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Abstract—Scene graph generation (SGG) plays an important
role in the intelligence of social things (IoST) framework by
extracting structured semantic representations from social device
data, thereby supporting advanced scene understanding and
behavioral-cultural modeling. However, the intrinsic long-tail
nature of real-world social device data, coupled with the seman-
tic entanglement between head and tail categories (e.g., “on”
versus “standing on”), presents significant challenges for fine-
grained SGG. This often results in biased models and suboptimal
generalization to rare but semantically informative relations.
To address these issues, we propose a novel cooperative dual
classifier (CDC) framework for fine-grained SGG in IoST-driven
social systems. CDC introduces a cooperative learning mechanism
that combines two classifiers. The frozen prototype classifier
is designed with maximum interclass margins to alleviate class
imbalance. In parallel, a learnable classifier dynamically adjusts
decision boundaries to improve discriminative precision. To
further enhance the integration between the two classifiers, we
introduce a weight knowledge transfer (WKT) module and a
collaborative constraint term, facilitating robust adaptation to
tail categories. Extensive experiments on the Visual Genome
and GQA datasets demonstrate that CDC outperforms state-
of-the-art SGG methods, particularly in modeling fine-grained
relations under long-tail distributions. These results highlight
the capability of CDC to advance semantic understanding of
complex behavioral and cultural patterns within computational
social systems.

Index Terms—Behavioral-cultural modeling, cooperative learn-
ing, intelligence of social things (IoST), long-tail distribution,
prototype learning, scene graph generation (SGG).
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I. INTRODUCTION

A
S intelligent devices become increasingly interconnected

in modern environments, the intelligence of social things

(IoST) provides a promising framework for understanding the

complex interactions among humans, machines, and environ-

ments [1]. In computational social systems, understanding these

interactions requires not only perception of physical scenes, but

also semantic abstraction of underlying behavioral and cultural

patterns, enabling interpretable results for human-centric anal-

ysis and structured inputs for downstream tasks. In particular,

IoST-enabled cooperative learning leverages the collective in-

telligence of distributed devices to model social behaviors and

cultural dynamics in a scalable manner. Scene graph generation

(SGG), as a fundamental task in visual scene understanding,

serves this need by extracting structured semantic represen-

tations (triplets 〈subject, predicate, object〉) from social device

data. By representing visual scenes as structured graphs, SGG

not only provides interpretable abstractions but also facilitates

scalable integration of heterogeneous data streams from mul-

tiple social devices, enabling joint analysis of behavioral and

cultural patterns across diverse environments. These semantic

graphs bridge low-level visual signals and high-level reasoning,

enabling deeper behavioral-cultural modeling across a variety

of IoST-enabled applications, including visual question answer-

ing [2], image retrieval [3], and embodied navigation [4].

However, real-world data collected from social devices of-

ten exhibit long-tail distributions, which further intensify the

challenges of behavioral-cultural modeling. Unlike other long-

tail classification tasks [5], SGG is uniquely characterized by

semantic entanglement among predicate categories where head

predicates (e.g., “on”) subsume or overlap with tail predicates

(e.g., “standing on”, “lying on”). Long-tail distribution com-

bined with semantic entanglement undermines the capability

to capture informative behavioral patterns, as models overfit to

frequent head predicates while neglecting the rich contextual

information embedded in tail predicates. To address the above

problems, an increasing number of studies [6], [7], [8], [9],

[10] explored various strategies to enhance the fine-grained

capability of SGG models. Early efforts primarily focused on

model reweighting [7] or data resampling [8], [9], [10] tech-

niques, aiming to balance the training process. More recent

studies adopt contrastive learning strategies or prototypical
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networks [6], [11], [12] to model interclass relations. Among

them, PE-Net [6] leverages contrastive learning constraint terms

to improve the separability between classifier parameters and

samples, thereby enhancing fine-grained relation recognition.

However, the abundance of head samples in the repulsion term

of contrastive objectives tends to overwhelm the optimization

process. This often pushes the representations and classifier pa-

rameters for tail categories into unstable or random states, sig-

nificantly undermining classification accuracy. Inspired by this

insight and the neural collapse theory [13], we propose to fix the

classifier and decouple it from the SGG optimization process.

Moreover, the feature distributions of head and tail categories

exhibit significant density variations. In particular, the features

of tail class tend to be sparser and exhibit higher variance

due to limited training samples, making it difficult to fully

capture their complex behavioral semantics. In contrast, head

classes benefit from abundant data, resulting in more com-

pact and stable representations. To address these imbalances,

prototype-based approaches have attracted increasing attention,

as they offer a compact representation of each class and nat-

urally encourage larger interclass margins in the embedding

space, which is essential for discriminating semantically similar

predicates. In these methods, decision boundaries are usually

placed equidistantly between the learned class prototypes. Such

a fixed structure can be problematic under imbalanced distri-

butions: the sparse and scattered nature of tail features makes

them more likely to cross into neighboring decision regions,

increasing the risk of misclassification. This motivates the need

for adaptive boundary adjustment mechanisms that account

for class-specific distribution characteristics and help maintain

the transparency and reliability required in IoST-enabled social

learning environments.

To tackle the aforementioned challenges, we propose a novel

cooperative dual classifier (CDC) method for fine-grained SGG.

The CDC framework introduces a cooperative learning mecha-

nism that synergistically integrates a prototype classifier and a

learnable classifier. Before SGG training, we construct an opti-

mal prototype classifier with maximum interclass margins to al-

leviate the long-tail problem. During the SGG training process,

this classifier guides feature refinement and produces coarse

relation predictions. In parallel, we design a learnable classifier

that dynamically adjust the decision boundaries of the fixed

prototype classifier, enabling precise relation classification. To

facilitate effective interaction between the two classifiers, we

further propose a weight knowledge transfer (WKT) module

and a collaborative constraint term, ensuring that the learnable

classifier inherits relational structure knowledge while main-

taining flexibility to adapt to class-specific feature distributions.

Overall, our dual-classifier design not only mitigates the bias

toward head categories but also enhances generalization and

adaptability to diverse real-world social device data, enabling

more accurate modeling of complex behavioral patterns in IoST

applications.

Specifically, the main contributions addressed in this article

can be summarized as follows.

1) We propose a novel CDC framework for fine-grained

SGG, integrating a fixed prototype classifier to guide

feature refinement with a learnable classifier to adjust the

decision boundaries. This cooperative design aligns with

IoST-enabled cooperative learning, facilitating more ac-

curate semantic understanding of fine-grained behavioral

patterns derived from social device data in computational

social systems.

2) We introduce a WKT module and a collaborative con-

straint term to enhance the cooperation between the

two classifiers. These components effectively support

the optimization of decision boundaries and improve the

model’s adaptability under long-tail data distributions.

3) We conduct comprehensive experiments on the Visual

Genome (VG) and GQA datasets, demonstrating that

CDC outperforms state-of-the-art SGG methods, partic-

ularly in capturing fine-grained relations under long-tail

distributions. These results highlight CDC’s capability

in advancing the comprehension of nuanced behavioral

patterns in social device data, contributing to the devel-

opment of intelligent social systems.

Beyond the immediate improvements in SGG, the structured

and semantically enriched outputs of our CDC framework hold

strong potential for a wide range of downstream tasks in com-

putational social systems. In particular, the integration of CDC

within IoST-enabled cooperative learning infrastructures can

further support behavior-aware human–computer interaction,

real-time decision-making, and fine-grained analysis of social

and cultural dynamics. By improving the reliability and gran-

ularity of scene understanding, CDC lays the foundation for

more context-aware and interpretable intelligent services, of-

fering promising directions for future research and application

in socially intelligent systems.

The rest of this article is organized as follows. Section II

presents an overview of related works. Section III elaborates

on the modeling of the CDC framework. In Section IV, we

demonstrate experiment and evaluation results, providing both

qualitative insights and quantitative metrics. Finally, Section V

makes a conclusion of this article.

II. RELATED WORK

In this section, various issues associated with the proposed

method are discussed, with a focus on the evolution from vanilla

SGG toward fine-grained approaches.

A. Vanilla SGG

In recent years, the SGG task has emerged as a central

research direction in computer vision. It offers a structured

representation of semantic perceptions for visual social device

data, capturing entities and their relationships in the triplet

format 〈subject, predicate, object〉. This structured representa-

tion is particularly valuable for IoST applications, as it enables

the modeling of complex social interactions and behavioral

patterns. Early methods [14], grounded in the assumption of

relation independence, primarily focused on designing feature

extraction modules from multimodal features, such as visual,

spatial, and semantic features. However, these methods often
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overlooked the critical role of contextual information in enhanc-

ing overall scene understanding and improving the accuracy

of SGG. Consequently, subsequent studies shift their focus to

exploring contextual features using message passing [8], [9],

[15], LSTM [16], or tree structures [17]. These contextual meth-

ods leverage structured message propagation frameworks to

exchange information across entity and relation nodes, thereby

capturing cooccurrence patterns between objects and relations

in the scene. By modeling surrounding context, they aim to

disambiguate visually similar relationships and improve overall

relation reasoning. However, such strategies often suffer from

the introduction of redundant or irrelevant contextual cues,

leading to noisy message aggregation and degraded relation

classification performance.

In addition to contextual modeling, existing methods [6], [8],

[15], [18] commonly exploit multiple modalities, such as vi-

sual appearance, spatial features, and semantic embeddings, to

represent relation instances. These modalities provide comple-

mentary cues: visual features capture object textures and poses,

spatial features describe geometric interactions, and seman-

tic embeddings offer prior knowledge derived from language.

However, inappropriate fusion strategies, such as concatenation

[8], [15], often fail to capture the intrinsic interaction patterns

between subjects and objects. This leads to scattered intraclass

distributions and interclass overlapping in the relation feature

space, thereby hindering discriminative relation learning. The

problem is further exacerbated by the diverse subject-object

compositions under the same predicate. Thus, recent works [6]

attempt to realize feature refinement. For example, PE-Net [6]

introduces a prototype-based embedding network to explore

an intrinsic and compact feature space. However, the learning

of feature representation modules remains influenced by the

long-tail distribution of SGG data, resulting in overfitting to

abundant head classes while under-representing rare tail classes.

As a result, the learned relation features are biased toward fre-

quent relation patterns, failing to capture the subtle and diverse

semantics of infrequent relations, which ultimately results in

suboptimal generalization of SGG models.

B. Fine-Grained SGG

To address the challenges posed by long-tail data distribu-

tions, a growing number of studies [6], [9], [10], [19] have

explored debiasing techniques for SGG, making fine-grained

SGG an emerging research hotspot. Fine-grained SGG aims to

accurately identify semantically subtle and less frequent pred-

icates, which is particularly vital for real-world visual under-

standing and downstream reasoning tasks in IoST scenarios. To

this end, VCTree [17] introduced the mean recall metric, which

averages recall values across all predicate categories, providing

a fairer evaluation of fine-grained SGG by emphasizing tail

predicate performance. Early fine-grained SGG methods pri-

marily adopted debiasing techniques, including data resampling

[8], [9], [10], data augmentation [20], [21], and loss reweighting

[7]. For instance, Tang et al. [10] proposed TDE, which employs

causal inference to reweight training samples and increase the

focus on tail categories. While these methods mitigate sample

imbalance to some extent, they often struggle with overfitting to

synthetic or reweighted data, leading to limited generalization

in diverse real-world scenarios. Moreover, some recent methods

[6] utilize contrastive learning strategies to enhance the separa-

tion between head and tail categories by pulling features of the

same class closer together while pushing apart those of different

classes. The long-tailed distribution challenge is not unique to

SGG but is widely observed in image classification tasks [22],

[23], where various strategies, including class-balanced loss

functions [23] and decoupled training [22], have been proposed

to mitigate class imbalance. Inspired by these approaches, re-

cent SGG models [6], [24] have attempted to adapt these prin-

ciples to the relational domain. The aforementioned methods

generate scene graphs using a single classifier. In contrast, a

series of recent works [25] have shifted toward multiple experts,

where each expert is responsible for a subset of predicates, and

their results are integrated into the final scene graph [26].

Despite their effectiveness, existing debiasing strategies

largely rely on manipulating training distributions (e.g., re-

sampling), which can introduce synthetic biases or unstable

gradients. Even though contrastive learning methods enhance

feature separation, they rely on a single global classifier, which

lacks adaptability to the fine-grained variations across head

and tail predicates. Moreover, expert-based methods [25], [26]

segment the classification space but fail to dynamically co-

ordinate decision boundaries across the entire feature space.

Unlike the above methods, we address the long-tail problem in

SGG through the cooperative learning of two classifiers, where

the first guides feature refinement and the second dynamically

calibrates the decision boundary based on the unbiased feature

space.

III. CDC

In this section, we propose a novel CDC framework for

fine-grained SGG within the context of the IoST. The CDC

framework is composed of three core modules: the Proposal

Network for entity detection, the Feature Refinement module

for multimodal feature extraction and refinement, and the col-

laborative predicate classifier (CPC) module. As our primary

contribution, the CPC module infers predicates through a co-

operative classification strategy that leverages both prototype-

based and learnable classifiers. These modules work syner-

gistically to generate structured scene graphs with rich and

informative relations, facilitating accurate modeling of social

behaviors in IoST-enabled applications.

A. Preliminaries and Problem Definition

Given a visual input I from a social device, the objective

of SGG is to construct a directed scene graph G = {N , E}.
This graph serves as a critical tool for behavior and relationship

modeling within the IoST framework (as illustrated in Fig. 1).

Here, each node Ni ∈ N represents an object (e.g., person),

characterized by its bounding box and object category. Each

edge Ei ∈ E denotes a predicate category CP
i that defines the

relationship (e.g., eating) between a pair of objects. The gen-

erated scene graph G captures visual relation triplets in the
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Fig. 1. SGG for social behavioral modeling within the IoST framework.
SGG processes image data collected from multiple social devices with long-
tail distributions to generate structured scene graphs. To enhance SGG,
cooperative learning incorporates both prototype-based and learnable clas-
sifiers, refining feature representations and improving the expression of tail
predicates. The generated graphs are further leveraged for social behavioral
modeling, enabling intelligent perception in IoST-driven environments.

form of 〈subject, predicate, object〉, providing a comprehensive

semantic representation of social device data that often exhibit

long-tail distributions. This capability is essential for IoST-

driven applications, such as autonomous vehicles and smart

cities.

A major challenge in SGG arises from the long-tail distribu-

tion inherent in predicate categories, where a few frequent pred-

icates dominate the dataset, while many rare and fine-grained

predicates remain underrepresented. This imbalance hinders

accurate prediction of tail predicates, often leading to biased

models that prioritize head categories and overlook nuanced

relationships essential for comprehensive scene understanding.

Addressing this issue is especially crucial in IoST-driven appli-

cations, where rare but meaningful predicates, such as specific

social interactions or contextual behaviors, are key to robust

perception and behavioral modeling.

To achieve fine-grained SGG in the IoST framework, we pro-

pose a SGG method CDC, which leverages cooperative learning

to enhance predicate classification. By integrating prototype-

based and learnable classifiers, CDC refines feature represen-

tations and improves the expression of tail predicates, thereby

enabling intelligent perception in IoST-driven scenarios. As

illustrated in Fig. 2, the CDC framework is primarily com-

posed of three components: the proposal network, the feature

refinement module, and the CPC module. Following previous

works [6], [16], [25], we employ Faster R-CNN [27] as the

proposal network for entity detection on social device data.

It generates entity proposals along with visual features, cate-

gories, and bounding boxes. In the feature refinement module,

feature refinement of entities and relations is conducted based

on multimodal features, as detailed in Section III-B. Addition-

ally, we use GloVe [28] to embed categories into semantic

space, incorporating contextual word relationships and cooccur-

rence statistics derived from large-scale text corpora. We also

encode bounding boxes as spatial features. We derive the union

feature u for each entity pair by encoding the spatial and visual

features of their union region, which represents the region of

interest for the relation. We design the CPC module to further

guide feature refinement and adjust decision boundaries through

cooperative learning between the prototype classifier and the

learnable classifier, as elaborated in Section III-C.

B. Feature Refinement

Feature refinement is a crucial step for improving entity and

relation representations in SGG, enabling precise modeling of

social behaviors. It involves two key components: the entity en-

coder, which refines individual object features, and the relation

encoder, which extracts discriminative relation-centric features.

In this section, we describe these encoders in detail. We explain

their roles in capturing intrinsic characteristics of entities and

their interactions, which are essential for fine-grained relation

detection and intelligent perception in IoST-driven applications.

1) Entity Encoder: To refine the feature representations of

subjects s and objects o, we employ an entity encoder based on

the prototype-based embedding network [6]

s=Wsts + vs (1)

o=Woto + vo (2)

where Ws and Wo are learnable parameters. ts and to respec-

tively represent the semantic features of the subject and object,

derived from the GloVe embedding. Moreover, we leverage a

gating mechanism to capture the distinctive contents of each

subject and object as vs and vo

vs = σ(FC((Wsts)⊕ h(xs))⊙ h(xs) (3)

vo = σ(FC((Woto)⊕ h(xo))⊙ h(xo) (4)

where FC(·) is the fully connected layer, h(·) is the visual-to-

semantic function, and σ(·) is the sigmoid activation function.

⊕ denotes concatenation operation and⊙ denotes element-wise

product. xs and xo represent visual features of the subject and

object.

2) Relation Encoder: After extracting the subject and ob-

ject features, the relation encoder uses these representations to

derive discriminative relation-centric features. This is a critical

step in feature refinement for enhancing predicate classification

in SGG. We adopt a two-step process to achieve this goal, ad-

dressing challenges such as background noise and the need for

interaction-specific representations, ultimately preparing robust

features for the CPC module.

In the first step, we focus on suppressing predicate-irrelevant

background noise in the union feature u, which encapsulates

the subject status, object status, and their interaction patterns.

To this end, we apply the gating mechanism to filter out back-

ground noise from u

uwb = σ(FC(F(s,o)⊕ h(u)))⊙ h(u) (5)

where uwb represents the background-suppressed union fea-

ture. F(s,o) = ReLU(s+ o)− (s− o)2 integrates contents of

the subject and object.

In the second step, we further refine uwb to isolate

interaction-specific content by subtracting the subject-object

status F(s,o), thereby ensuring that the resulting representation

focuses on relational dynamics. The final relation representation

r is derived as

r= uwb − F(s,o) (6)
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Fig. 2. Overview of the CDC framework. The CDC framework is mainly composed of three modules: 1) the proposal network perceives and detects visual
data from social devices, generating a set of entity proposals; 2) the feature refinement module refines entity and relation representations by leveraging
multimodal features; and 3) the CPC module constructs an optimal prototype classifier to guide feature refinement. It simultaneously devises a learnable
classifier to adjust decision boundaries. To boost the recalibration process, a WKT module and a collaborative constraint term are introduced to support
effective cooperative learning.

C. CPC

In this section, we elaborate on the collaboration mechanism

of dual classifiers and their design for fine-grained relation

recognition. The CPC module leverages the complementary

strengths of a prototype classifier and a learnable classifier

to address the long-tail challenge in SGG, which is a critical

barrier to modeling nuanced social behaviors in IoST-driven

applications.

Unlike conventional methods that rely on joint learning of

feature representations and classifiers, our CPC module intro-

duces a cooperative learning mechanism to address the long-

tail challenge. As shown in Fig. 3, traditional SGG pipelines

[Fig. 3(a)] jointly optimize the relation encoder and classi-

fier, often leading to overfitting on head predicates and poor

performance on tail predicates. In contrast, our CPC module

[Fig. 3(b)] leverages the complementary strengths of a proto-

type classifier and a learnable classifier. The prototype classifier

establishes a balanced geometric configuration to guide relation

encoding, mitigating bias toward head predicates. Meanwhile,

the learnable classifier dynamically adjusts decision boundaries

to enhance recognition of tail predicates. The cooperative mech-

anism, facilitated by the WKT module and a collaborative con-

straint term, ensures that the two classifiers work synergistically

to improve fine-grained relation modeling.

1) Prototype Classifier: The design of the prototype clas-

sifier is crucial for addressing the long-tail challenge in SGG

datasets. Such imbalance distorts the feature space, causing

class centers of tail predicates to cluster closely together and

leading to interclass overlap, which impairs the classifier’s re-

lation recognition capability. The neural collapse theory [13]

demonstrates that on balanced datasets, the within-class means

of features and classifier vectors align with the vertices of

a simplex equiangular tight frame at the final training stage,

maximizing interclass angular separation. Inspired by this, we

employ a prototype classifier with maximum interclass mar-

gins to counteract this imbalance. Specifically, we construct an

(b)

(a)

Fig. 3. Comparison of different pipelines for SGG. (a) Conventional meth-
ods jointly learn the relation encoder and the classifier, which often leads
to bias toward head predicates. (b) Our CDC method introduces cooperative
learning between a prototype classifier and a learnable classifier to address
the long-tail challenge, thereby enhancing fine-grained relation modeling.

optimal prototype classifier by learning a balanced geometric

configuration in a task-independent manner, as illustrated in

Fig. 4. This classifier is preestablished before SGG training. The

establishment solution ensures that tail classes with sparse data

are allocated sufficient representation space, enhancing their

distinguishability. During SGG training, the frozen prototype

classifier guides the feature refinement process by aligning

features with this balanced structure, thereby reducing head

category dominance and establishing a robust foundation for

fine-grained relation modeling.

To realize the balanced geometric configuration of the

prototype classifier, we construct the prototype matrix P=
[p1,p2, ...,pn] ∈ R

d×n. Each prototype vector is initialized by

sampling values from a uniform distribution U(−1, 1). Here,

d denotes the feature dimension, and n represents the number

of relation classes. We then employ the prototype regularization

loss Lpr to supervise prototype learning, randomly selecting n′
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Fig. 4. Pipeline for constructing the prototype classifier and its application
in SGG training to mitigate long-tail bias.

prototypes for optimization in every training iteration

Lpr = log





1

n′

n′

∑

i=1

(gi+ + gi−)



 (7)

where gi+ and gi− are calculated using the Gaussian potential

kernel G between the selected prototype pi and itself, as well

as between pi and all other prototypes

gi+ =G(pi,pi), gi− =

n′

∑

j=1,j 6=i

G(pi,pj) (8)

G(pi,pj) = e−α‖pi−pj‖
2

2 , α > 0 (9)

here ‖ · ‖2 represents the L2 norm, and α is a hyper-parameter.

After establishing the optimal prototype classifier P, we

freeze its parameters during the SGG training phase and ap-

ply the class-balanced loss [23] along with the triplet loss to

optimize the feature refinement module. To compute the class-

balanced loss Lcb1, we first calculate the classification score yp
as the cosine similarity between the relation representation r

and the prototypes P

yp =
r ·P

‖r‖2‖P‖2
. (10)

The classification score guides the computation of the class-

balanced loss Lcb1, which addresses the long-tail distribution

by reweighting classes based on their frequency, as detailed in

[23]. Additionally, we introduce a triplet loss Ltp to enhance

the feature refinement by ensuring that the relation representa-

tion r is positioned closer to its ground truth prototype while

being sufficiently distant from others in the Euclidean space.

To achieve this, we first compute the Euclidean distances D

between r and all prototypes in P

D = {‖r− pi‖
2
2 | pi ∈P, 0< i≤ n} (11)

where n is the number of relation classes.

The positive distance d+ is defined as the Euclidean distance

between r and its ground truth prototype pgt, i.e., d+ = ‖r−
pgt‖22. For the negative distance d−, we select a subset of k

negative prototypes P− by identifying the k nearest prototypes

based on Euclidean distances, excluding the ground truth proto-

type. The negative distance d− is then computed as the average

distance to these selected prototypes

d− =
1

k

∑

pi∈P−

‖r− pi‖
2
2. (12)

Algorithm 1: Prototype Classifier Construction.

1: Initialize prototype matrix P= [p1, ...,pn] ∈ R
d×n with

values sampled from uniform distribution U(−1, 1)
2: for epoch t= 1...T do

3: Randomly select n′ prototypes from P

4: Compute Gaussian potential kernel for each selected

prototype pi using (9)

5: Compute the prototype regularization lossLpr using (7)

6: Update P by minimizing Lpr

7: end for

8: return P

The triplet loss Ltp is then formulated to enforce a margin

between the positive and negative distances

Ltp =max(0, d+ − d− + δ) (13)

where δ is a margin hyperparameter that controls the separation

threshold.

In summary, we present Algorithm 1 to describe the estab-

lishment process of the prototype classifier.

2) WKT: To enhance the precision of relation classifica-

tion, we propose the WKT module. This module synergistically

leverages the balanced geometric configuration prior of the pro-

totype classifier, while empowering the learnable classifier to

refine the decision boundaries. Specifically, this module trans-

forms the prototypes P into the weights Wl of the learnable

classifier through a MLP composed of two linear layers, each

followed by batch normalization and ReLU activation, formal-

ized as

Wl =WKT(P). (14)

The WKT module is of paramount importance to the entire

collaborative mechanism, facilitating a dynamic interplay be-

tween the prototype and learnable classifiers. While the proto-

type classifier, pre-trained with an optimal balanced geometric

configuration (e.g., a simplex equiangular tight frame), maxi-

mizes inter-class separation, its fixed decision boundaries may

not effectively adapt to the varying feature distributions across

classes. The WKT module addresses this limitation by enabling

the learnable classifier to dynamically adjust these boundaries.

It inherits the prototype’s prior knowledge of relation class dis-

tributions while optimizing the decision surface to better fit the

complex feature distributions of both head and tail predicates.

Moreover, this process enhances the learning efficiency of the

learnable classifier.

3) Learnable Classifier: To address the limitations of the

prototype classifier’s rigid decision boundary, we design the

learnable classifier as a complementary component. Leveraging

the knowledge transferred via the WKT module, the learnable

classifier dynamically refines the decision boundary, formulated

as follows:

yl =Wlr+ b (15)

where b is a learnable bias parameter, and yl denotes the

classification score of the learnable classifier to predict the

relationship class.
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Importantly, the predicted relationship, obtained from yl,

serves as the semantic basis for behavioral understanding, en-

abling our framework to extract socially meaningful patterns

from visual content. This makes yl not only a decision output,

but also a bridge connecting low-level visual representations

with high-level behavioral-cultural interpretation.

To optimize the learnable classifier independently, we em-

ploy the class-balanced loss Lcb2, which focuses on refining

its parameters without propagating gradients to the feature re-

finement module, as illustrated in Fig. 2. This design ensures

that the feature refinement module remains unaffected by the

optimization of the learnable classifier, allowing for a more

stable training process. Tailored to mitigate the long-tail bias,

the class-balanced loss Lcb2 assigns higher weights to tail

predicates, encouraging the learnable classifier to pay greater

attention to underrepresented classes.

To further enhance the adaptability of the learnable classi-

fier’s decision boundaries, we introduce a collaborative con-

straint term Lc, formulated as follows:

Lc =max(0,Lcb2 − Lcb1 + γ) (16)

where γ is a hyper-parameter.

The collaborative constraint term Lc plays a pivotal role in

ensuring that the learnable classifier benefits from the prototype

classifier’s guidance while dynamically adjusting its decision

boundary to better fit the data distribution. By enforcing a mar-

gin between the performance of the learnable classifier (mea-

sured by Lcb2) and that of the prototype classifier (measured

by Lcb1), this term encourages the learnable classifier to out-

perform the prototype classifier, particularly in scenarios requir-

ing fine-grained distinctions. This collaborative mechanism not

only mitigates the rigidity of the prototype classifier’s decision

boundary but also enhances the model’s ability to generalize

across diverse relation categories.

During the SGG training stage, the overall training loss L is

defined as

L= β1Lcb1 + β2Ltp + β3Lcb2 + β4Lc (17)

where the hyper-parameters β1, β2, β3, and β4 are tuned to

balance the relative contributions of each loss term, ensuring

that the CDC framework achieves both robustness and accuracy

in fine-grained relation prediction. The class-balanced lossLcb1

and triplet loss Ltp focus on optimizing the feature refinement

module guided by the prototype classifier, while Lcb2 and Lc

refine the learnable classifier’s performance. The balanced loss

configuration enhances the CDC framework’s generalization

across diverse IoST-driven scenarios, such as behavioral analy-

sis in smart environments, where precise predicate classification

is vital for downstream tasks.

In summary, we design Algorithm 2 to describe the CPC

module.

IV. EXPERIMENT AND ANALYSIS

A. Experimental Settings

We evaluate our method on two commonly used SGG

datasets, namely VG [29] and GQA [30]. The VG dataset

Algorithm 2: The Collaborative Predicate Classifier (CPC)

Module.

Input: Pre-trained prototype matrix P ∈ R
d×n, relation rep-

resentation r

Output: Classification score yl
1: Step 1: Prototype Classification

2: Compute prototype classifier score yp←
r·P

‖r‖2‖P‖2

3: Step 2: Weight Knowledge Transfer

4: Compute learnable classifier weights Wl←WKT(P)
5: Step 3: Learnable Classification with Dynamic Bound-

ary Adjustment

6: Compute learnable classifier score yl←Wlr+ b

7: if training then

8: Compute class-balanced loss Lcb1, Lcb2

9: Compute triplet loss Ltp

10: Compute collaborative constraint term Lc

11: Total loss L← β1Lcb1 + β2Ltp + β3Lcb2 + β4Lc

12: Parameter update

13: else

14: Inference: Use learnable classifier to get prediction yl
15: end if

16: return yl

is the most prevalent benchmark, containing 108 000 images.

Each image is annotated with an average of 38 objects and 22

relationships. In this article, we adopt the widely used VG150

split for VG. This split collects images from the social platform

Flickr and retains the 150 most frequent object categories and

50 predicate categories. We use 70% of the images for training,

30% for testing, and 5000 images from the training set for

validation. The GQA dataset, derived from VG, refines anno-

tations by removing inaccurate predicates and enriching object

and relation labels. For GQA, we use the GQA200 split, which

includes 200 object categories and 100 predicate categories.

We evaluate our method on three tasks: 1) predicate clas-

sification (PredCls) infers the predicates of entity pairs with

ground-truth bounding boxes and class labels; 2) scene graph

classification (SGCls) predicts both the entity class labels and

their pairwise relationships with ground-truth bounding boxes;

and 3) scene graph detection (SGDet) jointly detects entities

and their pairwise relationships from raw images without access

to ground-truth bounding boxes and labels, making it a more

challenging and realistic SGG setting.

Consistent with recent works [6], [21], [25], [31], we evaluate

the performance of SGG methods on the VG150 and GQA200

datasets using two standard metrics: Recall@K (R@K) and

mean Recall@K (mR@K). While R@K measures the propor-

tion of correct triplets among the top-K predictions, it is in-

herently biased toward head predicates due to their higher fre-

quency. In contrast, mR@K computes the average R@K across

all predicate classes, thus offering a more balanced evaluation

that highlights the model’s performance on rare tail predicates.

As such, mR@K serves as a more informative and critical

metric for assessing fine-grained relation understanding under

long-tail distributions.
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TABLE I
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART SGG METHODS ON VG DATASET

Methods
PredCls SGCls SGDet

R@50/100 mR@50/100 R@50/100 mR@50/100 R@50/100 mR@50/100

VTransE [14] 65.7/67.6 14.7/15.8 38.6/39.4 8.2/8.7 29.7/34.3 5.0/6.1
MOTIFS [16] 65.2/67.0 14.8/16.1 38.9/39.8 8.3/8.8 32.8/37.2 6.8/7.9
VCTree [17] 65.4/67.2 16.7/18.2 46.7/47.6 11.8/12.5 31.9/36.2 7.4/8.7
GPS-Net [8] 65.2/67.1 15.2/16.6 37.8/39.2 8.5/9.1 31.3/35.9 6.7/8.6
BGNN [9] 59.2/61.3 30.4/32.9 37.4/38.5 14.3/16.5 31.0/35.8 10.7/12.6

BPL-SA⋄ [35] 50.7/52.5 29.7/31.7 30.1/31.0 16.5/17.5 23.0/26.9 13.5/15.6
HL-Net [15] 67.0/68.9 -/22.8 42.6/43.5 -/13.5 33.7/38.1 -/9.2
RU-Net [19] 67.7/69.6 -/24.2 42.4/43.3 -/14.6 32.9/37.5 -/10.8
GCL⋄ [36] 42.7/44.4 36.1/38.2 26.1/27.1 20.8/21.8 18.4/22.0 16.8/19.3

NICE [37] 55.1/57.2 29.9/32.3 33.1/34.0 16.6/17.9 27.8/31.8 12.2/14.4
IETrans⋄ [38] 48.6/50.5 35.8/39.1 29.4/30.2 21.5/22.8 23.5/27.2 15.5/18.0
HetSGG [39] 57.8/59.1 31.6/33.5 37.6/38.7 17.2/18.7 30.0/34.6 12.2/14.4
DKBL⋄ [40] 57.2/58.8 29.7/32.2 32.7/33.4 18.2/19.4 27.0/30.7 12.6/15.1
CV-SGG [21] 58.2/62.4 32.6/36.2 -/- -/- 27.8/32.0 14.6/17.0

INF⋄ [41] 51.5/55.1 24.7/30.7 32.2/33.8 14.5/17.4 23.9/27.1 9.4/11.7
PE-Net [6] 64.9/67.2 31.5/33.8 39.4/40.7 17.8/18.9 30.7/35.2 12.4/14.5

SQUAT [42] 55.7/57.9 30.9/33.4 32.9/34.3 17.5/18.9 24.5/28.9 14.1/16.5
CFA⋄ [20] 54.1/56.6 35.7/38.2 34.9/36.1 17.0/18.4 27.4/31.8 13.2/15.5
EICR⋄ [43] 55.3/57.4 34.9/37.0 34.5/35.4 20.8/21.8 27.9/32.2 15.5/18.2
VETO [25] 64.2/66.3 22.8/24.7 35.7/36.9 11.1/11.9 27.5/31.5 8.1/9.5

HiKER-SGG [44] -/- 39.3/41.2 -/- 20.3/21.4 -/- -/-
DPL⋄ [31] 54.4/56.3 33.7/37.4 32.6/33.8 18.5/20.1 24.5/28.7 13.0/15.6
SBG⋄ [45] 55.4/57.3 32.1/34.4 34.9/35.7 17.5/18.6 27.0/31.3 13.8/16.1

CooK+TF-l-IDF [46] 60.4/62.3 35.4/37.2 36.4/37.6 19.1/20.3 27.7/32.7 14.2/16.3

CDC (Ours) 37.9/42.3 43.6/47.4 23.6/26.0 24.4/26.8 23.3/27.6 17.3/20.3

Note: “⋄” denotes MOTIFS with a model-agnostic method. The best and second best results are respectively marked
in red and underline blue.

In this article, the pretrained Faster R-CNN [27] with

ResNeXt-101-RPN [32], [33], [34] is utilized to detect objects

in the images, following previous works [6], [25]. We optimize

our method via SGD optimizer for 60 000 iterations, starting

with a learning rate of 10−3 and a batch size of 8. We set

the loss weight parameters β1, β2, β3 and β4 as 10, 1, 10 and

1, respectively. For other hyper-parameters, we set γ = 0.01,

α= 2, and δ = 0.95. Moreover, k is set to 30 for VG, and 90

for GQA. All experiments are carried out using PyTorch and

trained with an NVIDIA GeForce RTX 3090 GPU.

B. Overall Performance Comparison

Aiming to evaluate the effectiveness of our proposed CDC,

we compare its performance against several state-of-the-art

SGG methods on VG and GQA datasets in this section.

1) VG: In Table I, we present a comprehensive perfor-

mance comparison of our CDC method against state-of-the-

art SGG methods on the VG150 dataset, emphasizing fine-

grained relation modeling under long-tail distributions. Among

all evaluated methods, CDC achieves the highest mR@K

scores across all three SGG tasks. Specifically, CDC attains

mR@50/mR@100 of 43.6/47.4 in PredCls, 24.4/26.8 in SG-

Cls, and 17.3/20.3 in SGDet, consistently outperforming all

competing methods. This consistent superiority across tasks

underscores CDC’s robust capability in capturing fine-grained

and long-tail relationships, an area where most prior approaches

struggle due to their bias toward frequent head categories.

Moreover, CDC maintains this advantage even in the more

challenging SGDet setting, where object detection and relation

prediction are jointly performed, highlighting its end-to-end

effectiveness under noisy visual conditions.

Compared with the baseline PE-Net [6], CDC demonstrates

significant improvements in addressing long-tail problems. In

PredCls, CDC’s mR@50 of 43.6 and mR@100 of 47.4 outper-

form PE-Net’s 31.5 and 33.8 by relative increases of 38.4%

and 40.2%, respectively. Similarly, in SGCls, CDC achieves

mR@50 of 24.4 and mR@100 of 26.8, surpassing PE-Net’s

17.8 and 18.9 by 37.1% and 41.8%. In SGDet, CDC further

improves upon PE-Net’s mR@50 and mR@100 of 12.4 and

14.5, reaching 17.3 and 20.3, which constitute relative gains

of 39.5% and 40.0%. This marked enhancement stems from

CDC’s cooperative dual-classifier architecture, which integrates

feature refinement and dynamic decision boundary adjustment

to effectively distinguish subtle differences in predicate seman-

tics. By leveraging fine-grained representations and adjusting

decision boundaries, CDC mitigates the overfitting to dominant

categories observed in PE-Net, enabling a more balanced and

accurate representation of long-tail distributions. These results

highlight CDC’s potential for applications requiring nuanced

scene understanding, such as social interaction analysis, where

rare relationships are critical.

2) GQA: In Table II, we present a comprehensive perfor-

mance comparison of our CDC method against state-of-the-art

SGG methods on the GQA200 dataset, which poses a more

fine-grained and semantically diverse challenge compared with

VG150. Across all three SGG tasks, CDC achieves the highest

mR@K scores, demonstrating its superior generalization ability

across a broader range of relations. Specifically, CDC obtains

mR@50/100 of 40.3/42.7 in PredCls, 18.6/19.8 in SGCls, and
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TABLE II
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART SGG METHODS ON GQA200 DATASET

Methods
PredCls SGCls SGDet

R@50/100 mR@50/100 R@50/100 mR@50/100 R@50/100 mR@50/100

VTransE [14] 55.7/57.9 14.0/15.0 33.4/34.2 8.1/8.7 27.2/30.7 5.8/6.6
MOTIFS [16] 65.2/66.8 16.4/17.1 34.2/34.9 8.2/8.6 28.9/33.1 6.4/7.7
VCTree [17] 63.8/65.7 16.6/17.4 34.1/34.8 7.9/8.3 28.3/31.9 6.5/7.4
CFA⋄ [20] -/- 31.7/33.8 -/- 14.2/15.2 -/- 11.6/13.2
GCL⋄ [36] 44.5/46.2 36.7/38.1 23.2/24.0 17.3/18.1 18.5/21.8 16.8/18.8
EICR⋄ [43] 56.4/58.1 36.3/38.0 28.8/29.4 17.2/18.2 24.6/28.4 16.0/18.0
VETO [25] 64.5/66.0 21.2/22.1 30.4/31.5 8.6/9.1 26.1/29.0 7.0/8.1
DPL⋄ [31] 50.3/52.3 31.6/33.9 25.0/25.9 13.3/14.4 15.0/19.0 11.1/13.1

CDC (Ours) 36.9/40.1 40.3/42.7 19.0/20.5 18.6/19.8 16.2/19.8 17.1/19.2

Note: “⋄” denotes MOTIFS with a model-agnostic method. The best and second best results are respectively
marked in red and underline blue.

Fig. 5. Comparison of R@100 of all predicate classes under the PredCls task on the VG dataset. Predicates are sorted in decreasing order of sample
frequency, and are divided into three groups: Head (red), body (green), and tail (blue).

17.1/19.2 in SGDet, consistently outperforming both traditional

pipelines such as MOTIFS and VCTree, which favor high-

frequency patterns, and model-agnostic designs such as CFA,

GCL, and EICR. This consistent superiority highlights CDC’s

capacity to recover rare and diverse relations, even under the

compounded noise of joint object detection and relation infer-

ence in SGDet.

While CDC significantly improves the performance on tail

predicates, as reflected by substantial gains in mR@K, we

observe a slight drop in head class performance. This trade-off

emerges not from an explicit suppression of head classes, but

rather from CDC’s capacity to allocate greater representational

focus to underrepresented relations through its dual-classifier

design. In practice, this trade-off is often beneficial in down-

stream tasks that require nuanced understanding of less frequent

but semantically meaningful relationships, such as safety-aware

perception, long-tail human–object interaction understanding,

and behavioral-cultural modeling in IoST environments.

C. Detailed Performance Comparison

In this section, we conduct an in-depth evaluation of the pro-

posed CDC framework by comparing its performance against

the baseline PE-Net [6] on the VG150 dataset, focusing on per-

class predicate recognition and classification consistency.

First, we analyze the performance across different frequency

classes compared with PE-Net in Fig. 5. Specifically, we

Fig. 6. Comparison of mR@100 for head, body, and tail predicate groups
under the PredCls task on the VG dataset.

divide the 50 predicate classes into three groups based on in-

stance counts in the training set: head (7), body (23), tail (20),

and provide comparison of groups in Fig. 6. In comparison

with PE-Net, our CDC successfully identifies all 50 predicates,

while PE-Net fails to classify 6 of them. Additionally, CDC

demonstrates performance improvements in R@100 for 35 rela-

tions, predominantly those fine-grained body and tail relations.

Notably, CDC successfully identifies the relation “flying in”,

which has only four training samples but achieves an R@100

of 66.67%. As shown in Fig. 6, CDC outperforms PE-Net in

mR@100 for both the body and tail groups, achieving 0.49

versus 0.41 (a 19.5% relative increase) for the body group
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(a) (b)

Fig. 7. Confusion matrices of predicates under the VG150 dataset. Predicates are sorted in decreasing order of sample frequency. (a) PE-Net. (b) CDC.

TABLE III
ABLATION STUDIES ON EACH COMPONENT OF CDC

Exp
Module PredCls SGCls

P L W C R@50 R@100 mR@50 mR@100 R@50 R@100 mR@50 mR@100

0 % % % % 39.8 41.8 36.1 38.5 27.3 28.5 21.4 22.4

1 ! % % % 57.8 62.2 37.2 41.1 35.0 37.8 20.6 22.6

2 ! ! % % 52.0 56.7 7.4 9.2 28.3 31.7 4.0 5.2

3 ! ! ! % 36.0 40.2 43.4 47.0 21.8 24.2 24.0 26.4

4 ! ! ! ! 37.9 42.3 43.6 47.4 23.6 26.0 24.4 26.8

Note: “P”, “L”, “W”, and “C” denote the fixed prototype classifier, the learnable classifier, the weight knowledge transfer
module, and the collaborative constraint term, respectively.

and 0.46 versus 0.13 (a 253.8% increase) for the tail group.

Although PE-Net achieves higher mR@100 in the head group

(0.67 versus CDC’s 0.45), CDC’s substantial gains in the body

and tail groups highlight its superior ability to handle fine-

grained and long-tail predicates, addressing the key challenge

in SGG.

Second, we visualize the confusion matrices on the VG150

dataset to further investigate the classification consistency of the

CDC framework in comparison with the baseline PE-Net [6].

As shown in Fig. 7(a), PE-Net’s confusion matrix reveals a sig-

nificant bias toward head predicates, such as “on”, which dom-

inate the predictions. Many tail predicates, including “painted

on”, “on back of”, and “growing on”, are frequently misclassi-

fied into head categories, resulting in low-recall or even absent

predictions for numerous tail classes. This indicates that PE-

Net struggles to capture the diversity of fine-grained relations,

particularly those underrepresented tail predicates, leading to

an imbalanced scene graph representation.

In contrast, the confusion matrix of CDC [Fig. 7(b)] exhibits

a prominently highlighted diagonal, demonstrating that all 50

predicates are successfully recognized with high recall across

categories. Notably, CDC not only achieves more balanced pre-

dictions across head, body, and tail predicates but also reassigns

many instances that are previously predicted as head predicates

by PE-Net (e.g., “on,” “has”) to more informative tail predicates

(e.g., “sitting on”, “belonging to”). This reassignment enhances

the informativeness of the generated scene graphs by uncover-

ing nuanced relationships that PE-Net tends to overlook. For

instance, predicates such as “flying in”, which are nearly ab-

sent in PE-Net’s predictions, show significant recall in CDC’s

confusion matrix, reflecting its superior capability in addressing

long-tail challenges. These improvements stem from CDC’s

cooperative dual-classifier architecture, which dynamically ad-

justs decision boundaries to better accommodate tail predicates,

thereby producing more comprehensive and equitable scene

graphs.

D. Ablation Studies

1) Ablation on Model Components: To assess the contri-

bution of each component in the CDC framework, we conduct

ablation studies on the VG150 dataset, with results summarized

in Table III. In Exp0, we use a learnable prototype classifier op-

timized with the class-balanced loss and triplet loss to recognize

relations. In Exp1, we evaluate the baseline performance using

only the fixed prototype classifier (P) for predicate classifica-

tion, establishing a foundation for coarse relation prediction.

Exp2 introduces the learnable classifier (L) to refine decision
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TABLE IV
HYPERPARAMETER ANALYSIS OF THE MARGIN δ

δ
PredCls

R@50 R@100 mR@50 mR@100

0.90 36.2 40.7 43.0 46.8
0.95 37.9 42.3 43.6 47.4

1.00 38.6 43.7 41.3 46.3

Note: The best results are shown in boldface.

boundaries, aiming for more precise classification. Exp3 incor-

porates the WKT module (W) to enhance the adjustment of

decision boundaries, and Exp4 adds the collaborative constraint

term (C) to ensure robust and efficient decision boundary ad-

justments, completing the full CDC framework.

The results in Table III reveal the impact of each component

on both the PredCls and SGCls tasks. In Exp1, relying solely on

the prototype classifier yields strong R@K scores (57.8 R@50

and 62.2 R@100 in PredCls; 35.0 R@50 and 37.8 R@100

in SGCls), indicating its effectiveness in capturing common

relations. However, its mR@K scores (37.2 mR@50 and 41.1

mR@100 in PredCls) suggest limited capability in handling

long-tail predicates. In contrast, Exp0, using a learnable proto-

type classifier, exhibits poorer unbiasedness between head and

tail categories, sacrificing recall on head categories. This com-

parison reinforces our decision to adopt the fixed prototype clas-

sifier in subsequent experiments, as it provides a more balanced

foundation for relation prediction. Additionally, our motivation

to enable the learnable classifier to inherit the equidistributed

structure of the fixed prototype further supports this choice. In-

corporating the learnable classifier in Exp2 (P + L) significantly

reduces R@K (e.g., 52.0 R@50 in PredCls) and mR@K (7.4

mR@50 and 9.2 mR@100 in PredCls), highlighting that the

learnable classifier alone disrupts the balance achieved by the

prototype classifier, likely due to overfitting to head categories

without proper guidance. The introduction of the WKT module

in Exp3 (P + L + W) markedly improves mR@K (43.4 mR@50

and 47.0 mR@100 in PredCls; 24.0 mR@50 and 26.4 mR@100

in SGCls), demonstrating its critical role in guiding the learn-

able classifier to recalibrate decision boundaries effectively,

thus enhancing the model’s ability to capture fine-grained and

long-tail relations. However, the R@K scores remain lower

(36.0 R@50 in PredCls), reflecting a trade-off for improved

graph diversity. Finally, Exp4 (P + L + W + C) incorporates

the collaborative constraint term, achieving the best mR@K

performance (43.6 mR@50 and 47.4 mR@100 in PredCls; 24.4

mR@50 and 26.8 mR@100 in SGCls) while slightly boosting

R@K (37.9 R@50 and 42.3 R@100 in PredCls), indicating

that the constraint term stabilizes the recalibration process and

improves overall robustness.

These findings underscore the synergistic effect of CDC’s

components. The prototype classifier provides a robust foun-

dation for coarse classification, while the learnable classifier,

guided by the WKT module and the collaborative constraint

term, refines decision boundaries to excel in fine-grained rela-

tion modeling, particularly for long-tail predicates. This coop-

erative mechanism ensures a balanced trade-off between recall

on common relations and diversity in rare relations, thereby

validating the effectiveness of the full CDC framework in ad-

dressing the long-tail challenge in SGG.

2) Geometric Properties of the Prototype Classifier: The

effectiveness of the fixed prototype classifier fundamentally

relies on its ability to maintain large inter-class separation in

the embedding space, thereby alleviating the feature overlap

issues prevalent in long-tail relation distributions. To validate

this property, we visualize and compare the prototypes of our

method and PE-Net in Fig. 8. Specifically, we analyze two

key geometric metrics, the pairwise cosine similarity among all

prototypes and their pairwise Euclidean distances.

Fig. 8(a) and (b) presents the cosine similarity heatmaps

among prototypes. Compared with PE-Net, whose certain pro-

totype pairs show high cosine similarity, our method yields a

nearly orthogonal configuration, with similarity scores close to

0. This indicates that the learned prototypes are well-separated

in the angular space.

Fig. 8(c) and (d) further shows the Euclidean distance

heatmaps. It can be observed that PE-Net tends to produce pro-

totypes with relatively small Euclidean distances for some class

pairs, which reflects a potential tendency toward class overlap

in the embedding space. In contrast, our approach achieves

uniformly large Euclidean distances, with most distances ap-

proaching 1.43, which confirms that the prototypes are not only

angularly decorrelated but also spatially dispersed.

Overall, these results demonstrate that the proposed fixed

prototype classifier effectively enforces a discriminative struc-

ture where interclass prototypes are evenly distributed in the

embedding space, reducing the risk of feature confusion espe-

cially among tail classes.

3) Analysis on Margin Hyperparameter: To assess the

influence of the triplet loss margin δ on model perfor-

mance, we conduct the experiment by varying δ in the range

{0.90, 0.95, 1.00}. Table IV reports the results under the Pred-

Cls setting.

We observe that δ = 1.00 achieves the highest Recall@K

(R@50 and R@100), indicating a slight improvement in overall

retrieval capability. However, δ = 0.95 yields the best mean Re-

call (mR@50 and mR@100), reflecting more balanced perfor-

mance across head and tail predicates, which is critical for fine-

grained relation recognition under long-tail distributions. Given

that the main objective of this work is to enhance fine-grained

and unbiased predicate classification, we adopt δ = 0.95 as the

final setting in all experiments.

E. Complexity Analysis

To assess model complexity, we report the inference time

and network size of our CDC method and several baselines in

Table V. Concretely, for the inference time, we record time (s)

for inferring a single image of VG dataset (i.e., batchsize = 1).

For the network size, we count the total parameters of the whole

models (i.e., the object detector is also considered). We employ

one NVIDIA GeForce RTX 3090 device for the experiment,

and all results are based on the same pretrained Faster-RCNN

(backbone: ResNeXt-101-FPN).
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(a) (b) (c) (d)

Fig. 8. Visualization of prototype geometric structure. (a) and (b) Cosine similarity between prototypes learned by PE-Net and our method CDC, respectively.
(c) and (d) Euclidean distance heatmaps showing interprototype separation. Our method exhibits greater angular diversity and spatial dispersion.

TABLE V
COMPARISON OF INFERENCE TIME AND NETWORK SIZE

Methods Inference Time (s) Params (M) SGDet mR@100

MOTIFS [16] 0.09 367 7.9
VCTree [17] 0.07 358 8.7
PE-Net [6] 0.31 411 14.5
DPL⋄ [31] 0.06 368 15.6

CDC (Ours) 0.29 459 20.3

Note: “⋄” denotes MOTIFS with a model-agnostic method.

As demonstrated in Table V, the proposed CDC has a mod-

erate increase in network parameters. Specifically, CDC incurs

a 48M increase in parameters compared with PE-Net due to

the incorporation of the cooperative dual-classifier and knowl-

edge transfer modules. Nevertheless, it achieves a substantial

improvement of 5.8% in mR@100, demonstrating a favorable

trade-off between model complexity and performance. In terms

of inference efficiency, CDC maintains a competitive inference

time of 0.29 s per image, slightly faster than PE-Net (0.31 s).

Although traditional approaches such as MOTIFS and VCTree,

along with the recent method DPL, involve fewer parameters

and are expected to offer faster inference speed, their SGG per-

formance remains considerably lower. This demonstrates that

the marginal increase in complexity brought by CDC remains

practical and is well justified by its substantial improvements

in fine-grained and unbiased SGG performance.

F. Visualization Results

In this section, we compare the generated scene graphs of the

baseline PE-Net and CDC. As illustrated in Fig. 9, the proposed

CDC generates more semantically informative triplets, such

as 〈woman, playing, racket〉 versus 〈woman, holding, racket〉,
〈man, lying on, surfboard〉 versus 〈man, on, surfboard〉, and

〈clock,mounted on, building〉 versus 〈clock, on, building〉.
These examples highlight CDC’s ability to discern subtle

behavioral and spatial dynamics, elevating the granularity

of scene understanding. Additionally, the results underscore

the effectiveness of our method in leveraging social device

data to capture intricate behavioral patterns across “man–

man”, “man–machine” and “machine–machine” interactions.

This improvement is evident in its capacity to model

dynamic actions (e.g., “playing” versus “holding”) and spatial

Fig. 9. Visualization results of PE-Net (in green) and CDC (in blue) under
PredCls task on the VG dataset. Predicates matching the ground truth are
highlighted in green. Yellow color represents predicates in head class, while
blue color represents predicates in body/tail class.

relationships (e.g., “mounted on” versus “on”), offering a more

comprehensive representation of real-world scenes.

V. CONCLUSION

In this article, we propose the CDC framework to address

the challenges of fine-grained SGG within the IoST framework,

particularly under long-tail distributions prevalent in real-world

social device data. By integrating a cooperative learning mech-

anism, CDC synergistically combines a prototype classifier,

which enforces equidistributed interclass separation to alleviate

long-tail bias, and a learnable classifier, which dynamically

adjusts decision boundaries for accurate relation prediction. To

further enhance this synergy, we introduce a WKT module and

a collaborative constraint term, ensuring robust performance

in capturing tail predicates. Comprehensive experiments on

the VG and GQA datasets validate the effectiveness of CDC,

demonstrating superior performance in fine-grained relation
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classification and improved generalization to underrepresented

predicates. Beyond advancing semantic scene understanding,

CDC offers a scalable and interpretable framework for mod-

eling complex behavioral and cultural dynamics embedded in

IoST environments, thereby offering new insights for down-

stream applications such as social behavior analysis, cultural

context reasoning, and safety-critical perception in intercon-

nected systems.
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