden space. Information-
theoretic perspectives provide a complementary lens: Ton et al. (2024) analyze CoT dynamics
through entropy and mutual information, while Punjwani & Heck (2025) explore how neural net-
work weights encode and constrain reasoning capacity. Beyond analysis, several works pursue
interventions. Chen et al. (2025a) introduce training-free latent steering to suppress over-reflection,
while Venhoff et al. (2025) show that representation-level modifications can modulate reasoning
style. Wang et al. (2025b) propose efficient post-training refinement of latent reasoning, enabling
reasoning improvements without full retraining. Reasoning efficiency survey (Sui et al., 2025) cat-
alog methods to mitigate “overthinking,” and token-level analyses (Wang et al., 2025a) identify
sparse high-entropy tokens as critical intervention points. Two concurrent works explicitly model
state-aware dynamics of reasoning. Wu et al. (2025) frame CoT as a latent-state MDP, training a
transition policy with RL to improve reasoning exploration. Yu et al. (2025) cluster final-layer em-
beddings of steps and construct a Markov chain to visualize reasoning motifs. Our work differs by
introducing a hierarchical HMM that integrates explicit semantic roles with hidden layer regimes.
This design ties what function a step serves to where it arises in the network, and further enables
HHMM-informed steering vectors that rescue failing trajectories through structured interventions.

8 CONCLUSION

We introduced a Hierarchical Hidden Markov Model (HHMM) that integrates semantic reason-
ing roles with latent depth regimes, linking what a step does to where it arises in the network.
This dual perspective reveals consistent dynamics: successful trajectories follow stable semantic
paths anchored by well-formed structural boundaries, while failures arise from hesitation loops,
unstable shifts, or missing anchors. Beyond providing an explanatory lens, HHMM also enables
control—steering vectors derived from transition patterns can nudge trajectories toward successful
reasoning paths and reliably rescue failing runs without increasing output length. Taken together,
these results position HHMM as both a framework for understanding reasoning and a foundation for
structured interventions that improve the robustness and reliability of reasoning models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethics Statement. This work adheres to the Code of Ethics. Our experiments use only open-
source models and publicly available datasets under their respective open licenses, with no involve-
ment of human subjects or sensitive data. We identify no foreseeable ethical risks.

Reproducibility Statement. We ensure reproducibility by providing experimental and implemen-
tation details in Section 3 and Appendices A–E. Full results with statistical significance are in Ap-
pendices C–E, and anonymous source code is included as supplementary material.

REFERENCES

Bowen Baker, Joost Huizinga, Leo Gao, Zehao Dou, Melody Y Guan, Aleksander Madry, Wojciech
Zaremba, Jakub Pachocki, and David Farhi. Monitoring reasoning models for misbehavior and
the risks of promoting obfuscation. arXiv preprint arXiv:2503.11926, 2025.

Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil,
Zach Moshe, Tomer Ronen, Najeeb Nabwani, et al. Llama-nemotron: Efficient reasoning models.
arXiv preprint arXiv:2505.00949, 2025.

Paul C Bogdan, Uzay Macar, Neel Nanda, and Arthur Conmy. Thought anchors: Which llm reason-
ing steps matter? arXiv preprint arXiv:2506.19143, 2025.

Vivien Cabannes, Charles Arnal, Wassim Bouaziz, Xingyu Yang, Francois Charton, and Julia
Kempe. Iteration head: A mechanistic study of chain-of-thought. Advances in Neural Infor-
mation Processing Systems, 37:109101–109122, 2024.

Runjin Chen, Zhenyu Zhang, Junyuan Hong, Souvik Kundu, and Zhangyang Wang. Seal: Steerable
reasoning calibration of large language models for free. arXiv preprint arXiv:2504.07986, 2025a.

Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman,
Arushi Somani, Peter Hase, Misha Wagner, Fabien Roger, et al. Reasoning models don’t always
say what they think. arXiv preprint arXiv:2505.05410, 2025b.

Subhabrata Dutta, Joykirat Singh, Soumen Chakrabarti, and Tanmoy Chakraborty. How to
think step-by-step: A mechanistic understanding of chain-of-thought reasoning. arXiv preprint
arXiv:2402.18312, 2024.

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, Ashima Suvarna, Benjamin Feuer, Liangyu
Chen, Zaid Khan, Eric Frankel, Sachin Grover, Caroline Choi, Niklas Muennighoff, Shiye Su,
Wanjia Zhao, John Yang, Shreyas Pimpalgaonkar, Kartik Sharma, Charlie Cheng-Jie Ji, Yichuan
Deng, Sarah Pratt, Vivek Ramanujan, Jon Saad-Falcon, Jeffrey Li, Achal Dave, Alon Albalak,
Kushal Arora, Blake Wulfe, Chinmay Hegde, Greg Durrett, Sewoong Oh, Mohit Bansal, Saadia
Gabriel, Aditya Grover, Kai-Wei Chang, Vaishaal Shankar, Aaron Gokaslan, Mike A. Merrill,
Tatsunori Hashimoto, Yejin Choi, Jenia Jitsev, Reinhard Heckel, Maheswaran Sathiamoorthy,
Alexandros G. Dimakis, and Ludwig Schmidt. Openthoughts: Data recipes for reasoning models,
2025. URL https://arxiv.org/abs/2506.04178.

HuggingFaceH4. Aime 2024 dataset. https://huggingface.co/datasets/
HuggingFaceH4/aime_2024, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Bespoke Labs. Bespoke-stratos: The unreasonable effectiveness of reasoning dis-
tillation. https://www.bespokelabs.ai/blog/bespoke-stratos-the-unreasonable-effectiveness-of-
reasoning-distillation, 2025.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

10

https://arxiv.org/abs/2506.04178
https://huggingface.co/datasets/HuggingFaceH4/aime_2024
https://huggingface.co/datasets/HuggingFaceH4/aime_2024

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhu Chen. General-Reasoner:
Advancing llm reasoning across all domains. arXiv:2505.14652, 2025. URL https://arxiv.
org/abs/2505.14652.

Aman Madaan and Amir Yazdanbakhsh. Text and patterns: For effective chain of thought, it takes
two to tango. arXiv preprint arXiv:2209.07686, 2022.

Meta. Llama 3.1 8b instruct. https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct, 2024. Accessed: 2025-09-24.

Saif Punjwani and Larry Heck. Weight-of-thought reasoning: Exploring neural network
weights for enhanced llm reasoning. ArXiv, abs/2504.10646, 2025. URL https://api.
semanticscholar.org/CorpusID:277787278.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Yuval Shalev, Amir Feder, and Ariel Goldstein. Distributional reasoning in llms: Parallel reasoning
processes in multi-hop reasoning. arXiv preprint arXiv:2406.13858, 2024.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Na Zou, et al. Stop overthinking: A survey on efficient reasoning
for large language models. arXiv preprint arXiv:2503.16419, 2025.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Jean-François Ton, Muhammad Faaiz Taufiq, and Yang Liu. Understanding chain-of-thought
in llms through information theory. ArXiv, abs/2411.11984, 2024. URL https://api.
semanticscholar.org/CorpusID:274141313.

Constantin Venhoff, Iván Arcuschin, Philip Torr, Arthur Conmy, and Neel Nanda. Understanding
reasoning in thinking language models via steering vectors. arXiv preprint arXiv:2506.18167,
2025.

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, You Wu, Luke Zettlemoyer, and Huan Sun.
Towards understanding chain-of-thought prompting: An empirical study of what matters. arXiv
preprint arXiv:2212.10001, 2022.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning. arXiv preprint arXiv:2506.01939, 2025a.

Xinyuan Wang, Dongjie Wang, Wangyang Ying, Haoyue Bai, Nanxu Gong, Sixun Dong, Kun-
peng Liu, and Yanjie Fu. Efficient post-training refinement of latent reasoning in large language
models. ArXiv, abs/2506.08552, 2025b. URL https://api.semanticscholar.org/
CorpusID:279260460.

Junda Wu, Yuxin Xiong, Xintong Li, Zhengmian Hu, Tong Yu, Rui Wang, Xiang Chen, Jingbo
Shang, and Julian McAuley. Ctrls: Chain-of-thought reasoning via latent state-transition. arXiv
preprint arXiv:2507.08182, 2025.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024a.

Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor Geva, and Sebastian Riedel. Do large language
models latently perform multi-hop reasoning? arXiv preprint arXiv:2402.16837, 2024b.

11

https://arxiv.org/abs/2505.14652
https://arxiv.org/abs/2505.14652
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://api.semanticscholar.org/CorpusID:277787278
https://api.semanticscholar.org/CorpusID:277787278
https://arxiv.org/abs/2505.09388
https://api.semanticscholar.org/CorpusID:274141313
https://api.semanticscholar.org/CorpusID:274141313
https://api.semanticscholar.org/CorpusID:279260460
https://api.semanticscholar.org/CorpusID:279260460

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sheldon Yu, Yuxin Xiong, Junda Wu, Xintong Li, Tong Yu, Xiang Chen, Ritwik Sinha, Jingbo
Shang, and Julian McAuley. Explainable chain-of-thought reasoning: An empirical analysis on
state-aware reasoning dynamics. arXiv preprint arXiv:2509.00190, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DATA PREPROCESSING AND EXPERIMENTAL SETUP

A.1 MODELS

We evaluate five open-source reasoning models, each paired with a classification model where ap-
plicable. All models are run with bfloat16 precision unless otherwise specified. Generation models
use standard reasoning hyperparameters, while classification models are configured with do sample
= False. Licenses are listed for reproducibility.

Qwen3-1.7B (Team, 2025) was used for both generation and classification, with “thinking mode”
enabled for generation and disabled for classification. The parameters were: temperature = 0.6,
top p = 1.0, top k = 20, and min p = 0; classification was run deterministically with do sample =
False. License: Apache 2.0.

Bespoke-Stratos-7B (Labs, 2025) was paired with Qwen2.5-7B-Instruct (Yang et al., 2024a) for clas-
sification. The configuration used temperature = 0.6, top p = 0.95, and deterministic classification
(do sample = False). License: Apache 2.0 (both models).

OpenThinker-7B (Guha et al., 2025) was paired with Qwen2.5-7B-Instruct (Yang et al., 2024a),
using the same settings (temperature = 0.6, top p = 0.95, and do sample = False for classification).
License: Apache 2.0 (both models).

Llama-3.1-Nemotron-Nano-4B-v1.1 (Bercovich et al., 2025) was used for both generation and clas-
sification. “Thinking mode” was enabled for generation and disabled for classification, with param-
eters temperature = 0.6, top p = 0.95, and deterministic classification (do sample = False). License:
NVIDIA Open Model License.

Besides above models, LLaMA-3.1-8B-Instruct (Meta, 2024) are used only for WebInstruct-
Verified, with Meta LLaMA 3.1 License.

A.2 DATASETS

Our experiments span 4 benchmarks. Splits, sizes, maximum token cutoffs and licenses are shown
in Table 8. AIME-2024 is excluded from steering analysis due to its small size and difficulty.

Table 8: Datasets used in experiments.

Dataset Split Train Size Test Size Max Tokens License
MATH-500 (Lightman et al., 2023) test 250 250 2000 MIT
GPQA-Diamond (Rein et al., 2024) test 100 98 5000 Apache 2.0
WebInstruct-Verified (Ma et al., 2025) test 144 144 5000 Apache 2.0
AIME-2024 (HuggingFaceH4, 2024) train 15 – 32768 Apache 2.0

For WebInstruct-Verified, we additionally filter by: answer types as Float, Multiple Choice, Integer,
Percentage and difficulties as Primary, Junior High, Senior High.

A.3 PROMPTING

Generation. - Multiple-choice tasks (GPQA) use:

You are answering a multiple-choice question.
Options are labeled A, B, C, and D.
Think step-by-step and show your reasoning.
At the very end, output ONE line exactly in this format:
Final Answer: \boxed{A}

- Open-ended tasks (MATH-500, AIME-2024, WebInstruct) use:

Answer the following question step-by-step.
At the very end, output exactly one line formatted as:
Final Answer: \boxed{...}

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Exception: For Stratos on MATH-500, no prompt is used, as this improved performance.

Classification. For sentence-level semantic tagging, all classification models use:

You are an expert in reasoning analysis.
Classify the function of each sentence into one of the following tags:
1. final_answer
2. setup_and_retrieval
3. analysis_and_computation
4. uncertainty_and_verification

A.4 PREPROCESSING PIPELINE

We segment each generated solution into reasoning steps using blank-line delimiters, and for every
step we store the hidden representation of its first token across all layers as the step-level hidden
state. Per-step reasoning sequences are constructed and anchored to semantic labels.

A.5 COMPUTING

All experiments were conducted with NVIDIA H100 and H200 GPUs.

B HHMM CONFIGURATIONS

B.1 TRAINING

Data Loading and Filtering Classification labels and step-level hidden states (extracted during
Appendix A) are loaded. Depending on the configuration, training uses either all samples, only
correct samples, or only incorrect samples.

Feature Preprocessing Step embeddings are standardized with a StandardScaler, then reduced via
PCA to a target dimension of 64 (dpca = 64). PCA is run with the solver option svd solver=”full”.

HHMM Fitting The HHMM is trained with four fixed top-level categories (C = 4) aligned to
semantic anchors, and seven bottom-level regimes (K = 7) per category. Unless otherwise specified,
training runs for 10 EM iterations (n iter = 10).

Anchored Top-Level Categories The HHMM is trained in anchored mode, where top-level cate-
gories are fixed by semantic labels. Each reasoning step is assigned one of four canonical categories:
final answer, setup and retrieval, analysis and computation, uncertainty and verification. These la-
bels are required for every sequence and are coerced into integer IDs (0–3). The top-level start and
transition probabilities are estimated directly from observed label sequences.

Bottom-Level HMMs For each category, a bottom-level HMM with K = 7 regimes is trained to
model the sequence of hidden states across layers. Emissions are diagonal Gaussians with parame-
ters (µk, σ

2
k), initialized from a pooled sample of step embeddings. Variances are lower-bounded to

10−3 for stability.

Expectation–Maximization (EM) Training proceeds via EM for niter = 10 iterations: (i) E-
step: For each step, given its fixed category, the bottom HMM runs forward–backward to compute
regime posteriors and sufficient statistics. (ii) M-step: Top-level parameters (start and transition)
are updated by normalized counts over fixed labels; bottom-level parameters are re-estimated from
sufficient statistics. Average per-step log-likelihood is monitored across iterations.

B.2 DECODING

Inputs and Preprocessing Restore Anchored decoding operates on two inputs: (1) preprocessed
records containing step-level hidden states and labels, and (2) a HHMM checkpoint that stores model

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

parameters and preprocessing statistics. The original StandardScaler and PCA are reconstructed by
directly restoring their learned attributes, rather than refitting.

Anchored Decoding Bottom-level states are decoded with Viterbi under the fixed top-level cate-
gory path. Anchored decoding constrains the top-level HHMM categories using provided labels and
returns best regimes per step for each sequence, which is the fine-grained bottom-level regime path
assigned by model.

Table 9: Example.

Regime Layers

5 0–6
3 7–18
1 19–22
6 23–25
0 26–27
6 28

Consensus Layer Ranges To summarize regime allo-
cation across layers, we derive consensus ranges for each
top category:

1. Frequency pooling. For each category c, build
frequency tensors reg freq[c] ∈ NL×K , where
entry (i, r) counts how often regime r is as-
signed at layer i.

2. Dominant regime selection. At
each layer i, choose the regime with
the largest relative frequency: r∗ =
argmaxr reg freq[c]i,r

/∑
r′ reg freq[c]i,r′ .

3. Range consolidation. Merge consecutive layers
that share the same dominant regime into one in-
terval to obtain compact ranges.

C STEERING VECTOR CONSTRUCTION AND INTERVENTION

C.1 STEERING VECTOR CONSTRUCTION

We provide implementation details for the steering vector construction, which derives steering vec-
tors from HHMM transition matrix and hidden states. These vectors capture directional displace-
ments in representation space that distinguish correct from incorrect reasoning paths.

Input. The build script consumes three inputs: (1) model hidden state, (2) semantic level tran-
sition matrix, and (3) trained preprocessing models containing scaling statistics and optional PCA
components.

Preprocessing. Each hidden state H is standardized using a fitted StandardScaler, then reduced
with PCA to dimension dpca = 64. This yields a single step embedding vt ∈ Rdpca per reasoning
step.

Edge statistics. For each category transition (a → b) in correct runs, we compute the average
displacement ∆a,b = E[vt+1 − vt]. For incorrect runs, we maintain both edge-conditional and
source-marginal statistics, then construct a source-conditioned negative baseline. Subtracting this
baseline from correct displacements yields contrastive vectors ∆a,b that emphasize features predic-
tive of successful reasoning.

Baselines. A global baseline is computed by averaging hidden vectors across all steps of correct vs.
incorrect runs, independent of edge structure. This yields a steering direction vglobal for comparison.

Soft edge weighting. When choose short steering, a json file will be used to specify a combination
of multiple edges with normalized weights, allowing multi-edge steering vectors.

Output. Per-edge steering vectors, baseline vector, and soft steering configuration with normal-
ized probability.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C.2 STEERING AT INFERENCE TIME

This section describes how steering vectors are applied during generation.

Goal. Given a hidden-space steering vector v ∈ Rd (inverted back to the model’s hidden width
from the PCA/scaler space), we add a small vector α∗v at chosen transformer layers during decoding
to encourage trajectories associated with successful reasoning.

steering Vectors Steering operates by adding precomputed vectors in the model’s hidden space.
In the hard-steering mode, we load one vector; instead in the soft-steering mode, we instead build
a small bucket of edge-specific vectors, each associated with a probability weight. At inference,
one vector from this bucket is selected by random sampling, and the chosen vector is applied as an
intervention to steer the hidden states.

Injection Mechanism (Forward Hooks) During generation, we register lightweight forward
hooks on the selected blocks. Let h ∈ RB×T×d be the hidden state for last layer for a batch of
size B. When the gate fires (Sec. C.2), we update the last token representation for each active batch
slot b:

hb,T−1,: ← hb,T−1,: + α v.

Step-Aware Gating To make steering step-aware, we attach a logits-processor that arms a per-
batch gate when the generated text ends with a blank line. The next token after arming receives the
steering update and the gate resets.

Table 10: Correction rate (↑; fraction of originally incorrect predictions corrected after steering, with
standard deviations) and false-token count (↓; token counts of originally incorrect predictions, with
standard deviations), average and std over 3 independent runs.

Model Dataset Edge-Agnostic Soft Steering Hard Steering Baseline Soft Steering Hard Steering #False

Corr. Corr. Std Corr. Std Tokens Tokens Std Tokens Std

Llama-3.1-
Nemotron-Nano-

4B-v1.1

MATH-500 0.1081 0.1219 0.04 0.1383 0.04 1986 1949 14.71 1941 8.86 120
WebInstruct-Verified 0.0969 0.1181 0.04 0.0966 0.03 4330 4173 27.78 4185 65.18 69
GPQA-Diamond 0.1423 0.1653 0.03 0.1630 0.09 4833 4845 54.56 4796 77.11 106

OpenThinker-7B
MATH-500 0.2324 0.2443 0.07 0.2311 0.02 1899 1758 10.06 1785 29.00 80
WebInstruct-Verified 0.2367 0.2408 0.03 0.2094 0.04 3474 3303 283.88 3442 35.01 96
GPQA-Diamond 0.1858 0.1619 0.08 0.2126 0.04 4340 4155 88.74 4204 125.16 72

Qwen3-1.7B
MATH-500 0.1198 0.1312 0.01 0.1175 0.02 1998 1983 7.65 1982 10.09 100
WebInstruct-Verified 0.1091 0.1295 0.03 0.1062 0.01 3926 3889 97.23 3878 54.68 125
GPQA-Diamond 0.0709 0.0792 0.04 0.0774 0.02 4526 4567 55.88 4492 51.80 81

Bespoke-Stratos-7B
MATH-500 0.2832 0.2962 0.02 0.2747 0.06 1688 1537 44.92 1547 18.25 59
WebInstruct-Verified 0.1679 0.1949 0.03 0.2065 0.04 1532 1424 139.98 1507 46.69 87
GPQA-Diamond 0.2431 0.2682 0.12 0.1900 0.07 2695 2729 252.48 2587 101.64 76

Average 0.1664 0.1793 0.1686 3102 3026 3029

D SEMANTIC HHMM TRANSITION ANALYSIS

Goal. We summarize the top–level (semantic) dynamics of our HHMM by averaging start–state
probabilities and transition matrices across runs, and by contrasting correct vs. incorrect trajectories.

Aggregation. For any slice D, we compute

T̄ = meanr∈D T (r) ∈ RC×C , S̄ = meanr∈D S(r) ∈ RC ,

where T (r) and S(r) are the per–run transition matrix and start distribution. We additionally report
a difference view ∆T = T̄correct − T̄incorrect, ∆S = S̄correct − S̄incorrect.

Reading guide (key takeaways). (i) Starts. Most sequences start in setup and retrieval (≈0.49);
correct runs show a slightly higher chance to start in final answer (+1.5pp).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(ii) Progress toward final answer. Correct runs are consistently more likely to move into final answer
from any state (row–wise ∆T to final answer is +2.1–3.9pp), with the largest lift from analy-
sis and computation (+3.9pp).

(iii) Stalls and detours. Incorrect runs show relatively higher self–loops or detours
into analysis and computation/uncertainty and verification (negative entries in the to analy-
sis and computation/uncertainty and verification columns of ∆T).

E STRUCTURAL HHMM TRANSITION ANALYSIS

This section describes the procedure for aggregating layer “endpoints” (structural boundaries) across
models, subsets.

E.1 PERCENT-DEPTH BINS.

Each absolute endpoint e ∈ [0..L] is mapped to a bin k ∈ [0..B] (with B = 99):

k = round
(
e
L ·B

)
.

Boundary bins {0, B} are always included.

MODEL CAPS = {stratos = 29, openthinker = 29, qwen = 29, nemotron = 33}.

E.2 WITHIN-MODEL CONSENSUS VOTING

We compute per-file endpoint sets in [0..B] and then vote across runs. An endpoint u /∈ {0, B} is
kept if

#{runs containing u}
nf

≥ ENDPOINT THR,

where nf is the number of unique runs. We set ENDPOINT THR = 0.3.

E.3 ACROSS-MODEL VOTING

After within-model consensus, endpoints are aggregated across models. Let Em be the voted end-
points for model m. Then keep bins present in at least two models (out of four total).

E.4 CONSENSUS STABILITY SUMMARY (CORRECT VS. INCORRECT)

From the per-subset consensus, we compute stability statistics for each category:

(i) Splits: nsplits = |E| − 1 per subset, model, category, aggregated as averages and min–max across
models.

(ii) ∆ Splits: per model, ∆ = n
(inc)
splits − n

(cor)
splits ; reported as the extremal range [min∆,max∆].

(iii) Anchor overlap (Jaccard): anchors are interior endpoints A = E \ {0, B}. For each model:

J =
|Acor ∩ Ainc|
|Acor ∪ Ainc|

.

We report per-category averages, min–max, and bucket averages as Low (< 0.5), Medium
([0.5, 0.7)), or High (≥ 0.7).

E.5 HEATMAPS

To quantify similarity between models, we construct heatmaps of endpoint overlap. For each pair of
models (m1,m2), we compute the histogram overlap of their endpoint distributions in percent-depth
space.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 11: Mean top–level transition matrices (T̄). Rows are sources; columns are destinations.

final answer setup and retrieval analysis and computation uncertainty and verification
ALL
final answer 0.395 0.180 0.295 0.130
setup and retrieval 0.317 0.255 0.317 0.111
analysis and computation 0.299 0.179 0.390 0.132
uncertainty and verification 0.277 0.200 0.318 0.206

CORRECT
final answer 0.414 0.179 0.286 0.122
setup and retrieval 0.329 0.257 0.309 0.105
analysis and computation 0.323 0.173 0.382 0.122
uncertainty and verification 0.299 0.192 0.316 0.193

INCORRECT
final answer 0.378 0.179 0.309 0.135
setup and retrieval 0.308 0.257 0.320 0.115
analysis and computation 0.284 0.183 0.396 0.138
uncertainty and verification 0.263 0.205 0.321 0.211

Table 12: Difference matrix ∆T = T̄correct − T̄incorrect. Positive values indicate transitions that are
more likely in correct runs.

final answer setup and retrieval analysis and computation uncertainty and verification
final answer +0.036 +0.000 -0.023 -0.013
setup and retrieval +0.021 -0.000 -0.010 -0.011
analysis and computation +0.039 -0.009 -0.013 -0.016
uncertainty and verification +0.036 -0.013 -0.005 -0.018

F USE OF LARGE LANGUAGE MODELS.

Large language models (LLMs) were used solely as assistive tools for proofreading and improving
clarity of writing.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 13: Mean start distributions (S̄) and difference ∆S = S̄correct − S̄incorrect.

ALL CORRECT INCORRECT
final answer 0.191 0.201 0.186
setup and retrieval 0.494 0.492 0.498
analysis and computation 0.220 0.215 0.218
uncertainty and verification 0.095 0.092 0.098

Difference ∆S (Correct − Incorrect): [+0.015, -0.006, -0.003, -0.006]

Table 14: AIME-2024 — Mean top–level transition matrices (T̄). Rows are sources; columns are
destinations.

final answer setup and retrieval analysis and computation uncertainty and verification
ALL
final answer 0.377 0.177 0.329 0.116
setup and retrieval 0.305 0.251 0.344 0.099
analysis and computation 0.303 0.174 0.401 0.123
uncertainty and verification 0.265 0.197 0.339 0.199

CORRECT
final answer 0.399 0.172 0.321 0.108
setup and retrieval 0.327 0.237 0.338 0.097
analysis and computation 0.339 0.163 0.389 0.108
uncertainty and verification 0.271 0.199 0.347 0.183

INCORRECT
final answer 0.363 0.181 0.339 0.117
setup and retrieval 0.294 0.261 0.344 0.101
analysis and computation 0.288 0.178 0.405 0.129
uncertainty and verification 0.263 0.199 0.338 0.200

Table 15: AIME-2024 — Difference matrix ∆T = T̄correct−T̄incorrect. Positive values are more likely
in correct runs.

final answer setup and retrieval analysis and computation uncertainty and verification
final answer +0.036 -0.009 -0.018 -0.009
setup and retrieval +0.033 -0.024 -0.006 -0.004
analysis and computation +0.051 -0.015 -0.015 -0.021
uncertainty and verification +0.008 +0.000 +0.009 -0.017

Table 16: AIME-2024 — Mean start distributions (S̄) and ∆S = S̄correct − S̄incorrect.

ALL CORRECT INCORRECT
final answer 0.228 0.231 0.217
setup and retrieval 0.506 0.527 0.486
analysis and computation 0.150 0.115 0.181
uncertainty and verification 0.117 0.126 0.116

Difference ∆S (Correct − Incorrect): [+0.014, +0.041, -0.066, +0.011]

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 17: GPQA-Diamond — Mean top–level transition matrices (T̄). Rows are sources; columns
are destinations.

final answer setup and retrieval analysis and computation uncertainty and verification
ALL
final answer 0.400 0.191 0.252 0.157
setup and retrieval 0.313 0.278 0.258 0.150
analysis and computation 0.280 0.202 0.337 0.181
uncertainty and verification 0.276 0.200 0.274 0.249

CORRECT
final answer 0.412 0.186 0.252 0.149
setup and retrieval 0.315 0.300 0.246 0.139
analysis and computation 0.287 0.200 0.344 0.169
uncertainty and verification 0.298 0.183 0.273 0.245

INCORRECT
final answer 0.400 0.191 0.251 0.158
setup and retrieval 0.313 0.273 0.261 0.154
analysis and computation 0.276 0.203 0.337 0.184
uncertainty and verification 0.268 0.207 0.274 0.251

Table 18: GPQA-Diamond — Difference matrix ∆T = T̄correct − T̄incorrect. Positive values are more
likely in correct runs.

final answer setup and retrieval analysis and computation uncertainty and verification
final answer +0.012 -0.005 +0.001 -0.009
setup and retrieval +0.003 +0.027 -0.015 -0.014
analysis and computation +0.011 -0.003 +0.008 -0.015
uncertainty and verification +0.030 -0.023 -0.001 -0.006

Table 19: GPQA-Diamond — Mean start distributions (S̄) and ∆S = S̄correct − S̄incorrect.

ALL CORRECT INCORRECT
final answer 0.201 0.229 0.188
setup and retrieval 0.499 0.499 0.502
analysis and computation 0.207 0.191 0.212
uncertainty and verification 0.093 0.082 0.098

Difference ∆S (Correct − Incorrect): [+0.041, -0.004, -0.021, -0.016]

Table 20: MATH-500 — Mean top–level transition matrices (T̄). Rows are sources; columns are
destinations.

final answer setup and retrieval analysis and computation uncertainty and verification
ALL
final answer 0.389 0.196 0.317 0.097
setup and retrieval 0.309 0.264 0.353 0.074
analysis and computation 0.304 0.183 0.422 0.091
uncertainty and verification 0.272 0.225 0.353 0.150

CORRECT
final answer 0.414 0.194 0.301 0.092
setup and retrieval 0.332 0.253 0.347 0.068
analysis and computation 0.337 0.173 0.408 0.082
uncertainty and verification 0.305 0.214 0.347 0.134

INCORRECT
final answer 0.349 0.190 0.353 0.107
setup and retrieval 0.284 0.273 0.360 0.083
analysis and computation 0.268 0.192 0.437 0.103
uncertainty and verification 0.241 0.238 0.365 0.157

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 21: MATH-500 — Difference matrix ∆T = T̄correct− T̄incorrect. Positive values are more likely
in correct runs.

final answer setup and retrieval analysis and computation uncertainty and verification
final answer +0.065 +0.003 -0.052 -0.015
setup and retrieval +0.048 -0.020 -0.013 -0.015
analysis and computation +0.069 -0.019 -0.029 -0.021
uncertainty and verification +0.064 -0.024 -0.018 -0.023

Table 22: MATH-500 — Mean start distributions (S̄) and ∆S = S̄correct − S̄incorrect.

ALL CORRECT INCORRECT
final answer 0.159 0.155 0.171
setup and retrieval 0.446 0.428 0.473
analysis and computation 0.310 0.334 0.273
uncertainty and verification 0.084 0.083 0.084

Difference ∆S (Correct − Incorrect): [-0.016, -0.045, +0.061, -0.001]

Table 23: WebInstruct-Verified — Mean top–level transition matrices (T̄). Rows are sources;
columns are destinations.

final answer setup and retrieval analysis and computation uncertainty and verification
ALL
final answer 0.412 0.155 0.283 0.149
setup and retrieval 0.342 0.227 0.311 0.120
analysis and computation 0.310 0.157 0.402 0.131
uncertainty and verification 0.293 0.176 0.303 0.228

CORRECT
final answer 0.430 0.164 0.269 0.138
setup and retrieval 0.342 0.237 0.306 0.115
analysis and computation 0.329 0.156 0.388 0.127
uncertainty and verification 0.323 0.172 0.297 0.208

INCORRECT
final answer 0.400 0.153 0.291 0.156
setup and retrieval 0.340 0.222 0.314 0.123
analysis and computation 0.304 0.156 0.405 0.135
uncertainty and verification 0.281 0.177 0.307 0.235

Table 24: WebInstruct-Verified — Difference matrix ∆T = T̄correct − T̄incorrect. Positive values are
more likely in correct runs.

final answer setup and retrieval analysis and computation uncertainty and verification
final answer +0.030 +0.010 -0.022 -0.018
setup and retrieval +0.002 +0.015 -0.008 -0.009
analysis and computation +0.024 +0.000 -0.018 -0.007
uncertainty and verification +0.042 -0.005 -0.010 -0.027

Table 25: WebInstruct-Verified — Mean start distributions (S̄) and ∆S = S̄correct − S̄incorrect.

ALL CORRECT INCORRECT
final answer 0.177 0.191 0.169
setup and retrieval 0.524 0.513 0.531
analysis and computation 0.211 0.220 0.207
uncertainty and verification 0.088 0.077 0.093

Difference ∆S (Correct − Incorrect): [+0.022, -0.018, +0.013, -0.017]

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 26: Nemotron — Mean top–level transition matrices (T̄). Rows are sources; columns are
destinations.

final answer setup and retrieval analysis and computation uncertainty and verification
ALL
final answer 0.665 0.095 0.199 0.041
setup and retrieval 0.671 0.119 0.178 0.031
analysis and computation 0.548 0.102 0.300 0.050
uncertainty and verification 0.549 0.107 0.254 0.090

CORRECT
final answer 0.671 0.088 0.192 0.048
setup and retrieval 0.678 0.108 0.176 0.038
analysis and computation 0.583 0.088 0.277 0.053
uncertainty and verification 0.585 0.096 0.238 0.081

INCORRECT
final answer 0.659 0.099 0.204 0.038
setup and retrieval 0.663 0.125 0.182 0.030
analysis and computation 0.531 0.109 0.311 0.049
uncertainty and verification 0.528 0.119 0.264 0.090

Table 27: Nemotron — Difference matrix ∆T = T̄correct − T̄incorrect. Positive values are more likely
in correct runs.

final answer setup and retrieval analysis and computation uncertainty and verification
final answer +0.012 -0.011 -0.011 +0.010
setup and retrieval +0.015 -0.017 -0.006 +0.008
analysis and computation +0.052 -0.021 -0.034 +0.003
uncertainty and verification +0.057 -0.023 -0.025 -0.009

Table 28: Nemotron — Mean start distributions (S̄) and ∆S = S̄correct − S̄incorrect.

ALL CORRECT INCORRECT
final answer 0.386 0.416 0.368
setup and retrieval 0.153 0.148 0.148
analysis and computation 0.309 0.299 0.317
uncertainty and verification 0.152 0.136 0.167

Difference ∆S (Correct − Incorrect): [+0.048, -0.000, -0.017, -0.031]

Table 29: Openthinker — Mean top–level transition matrices (T̄). Rows are sources; columns are
destinations.

final answer setup and retrieval analysis and computation uncertainty and verification
ALL
final answer 0.260 0.219 0.330 0.190
setup and retrieval 0.236 0.259 0.343 0.161
analysis and computation 0.244 0.206 0.373 0.176
uncertainty and verification 0.244 0.212 0.309 0.234

CORRECT
final answer 0.285 0.204 0.338 0.174
setup and retrieval 0.245 0.262 0.332 0.160
analysis and computation 0.267 0.200 0.371 0.162
uncertainty and verification 0.252 0.204 0.309 0.235

INCORRECT
final answer 0.241 0.230 0.330 0.199
setup and retrieval 0.230 0.259 0.349 0.163
analysis and computation 0.234 0.209 0.374 0.183
uncertainty and verification 0.238 0.220 0.314 0.227

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 30: Openthinker — Difference matrix ∆T = T̄correct − T̄incorrect. Positive values are more
likely in correct runs.

final answer setup and retrieval analysis and computation uncertainty and verification
final answer +0.044 -0.026 +0.008 -0.026
setup and retrieval +0.016 +0.004 -0.017 -0.003
analysis and computation +0.033 -0.009 -0.003 -0.021
uncertainty and verification +0.014 -0.016 -0.006 +0.008

Table 31: Openthinker — Mean start distributions (S̄) and ∆S = S̄correct − S̄incorrect.

ALL CORRECT INCORRECT
final answer 0.192 0.205 0.195
setup and retrieval 0.496 0.488 0.500
analysis and computation 0.198 0.189 0.200
uncertainty and verification 0.113 0.119 0.105

Difference ∆S (Correct − Incorrect): [+0.009, -0.012, -0.011, +0.013]

Table 32: Qwen — Mean top–level transition matrices (T̄). Rows are sources; columns are destina-
tions.

final answer setup and retrieval analysis and computation uncertainty and verification
ALL
final answer 0.391 0.185 0.319 0.105
setup and retrieval 0.132 0.371 0.409 0.088
analysis and computation 0.174 0.182 0.522 0.123
uncertainty and verification 0.083 0.251 0.393 0.273

CORRECT
final answer 0.429 0.194 0.280 0.097
setup and retrieval 0.155 0.374 0.398 0.073
analysis and computation 0.196 0.178 0.517 0.109
uncertainty and verification 0.108 0.243 0.407 0.241

INCORRECT
final answer 0.359 0.173 0.358 0.110
setup and retrieval 0.110 0.385 0.410 0.096
analysis and computation 0.149 0.190 0.528 0.132
uncertainty and verification 0.068 0.255 0.386 0.292

Table 33: Qwen — Difference matrix ∆T = T̄correct − T̄incorrect. Positive values are more likely in
correct runs.

final answer setup and retrieval analysis and computation uncertainty and verification
final answer +0.070 +0.021 -0.078 -0.013
setup and retrieval +0.045 -0.010 -0.011 -0.023
analysis and computation +0.047 -0.013 -0.012 -0.023
uncertainty and verification +0.041 -0.011 +0.021 -0.051

Table 34: Qwen — Mean start distributions (S̄) and ∆S = S̄correct − S̄incorrect.

ALL CORRECT INCORRECT
final answer 0.003 0.000 0.003
setup and retrieval 0.836 0.832 0.853
analysis and computation 0.157 0.164 0.140
uncertainty and verification 0.005 0.004 0.004

Difference ∆S (Correct − Incorrect): [-0.003, -0.021, +0.024, -0.000]

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 35: Stratos — Mean top–level transition matrices (T̄). Rows are sources; columns are desti-
nations.

final answer setup and retrieval analysis and computation uncertainty and verification
ALL
final answer 0.262 0.219 0.334 0.184
setup and retrieval 0.231 0.271 0.335 0.163
analysis and computation 0.231 0.225 0.367 0.177
uncertainty and verification 0.231 0.227 0.314 0.228

CORRECT
final answer 0.269 0.230 0.332 0.168
setup and retrieval 0.238 0.283 0.331 0.148
analysis and computation 0.245 0.227 0.366 0.163
uncertainty and verification 0.251 0.226 0.311 0.212

INCORRECT
final answer 0.253 0.214 0.342 0.191
setup and retrieval 0.227 0.261 0.339 0.173
analysis and computation 0.222 0.221 0.370 0.186
uncertainty and verification 0.219 0.227 0.321 0.234

Table 36: Stratos — Difference matrix ∆T = T̄correct − T̄incorrect. Positive values are more likely in
correct runs.

final answer setup and retrieval analysis and computation uncertainty and verification
final answer +0.016 +0.017 -0.010 -0.023
setup and retrieval +0.011 +0.022 -0.008 -0.025
analysis and computation +0.023 +0.006 -0.005 -0.024
uncertainty and verification +0.032 -0.001 -0.010 -0.022

Table 37: Stratos — Mean start distributions (S̄) and ∆S = S̄correct − S̄incorrect.

ALL CORRECT INCORRECT
final answer 0.184 0.185 0.178
setup and retrieval 0.490 0.498 0.491
analysis and computation 0.214 0.208 0.216
uncertainty and verification 0.112 0.109 0.115

Difference ∆S (Correct − Incorrect): [+0.007, +0.007, -0.008, -0.006]

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 38: Per-model × category × subset consensus (bins 0..99).

subset model category name segments bins 0 99

all nemotron analysis and computation 0-38—39-41—42-63—64-84—85-93—94-96—97-99
all openthinker analysis and computation 0-71—72-82—83-85—86-89—90-92—93-96—97-99
all qwen analysis and computation 0-37—38-61—62-68—69-71—72-75—76-85—86-89—90-96—97-99
all stratos analysis and computation 0-37—38-71—72-75—76-82—83-85—86-89—90-92—93-96—97-99
all nemotron final answer 0-35—36-38—39-41—42-60—61-81—82-84—85-90—91-96—97-99
all openthinker final answer 0-68—69-71—72-78—79-82—83-85—86-89—90-92—93-96—97-99
all qwen final answer 0-37—38-40—41-61—62-71—72-78—79-85—86-89—90-96—97-99
all stratos final answer 0-47—48-71—72-75—76-82—83-85—86-89—90-92—93-96—97-99
all nemotron setup and retrieval 0-35—36-41—42-63—64-84—85-90—91-96—97-99
all openthinker setup and retrieval 0-68—69-71—72-78—79-82—83-89—90-92—93-96—97-99
all qwen setup and retrieval 0-40—41-61—62-65—66-75—76-78—79-85—86-89—90-96—97-99
all stratos setup and retrieval 0-37—38-71—72-75—76-82—83-89—90-92—93-96—97-99
all nemotron uncertainty and verification 0-41—42-96—97-99
all openthinker uncertainty and verification 0-68—69-71—72-78—79-82—83-85—86-89—90-92—93-96—97-99
all qwen uncertainty and verification 0-37—38-61—62-68—69-75—76-78—79-82—83-85—86-89—90-96—97-99
all stratos uncertainty and verification 0-37—38-68—69-71—72-82—83-89—90-92—93-96—97-99

correct nemotron analysis and computation 0-41—42-66—67-84—85-96—97-99
correct openthinker analysis and computation 0-37—38-71—72-82—83-85—86-89—90-92—93-96—97-99
correct qwen analysis and computation 0-37—38-40—41-61—62-75—76-78—79-85—86-89—90-96—97-99
correct stratos analysis and computation 0-68—69-75—76-78—79-82—83-89—90-92—93-96—97-99
correct nemotron final answer 0-38—39-96—97-99
correct openthinker final answer 0-37—38-68—69-71—72-82—83-85—86-89—90-92—93-96—97-99
correct qwen final answer 0-37—38-40—41-61—62-65—66-71—72-75—76-78—79-89—90-96—97-99
correct stratos final answer 0-71—72-75—76-82—83-89—90-92—93-96—97-99
correct nemotron setup and retrieval 0-38—39-41—42-63—64-84—85-96—97-99
correct openthinker setup and retrieval 0-71—72-75—76-82—83-92—93-96—97-99
correct qwen setup and retrieval 0-40—41-61—62-65—66-75—76-78—79-89—90-96—97-99
correct stratos setup and retrieval 0-71—72-75—76-82—83-85—86-89—90-92—93-96—97-99
correct nemotron uncertainty and verification 0-41—42-84—85-96—97-99
correct openthinker uncertainty and verification 0-71—72-75—76-82—83-89—90-92—93-96—97-99
correct qwen uncertainty and verification 0-40—41-61—62-65—66-75—76-78—79-85—86-89—90-96—97-99
correct stratos uncertainty and verification 0-37—38-71—72-82—83-89—90-92—93-96—97-99

incorrect nemotron analysis and computation 0-35—36-38—39-60—61-81—82-87—88-96—97-99
incorrect openthinker analysis and computation 0-71—72-78—79-85—86-89—90-92—93-96—97-99
incorrect qwen analysis and computation 0-37—38-61—62-68—69-75—76-82—83-89—90-96—97-99
incorrect stratos analysis and computation 0-71—72-75—76-82—83-85—86-89—90-92—93-96—97-99
incorrect nemotron final answer 0-41—42-57—58-78—79-87—88-90—91-96—97-99
incorrect openthinker final answer 0-37—38-68—69-71—72-75—76-82—83-85—86-89—90-92—93-96—97-99
incorrect qwen final answer 0-37—38-40—41-61—62-71—72-75—76-78—79-85—86-89—90-96—97-99
incorrect stratos final answer 0-30—31-68—69-78—79-82—83-85—86-92—93-96—97-99
incorrect nemotron setup and retrieval 0-38—39-63—64-84—85-96—97-99
incorrect openthinker setup and retrieval 0-68—69-75—76-78—79-85—86-89—90-92—93-96—97-99
incorrect qwen setup and retrieval 0-37—38-40—41-61—62-71—72-75—76-85—86-89—90-96—97-99
incorrect stratos setup and retrieval 0-71—72-82—83-89—90-92—93-96—97-99
incorrect nemotron uncertainty and verification 0-38—39-63—64-84—85-96—97-99
incorrect openthinker uncertainty and verification 0-71—72-75—76-85—86-89—90-92—93-96—97-99
incorrect qwen uncertainty and verification 0-37—38-40—41-61—62-65—66-71—72-82—83-89—90-96—97-99
incorrect stratos uncertainty and verification 0-71—72-82—83-92—93-96—97-99

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

(a) final answer (b) setup and retrieval

(c) analysis and computation (d) uncertainty and verification

Figure 4: Percent-depth endpoint overlap.

26

	Introduction
	Methodology
	Top Level: Explicit Reasoning Transitions
	Bottom Level: Implicit Reasoning Transitions

	Experimental Setup
	Semantic Reasoning Dynamics
	Structural Reasoning Dynamics
	Semantic Transitions as Functional Control Points
	Build Steering Vectors
	Intervention

	Related Work
	Conclusion
	Data Preprocessing and Experimental Setup
	Models
	Datasets
	Prompting
	Preprocessing Pipeline
	Computing

	HHMM Configurations
	Training
	Decoding

	Steering Vector Construction and Intervention
	Steering Vector Construction
	Steering at Inference Time

	Semantic HHMM Transition Analysis
	Structural HHMM Transition Analysis
	Percent-depth bins.
	Within-Model Consensus Voting
	Across-Model Voting
	Consensus Stability Summary (Correct vs. Incorrect)
	Heatmaps

	Use of Large Language Models.

