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Abstract—Scene graph generation (SGG) plays an important
role in the intelligence of social things (IoST) framework by
extracting structured semantic representations from social device
data, thereby supporting advanced scene understanding and
behavioral-cultural modeling. However, the intrinsic long-tail
nature of real-world social device data, coupled with the seman-
tic entanglement between head and tail categories (e.g., “on”
versus “standing on”), presents significant challenges for fine-
grained SGG. This often results in biased models and suboptimal
generalization to rare but semantically informative relations.
To address these issues, we propose a novel cooperative dual
classifier (CDC) framework for fine-grained SGG in IoST-driven
social systems. CDC introduces a cooperative learning mechanism
that combines two classifiers. The frozen prototype classifier
is designed with maximum interclass margins to alleviate class
imbalance. In parallel, a learnable classifier dynamically adjusts
decision boundaries to improve discriminative precision. To
further enhance the integration between the two classifiers, we
introduce a weight knowledge transfer (WKT) module and a
collaborative constraint term, facilitating robust adaptation to
tail categories. Extensive experiments on the Visual Genome
and GQA datasets demonstrate that CDC outperforms state-
of-the-art SGG methods, particularly in modeling fine-grained
relations under long-tail distributions. These results highlight
the capability of CDC to advance semantic understanding of
complex behavioral and cultural patterns within computational
social systems.

Index Terms—Behavioral-cultural modeling, cooperative learn-
ing, intelligence of social things (IoST), long-tail distribution,
prototype learning, scene graph generation (SGG).
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1. INTRODUCTION

S intelligent devices become increasingly interconnected
in modern environments, the intelligence of social things
(IoST) provides a promising framework for understanding the
complex interactions among humans, machines, and environ-
ments [1]. In computational social systems, understanding these
interactions requires not only perception of physical scenes, but
also semantic abstraction of underlying behavioral and cultural
patterns, enabling interpretable results for human-centric anal-
ysis and structured inputs for downstream tasks. In particular,
IoST-enabled cooperative learning leverages the collective in-
telligence of distributed devices to model social behaviors and
cultural dynamics in a scalable manner. Scene graph generation
(SGQG), as a fundamental task in visual scene understanding,
serves this need by extracting structured semantic represen-
tations (triplets (subject, predicate, object)) from social device
data. By representing visual scenes as structured graphs, SGG
not only provides interpretable abstractions but also facilitates
scalable integration of heterogeneous data streams from mul-
tiple social devices, enabling joint analysis of behavioral and
cultural patterns across diverse environments. These semantic
graphs bridge low-level visual signals and high-level reasoning,
enabling deeper behavioral-cultural modeling across a variety
of IoST-enabled applications, including visual question answer-
ing [2], image retrieval [3], and embodied navigation [4].
However, real-world data collected from social devices of-
ten exhibit long-tail distributions, which further intensify the
challenges of behavioral-cultural modeling. Unlike other long-
tail classification tasks [5], SGG is uniquely characterized by
semantic entanglement among predicate categories where head
predicates (e.g., “on”) subsume or overlap with tail predicates
(e.g., “standing on”, “lying on”). Long-tail distribution com-
bined with semantic entanglement undermines the capability
to capture informative behavioral patterns, as models overfit to
frequent head predicates while neglecting the rich contextual
information embedded in tail predicates. To address the above
problems, an increasing number of studies [6], [7], [8], [9],
[10] explored various strategies to enhance the fine-grained
capability of SGG models. Early efforts primarily focused on
model reweighting [7] or data resampling [8], [9], [10] tech-
niques, aiming to balance the training process. More recent
studies adopt contrastive learning strategies or prototypical

2329-924X © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on November 12,2025 at 09:23:46 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-2184-4566
https://orcid.org/0009-0009-7177-2845
https://orcid.org/0000-0003-3588-5622
https://orcid.org/0000-0003-3488-4679
mailto:wzdaisy@buaa.edu.cn
mailto:wzdaisy@buaa.edu.cn
mailto:lengbiao@buaa.edu.cn
mailto:yangyanz0930@163.com
mailto:zhou@kansai-u.ac.jp

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

networks [6], [11], [12] to model interclass relations. Among
them, PE-Net [6] leverages contrastive learning constraint terms
to improve the separability between classifier parameters and
samples, thereby enhancing fine-grained relation recognition.
However, the abundance of head samples in the repulsion term
of contrastive objectives tends to overwhelm the optimization
process. This often pushes the representations and classifier pa-
rameters for tail categories into unstable or random states, sig-
nificantly undermining classification accuracy. Inspired by this
insight and the neural collapse theory [13], we propose to fix the
classifier and decouple it from the SGG optimization process.

Moreover, the feature distributions of head and tail categories
exhibit significant density variations. In particular, the features
of tail class tend to be sparser and exhibit higher variance
due to limited training samples, making it difficult to fully
capture their complex behavioral semantics. In contrast, head
classes benefit from abundant data, resulting in more com-
pact and stable representations. To address these imbalances,
prototype-based approaches have attracted increasing attention,
as they offer a compact representation of each class and nat-
urally encourage larger interclass margins in the embedding
space, which is essential for discriminating semantically similar
predicates. In these methods, decision boundaries are usually
placed equidistantly between the learned class prototypes. Such
a fixed structure can be problematic under imbalanced distri-
butions: the sparse and scattered nature of tail features makes
them more likely to cross into neighboring decision regions,
increasing the risk of misclassification. This motivates the need
for adaptive boundary adjustment mechanisms that account
for class-specific distribution characteristics and help maintain
the transparency and reliability required in IoST-enabled social
learning environments.

To tackle the aforementioned challenges, we propose a novel
cooperative dual classifier (CDC) method for fine-grained SGG.
The CDC framework introduces a cooperative learning mecha-
nism that synergistically integrates a prototype classifier and a
learnable classifier. Before SGG training, we construct an opti-
mal prototype classifier with maximum interclass margins to al-
leviate the long-tail problem. During the SGG training process,
this classifier guides feature refinement and produces coarse
relation predictions. In parallel, we design a learnable classifier
that dynamically adjust the decision boundaries of the fixed
prototype classifier, enabling precise relation classification. To
facilitate effective interaction between the two classifiers, we
further propose a weight knowledge transfer (WKT) module
and a collaborative constraint term, ensuring that the learnable
classifier inherits relational structure knowledge while main-
taining flexibility to adapt to class-specific feature distributions.
Overall, our dual-classifier design not only mitigates the bias
toward head categories but also enhances generalization and
adaptability to diverse real-world social device data, enabling
more accurate modeling of complex behavioral patterns in [oST
applications.

Specifically, the main contributions addressed in this article
can be summarized as follows.

1) We propose a novel CDC framework for fine-grained

SGG, integrating a fixed prototype classifier to guide
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feature refinement with a learnable classifier to adjust the
decision boundaries. This cooperative design aligns with
IoST-enabled cooperative learning, facilitating more ac-
curate semantic understanding of fine-grained behavioral
patterns derived from social device data in computational
social systems.

2) We introduce a WKT module and a collaborative con-
straint term to enhance the cooperation between the
two classifiers. These components effectively support
the optimization of decision boundaries and improve the
model’s adaptability under long-tail data distributions.

3) We conduct comprehensive experiments on the Visual
Genome (VG) and GQA datasets, demonstrating that
CDC outperforms state-of-the-art SGG methods, partic-
ularly in capturing fine-grained relations under long-tail
distributions. These results highlight CDC’s capability
in advancing the comprehension of nuanced behavioral
patterns in social device data, contributing to the devel-
opment of intelligent social systems.

Beyond the immediate improvements in SGG, the structured
and semantically enriched outputs of our CDC framework hold
strong potential for a wide range of downstream tasks in com-
putational social systems. In particular, the integration of CDC
within IoST-enabled cooperative learning infrastructures can
further support behavior-aware human—computer interaction,
real-time decision-making, and fine-grained analysis of social
and cultural dynamics. By improving the reliability and gran-
ularity of scene understanding, CDC lays the foundation for
more context-aware and interpretable intelligent services, of-
fering promising directions for future research and application
in socially intelligent systems.

The rest of this article is organized as follows. Section II
presents an overview of related works. Section III elaborates
on the modeling of the CDC framework. In Section IV, we
demonstrate experiment and evaluation results, providing both
qualitative insights and quantitative metrics. Finally, Section V
makes a conclusion of this article.

II. RELATED WORK

In this section, various issues associated with the proposed
method are discussed, with a focus on the evolution from vanilla
SGG toward fine-grained approaches.

A. Vanilla SGG

In recent years, the SGG task has emerged as a central
research direction in computer vision. It offers a structured
representation of semantic perceptions for visual social device
data, capturing entities and their relationships in the triplet
format (subject, predicate, object). This structured representa-
tion is particularly valuable for IoST applications, as it enables
the modeling of complex social interactions and behavioral
patterns. Early methods [14], grounded in the assumption of
relation independence, primarily focused on designing feature
extraction modules from multimodal features, such as visual,
spatial, and semantic features. However, these methods often
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overlooked the critical role of contextual information in enhanc-
ing overall scene understanding and improving the accuracy
of SGG. Consequently, subsequent studies shift their focus to
exploring contextual features using message passing [8], [9],
[15], LSTM [16], or tree structures [17]. These contextual meth-
ods leverage structured message propagation frameworks to
exchange information across entity and relation nodes, thereby
capturing cooccurrence patterns between objects and relations
in the scene. By modeling surrounding context, they aim to
disambiguate visually similar relationships and improve overall
relation reasoning. However, such strategies often suffer from
the introduction of redundant or irrelevant contextual cues,
leading to noisy message aggregation and degraded relation
classification performance.

In addition to contextual modeling, existing methods [6], [8],
[15], [18] commonly exploit multiple modalities, such as vi-
sual appearance, spatial features, and semantic embeddings, to
represent relation instances. These modalities provide comple-
mentary cues: visual features capture object textures and poses,
spatial features describe geometric interactions, and seman-
tic embeddings offer prior knowledge derived from language.
However, inappropriate fusion strategies, such as concatenation
[8], [15], often fail to capture the intrinsic interaction patterns
between subjects and objects. This leads to scattered intraclass
distributions and interclass overlapping in the relation feature
space, thereby hindering discriminative relation learning. The
problem is further exacerbated by the diverse subject-object
compositions under the same predicate. Thus, recent works [6]
attempt to realize feature refinement. For example, PE-Net [6]
introduces a prototype-based embedding network to explore
an intrinsic and compact feature space. However, the learning
of feature representation modules remains influenced by the
long-tail distribution of SGG data, resulting in overfitting to
abundant head classes while under-representing rare tail classes.
As a result, the learned relation features are biased toward fre-
quent relation patterns, failing to capture the subtle and diverse
semantics of infrequent relations, which ultimately results in
suboptimal generalization of SGG models.

B. Fine-Grained SGG

To address the challenges posed by long-tail data distribu-
tions, a growing number of studies [6], [9], [10], [19] have
explored debiasing techniques for SGG, making fine-grained
SGG an emerging research hotspot. Fine-grained SGG aims to
accurately identify semantically subtle and less frequent pred-
icates, which is particularly vital for real-world visual under-
standing and downstream reasoning tasks in IoST scenarios. To
this end, VCTree [17] introduced the mean recall metric, which
averages recall values across all predicate categories, providing
a fairer evaluation of fine-grained SGG by emphasizing tail
predicate performance. Early fine-grained SGG methods pri-
marily adopted debiasing techniques, including data resampling
[8], [9], [10], data augmentation [20], [21], and loss reweighting
[7]. For instance, Tang et al. [ 10] proposed TDE, which employs
causal inference to reweight training samples and increase the
focus on tail categories. While these methods mitigate sample

imbalance to some extent, they often struggle with overfitting to
synthetic or reweighted data, leading to limited generalization
in diverse real-world scenarios. Moreover, some recent methods
[6] utilize contrastive learning strategies to enhance the separa-
tion between head and tail categories by pulling features of the
same class closer together while pushing apart those of different
classes. The long-tailed distribution challenge is not unique to
SGG but is widely observed in image classification tasks [22],
[23], where various strategies, including class-balanced loss
functions [23] and decoupled training [22], have been proposed
to mitigate class imbalance. Inspired by these approaches, re-
cent SGG models [6], [24] have attempted to adapt these prin-
ciples to the relational domain. The aforementioned methods
generate scene graphs using a single classifier. In contrast, a
series of recent works [25] have shifted toward multiple experts,
where each expert is responsible for a subset of predicates, and
their results are integrated into the final scene graph [26].

Despite their effectiveness, existing debiasing strategies
largely rely on manipulating training distributions (e.g., re-
sampling), which can introduce synthetic biases or unstable
gradients. Even though contrastive learning methods enhance
feature separation, they rely on a single global classifier, which
lacks adaptability to the fine-grained variations across head
and tail predicates. Moreover, expert-based methods [25], [26]
segment the classification space but fail to dynamically co-
ordinate decision boundaries across the entire feature space.
Unlike the above methods, we address the long-tail problem in
SGG through the cooperative learning of two classifiers, where
the first guides feature refinement and the second dynamically
calibrates the decision boundary based on the unbiased feature
space.

II. CDC

In this section, we propose a novel CDC framework for
fine-grained SGG within the context of the [oST. The CDC
framework is composed of three core modules: the Proposal
Network for entity detection, the Feature Refinement module
for multimodal feature extraction and refinement, and the col-
laborative predicate classifier (CPC) module. As our primary
contribution, the CPC module infers predicates through a co-
operative classification strategy that leverages both prototype-
based and learnable classifiers. These modules work syner-
gistically to generate structured scene graphs with rich and
informative relations, facilitating accurate modeling of social
behaviors in IoST-enabled applications.

A. Preliminaries and Problem Definition

Given a visual input Z from a social device, the objective
of SGG is to construct a directed scene graph G = {N,E}.
This graph serves as a critical tool for behavior and relationship
modeling within the [oST framework (as illustrated in Fig. 1).
Here, each node N; € N represents an object (e.g., person),
characterized by its bounding box and object category. Each
edge E; € € denotes a predicate category C/ that defines the
relationship (e.g., eating) between a pair of objects. The gen-
erated scene graph G captures visual relation triplets in the
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Fig. 1. SGG for social behavioral modeling within the IoST framework.
SGG processes image data collected from multiple social devices with long-
tail distributions to generate structured scene graphs. To enhance SGG,
cooperative learning incorporates both prototype-based and learnable clas-
sifiers, refining feature representations and improving the expression of tail
predicates. The generated graphs are further leveraged for social behavioral
modeling, enabling intelligent perception in IoST-driven environments.

form of (subject, predicate, object), providing a comprehensive
semantic representation of social device data that often exhibit
long-tail distributions. This capability is essential for IoST-
driven applications, such as autonomous vehicles and smart
cities.

A major challenge in SGG arises from the long-tail distribu-
tion inherent in predicate categories, where a few frequent pred-
icates dominate the dataset, while many rare and fine-grained
predicates remain underrepresented. This imbalance hinders
accurate prediction of tail predicates, often leading to biased
models that prioritize head categories and overlook nuanced
relationships essential for comprehensive scene understanding.
Addressing this issue is especially crucial in IoST-driven appli-
cations, where rare but meaningful predicates, such as specific
social interactions or contextual behaviors, are key to robust
perception and behavioral modeling.

To achieve fine-grained SGG in the [oST framework, we pro-
pose a SGG method CDC, which leverages cooperative learning
to enhance predicate classification. By integrating prototype-
based and learnable classifiers, CDC refines feature represen-
tations and improves the expression of tail predicates, thereby
enabling intelligent perception in IoST-driven scenarios. As
illustrated in Fig. 2, the CDC framework is primarily com-
posed of three components: the proposal network, the feature
refinement module, and the CPC module. Following previous
works [6], [16], [25], we employ Faster R-CNN [27] as the
proposal network for entity detection on social device data.
It generates entity proposals along with visual features, cate-
gories, and bounding boxes. In the feature refinement module,
feature refinement of entities and relations is conducted based
on multimodal features, as detailed in Section III-B. Addition-
ally, we use GloVe [28] to embed categories into semantic
space, incorporating contextual word relationships and cooccur-
rence statistics derived from large-scale text corpora. We also
encode bounding boxes as spatial features. We derive the union
feature u for each entity pair by encoding the spatial and visual
features of their union region, which represents the region of
interest for the relation. We design the CPC module to further
guide feature refinement and adjust decision boundaries through
cooperative learning between the prototype classifier and the
learnable classifier, as elaborated in Section III-C.
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B. Feature Refinement

Feature refinement is a crucial step for improving entity and
relation representations in SGG, enabling precise modeling of
social behaviors. It involves two key components: the entity en-
coder, which refines individual object features, and the relation
encoder, which extracts discriminative relation-centric features.
In this section, we describe these encoders in detail. We explain
their roles in capturing intrinsic characteristics of entities and
their interactions, which are essential for fine-grained relation
detection and intelligent perception in [oST-driven applications.

1) Entity Encoder: To refine the feature representations of
subjects s and objects o, we employ an entity encoder based on
the prototype-based embedding network [6]

s = Wgts + vs (D
Ozwoto + Vo (2)

where Wy and Wy, are learnable parameters. ts and t,, respec-
tively represent the semantic features of the subject and object,
derived from the GloVe embedding. Moreover, we leverage a
gating mechanism to capture the distinctive contents of each
subject and object as vg and v,

vs = 0(FC((Wists) @ h(xs)) © h(xs) 3)
Vo = 0(FC((Wote) ® h(%o)) ® h(xe) )

where FC(+) is the fully connected layer, h(-) is the visual-to-
semantic function, and o (-) is the sigmoid activation function.
@ denotes concatenation operation and ® denotes element-wise
product. x5 and x, represent visual features of the subject and
object.

2) Relation Encoder: After extracting the subject and ob-
ject features, the relation encoder uses these representations to
derive discriminative relation-centric features. This is a critical
step in feature refinement for enhancing predicate classification
in SGG. We adopt a two-step process to achieve this goal, ad-
dressing challenges such as background noise and the need for
interaction-specific representations, ultimately preparing robust
features for the CPC module.

In the first step, we focus on suppressing predicate-irrelevant
background noise in the union feature u, which encapsulates
the subject status, object status, and their interaction patterns.
To this end, we apply the gating mechanism to filter out back-
ground noise from u

uwp = 0(FC(F(s,0) @ h(u))) © h(u) 3)

where uyp represents the background-suppressed union fea-
ture. F(s,0) = ReLU(s + o) — (s — 0)? integrates contents of
the subject and object.

In the second step, we further refine uyp, to isolate
interaction-specific content by subtracting the subject-object
status F (s, 0), thereby ensuring that the resulting representation
focuses on relational dynamics. The final relation representation
r is derived as

r =Uuwb — F(s,0) (6)
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Overview of the CDC framework. The CDC framework is mainly composed of three modules: 1) the proposal network perceives and detects visual

data from social devices, generating a set of entity proposals; 2) the feature refinement module refines entity and relation representations by leveraging
multimodal features; and 3) the CPC module constructs an optimal prototype classifier to guide feature refinement. It simultaneously devises a learnable
classifier to adjust decision boundaries. To boost the recalibration process, a WKT module and a collaborative constraint term are introduced to support

effective cooperative learning.

C. CPC

In this section, we elaborate on the collaboration mechanism
of dual classifiers and their design for fine-grained relation
recognition. The CPC module leverages the complementary
strengths of a prototype classifier and a learnable classifier
to address the long-tail challenge in SGG, which is a critical
barrier to modeling nuanced social behaviors in IoST-driven
applications.

Unlike conventional methods that rely on joint learning of
feature representations and classifiers, our CPC module intro-
duces a cooperative learning mechanism to address the long-
tail challenge. As shown in Fig. 3, traditional SGG pipelines
[Fig. 3(a)] jointly optimize the relation encoder and classi-
fier, often leading to overfitting on head predicates and poor
performance on tail predicates. In contrast, our CPC module
[Fig. 3(b)] leverages the complementary strengths of a proto-
type classifier and a learnable classifier. The prototype classifier
establishes a balanced geometric configuration to guide relation
encoding, mitigating bias toward head predicates. Meanwhile,
the learnable classifier dynamically adjusts decision boundaries
to enhance recognition of tail predicates. The cooperative mech-
anism, facilitated by the WKT module and a collaborative con-
straint term, ensures that the two classifiers work synergistically
to improve fine-grained relation modeling.

1) Prototype Classifier: The design of the prototype clas-
sifier is crucial for addressing the long-tail challenge in SGG
datasets. Such imbalance distorts the feature space, causing
class centers of tail predicates to cluster closely together and
leading to interclass overlap, which impairs the classifier’s re-
lation recognition capability. The neural collapse theory [13]
demonstrates that on balanced datasets, the within-class means
of features and classifier vectors align with the vertices of
a simplex equiangular tight frame at the final training stage,
maximizing interclass angular separation. Inspired by this, we
employ a prototype classifier with maximum interclass mar-
gins to counteract this imbalance. Specifically, we construct an

_‘ Object Relation Learnable l&
m ——» B
V>N Detector Encoder Classifier
Sociglalgsvice Scene Graph
(a)
+— =) —— Learnable —¢
¥ Classifier ‘\
Object Relation Knowledge li
M Detector Encoder Transfer )
Social Device f Prototype _/4 Scene Graph
bata i Classifier o .
p gradient
(®)

Fig. 3. Comparison of different pipelines for SGG. (a) Conventional meth-
ods jointly learn the relation encoder and the classifier, which often leads
to bias toward head predicates. (b) Our CDC method introduces cooperative
learning between a prototype classifier and a learnable classifier to address
the long-tail challenge, thereby enhancing fine-grained relation modeling.

optimal prototype classifier by learning a balanced geometric
configuration in a task-independent manner, as illustrated in
Fig. 4. This classifier is preestablished before SGG training. The
establishment solution ensures that tail classes with sparse data
are allocated sufficient representation space, enhancing their
distinguishability. During SGG training, the frozen prototype
classifier guides the feature refinement process by aligning
features with this balanced structure, thereby reducing head
category dominance and establishing a robust foundation for
fine-grained relation modeling.

To realize the balanced geometric configuration of the
prototype classifier, we construct the prototype matrix P =
[P1, P2, ---, Pn) € R¥*™. Each prototype vector is initialized by
sampling values from a uniform distribution ¢/(—1, 1). Here,
d denotes the feature dimension, and n represents the number
of relation classes. We then employ the prototype regularization
loss L, to supervise prototype learning, randomly selecting n’
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Fig. 4. Pipeline for constructing the prototype classifier and its application

in SGG training to mitigate long-tail bias.

prototypes for optimization in every training iteration

’
n

1 , ,
L, =log v z:(g’+ +4%) (7

i=1

where gi and g’ are calculated using the Gaussian potential
kernel G between the selected prototype p; and itself, as well
as between p; and all other prototypes

n’

gy =G(pipi), g-= Y Gpsp;) ©

j=Lj#i
G(pi,py) =PIz 0> 0 ©)
here || - ||2 represents the L2 norm, and « is a hyper-parameter.

After establishing the optimal prototype classifier P, we
freeze its parameters during the SGG training phase and ap-
ply the class-balanced loss [23] along with the triplet loss to
optimize the feature refinement module. To compute the class-
balanced loss L1, we first calculate the classification score y,,
as the cosine similarity between the relation representation r
and the prototypes P
. r-P

x| P2

The classification score guides the computation of the class-
balanced loss L1, which addresses the long-tail distribution
by reweighting classes based on their frequency, as detailed in
[23]. Additionally, we introduce a triplet loss Ly, to enhance
the feature refinement by ensuring that the relation representa-
tion r is positioned closer to its ground truth prototype while
being sufficiently distant from others in the Euclidean space.
To achieve this, we first compute the Euclidean distances D
between r and all prototypes in P

D={Jr—pil}| pi €P.0<i<n}

Yp (10)

an

where n is the number of relation classes.

The positive distance d is defined as the Euclidean distance
between r and its ground truth prototype pg, ie., dy = |lr —
Pgt||3. For the negative distance d_, we select a subset of k
negative prototypes P~ by identifying the k£ nearest prototypes
based on Euclidean distances, excluding the ground truth proto-
type. The negative distance d_ is then computed as the average
distance to these selected prototypes

1
d- =~ > e - pill3

piEP~

12)
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Algorithm 1: Prototype Classifier Construction.

1: Initialize prototype matrix P = [p1, ..., p,] € R with
values sampled from uniform distribution Z/(—1, 1)

2: for epocht =1...T do

3: Randomly select n’ prototypes from P

4: Compute Gaussian potential kernel for each selected

prototype p; using (9)
Compute the prototype regularization loss £, using (7)
Update P by minimizing £,

end for

return P

The triplet loss Ly, is then formulated to enforce a margin
between the positive and negative distances

‘Ctp = maX(O, d+ — d_ —+ 6) (13)

where § is a margin hyperparameter that controls the separation
threshold.

In summary, we present Algorithm 1 to describe the estab-
lishment process of the prototype classifier.

2) WKT: To enhance the precision of relation classifica-
tion, we propose the WKT module. This module synergistically
leverages the balanced geometric configuration prior of the pro-
totype classifier, while empowering the learnable classifier to
refine the decision boundaries. Specifically, this module trans-
forms the prototypes P into the weights W of the learnable
classifier through a MLP composed of two linear layers, each
followed by batch normalization and ReLU activation, formal-
ized as

W, = WKT(P). (14)

The WKT module is of paramount importance to the entire
collaborative mechanism, facilitating a dynamic interplay be-
tween the prototype and learnable classifiers. While the proto-
type classifier, pre-trained with an optimal balanced geometric
configuration (e.g., a simplex equiangular tight frame), maxi-
mizes inter-class separation, its fixed decision boundaries may
not effectively adapt to the varying feature distributions across
classes. The WKT module addresses this limitation by enabling
the learnable classifier to dynamically adjust these boundaries.
It inherits the prototype’s prior knowledge of relation class dis-
tributions while optimizing the decision surface to better fit the
complex feature distributions of both head and tail predicates.
Moreover, this process enhances the learning efficiency of the
learnable classifier.

3) Learnable Classifier: To address the limitations of the
prototype classifier’s rigid decision boundary, we design the
learnable classifier as a complementary component. Leveraging
the knowledge transferred via the WKT module, the learnable
classifier dynamically refines the decision boundary, formulated
as follows:

15)

where b is a learnable bias parameter, and y; denotes the
classification score of the learnable classifier to predict the
relationship class.

yl:W1r—|—b
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Importantly, the predicted relationship, obtained from y;,
serves as the semantic basis for behavioral understanding, en-
abling our framework to extract socially meaningful patterns
from visual content. This makes y; not only a decision output,
but also a bridge connecting low-level visual representations
with high-level behavioral-cultural interpretation.

To optimize the learnable classifier independently, we em-
ploy the class-balanced loss L2, which focuses on refining
its parameters without propagating gradients to the feature re-
finement module, as illustrated in Fig. 2. This design ensures
that the feature refinement module remains unaffected by the
optimization of the learnable classifier, allowing for a more
stable training process. Tailored to mitigate the long-tail bias,
the class-balanced loss L. assigns higher weights to tail
predicates, encouraging the learnable classifier to pay greater
attention to underrepresented classes.

To further enhance the adaptability of the learnable classi-
fier’s decision boundaries, we introduce a collaborative con-
straint term L., formulated as follows:

L. =max(0, Lopz — Lep1 + ) (16)

where v is a hyper-parameter.

The collaborative constraint term L. plays a pivotal role in
ensuring that the learnable classifier benefits from the prototype
classifier’s guidance while dynamically adjusting its decision
boundary to better fit the data distribution. By enforcing a mar-
gin between the performance of the learnable classifier (mea-
sured by L.p2) and that of the prototype classifier (measured
by L.p1), this term encourages the learnable classifier to out-
perform the prototype classifier, particularly in scenarios requir-
ing fine-grained distinctions. This collaborative mechanism not
only mitigates the rigidity of the prototype classifier’s decision
boundary but also enhances the model’s ability to generalize
across diverse relation categories.

During the SGG training stage, the overall training loss L is
defined as

L= PB1Lep1 + BoLip + B3Lova + Bale

where the hyper-parameters 31, B2, 83, and 4 are tuned to
balance the relative contributions of each loss term, ensuring
that the CDC framework achieves both robustness and accuracy
in fine-grained relation prediction. The class-balanced loss L1
and triplet loss L, focus on optimizing the feature refinement
module guided by the prototype classifier, while L.p2 and L.
refine the learnable classifier’s performance. The balanced loss
configuration enhances the CDC framework’s generalization
across diverse IoST-driven scenarios, such as behavioral analy-
sis in smart environments, where precise predicate classification
is vital for downstream tasks.

In summary, we design Algorithm 2 to describe the CPC
module.

a7

IV. EXPERIMENT AND ANALYSIS
A. Experimental Settings

We evaluate our method on two commonly used SGG
datasets, namely VG [29] and GQA [30]. The VG dataset

Algorithm 2: The Collaborative Predicate Classifier (CPC)
Module.
Input: Pre-trained prototype matrix P € R?*", relation rep-
resentation r
Output: Classification score y;
1: Step 1: Prototype Classification

: Compute prototype classifier score y;, < %ﬁ:

2

3: Step 2: Weight Knowledge Transfer IrllPls

4: Compute learnable classifier weights Wy < WKT(P)

5: Step 3: Learnable Classification with Dynamic Bound-
ary Adjustment

6: Compute learnable classifier score y; < W r + b

7: if training then

8: Compute class-balanced loss Lp1, Lepa

9: Compute triplet loss Ly,

10: Compute collaborative constraint term L.

11: Total loss £ « Blﬁcbl + 52‘Ctp + 63£cb2 + B4»Cc
12: Parameter update

13: else

14: Inference: Use learnable classifier to get prediction y;
15: end if

16: return y;

is the most prevalent benchmark, containing 108 000 images.
Each image is annotated with an average of 38 objects and 22
relationships. In this article, we adopt the widely used VG150
split for VG. This split collects images from the social platform
Flickr and retains the 150 most frequent object categories and
50 predicate categories. We use 70% of the images for training,
30% for testing, and 5000 images from the training set for
validation. The GQA dataset, derived from VG, refines anno-
tations by removing inaccurate predicates and enriching object
and relation labels. For GQA, we use the GQA200 split, which
includes 200 object categories and 100 predicate categories.

We evaluate our method on three tasks: 1) predicate clas-
sification (PredCls) infers the predicates of entity pairs with
ground-truth bounding boxes and class labels; 2) scene graph
classification (SGCls) predicts both the entity class labels and
their pairwise relationships with ground-truth bounding boxes;
and 3) scene graph detection (SGDet) jointly detects entities
and their pairwise relationships from raw images without access
to ground-truth bounding boxes and labels, making it a more
challenging and realistic SGG setting.

Consistent with recent works [6], [21], [25], [31], we evaluate
the performance of SGG methods on the VG150 and GQA200
datasets using two standard metrics: Recall@K (R@K) and
mean Recall @K (mR@K). While R@K measures the propor-
tion of correct triplets among the top-K predictions, it is in-
herently biased toward head predicates due to their higher fre-
quency. In contrast, nR@K computes the average R@K across
all predicate classes, thus offering a more balanced evaluation
that highlights the model’s performance on rare tail predicates.
As such, mR@K serves as a more informative and critical
metric for assessing fine-grained relation understanding under
long-tail distributions.
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TABLE 1
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART SGG METHODS ON VG DATASET
Methods PredCls SGCls SGDet
R@50/100 mR@50/100 | R@50/100 mR@50/100 | R@50/100 mR@50/100

VTransE [14] 65.7/67.6 14.7/15.8 38.6/39.4 8.2/8.7 29.7/34.3 5.0/6.1

MOTIFS [16] 65.2/67.0 14.8/16.1 38.9/39.8 8.3/8.8 32.8/37.2 6.8/7.9

VCTree [17] 65.4/67.2 16.7/18.2 46.7/47.6 11.8/12.5 31.9/36.2 7.4/8.7

GPS-Net [8] 65.2/67.1 15.2/16.6 37.8/39.2 8.5/9.1 31.3/35.9 6.7/8.6
BGNN [9] 59.2/61.3 30.4/32.9 37.4/38.5 14.3/16.5 31.0/35.8 10.7/12.6
BPL-SA® [35] 50.7/52.5 29.7/31.7 30.1/31.0 16.5/17.5 23.0/26.9 13.5/15.6

HL-Net [15] 67.0/68.9 -/22.8 42.6/43.5 -/13.5 33.7/38.1 -/9.2
RU-Net[19] 67.7/69.6 -/24.2 42.4/43.3 -/14.6 32.9/37.5 -/10.8
GCL® [36] 42.7/44.4 36.1/38.2 26.1/27.1 20.8/21.8 18.4/22.0 16.8/19.3
NICE [37] 55.1/57.2 29.9/32.3 33.1/34.0 16.6/17.9 27.8/31.8 12.2/14.4
IETrans® [38] 48.6/50.5 35.8/39.1 29.4/30.2 21.5/22.8 23.5/27.2 15.5/18.0
HetSGG [39] 57.8/59.1 31.6/33.5 37.6/38.7 17.2/18.7 30.0/34.6 12.2/14.4
DKBL® [40] 57.2/58.8 29.7/32.2 32.7/33.4 18.2/19.4 27.0/30.7 12.6/15.1
CV-SGG [21] 58.2/62.4 32.6/36.2 -/- -/- 27.8/32.0 14.6/17.0
INF® [41] 51.5/55.1 24.7/30.7 32.2/33.8 14.5/17.4 23.9/27.1 9.4/11.7
PE-Net [6] 64.9/67.2 31.5/33.8 39.4/40.7 17.8/18.9 30.7/35.2 12.4/14.5
SQUAT [42] 55.7/57.9 30.9/33.4 32.9/34.3 17.5/18.9 24.5/28.9 14.1/16.5
CFA® [20] 54.1/56.6 35.7/38.2 34.9/36.1 17.0/18.4 27.4/31.8 13.2/15.5
EICR® [43] 55.3/57.4 34.9/37.0 34.5/35.4 20.8/21.8 27.9/32.2 15.5/18.2

VETO [25] 64.2/66.3 22.8/24.7 35.7/36.9 11.1/11.9 27.5/131.5 8.1/9.5

HiKER-SGG [44] -/- 39.3/41.2 -/- 20.3/21.4 -/- -/-

DPL? [31] 54.4/56.3 33.7/37.4 32.6/33.8 18.5/20.1 24.5/28.7 13.0/15.6
SBG® [45] 55.4/57.3 32.1/34.4 34.9/35.7 17.5/18.6 27.0/31.3 13.8/16.1
CooK+TF-I-IDF [46] 60.4/62.3 35.4/37.2 36.4/37.6 19.1/20.3 27.7/132.7 14.2/16.3
CDC (Ours) 37.9/42.3 43.6/47.4 23.6/26.0 24.4/26.8 23.3/27.6 17.3/20.3

Note: “¢” denotes MOTIFS with a model-agnostic method. The best and second best results are respectively marked

in red and underline blue.

In this article, the pretrained Faster R-CNN [27] with
ResNeXt-101-RPN [32], [33], [34] is utilized to detect objects
in the images, following previous works [6], [25]. We optimize
our method via SGD optimizer for 60 000 iterations, starting
with a learning rate of 1072 and a batch size of 8. We set
the loss weight parameters (31, B2, B3 and 34 as 10, 1, 10 and
1, respectively. For other hyper-parameters, we set v = 0.01,
o =2, and J = 0.95. Moreover, k is set to 30 for VG, and 90
for GQA. All experiments are carried out using PyTorch and
trained with an NVIDIA GeForce RTX 3090 GPU.

B. Overall Performance Comparison

Aiming to evaluate the effectiveness of our proposed CDC,
we compare its performance against several state-of-the-art
SGG methods on VG and GQA datasets in this section.

1) VG: In Table I, we present a comprehensive perfor-
mance comparison of our CDC method against state-of-the-
art SGG methods on the VG150 dataset, emphasizing fine-
grained relation modeling under long-tail distributions. Among
all evaluated methods, CDC achieves the highest mR@K
scores across all three SGG tasks. Specifically, CDC attains
mR@50/mR@100 of 43.6/47.4 in PredCls, 24.4/26.8 in SG-
Cls, and 17.3/20.3 in SGDet, consistently outperforming all
competing methods. This consistent superiority across tasks
underscores CDC’s robust capability in capturing fine-grained
and long-tail relationships, an area where most prior approaches
struggle due to their bias toward frequent head categories.
Moreover, CDC maintains this advantage even in the more
challenging SGDet setting, where object detection and relation

prediction are jointly performed, highlighting its end-to-end
effectiveness under noisy visual conditions.

Compared with the baseline PE-Net [6], CDC demonstrates
significant improvements in addressing long-tail problems. In
PredCls, CDC’s mR@50 of 43.6 and mR @100 of 47.4 outper-
form PE-Net’s 31.5 and 33.8 by relative increases of 38.4%
and 40.2%, respectively. Similarly, in SGCls, CDC achieves
mR@50 of 24.4 and mR@100 of 26.8, surpassing PE-Net’s
17.8 and 18.9 by 37.1% and 41.8%. In SGDet, CDC further
improves upon PE-Net’s mR@50 and mR@100 of 12.4 and
14.5, reaching 17.3 and 20.3, which constitute relative gains
of 39.5% and 40.0%. This marked enhancement stems from
CDC’s cooperative dual-classifier architecture, which integrates
feature refinement and dynamic decision boundary adjustment
to effectively distinguish subtle differences in predicate seman-
tics. By leveraging fine-grained representations and adjusting
decision boundaries, CDC mitigates the overfitting to dominant
categories observed in PE-Net, enabling a more balanced and
accurate representation of long-tail distributions. These results
highlight CDC’s potential for applications requiring nuanced
scene understanding, such as social interaction analysis, where
rare relationships are critical.

2) GQA: In Table II, we present a comprehensive perfor-
mance comparison of our CDC method against state-of-the-art
SGG methods on the GQA200 dataset, which poses a more
fine-grained and semantically diverse challenge compared with
VG150. Across all three SGG tasks, CDC achieves the highest
mR @K scores, demonstrating its superior generalization ability
across a broader range of relations. Specifically, CDC obtains
mR@50/100 of 40.3/42.7 in PredCls, 18.6/19.8 in SGCls, and
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TABLE II
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART SGG METHODS ON GQA200 DATASET
Methods PredCls SGCls SGDet
R@50/100 mR@50/100 | R@50/100 mR@50/100 | R@50/100 mR@50/100
VTransE [14] 55.7/57.9 14.0/15.0 33.4/34.2 8.1/8.7 27.2/30.7 5.8/6.6
MOTIFS [16] 65.2/66.8 16.4/17.1 34.2/34.9 8.2/8.6 28.9/33.1 6.4/7.7
VCTree [17] 63.8/65.7 16.6/17.4 34.1/34.8 7.9/8.3 28.3/31.9 6.5/7.4
CFA® [20] -/- 31.7/33.8 -/- 14.2/15.2 -/- 11.6/13.2
GCL® [36] 44.5/46.2 36.7/38.1 23.2/24.0 17.3/18.1 18.5/21.8 16.8/18.8
EICR® [43] 56.4/58.1 36.3/38.0 28.8/29.4 17.2/18.2 24.6/28.4 16.0/18.0
VETO [25] 64.5/66.0 21.2/22.1 30.4/31.5 8.6/9.1 26.1/29.0 7.0/8.1
DPL® [31] 50.3/52.3 31.6/33.9 25.0/25.9 13.3/14.4 15.0/19.0 11.1/13.1
CDC (Ours) 36.9/40.1 40.3/42.7 19.0/20.5 18.6/19.8 16.2/19.8 17.1/19.2
Note: “o” denotes MOTIFS with a model-agnostic method. The best and second best results are respectively
marked in red and underline blue.
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Fig. 5.  Comparison of R@100 of all predicate classes under the PredCls task on the VG dataset. Predicates are sorted in decreasing order of sample

frequency, and are divided into three groups: Head (red), body (green), and tail (blue).

17.1/19.2 in SGDet, consistently outperforming both traditional
pipelines such as MOTIFS and VCTree, which favor high-
frequency patterns, and model-agnostic designs such as CFA,
GCL, and EICR. This consistent superiority highlights CDC’s
capacity to recover rare and diverse relations, even under the
compounded noise of joint object detection and relation infer-
ence in SGDet.

While CDC significantly improves the performance on tail
predicates, as reflected by substantial gains in mR@K, we
observe a slight drop in head class performance. This trade-off
emerges not from an explicit suppression of head classes, but
rather from CDC’s capacity to allocate greater representational
focus to underrepresented relations through its dual-classifier
design. In practice, this trade-off is often beneficial in down-
stream tasks that require nuanced understanding of less frequent
but semantically meaningful relationships, such as safety-aware
perception, long-tail human—object interaction understanding,
and behavioral-cultural modeling in IoST environments.

C. Detailed Performance Comparison

In this section, we conduct an in-depth evaluation of the pro-
posed CDC framework by comparing its performance against
the baseline PE-Net [6] on the VG150 dataset, focusing on per-
class predicate recognition and classification consistency.

First, we analyze the performance across different frequency
classes compared with PE-Net in Fig. 5. Specifically, we
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M PE-Net
mCDC
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Fig. 6. Comparison of mR@100 for head, body, and tail predicate groups
under the PredCls task on the VG dataset.

divide the 50 predicate classes into three groups based on in-
stance counts in the training set: head (7), body (23), tail (20),
and provide comparison of groups in Fig. 6. In comparison
with PE-Net, our CDC successfully identifies all 50 predicates,
while PE-Net fails to classify 6 of them. Additionally, CDC
demonstrates performance improvements in R@ 100 for 35 rela-
tions, predominantly those fine-grained body and tail relations.
Notably, CDC successfully identifies the relation “flying in”,
which has only four training samples but achieves an R@100
of 66.67%. As shown in Fig. 6, CDC outperforms PE-Net in
mR@100 for both the body and tail groups, achieving 0.49
versus 0.41 (a 19.5% relative increase) for the body group
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TABLE 1II
ABLATION STUDIES ON EACH COMPONENT OF CDC
Exp Module PredCls SGCls
P L W C |R@0 R@100 mR@50 mR@100 | R@50 R@100 mR@50 mR@100
o | X X X X | 308 418 36.1 385 273 28.5 21.4 224
1 v X X X| 518 62.2 37.2 41.1 35.0 37.8 20.6 226
2 |V vV X X | 50 56.7 7.4 9.2 283 317 4.0 52
3 |V vV v X 360 402 434 47.0 21.8 242 24.0 26.4
4 |V vV V| 319 423 43.6 474 23.6 26.0 24.4 26.8

Note: “P”, “L”, “W”, and “C” denote the fixed prototype classifier, the learnable classifier, the weight knowledge transfer

module, and the collaborative constraint term, respectively.

and 0.46 versus 0.13 (a 253.8% increase) for the tail group.
Although PE-Net achieves higher mR @100 in the head group
(0.67 versus CDC'’s 0.45), CDC'’s substantial gains in the body
and tail groups highlight its superior ability to handle fine-
grained and long-tail predicates, addressing the key challenge
in SGG.

Second, we visualize the confusion matrices on the VG150
dataset to further investigate the classification consistency of the
CDC framework in comparison with the baseline PE-Net [6].
As shown in Fig. 7(a), PE-Net’s confusion matrix reveals a sig-
nificant bias toward head predicates, such as “on”, which dom-
inate the predictions. Many tail predicates, including “painted
on”, “on back of”, and “growing on”, are frequently misclassi-
fied into head categories, resulting in low-recall or even absent
predictions for numerous tail classes. This indicates that PE-
Net struggles to capture the diversity of fine-grained relations,
particularly those underrepresented tail predicates, leading to
an imbalanced scene graph representation.

In contrast, the confusion matrix of CDC [Fig. 7(b)] exhibits
a prominently highlighted diagonal, demonstrating that all 50
predicates are successfully recognized with high recall across
categories. Notably, CDC not only achieves more balanced pre-
dictions across head, body, and tail predicates but also reassigns
many instances that are previously predicted as head predicates

by PE-Net (e.g., “on,” “has”) to more informative tail predicates
(e.g., “sitting on”, “belonging to”). This reassignment enhances
the informativeness of the generated scene graphs by uncover-
ing nuanced relationships that PE-Net tends to overlook. For
instance, predicates such as “flying in”, which are nearly ab-
sent in PE-Net’s predictions, show significant recall in CDC’s
confusion matrix, reflecting its superior capability in addressing
long-tail challenges. These improvements stem from CDC’s
cooperative dual-classifier architecture, which dynamically ad-
justs decision boundaries to better accommodate tail predicates,
thereby producing more comprehensive and equitable scene
graphs.

D. Ablation Studies

1) Ablation on Model Components: To assess the contri-
bution of each component in the CDC framework, we conduct
ablation studies on the VG150 dataset, with results summarized
in Table III. In Exp0, we use a learnable prototype classifier op-
timized with the class-balanced loss and triplet loss to recognize
relations. In Expl, we evaluate the baseline performance using
only the fixed prototype classifier (P) for predicate classifica-
tion, establishing a foundation for coarse relation prediction.
Exp2 introduces the learnable classifier (L) to refine decision
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TABLE IV
HYPERPARAMETER ANALYSIS OF THE MARGIN §

5 PredCls
R@50 R@100 mR@50 mR@100
0.90 36.2 40.7 43.0 46.8
0.95 37.9 42.3 43.6 47.4
1.00 38.6 43.7 41.3 46.3

Note: The best results are shown in boldface.

boundaries, aiming for more precise classification. Exp3 incor-
porates the WKT module (W) to enhance the adjustment of
decision boundaries, and Exp4 adds the collaborative constraint
term (C) to ensure robust and efficient decision boundary ad-
justments, completing the full CDC framework.

The results in Table III reveal the impact of each component
on both the PredCls and SGCls tasks. In Expl, relying solely on
the prototype classifier yields strong R@K scores (57.8 R@50
and 62.2 R@100 in PredCls; 35.0 R@50 and 37.8 R@100
in SGCls), indicating its effectiveness in capturing common
relations. However, its mR @K scores (37.2 mR@50 and 41.1
mR@100 in PredCls) suggest limited capability in handling
long-tail predicates. In contrast, Exp0, using a learnable proto-
type classifier, exhibits poorer unbiasedness between head and
tail categories, sacrificing recall on head categories. This com-
parison reinforces our decision to adopt the fixed prototype clas-
sifier in subsequent experiments, as it provides a more balanced
foundation for relation prediction. Additionally, our motivation
to enable the learnable classifier to inherit the equidistributed
structure of the fixed prototype further supports this choice. In-
corporating the learnable classifier in Exp2 (P + L) significantly
reduces R@K (e.g., 52.0 R@50 in PredCls) and mR@K (7.4
mR@50 and 9.2 mR@100 in PredCls), highlighting that the
learnable classifier alone disrupts the balance achieved by the
prototype classifier, likely due to overfitting to head categories
without proper guidance. The introduction of the WKT module
in Exp3 (P + L + W) markedly improves mR @K (43.4 mR@50
and 47.0 mR @100 in PredCls; 24.0 mR @50 and 26.4 mR @100
in SGCls), demonstrating its critical role in guiding the learn-
able classifier to recalibrate decision boundaries effectively,
thus enhancing the model’s ability to capture fine-grained and
long-tail relations. However, the R@K scores remain lower
(36.0 R@50 in PredCls), reflecting a trade-off for improved
graph diversity. Finally, Exp4 (P + L + W + C) incorporates
the collaborative constraint term, achieving the best mR@K
performance (43.6 mR@50 and 47.4 mR @100 in PredCls; 24.4
mR @50 and 26.8 mR@100 in SGCls) while slightly boosting
R@K (37.9 R@50 and 42.3 R@100 in PredCls), indicating
that the constraint term stabilizes the recalibration process and
improves overall robustness.

These findings underscore the synergistic effect of CDC’s
components. The prototype classifier provides a robust foun-
dation for coarse classification, while the learnable classifier,
guided by the WKT module and the collaborative constraint
term, refines decision boundaries to excel in fine-grained rela-
tion modeling, particularly for long-tail predicates. This coop-
erative mechanism ensures a balanced trade-off between recall

on common relations and diversity in rare relations, thereby
validating the effectiveness of the full CDC framework in ad-
dressing the long-tail challenge in SGG.

2) Geometric Properties of the Prototype Classifier: The
effectiveness of the fixed prototype classifier fundamentally
relies on its ability to maintain large inter-class separation in
the embedding space, thereby alleviating the feature overlap
issues prevalent in long-tail relation distributions. To validate
this property, we visualize and compare the prototypes of our
method and PE-Net in Fig. 8. Specifically, we analyze two
key geometric metrics, the pairwise cosine similarity among all
prototypes and their pairwise Euclidean distances.

Fig. 8(a) and (b) presents the cosine similarity heatmaps
among prototypes. Compared with PE-Net, whose certain pro-
totype pairs show high cosine similarity, our method yields a
nearly orthogonal configuration, with similarity scores close to
0. This indicates that the learned prototypes are well-separated
in the angular space.

Fig. 8(c) and (d) further shows the Euclidean distance
heatmaps. It can be observed that PE-Net tends to produce pro-
totypes with relatively small Euclidean distances for some class
pairs, which reflects a potential tendency toward class overlap
in the embedding space. In contrast, our approach achieves
uniformly large Euclidean distances, with most distances ap-
proaching 1.43, which confirms that the prototypes are not only
angularly decorrelated but also spatially dispersed.

Overall, these results demonstrate that the proposed fixed
prototype classifier effectively enforces a discriminative struc-
ture where interclass prototypes are evenly distributed in the
embedding space, reducing the risk of feature confusion espe-
cially among tail classes.

3) Analysis on Margin Hyperparameter: To assess the
influence of the triplet loss margin 6 on model perfor-
mance, we conduct the experiment by varying ¢§ in the range
{0.90,0.95,1.00}. Table IV reports the results under the Pred-
Cls setting.

We observe that § =1.00 achieves the highest Recall@K
(R@50 and R@100), indicating a slight improvement in overall
retrieval capability. However, 6 = 0.95 yields the best mean Re-
call (mR@50 and mR@100), reflecting more balanced perfor-
mance across head and tail predicates, which is critical for fine-
grained relation recognition under long-tail distributions. Given
that the main objective of this work is to enhance fine-grained
and unbiased predicate classification, we adopt § = 0.95 as the
final setting in all experiments.

E. Complexity Analysis

To assess model complexity, we report the inference time
and network size of our CDC method and several baselines in
Table V. Concretely, for the inference time, we record time (s)
for inferring a single image of VG dataset (i.e., batchsize = 1).
For the network size, we count the total parameters of the whole
models (i.e., the object detector is also considered). We employ
one NVIDIA GeForce RTX 3090 device for the experiment,
and all results are based on the same pretrained Faster-RCNN
(backbone: ResNeXt-101-FPN).
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Visualization of prototype geometric structure. (a) and (b) Cosine similarity between prototypes learned by PE-Net and our method CDC, respectively.

(c) and (d) Euclidean distance heatmaps showing interprototype separation. Our method exhibits greater angular diversity and spatial dispersion.

TABLE V
COMPARISON OF INFERENCE TIME AND NETWORK SIZE

Methods Inference Time (s)  Params (M) SGDet mR@ 100
MOTIFS [16] 0.09 367 7.9
VCTree [17] 0.07 358 8.7

PE-Net [6] 0.31 411 14.5
DPL® [31] 0.06 368 15.6
CDC (Ours) 0.29 459 20.3

Note: “¢o” denotes MOTIFS with a model-agnostic method.

As demonstrated in Table V, the proposed CDC has a mod-
erate increase in network parameters. Specifically, CDC incurs
a 48M increase in parameters compared with PE-Net due to
the incorporation of the cooperative dual-classifier and knowl-
edge transfer modules. Nevertheless, it achieves a substantial
improvement of 5.8% in mR@ 100, demonstrating a favorable
trade-off between model complexity and performance. In terms
of inference efficiency, CDC maintains a competitive inference
time of 0.29 s per image, slightly faster than PE-Net (0.31 s).
Although traditional approaches such as MOTIFS and VCTree,
along with the recent method DPL, involve fewer parameters
and are expected to offer faster inference speed, their SGG per-
formance remains considerably lower. This demonstrates that
the marginal increase in complexity brought by CDC remains
practical and is well justified by its substantial improvements
in fine-grained and unbiased SGG performance.

F. Visualization Results

In this section, we compare the generated scene graphs of the
baseline PE-Net and CDC. As illustrated in Fig. 9, the proposed
CDC generates more semantically informative triplets, such
as (woman, playing, racket) versus (woman, holding, racket),
(man, lying on, surfboard) versus (man, on, surfboard), and
(clock, mounted on, building)  versus (clock, on, building).
These examples highlight CDC’s ability to discern subtle
behavioral and spatial dynamics, elevating the granularity
of scene understanding. Additionally, the results underscore
the effectiveness of our method in leveraging social device
data to capture intricate behavioral patterns across ‘“man—
man”, “man—machine” and “machine-machine” interactions.
This improvement is evident in its capacity to model
dynamic actions (e.g., “playing” versus “holding”) and spatial

PE-Net cDC
behin covered i
tree on hill tree growing on- hill
behind behind behind behind
dogtwatchécow dogtwatchy cow
near and
woman shirt woman shirt
wearing—Q wearing —»Q
of  has [ holding belongingto has  playing,
hair racket hair racket
has has
letter letter
N
clock window clock window
has has
on on mounted on part of
under building under building
sign sign
% %
(. 2
man hair man hair
T_ has — @ has — @
on lying on
surfboard surfboard
J

Fig. 9.  Visualization results of PE-Net (in green) and CDC (in blue) under
PredCls task on the VG dataset. Predicates matching the ground truth are
highlighted in green. Yellow color represents predicates in head class, while
blue color represents predicates in body/tail class.

relationships (e.g., “mounted on” versus “on”), offering a more
comprehensive representation of real-world scenes.

V. CONCLUSION

In this article, we propose the CDC framework to address
the challenges of fine-grained SGG within the IoST framework,
particularly under long-tail distributions prevalent in real-world
social device data. By integrating a cooperative learning mech-
anism, CDC synergistically combines a prototype classifier,
which enforces equidistributed interclass separation to alleviate
long-tail bias, and a learnable classifier, which dynamically
adjusts decision boundaries for accurate relation prediction. To
further enhance this synergy, we introduce a WKT module and
a collaborative constraint term, ensuring robust performance
in capturing tail predicates. Comprehensive experiments on
the VG and GQA datasets validate the effectiveness of CDC,
demonstrating superior performance in fine-grained relation
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classification and improved generalization to underrepresented
predicates. Beyond advancing semantic scene understanding,
CDC offers a scalable and interpretable framework for mod-
eling complex behavioral and cultural dynamics embedded in
IoST environments, thereby offering new insights for down-
stream applications such as social behavior analysis, cultural
context reasoning, and safety-critical perception in intercon-
nected systems.
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