
Synthesizing Informative Training Samples with GAN

Bo Zhao, Hakan Bilen
School of Informatics, The University of Edinburgh

{bo.zhao, hbilen}@ed.ac.uk

Abstract

Remarkable progress has been achieved in synthesizing photo-realistic images
with generative adversarial networks (GANs). Recently, GANs are utilized as the
training sample generator when obtaining or storing real training data is expensive
even infeasible. However, traditional GANs generated images are not as informative
as the real training samples when being used to train deep neural networks. In this
paper, we propose a novel method to synthesize Informative Training samples with
GAN (IT-GAN). Specifically, we freeze a pre-trained GAN model and learn the
informative latent vectors that correspond to informative training samples. The
synthesized images are required to preserve information for training deep neural
networks rather than visual reality or fidelity. Experiments verify that the deep
neural networks can learn faster and achieve better performance when being trained
with our IT-GAN generated images1. We also show that our method is a promising
solution to dataset condensation problem.

1 Introduction

In the last decade, generative adversarial networks (GANs) (9; 28; 35; 67; 5; 17) have been
successfully applied to synthesize photo-realistic images in various tasks, including for generating
novel realistic images (16; 5), image manipulation (50; 12), image-to-image translation (14; 67),
text-to-image translation (37; 60), super-resolution (22; 56) and photo inpainting (33; 25). The
main focus of these works has been on improving the reality and fidelity of GAN generated images.
More recently, the interest of the community has shifted into turning GANs into infinite training
data generators. To this end, GANs have been used to synthesize labelled training samples for
part segmentation (61; 57; 24; 23), forming memory for previously seen tasks in continual learning
(41; 53; 7), distilling/transferring knowledge (8; 26; 51), augmenting existing real data (2; 4; 42; 40)
and reducing privacy leakage (55; 34). Nevertheless, the common assumption in these works, on
which little attention has been paid before (36), is that GAN synthesized images are inherently
informative for training models.

In this work, we question this assumption and ask whether the objective of generating images
that are expected to be real-looking (i.e. by using a discriminator loss) is sufficient to train deep
networks from scratch. We hypothesize that generating realistic images does not automatically
guarantee good training samples, and we propose a GAN based method, IT-GAN that can generate
more Informative Training samples such that a model trained on them yields better generalization
performance (illustrated in Fig. 1). In particular, we first show that training a standard convolutional
network (i.e. ResNet18 (11)) from scratch on a state-of-the-art GAN (i.e. BigGAN (5)) synthesized
images performs significantly worse than training them on the original real training images (i.e. 77.8%
v.s. 93.4% testing accuracy on CIFAR10 (20)). We also study an alternative strategy and show that
learning latent vectors to reconstruct the original real images by GAN inversion (1; 66; 54) improves
the informativeness of synthetic images for training deep models, while still performing significantly

1The implementation is available at https://github.com/VICO-UoE/IT-GAN.

NeurIPS 2022 Workshop on Synthetic Data for Empowering ML Research.

https://github.com/VICO-UoE/IT-GAN

Real-looking?

Look same?

Performance
Real Synthetic

GAN

GAN Inversion

IT-GAN
Informative
for training?

CIFAR10 CIFAR100

77.8

82.9

85.7

45.2

55.0

60.1

Latent Space

Figure 1: Different objectives and performances of traditional GAN, GAN inversion (1) and our IT-GAN.
BigGAN (5) architecture is used in all three methods. We learn latent vectors in the latent space of a pre-trained
GAN that correspond to informative training samples. We show that our IT-GAN achieves better performance
than traditional GAN and GAN inversion on CIFAR10/100 when being used as the training data generator.

worse than the training on real images. Motivated by this observation, we propose to learn a set of
latent vectors, which are fed into a pre-trained GAN to generate informative training images, such
that their representations are statistically similar to those of real images with the same embedding
model. In contrast to generating realistic images, our method ensures that the synthesized images
include similar discriminative patterns to the original training images which in return enables more
effective training of downstream task models.

Our method is most related to the recently emerging problem of dataset distillation/condensation (49;
64) that aims to synthesize a small number of informative training samples so that deep neural
networks trained on synthetic samples can obtain comparable generalization performance to those
trained on real samples. Most of dataset condensation methods (49; 46; 3; 64; 62; 31; 32; 48; 6)
involves the expensive bilevel optimization, in which the outer-loop and inner-loop optimize the
synthetic data and neural network parameters respectively. Recently, (63) propose to match the
distribution of real and synthetic data in many randomly sampled embedding spaces, thus it involves
neither bi-level optimization nor second-order derivative. This method significantly reduces the
synthesis cost while achieving comparable performance.

Inspired by (63), we learn to generate informative training samples with our IT-GAN by minimizing
the distribution matching loss of real and generated synthetic samples. Different from (63) that
optimizes image pixels directly, our method optimizes latent vectors of a pre-trained GAN, so that
our method can convert any pre-trained GAN into an informative training sample generator. In
experiments, we verify that our method can generate more informative training samples than the
traditional GAN and GAN inversion, so that deep neural networks can learn faster on our synthetic
images and achieve better testing performance on CIFAR10 and CIFAR100 datasets. We also compare
IT-GAN to dataset condensation method (63) and show that our IT-GAN achieves better performance
with same storage budget. In the remainder of the paper, we present our method in Sec. 2, evaluate
our method in multiple image classification benchmarks in Sec. 3 and conclude the paper in Sec. 4.
The appendix presents the preliminary of GANs and dataset condensation, and also the ablation study.

2 Method

2.1 Initializing with GAN Inversion

Given a pre-trained generatorG, we initialize the whole latent set Z ∈ R|T |×dz by GAN inversion, so
that the synthetic image G(z) of each latent vector z ∈ Rdz corresponds to the real image x ∈ RdI

in the training set T = {xi, yi}||T |
i=1, where dz and dI are the dimensions of latent vector and image

respectively. We use the GAN inversion method proposed in (1) which learns the latent vectors by
minimizing both feature and pixel distances between the synthetic image and real image:

argmin
z

1

df
∥ψϑ(G(z))− ψϑ(x)∥2 +

λpixel
dI
∥G(z)− x∥2, (1)

where ψϑ is a pre-trained feature extractor, df is the feature dimension and λpixel = 1 by default.

2.2 Condensing Training Information

Motivated by dataset condensation methods, we condense the training knowledge from real images
into synthetic images that are generated by G. Furthermore, we learn the optimal latent vector set by

2

Z
S

G

T

ψϑ
(1- λ) ⋅ Lcon

+λ⋅ R

Forward Backpropagation

Aω

Aω

Figure 2: Illustration of IT-GAN. We input the latent vector set Z into a pre-trained generator G and generate
the synthetic set S. Then, the synthetic set S and real training set T are input into the differentiable Siamese
augmentationAω(·) and then randomly sampled embedding function ψϑ(·) to obtain feature embeddings, where
ω and ϑ are the parameters. The condensation loss Lcon and regularization R with coefficient λ are computed
for optimizing Z .

minimizing the condensation loss (illustrated in Fig. 2). As the large latent vector set Z has the same
or comparable scale (instance number) as the whole training set T , the condensation optimization has
to be simple and fast. Thus, we leverage the condensation method proposed in (63) which has neither
bi-level optimization nor second-order derivation. Specifically, the synthetic samples are expected to
have similar distribution to that of real training samples in randomly sampled embedding space ψϑ:

Lcon = Eϑ∼Pϑ
ω∼Ω

∥ 1

|T |

|T |∑
i=1

ψϑ(A(xi, ω))−
1

|Z|

|Z|∑
j=1

ψϑ(A(G(zj), ω))∥2, (2)

where the differentiable augmentation Aω parameterized with ω ∼ Ω is applied to increase the
data-efficiency (62). Similarly, we can also match the mean gradients 1

|T |
∑|T |

i=1 gϑ(A(xi, ω), yi)

and 1
|Z|

∑|Z|
j=1 gϑ(A(G(zj), ω), yj) of real and synthetic samples (64), where yi is the label and g is

gradient function. We empirically verify that distribution matching and gradient matching have close
performances.

2.3 Regularization

As the whole latent vector set size |Z| is large, we need to split Z into many batches BZ
i and train

each batch independently. Training multiple batches (or subsets) with the same condensation loss
Lcon will enforce the different batches to be homogeneous and thus decrease the informativeness
when combining them for training. To avoid this problem, we further add the regularization:

R = Eϑ∼Pϑ
ω∼Ω

∥∥ψϑ(A(xi, ω))− ψϑ(A(G(zi), ω))∥2, (3)

where xi and zi are a pair. Different from the feature alignment in GAN inversion methods, our
regularization can better preserve the training information as it is calculated over the randomly
sampled embedding spaces and Siamese augmentation strategies which can mimic the training
dynamics. The total training loss is

L = (1− λ) · Lcon + λ ·R, (4)

where λ is the coefficient of regularization.

2.4 Training Algorithm

The training algorithm is illustrated in Alg. 1. Given the pre-trained generator G, we freeze its
parameters. We initialize a set of learnable latent vectors Z by implementing GAN inversion using
Eq. 1. Then, we sample a batch of latent vectors BZ

c ∼ Z and corresponding real image batch
BT

c ∼ T for each class c. We also sample an independent large-batch B̃T
c ∼ T for condensing

training information. The augmentation parameter ωc ∼ Ω is sampled for all three batches. Then,
we compute the condensation loss Lcon and regularization R respectively. The latent vector set Z is
optimized by minimizing the total loss Eq. 4. Note that the synthetic samples G(z) are generated
instantaneously before computing the loss.

Latent Vector Ensemble Training the whole latent vector set Z in one device (e.g. GPU) can be
infeasible or slow, as the sample number is the same or comparable to that of the original dataset.
Thus, we split the whole latent vector set into many batches and train independently and then combine
them to use. Latent vector ensemble is also important strategy for real-world learning scenarios such
as continual learning, curriculum learning and distributed learning.

3

Algorithm 1: IT-GAN.
Input: Training set T

1 Required: Pre-trained generator G, latent vector set Z for C classes, deep neural network ψϑ

parameterized with ϑ ∼ Pϑ, differentiable augmentation Aω parameterized with ω ∼ Ω, coefficient λ,
training iterations K, learning rate η.

2 Initialize Z by GAN inversion using Eq. 1 and correspond to every sample in T .
3 for k = 0, · · · ,K − 1 do
4 Sample ϑ ∼ Pϑ

5 Sample batch BZ
c ∼ Z and corresponding BT

c ∼ T , large-batch B̃T
c ∼ T and ωc ∼ Ω for every class

c
6 Compute Lcon =

∑C−1
c=0 ∥

1
|BT

c |
∑

x∈BT
c
ψϑ(Aωc(x))− 1

|B̃Z
c |

∑
(z,y)∈B̃Z

c
ψϑ(Aωc(G(z)))∥2

7 Compute R = 1
|BT

c |
∑

x∈BT
c ,z∈BZ

c
∥ψϑ(Aωc(x))− ψϑ(Aωc(G(z)))∥2 ▷ each z corresponds to x

8 L = (1− λ) · Lcon + λ ·R
9 Update Z ← Z − η∇ZL

Output: Z

GAN GAN Inversion IT-GAN Upper-bound

CIFAR10 77.8±0.7 82.9±0.6 85.7±0.4 93.4±0.2
CIFAR100 45.2±1.0 55.0±0.8 60.1±0.2 74.1±0.2

Table 1: Performance (%) comparison among traditional GAN, GAN Inversion and our IT-GAN. The synthetic
images produced by the three methods are used to train ResNet18 from scratch and then test on real testing data.
The upper-bound performance is achieved by training ResNet18 on the original real training set.

3 Experiments

3.1 Experimental Settings

Experimental Settings. We do experiments on CIFAR10 and CIFAR100 (20) datasets. The
experiments have two phases. In the first phase, we learn the informative latent vectors which
correspond to those informative training samples on one architecture. In the second phase, we
train randomly initialized deep neural networks on synthesized images and then test on the real
testing set. Following (64; 62; 63), we use ConvNet and ResNet18 (11) in experiments. ConvNet is
lightweight model with 3 convolutional blocks, and each block consists of a 128-kernel convolutional
layer, instance normalization (47), ReLU activation (30) and average pooling. ResNet18 is equipped
with batch normalization (13). For simplicity, we train latent vectors on ConvNet and then test
on ResNet18 in most experiments. We find that the learned latent vectors and their corresponding
synthetic images generalize well to unseen architectures.

Competitors. We compare our method to traditional GAN: the images are generated with the
randomly sampled latent vectors and GAN Inversion (1): the images are generated with the optimized
latent vectors which reconstruct the real images in original training set. We pre-train BigGAN models
(5) using the state-of-the-art training strategy (65). Besides, we also compare to dataset condensation
method (63) with a similar storage budget and verify that our method achieves better performance.

Hyper-parameters. We use Adam optimizer (18) with learning rate η = 0.001 for all experiments,
which is validated in ablation study. We train latent vectors for 5000 iterations. We use batch size
1250 and 500 for splitting latent vectors of CIFAR10 and CIFAR100 into subsets respectively, and
then learn these subsets independently in main experiments. The regularization coefficient λ can
be searched from 10{−4,−3,−2,−1} roughly. For simplicity, we set it to be 0 when the training batch
size is large enough. Please refer to the ablation study in appendix for more details. We pre-train
hundreds of ConvNets on CIFAR10 and CIFAR100 and then used in experiments. The pre-training
is not expensive as ConvNet architecture is simple and small. For training neural networks, we use
SGD optimizer and train for 200 epochs. The learning rate is 0.01 in the first half epochs and then
decreases to 0.001 in the second half epochs. We believe the performance of our IT-GAN can be
further improved by using larger batch size, carefully tuning η and λ, and using better performing
embedding functions.

4

0 25 50 75 100 125 150 175 200
Training Epoch

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

GAN Train
GAN Test
GAN Inversion Train
GAN Inversion Test
IT-GAN Train
IT-GAN Test

Figure 3: Train ResNet18 on synthetic CIFAR10
images produced by GAN, GAN Inversion and IT-GAN.

0 25 50 75 100 125 150 175 200
Training Epoch

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

GAN Train
GAN Test
GAN Inversion Train
GAN Inversion Test
IT-GAN Train
IT-GAN Test

Figure 4: Train ResNet18 on synthetic CIFAR100
images produced by GAN, GAN Inversion and IT-GAN.

3.2 Comparison to GAN Methods

Whole-set Learning. In this setting, we sample latent vectors from the normal distribution for
GAN. For GAN Inversion and our IT-GAN, we sample latent vectors from the whole learned latent
vector set that has the same size as the real training set. The performances are presented in Tab. 1.
Training ResNet18 on samples generated by traditional GAN achieves 77.8% and 45.2% testing
accuracies on CIFAR10 and CIFAR100 respectively, while the upper-bound performances that are
obtained by training on original real training set are 93.4% and 74.1% on two datasets. The significant
performance gap indicates that, although the synthetic images are real-looking, they have quite
different distribution from the real images which has not been revealed by the discriminator.

GAN Inversion can improve the performances by producing synthetic samples that are visually close
to original ones. However, there is still big performance gap between GAN Inversion and real data
training. The possible reason is that GAN Inversion tries to minimize the pixel-level difference
between synthetic and real images, however some training information is lost. Our IT-GAN (85.7%
and 60.1%) further improves the GAN Inversion performances (82.9% and 55.0%) by 2.8% and 5.1%
on CIFAR10 and CIFAR100 respectively. It means that our method can produce more informative
training samples with pre-trained GANs.

Fig. 3 and Fig. 4 plot the training and testing curves on CIFAR10 and CIFAR100 datasets. The curves
show that the training accuracies of our method generated samples converge slower than the others,
while the testing accuracies increase remarkably faster than the others. This training dynamics also
proves that the training samples generated by our method are more informative for training models.

Subset Learning. To have a closer look to the informativeness of synthesized training samples
and the training efficiency, we do experiments with small subsets of latent vectors. Specifically,
for traditional GAN, we randomly sample a small subset of latent vectors. For GAN Inversion and
our IT-GAN, we randomly learn a small subset of latent vectors. Then, the synthetic images that
correspond to the sampled/learned latent vectors are used to train neural networks from scratch. Fig.
5 shows the performance curves of the three methods with varying subset size from 50 latent vectors
per class to 1250 latent vectors per class. The curves verify that our IT-GAN always produces more
informative training samples which have remarkable improvements over traditional GAN and GAN
Inversion.

Visualization We visualize the synthetic images in Fig. 6. The synthetic images are recognizable,
although there may exist some artificial patterns. We think those artificial patterns can improve the
informativeness of training samples. Note that our goal is to generate informative training samples
instead of real-looking ones.

3.3 Comparison to Dataset Condensation

We compare our method to dataset condensation methods under the close memory budget. Our
method requires 40.8 MB storage for CIFAR10 and CIFAR100 respectively, which consists of 16.4
MB of BigGAN model and 24.4 MB of 128 dim latent vectors. This storage size is around 25% of
the original dataset (162 MB). Thus, we compare to the dataset condensation methods that synthesize
25% samples for CIFAR10 and CIFAR100. However, few dataset condensation methods report the

5

50 100 200 500 1000 1250
Latent Vectors (Per Class)

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

GAN
GAN Inversion
IT-GAN

Figure 5: Small set of latent vectors of
CIFAR10 are sampled/learned and then
evaluated on ResNet18.

CIFAR10 CIFAR100

Figure 6: Visualization of synthetic images for CIFAR10 and
CIFAR100. Note that our goal is to generate informative training
samples instead of real-looking ones.

DM IT-GAN Upper-bound

CIFAR10 ConvNet 80.8±0.3 82.8±0.3 84.8±0.1
ResNet18 85.1±0.3 85.7±0.4 93.4±0.2

CIFAR100 ConvNet 50.5±0.3 55.7±0.4 56.2±0.3
ResNet18 56.7±0.5 60.1±0.2 74.1±0.2

Table 2: Compare to dataset condensation method DM (63) with the same storage (25% of the whole dataset).

results with such large synthetic set sizes due to the expensive optimization. As shown in Tab. 2,
we compare to DM (63) which is simple and effective without involving bi-level optimization and
second-order derivation. The results indicate that our method outperforms DM on both CIFAR10
and CIFAR100 no matter whether ConvNet or ResNet18 models are trained. Note that the synthetic
data are all learned with ConvNet. Especially, on the challenging CIFAR100 dataset, our IT-GAN
achieves 55.7±0.4% and 60.1±0.2% for training the two models, which exceed DM (50.5±0.3% and
56.7±0.5%) by 5.2% and 3.4% respectively. Our method can easily further reduce the storage size by
reducing the latent vector dimension. Furthermore, our method is more scalable as increasing latent
vectors is cheaper than increasing synthetic images especially for high-resolution images. Hence,
IT-GAN is a promising solution to dataset condensation problem.

3.4 Cross-architecture Generalization

The learned latent vectors and their corresponding synthetic images are generic to unseen architectures.
We test them on popular deep neural networks including ConvNet, VGG19 (43), ResNet18 (11),
WRN-16-8 (58) and MobileNetV2 (39). The results in Tab. 3 verify that the synthetic training images
work well in training all kinds of networks in downstream tasks.

ConvNet VGG19 ResNet18 WRN-16-8 MobileNetV2

CIFAR10 82.8±0.3 86.0±0.3 85.7±0.4 84.6±0.6 84.6±0.6
CIFAR100 55.7±0.4 60.4±0.6 60.1±0.2 57.6±0.5 59.5±0.6

Table 3: Cross-architecture generalization performance (%). We learn the latent vectors with ConvNet as the
feature embedding function and then evaluate the generated training images on various unseen architectures.

4 Conclusion

In this paper, we investigate the informativeness of GANs synthesized images for training deep neural
networks from scratch. We propose IT-GAN that converts a pre-trained GAN into an informative
training sample generator. Condensation loss and diversity regularization are designed to learn
the informative latent vectors. Experiments on popular image datasets verify that the deep neural
networks can learn faster and achieve better performance when being trained with IT-GAN generated
images. We also show that our method is a promising solution to dataset condensation problem.

Acknowledgment. This work is funded by China Scholarship Council 201806010331 and the
EPSRC programme grant Visual AI EP/T028572/1.

6

References

[1] Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2stylegan: How to embed images into the stylegan
latent space? In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
4432–4441, 2019.

[2] Antreas Antoniou, Amos Storkey, and Harrison Edwards. Data augmentation generative adversarial
networks. arXiv preprint arXiv:1711.04340, 2017.

[3] Ondrej Bohdal, Yongxin Yang, and Timothy Hospedales. Flexible dataset distillation: Learn labels instead
of images. Neural Information Processing Systems Workshop, 2020.

[4] Christopher Bowles, Liang Chen, Ricardo Guerrero, Paul Bentley, Roger Gunn, Alexander Hammers,
David Alexander Dickie, Maria Valdés Hernández, Joanna Wardlaw, and Daniel Rueckert. Gan
augmentation: Augmenting training data using generative adversarial networks. arXiv preprint
arXiv:1810.10863, 2018.

[5] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. ICLR, 2019.

[6] George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A. Efros, and Jun-Yan Zhu. Dataset
distillation by matching training trajectories. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022.

[7] Yulai Cong, Miaoyun Zhao, Jianqiao Li, Sijia Wang, and Lawrence Carin. Gan memory with no forgetting.
Advances in Neural Information Processing Systems, 33:16481–16494, 2020.

[8] Gongfan Fang, Jie Song, Chengchao Shen, Xinchao Wang, Da Chen, and Mingli Song. Data-free
adversarial distillation. arXiv preprint arXiv:1912.11006, 2019.

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing
systems, pages 2672–2680, 2014.

[10] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Improved
training of wasserstein gans. Advances in neural information processing systems, 30, 2017.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[12] Zhenliang He, Wangmeng Zuo, Meina Kan, Shiguang Shan, and Xilin Chen. Attgan: Facial attribute
editing by only changing what you want. IEEE transactions on image processing, 28(11):5464–5478,
2019.

[13] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. ArXiv, abs/1502.03167, 2015.

[14] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional
adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1125–1134, 2017.

[15] Woo-Young Kang and BT Zhang. Continual learning with generative replay via discriminative variational
autoencoder, 2018.

[16] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved
quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

[17] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
4401–4410, 2019.

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[19] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[20] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Technical
report, Citeseer, 2009.

[21] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole Winther. Autoencoding
beyond pixels using a learned similarity metric. In International conference on machine learning, pages
1558–1566. PMLR, 2016.

[22] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta,
Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single image super-
resolution using a generative adversarial network. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4681–4690, 2017.

[23] Daiqing Li, Huan Ling, Seung Wook Kim, Karsten Kreis, Adela Barriuso, Sanja Fidler, and Antonio Tor-
ralba. Bigdatasetgan: Synthesizing imagenet with pixel-wise annotations. arXiv preprint arXiv:2201.04684,
2022.

[24] Daiqing Li, Junlin Yang, Karsten Kreis, Antonio Torralba, and Sanja Fidler. Semantic segmentation with
generative models: Semi-supervised learning and strong out-of-domain generalization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8300–8311, 2021.

[25] Yijun Li, Sifei Liu, Jimei Yang, and Ming-Hsuan Yang. Generative face completion. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 3911–3919, 2017.

[26] Liangchen Luo, Mark Sandler, Zi Lin, Andrey Zhmoginov, and Andrew Howard. Large-scale generative
data-free distillation. arXiv preprint arXiv:2012.05578, 2020.

7

[27] Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. Adversarial variational bayes: Unifying
variational autoencoders and generative adversarial networks. In International Conference on Machine
Learning, pages 2391–2400. PMLR, 2017.

[28] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784,
2014.

[29] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

[30] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pages 807–814, 2010.

[31] Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel-ridge regression.
In International Conference on Learning Representations, 2021.

[32] Timothy Nguyen, Roman Novak, Lechao Xiao, and Jaehoon Lee. Dataset distillation with infinitely wide
convolutional networks. arXiv preprint arXiv:2107.13034, 2021.

[33] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context encoders:
Feature learning by inpainting. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2536–2544, 2016.

[34] Haibo Qiu, Baosheng Yu, Dihong Gong, Zhifeng Li, Wei Liu, and Dacheng Tao. Synface: Face recognition
with synthetic data. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
10880–10890, 2021.

[35] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[36] Suman Ravuri and Oriol Vinyals. Seeing is not necessarily believing: Limitations of biggans for data
augmentation. International Conference on Learning Representations Workshops, 2019.

[37] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak Lee.
Generative adversarial text to image synthesis. In International conference on machine learning, pages
1060–1069. PMLR, 2016.

[38] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved
techniques for training gans. Advances in neural information processing systems, 29, 2016.

[39] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4510–4520, 2018.

[40] Siyu Shao, Pu Wang, and Ruqiang Yan. Generative adversarial networks for data augmentation in machine
fault diagnosis. Computers in Industry, 106:85–93, 2019.

[41] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. Advances in neural information processing systems, 30, 2017.

[42] Hoo-Chang Shin, Neil A Tenenholtz, Jameson K Rogers, Christopher G Schwarz, Matthew L Senjem,
Jeffrey L Gunter, Katherine P Andriole, and Mark Michalski. Medical image synthesis for data
augmentation and anonymization using generative adversarial networks. In International workshop
on simulation and synthesis in medical imaging, pages 1–11. Springer, 2018.

[43] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[44] Jingkuan Song, Hanwang Zhang, Xiangpeng Li, Lianli Gao, Meng Wang, and Richang Hong. Self-
supervised video hashing with hierarchical binary auto-encoder. IEEE Transactions on Image Processing,
27(7):3210–3221, 2018.

[45] Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Generative
teaching networks: Accelerating neural architecture search by learning to generate synthetic training data.
International Conference on Machine Learning (ICML), 2020.

[46] Ilia Sucholutsky and Matthias Schonlau. Soft-label dataset distillation and text dataset distillation. arXiv
preprint arXiv:1910.02551, 2019.

[47] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing ingredient
for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

[48] Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan Bilen,
Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning features. CVPR, 2022.

[49] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv preprint
arXiv:1811.10959, 2018.

[50] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan Catanzaro. High-
resolution image synthesis and semantic manipulation with conditional gans. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 8798–8807, 2018.

[51] Yaxing Wang, Abel Gonzalez-Garcia, David Berga, Luis Herranz, Fahad Shahbaz Khan, and Joost van de
Weijer. Minegan: effective knowledge transfer from gans to target domains with few images. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9332–9341, 2020.

[52] Felix Wiewel and Bin Yang. Condensed composite memory continual learning. In 2021 International
Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2021.

[53] Chenshen Wu, Luis Herranz, Xialei Liu, Joost van de Weijer, Bogdan Raducanu, et al. Memory replay
gans: Learning to generate new categories without forgetting. Advances in Neural Information Processing
Systems, 31, 2018.

8

[54] Weihao Xia, Yulun Zhang, Yujiu Yang, Jing-Hao Xue, Bolei Zhou, and Ming-Hsuan Yang. Gan inversion:
A survey. arXiv preprint arXiv:2101.05278, 2021.

[55] Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou. Differentially private generative
adversarial network. arXiv preprint arXiv:1802.06739, 2018.

[56] You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. tempogan: A temporally coherent, volumetric gan
for super-resolution fluid flow. ACM Transactions on Graphics (TOG), 37(4):1–15, 2018.

[57] Yu Yang, Xiaotian Cheng, Hakan Bilen, and Xiangyang Ji. Learning to annotate part segmentation with
gradient matching. In International Conference on Learning Representations, 2022.

[58] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

[59] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention generative adversarial
networks. In International conference on machine learning, pages 7354–7363. PMLR, 2019.

[60] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dimitris N
Metaxas. Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks.
In Proceedings of the IEEE international conference on computer vision, pages 5907–5915, 2017.

[61] Yuxuan Zhang, Huan Ling, Jun Gao, Kangxue Yin, Jean-Francois Lafleche, Adela Barriuso, Antonio
Torralba, and Sanja Fidler. Datasetgan: Efficient labeled data factory with minimal human effort. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10145–
10155, 2021.

[62] Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In International
Conference on Machine Learning, 2021.

[63] Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. arXiv preprint
arXiv:2110.04181, 2021.

[64] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching. In
International Conference on Learning Representations, 2021.

[65] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable augmentation for data-
efficient gan training. Neural Information Processing Systems, 2020.

[66] Jiapeng Zhu, Yujun Shen, Deli Zhao, and Bolei Zhou. In-domain gan inversion for real image editing. In
European conference on computer vision, pages 592–608. Springer, 2020.

[67] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation using
cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on computer
vision, pages 2223–2232, 2017.

9

A Preliminary

A.1 Generative Adversarial Networks

GANs (9) aim to synthesize photo-realistic images, which typically consist of a generator G and
discriminator D. During training, the generator and discriminator are optimized for the minimax loss
function:

min
G

max
D

Ex∼P (x)[logD(x)] + Ez∼P (z)[log(1−D(G(z)))], (5)

where P (z) is the distribution of latent vector z and P (x) is the real data distribution. A good
generator is the one that can generate images to fool the discriminator. (28) proposes a conditional
GAN model that conditions each generated image on a semantic category y:

min
G

max
D

Ex∼P (x)[logD(x|y)] + Ez∼P (z)[log(1−D(G(z|y)))]. (6)

In this paper, we focus on conditional image generation task. In addition to its various applications
(50; 12; 67; 60; 56; 25), the recent advances in GANs focus on increasing the training stability
(38; 10; 29) and generating more diverse and real-looking images (5; 17; 59).

While one can naively employ a state-of-the-art GAN model to synthesize images for specific classes
and then build a synthetic image dataset, we argue and demonstrate that the synthesized sample,
despite its real-looking appearance, is not informative to train accurate deep neural networks. In other
words, models trained on such synthetic data obtain significantly lower performance when being
applied to real images at test time (illustrated in Fig. 1). This may be due to at least two reasons. First
there can be a domain gap between synthesized and real training images, though a low discrimination
loss has been achieved. Hence, the model trained on synthetic images has inferior performance on
real testing images. Second the synthesized images, though optimized to look realistic, may be not
as informative as real images for training purposes due to the loss of information about training. A
potential way to address both issues is to find the latent vector for each synthesized image to obtain
similar visual appearance to a real corresponding train image, which is investigated in GAN inversion
(54).

GAN Inversion. GAN Inversion (1; 66; 54) aims to find the latent vector in the the latent space
of the pre-trained GAN model, which can faithfully recover a given image. Many GAN inversion
methods have been proposed, and they can be roughly categorized into 3 families: optimization based
inversion, learning based inversion and hybrid methods. Usually, better performance is achieved by
optimization based inversion methods, as they learn latent vector for each image independently. With
a pre-trained generator G, the latent vector for every real image is optimized by:

z∗ = argmin
z

ℓ(G(z)− x), (7)

and ℓ(·) is the feature or pixel distance measurement. Please refer to (54) for more details. GAN
inversion methods focus on the manipulation of visual effects of a specific image. The learned
synthetic images are not guaranteed to have more information for training deep neural networks.

Auto-encoder. Auto-encoders (19; 21; 27; 15; 44) can also generate real-looking images by learning
to reconstruct real images. We believe that our method can also work well with auto-encoders, while
integration with GANs may have better performances due to the better latent space of GANs. Thus,
we leave the integration with auto-encoder for the future work.

A.2 Dataset Condensation

Given a large training set T = {xi, yi}||T |
i=1, dataset condensation aims to learn a small synthetic

set S = {si, yi}||S|
i=1 so that the model θS trained on S has close generalization performance to the

model θT trained on T . Following the notations in (63), the objective is formulated as

Ex∼PD [ℓ(ϕθT (x), y)] ≃ Ex∼PD [ℓ(ϕθS (x), y)], (8)

where the loss ℓ is computed on the samples from the real data distribution PD, and ϕ is a deep neural
network parameterized with θS or θT .

10

Learning rate 0.001 0.01 0.1 1

Distribution 55.8±1.2 56.8±1.1 52.3±0.9 46.5±1.2
Gradient 56.3±1.4 54.9±1.2 50.9±0.9 43.4±0.8

Table T4: Comparison of distribution and gradient matching.

Meta-loss Based Methods. The existing solutions to dataset condensation can be categorized based
on the objective functions. (49) propose a meta-learning based method that formulates the trained
model as a function of the learnable synthetic set: θS(S) and then minimizes the meta-loss on the
real training set:

S∗ = argmin
S

LT (θS(S)) subject to θS(S) = argmin
θ

LS(θ). (9)

This meta-learning objective has to compute the bilevel optimization and unroll the recursive
computation graph. Thus, it is both time-consuming and difficult to optimize. Several methods have
been proposed to improve it by introducing learnable labels (46; 3), ridge regression (3) and kernel
ridge regression (31; 32).

(45) propose the generative teaching network (GTN). Specifically, they train a generator that produces
informative synthetic samples and minimize the meta-loss on real training set. In experiments,
they find that training generator with random or shuffled latent vectors is worse than training with
deterministic sequence of latent vectors.

Matching-loss Based Methods. (64) propose a new framework that learns condensed synthetic
data by matching the network gradients w.r.t. the real and synthetic data throughout the network
optimization:

S∗ = argmin
S

Eθ0∼Pθ0

[T−1∑
t=0

D(∇θLS(θt),∇θLT (θt))
]

subject to θt+1 ← opt-algθ(L
S(θt), ςθ, ηθ),

(10)

where D(·, ·) computes the matching loss, Pθ0
is the distribution of parameter initialization, and T ,

ςθ , ηθ are the hyper-parameters. The new framework avoids to unroll the recursive computation graph,
although it also involves bilevel optimization and second-order derivative. In addition, the synthetic
data can learn from more supervision throughout the training dynamics of deep neural networks.
(62) further improve the data efficiency by introducing the differentiable Siamese augmentation that
enables the learned synthetic data to train deep neural networks efficiently with data augmentation.
(52) learn some basic samples and combine them to form more new training samples which also
improves the data efficiency. (48) design an efficient bi-level optimization algorithm with dynamic
outer and inner loops. (6) propose to match training trajectories and thus mimic long-range behavior
of real-data training.

Although training deep models on small synthetic sets is extremely fast, the above-mentioned bilevel
optimization based condensation methods still require much computational resources to learn large
synthetic sets. (63) propose a simple yet effective method without bilevel optimization and second-
order derivative. Specifically, they match the distribution of real and synthetic data in many sampled
embedding spaces:

S∗ = argmin
S

Eϑ∼Pϑ
ω∼Ω

∥ 1

|T |

|T |∑
i=1

ψϑ(A(xi, ω))−
1

|S|

|S|∑
j=1

ψϑ(A(sj , ω))∥2, (11)

where ψϑ is the embedding function parameterized with ϑ sampled from Pϑ. A(·, ω) is the
differentiable Siamese augmentation (62) and ω ∼ Ω is the augmentation parameter. (63) also
analytically connect the distribution matching with gradient matching (64). The results show that with
randomly initialized neural networks as the embedding functions, the method can achieve comparable
or better performance than the state-of-the-art while significantly speeding up the synthesis process.

B Ablation Study

We do ablation study experiments on CIFAR10 dataset. Unless otherwise stated, we train latent
vectors with randomly initialized ConvNets for simplicity.

11

Split 1× 500 2× 250 4× 125 5× 100

Accuracy 71.8±0.8 71.6±0.5 71.1±1.0 70.6±0.8

Table T5: Performance (%) w.r.t. batch size to split latent vectors.

λ 0 0.001 0.01 0.02 0.05 0.1 0.2 0.5 1

Fixed 70.6±0.8 71.1±0.5 71.3±0.8 71.3±0.7 70.9±0.7 70.4±0.7 70.5±0.8 70.0±1.0 69.9±0.8
Random 69.7±1.0 70.4±0.7 71.1±0.8 70.8±0.8 70.5±0.8 70.6±0.8 70.0±0.7 70.1±1.0 69.7±1.1

Table T6: The comparison of fixed and random splitting strategies.

Distribution v.s. Gradient. DC (64) and DM (63) use feature distribution and gradient to
implement dataset condensation respectively. We compare the effects of using distribution and
gradient as the matching objective in our method. We set regularization coefficient λ = 0 and learn
100 latent vectors per class. According to Tab. T4, the performances of distribution and gradient
matching with optimal learning rate are comparable. Thus, we use distribution matching for less
computational cost.

Batch Size for Splitting Latent Vector Set. Due to the limitation of GPU memory, we cannot load
all latent vectors and corresponding synthetic images into GPU for implementing back-propagation
jointly. Thus, we have to split the latent vector set and optimize the subsets. We study the relation
between performance and batch size for splitting latent vectors. Given total 500 latent vectors per
class, they are split into 1 × 500, 2 × 250, 4 × 125, 5 × 100 groups in four experiments. In each
experiment, the different groups of latent vectors are learned independently and then combined for
training neural networks. For example, in 2 × 250 experiment, we learn 2 independent 250 latent
vectors per class sets and then combine them. λ is set to be 0. Tab. T5 presents the results, and the
results indicate that larger batch size will have better performance. The reason is that when the latent
vectors are randomly split into more subsets and learned separately, they will be homogeneous in
terms of the training knowledge as they are trained with the same objective.

Fixed v.s. Mixed Latent Vector Set Splitting. In the above ablation study, the latent vector set is
split into several fixed sets and learned independently. Another possible splitting strategy is mixed
splitting. It means that the latent vectors will be mixed and randomly re-split in each training iteration.
In this experiment, we validate two types of splitting with fixed and random grouping respectively.
We learn 500 latent vectors per class and split them into 5 subsets. Tab. T6 depicts the results of two
kinds of splitting with varying λ. The results show that when the regularization coefficient λ is small,
random splitting is worse than fixed splitting. The two splitting strategies are comparable when λ is
large. This phenomenon can also be explained by the aforementioned homogenization problem, and
appropriate λ can relieve this problem by regularizing individual sample to preserve the diversity.
Note that the magnitude of Lcon will vary significantly for different training batch sizes, thus λ needs
to be tuned for specific training batch size.

Regularization Coefficient. Tab. T6 verifies that the regularization is important for learning
better latent vectors. Especially, when the latent vectors are randomly grouped and optimized in
each iteration, i.e. random splitting, each latent vector is forced to cooperate with every other one
to achieve the same objective (minimizing condensation loss), which causes the homogenization
problem of learned latent vectors. The regularization can largely relieve this problem.

Network Parameter Distribution. We can train latent vectors with feature embedding functions
ψϑ(·) from different distributions Pϑ. We study the influence of the network parameter distribution
on the learned latent vectors in Tab. T7. Following (63), we train hundreds of ConvNets and group
them (including intermediate snapshots) based on their validation performances. For example, we
group networks with validation performance between 50% and 60%. Then, we learn 100 latent

Random 10-20 20-30 30-40 40-50 50-60 60-70 ≥70 All

55.8±1.2 55.8±1.4 56.3±0.6 56.4±0.5 57.2±0.7 57.0±1.0 57.3±0.8 57.3±1.1 57.3±1.2

Table T7: Learning with different network parameter distributions. Networks are grouped based on
validation performances (%).

12

vectors per class on these network groups separately. Tab. T7 shows that our method works well on
all groups of networks including randomly initialized ones. Generally speaking, networks with higher
performances lead to better learned latent vectors. Specifically, training latent vectors with ConvNets
that have > 70% validation accuracies achieves 57.3% testing accuracy which outperforms the result
(55.8%) achieved by training with randomly initialized ConvNets by 1.5%.

13

	Introduction
	Method
	Initializing with GAN Inversion
	Condensing Training Information
	Regularization
	Training Algorithm

	Experiments
	Experimental Settings
	Comparison to GAN Methods
	Comparison to Dataset Condensation
	Cross-architecture Generalization

	Conclusion
	Preliminary
	Generative Adversarial Networks
	Dataset Condensation

	Ablation Study

