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ABSTRACT

This work introduces a new notion of fairness, representational fairness, for
generative models, which ensures uniform representation of demographic
groups in the generated data. Vanilla GANs violate this notion even when
groups are equally represented. The proposed solution is to use group-
wise gradient norm clipping to control gradient groups’ magnitude during
discriminator training. Experiments show that this method improves repre-
sentational fairness while maintaining sample quality.

1 INTRODUCTION

The paper proposes a training process for GANs to generate data uniformly with respect to
different groups at test time, addressing representation bias. We show that the magnitude of
the groups’ gradient on the discriminator side during the training plays an important role in
guiding the generator to sample groups uniformly at the test time. Our process clips the
gradient norm of groups to improve GANSs’ ability to uniformly generate samples from equal
and unequal groups representation in the training data. Related work includes FairGAN Xu
et al. (2018) that aims to generate samples that can achieve statistical parity for downstream
classifiers, while Xu et al. (2019) considers other group fairness notions for classification.

2 REPRESENTATIONAL FAIRNESS

Previous works Tan et al. (2020); Choi et al. (2020) have studied biases in GANs that generate
non-uniformly distributed data over sensitive attributes. Balanced group representation
doesn’t prevent bias Kenfack et al. (2021); We hypothesize that the non-uniform generation
results from disparities in gradient magnitude during discriminator training.

We consider a dataset D = {X,S} with N data points, where X = {z;}}¥, represents
samples from the distribution Py, (X) and S = {si}i]\il represents the binary sensitive
attribute for each point. A GAN estimates Py(X) = Pgata(X) by generating realistic data
Dy = go(Z) through the generator gy : R? — R"*". Where Z is a d dimensional noise
vector. Using function h : X — S, we can analyze the distribution of sensitive attributes in
the generated data P(h(gs(2))).

Definition: A well-trained generator (gg) is said to satisfy e-representationally fair if it
generates data, Dy = go(Z), such that the distribution of the sensitive attribute S is close to
the uniform distribution, U(S), i.e., dist(P(h(gs(Z2))),U(S)) < €.

We aim to achieve representational fairness by enforcing the distribution of sensitive attributes
in the generated data to be close to the uniform distribution, i.e., KL(P(h(gs(Z))) | U(S)) = e.
When e = 0, the generative model achieves strict uniformity over the sensitive attributes.
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3 EXPERIMENTS

First, we used SVHN Netzer et al. (2011) data set divided into two groups based on
(synthetically) shaded and normal images as in Kenfack et al. (2021). we trained a vanilla
GAN and a RepFairGan, figure 3 shows the gradient of each model. Then used a classifier
with 98% accuracy to classify the generated images by each model. The images generated by
the Vanilla GAN were 42.68% normal images and 57.32% shaded, for the RepFair Gan it
was 49% normal and 51% shaded.

In the second experiment, we used MNIST LeCun et al. (1998) we divided it into two groups
based on background colors black and white then we trained a CGAN Mirza & Osindero
(2014) to generate all the digits of the MNIST data set while training on digits with both
black and white backgrounds, Then we used a classifier with 100% accuracy to classify the
number of the generated images of each background color for each digit. Figure 2 shows the
results of the trained CGAN and RepFairCGAN. Figure 6 shows the results for different
maximum gradient norms chosen.

all the models were trained on their respective datasets with different group representations.
Experiments were based on 10 training runs and averaged across runs. Examples of generated
images are shown in figures 5, 7, and 8.
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Figure 1: Group distributions for vanilla GAN (a) and our method (b) on SVHN dataset
trained with balanced group representation. Our method provides uniform generation
compared to the vanilla GAN.
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Figure 2: Class-wise background color distribution of CGAN outputs trained on MNIST
dataset. (a) Imbalanced digit color distributions for each class produced by CGAN. (b)
Balanced digit color distributions for each class produced by RepFair-GAN.

4 CONCLUSION

We proposed a new GAN training approach to address representation bias caused by gradient
norm disparities during discriminator training. Empirical evaluation on MNIST and SVHN
demonstrated significant improvement in group uniformity even in imbalanced datasets.
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A THE RELATION BETWEEN THE GRADIENT VECTORS AND
REPRESENTATION BIAS

Fig. 3 shows that when there is a disparity in groups’ gradient norms there is unfairness in
the GANs generation, even when training data has an equal representation of both groups.
We designed a training process (Algorithm 1) that controls the gradient of each group during
training by modifying the discriminator training and enforcing a maximum gradient norm
threshold to clip their gradients.

During CGAN training, gradient norms were tracked, and Fig. 4 shows that the gradient
magnitude difference between groups widened over time in an unfair CGAN, while in the
proposed method, which produced the results shown in Fig. 2. As the gradients become
more proximate, the balance between different classes improves, highlighting the connection
between gradient and class representation.
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Figure 3: Unfair vanilla GANs on SVHN dataset had increasing differences in average
gradient magnitudes between groups during training (a). After training, the generator
sampled more from the group with a larger gradient (b).
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Figure 4: Gradient clipping was used to enforce closer gradient norms of each group during
discriminator training, and its effect on the disparity in gradient norms was studied.

Algorithm 1 Training of the discriminator in RepFair-GAN (outline)

Require: ¢ the batch size, M training epochs, C' maximum gradient norm, and £p(©) the discrim-
inator’s loss function with network parameter ©.
for n < 1, M do
U < True > Boolean indicating whether to update with samples from group 0 or group 1
for each batch of size ¢t do

if U then
Xt < {D|S =0} >random mini-batch of real samples from group 0
else
Xt < {D|S =1} >random mini-batch of real samples from group 1
end if
gt < VeoLlp(0;Xy) > Compute the gradient using the discriminator’s loss
gi <+ clip(g¢, C) > Clip the gradient norm with max norm C'
0+ 0 —ag: > Update network param.
U < notU B
Generate samples from the generator X; feed to the discriminator and take a gradient step.
end for
end for
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Figure 5: Example of two groups created from MNIST (left) and SVHN (right) datasets. In
MNIST, one group of digits has a black background (two first rows) and another group has
a white background (two last rows). In SVHN, one with normal images (first two rows), and
for the second group we added a black overlay (shaded)
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Figure 6: Group distributions with different maximum gradient norms in RepFair-GAN on
MNIST data. For max norm less than 2 the training does not converge due to the vanishing
gradient. For max gradient norms between 2 and 10 groups are sampled uniformly and the
sampling becomes biased for values bigger than 20.
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Figure 7: Qualitative results on MNIST dataset. Examples of digits generated by CGAN
(left) and RepFair-GAN (right). We observe that for each type of digit, group are equally
represented with our method while preserving the same quality as the classic GAN
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Figure 8: Qualitative results on SVHN dataset. Examples of images generated by GAN (left)

and RepFair-GAN (right). We observe uniform generation of our method along with similar

images quality



	Introduction
	Representational Fairness
	Experiments
	Conclusion
	The relation between the gradient vectors and representation bias

