
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ATTENTION LAYERS PROVABLY SOLVE SINGLE-
LOCATION REGRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Attention-based models, such as Transformer, excel across various tasks but lack a
comprehensive theoretical understanding, especially regarding token-wise sparsity
and internal linear representations. To address this gap, we introduce the single-
location regression task, where only one token in a sequence determines the output,
and its position is a latent random variable, retrievable via a linear projection
of the input. To solve this task, we propose a dedicated predictor, which turns
out to be a simplified version of a non-linear self-attention layer. We study its
theoretical properties, by showing its asymptotic Bayes optimality and analyzing
its training dynamics. In particular, despite the non-convex nature of the problem,
the predictor effectively learns the underlying structure. This work highlights the
capacity of attention mechanisms to handle sparse token information and internal
linear structures.

1 INTRODUCTION

Attention-based models (Bahdanau et al., 2015), such as Transformer (Vaswani et al., 2017), have
achieved unprecedented performance in various learning tasks, including natural language processing
(NLP), e.g., text generation (Bubeck et al., 2023), translation (Luong et al., 2015), sentiment analysis
(Song et al., 2019; Sun et al., 2019; Xu et al., 2019), and audio/speech analysis (Bahdanau et al., 2016).
These developments have led to many architectural and algorithmic variants of attention-based models
(see the review by Lin et al., 2022). At a high level, the success of attention has been linked to its
ability to manage long-range dependencies in input sequences (Bahdanau et al., 2015; Vaswani et al.,
2017), since attention consists in computing pairwise dependence between input tokens according to
their projection in learned directions, independently of their location in the sequence.

On the theoretical front, however, a deeper understanding of attention-based neural networks is still
in its infancy. This limited progress is due both to the complexity of the architectures and to the
disturbing diversity of relevant tasks. A common approach to tackle these challenges is to introduce a
simplified task that models certain features of real-world tasks, followed by demonstrating a simplified
version of the attention mechanism capable of solving the task. Prominent examples of this pattern
include studying in-context learning with linearized attention (Ahn et al., 2023; von Oswald et al.,
2023; Zhang et al., 2024), topic understanding with a single-layer attention and alternate minimization
scheme (Li et al., 2023b), learning spatial structure with positional attention (Jelassi et al., 2022), and
next-token prediction with certain bigram structures (Bietti et al., 2023; Tian et al., 2023).

While these works shed light on some abilities of Transformer, they do not encompass all the
characteristics of tasks where Transformer performs well, in particular in NLP. Two features of
particular interest, which to our knowledge have not been addressed in previous theoretical studies on
Transformer, are token-wise sparsity, where relevant information is contained in a limited number
of tokens, and internal linear representations, which are interpretable representations of the input
constructed by the model.

Contributions. To understand why attention is a suitable architecture for addressing these features,
we introduce single-location regression, a novel statistical task where attention-based predictors
excel (Section 2). In a nutshell, this task is a regression problem with a sequence of tokens as input.
The key novelty is that only one token determines the prediction, and the location of this token is
a latent random variable that changes based on the input sequence. Consequently, solving the task

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

requires first identifying the location of the relevant token, which can be done by learning a latent
linear projection, followed by performing regression on that token.

To tackle this problem, we propose a dedicated predictor, which turns out to be a simplified version
of a non-linear self-attention layer. We show that this attention-based predictor is asymptotically
Bayes optimal, whereas more standard linear regressors fail to perform better than the null predictor.
We then analyze the training dynamics of the proposed predictor, when trained to minimize the
theoretical risk by projected gradient descent. Despite the non-convexity of the problem and the
non-linearity of this transformer-based method, we show that the learned predictor successfully
retrieves the underlying structure of the task and thus solves single-location regression.

Organization. Section 2 presents the mathematical framework of single-location regression, fol-
lowed by motivations from language processing. Section 3 is dedicated to defining our predictor
and explaining its connection with attention. We then move on to the mathematical study, from both
statistical (Section 4) and optimization (Section 5) points of view. Section 6 concludes the paper.

2 SINGLE-LOCATION REGRESSION TASK

In this section, we describe our statistical task, and connect it to language processing motivations.

2.1 STATISTICAL SETTING

We consider a regression scenario where the inputs are sequences of L independent random tokens1

(X1, . . . , XL) taking values in Rd. The output Y ∈ R is assumed to be given by
Y = X⊤

J0
v⋆ + ξ, (Plearn)

where J0 is a latent discrete random variable on {1, . . . , L} and, conditionally on J0,{
XJ0 ∼ N

(√
d
2k

⋆, γ2Id

)
Xℓ ∼ N (0, Id) for ℓ ̸= J0 .

In the above formulation, N (µ,Σ) denotes the normal distribution with expectation µ and covariance
matrix Σ, and Id is the identity matrix of size d× d. All vectors are considered as column matrices,
and the noise term ξ is assumed to be a centered random variable independent of X and J0, with finite
second-order moment ε2. Conditionally on J0, the tokens (Xj)1⩽j⩽L are assumed to be independent.

The parameters of the regression problem (Plearn) are the unknown vectors k⋆ and v⋆, both assumed
to be on the unit sphere Sd−1 in dimension d, i.e., ∥k⋆∥2 = ∥v⋆∥2 = 1. The output is determined
by a specific token in the sentence, indexed by the discrete random variable J0 on {1, . . . , L}. This
token can be detected via its mean, which is proportional to k⋆, contrarily to the others which have
zero mean. Once XJ0

is identified, the prediction is formed as a linear projection in the direction v⋆.
Therefore, the originality and difficulty of this task lies in the fact that the response Y is linearly
related to a single informative token XJ0

, whose location varies from sequence to sequence—in this
sense, the problem is sparse, but with a random support.

A knee-jerk reaction would be to fit a linear model to the pair (X⊤
1 , . . . , X⊤

L , Y). One might also
consider tackling the problem with classical statistical approaches dedicated to sparsity, such as
a Lasso estimator or a group-Lasso technique (Hastie et al., 2009). However, as we will see (in
Section 4), all linear predictors fail due to the unknown and changing location of J0. We note in
addition that E[∥Xℓ∥22] = d when ℓ ̸= J0, while E[∥XJ0

∥22] = d/2 + γ2d. Therefore, choosing
γ2 = 1/2 implies that tokens are of the same squared norm in expectation, whether they are
discriminatory of not. This shows that any approach based on comparing the magnitude of the tokens
does not yield meaningful results. Ultimately, it is necessary to implement a more sophisticated
approach, capable of taking into account the characteristics of the problem.

Finally, note that our task shares similarities with single-index models (McCullagh & Nelder, 1983)
and mixtures of linear regressions (De Veaux, 1989). However, in our case, solving the task requires
first learning k⋆ in order to identify J0, followed by linear regression. Thus, (Plearn) has a more
structured nature, involving sequence-valued inputs and incorporating a single-location pattern.

1For the sake of simplicity, we interchangeably use the terms “token” and “embedding”, although they have
different meanings in the NLP community.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 LANGUAGE PROCESSING MOTIVATION

The structure of the task (Plearn) is motivated by natural language processing (NLP), and more
specifically by two features, token-wise sparsity and internal linear representations, as we detail next.

Birds flying high, you know how I feel?
And, I’m feeling awful.

What have I become my sweetest friend?
Everyone I know goes ill in the end.

Birds flying high, you know how I feel?
And, I’m feeling good.

What have I become my sweetest friend?
Everyone I know goes well in the end.

(a) Examples of input-output pairs. The input is a text
containing two sentences (e.g., a question and an an-
swer), and the task is to perform sentiment analysis only
for the second sentence. The Y label is symbolized here
by shades of color, where green (resp. red) corresponds
to positive (resp. negative) feelings. The relevant in-
formation to determine the label is sparse, typically
concentrated in a single token (in grey): changing this
token flips the output label.

Initial
embeddings

Train set Test set Test OOD
tokens

Test OOD
structure

Test OOD
structure
+ tokens

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

0.50

1.00
0.95

0.64

0.75
0.69

(b) Accuracy of a logistic regression trained on em-
beddings of [CLS] tokens in the hidden layers of a
pretrained Transformer model. Initial embeddings of
[CLS] (at layer 0) are not context-aware, so they have
a pure-chance accuracy of 50%. In hidden layers, the
[CLS] token contains a representation of the sentence
that is rich enough to achieve high scores with a linear
classifier, and robust to out-of-distribution changes in
token distribution and sentence structure.

Figure 1: A simple sentiment analysis task with synthetic data, which exemplifies (a) token-wise
sparsity and (b) internal linear representations. We refer to Appendix E for details on the experiment.

Token-wise sparsity. In many NLP tasks, the most relevant information is contained in a few
tokens, where we recall that tokens correspond to small text units (typically, words or subwords),
which are embedded in Rd using a learnt dictionary. This sparsity structure is revealed by the line of
work on sparse attention (see, e.g., Martins & Astudillo, 2016; Niculae & Blondel, 2017; Correia
et al., 2019; Child et al., 2019; Jaszczur et al., 2021; Kim et al., 2022; Farina et al., 2024), which
obtains similar performance to full attention despite attending to a small fraction of tokens at each
step. To illustrate this, we consider a simple sentiment analysis task in Figure 1a, and observe that
changing one token flips the output label. This is modeled in (Plearn) by having the output Y depend
on a single token J0, whose location furthermore varies depending on the input, as in NLP.

Internal linear representations. Linear projections of internal representations of Transformer
(a.k.a. linear probing) allows to retrieve interpretable information about the input (see, e.g., Bolukbasi
et al., 2021; Burns et al., 2023; Li et al., 2023a, and references therein). Such a linear structure is
also present in the learned token embeddings that are fed as input to language models (Mikolov et al.,
2013a;b; Bolukbasi et al., 2016; Nanda et al., 2023; Wen-Yi & Mimno, 2023). In our task (Plearn),
the two directions k⋆ and v⋆ have to be learned by the model in order to solve the task. Figure 2
gives an example of such directions for the toy task described above. Note that this illustration
relies on initial embeddings, but we emphasize that similar structures also appear in the intermediate
representations of Transformer. This is shown in Figure 1b, where we observe that pretrained
Transformer architectures indeed build internal representations that are sufficient to solve the toy
NLP task with a linear classifier.

We acknowledge that our modeling of NLP tasks presents limitations such as fixed sequence length,
independent tokens, and output depending only on a single token. More complex and realistic models
could be considered, but they require costly technical adjustments. Moreover, as we argue above, our
problem (Plearn) still preserves interesting aspects of NLP tasks, which makes it a relevant test bed for
theoretical study of Transformer. Furthermore, from a statistical perspective, this is an original task

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

……

Alignment
with

 How are you doing sweetheart? To say the least, devastated.

+

=

Word
embeddings

Positional
encodings

+

=
Token

embeddings

Alignment
with

=

Figure 2: Modeling of an NLP task within our statistical setting (Plearn). The token embeddings
X1, . . . , XL are constructed by adding the embeddings of each word and a positional encoding.
For illustration purposes, we assume that each token corresponds to a word, and that the positional
encoding solely depends on the part of the sentence (before or after the question mark), which differs
from usual practice. Then, let the direction k⋆ encode both the notion of sentiment and the position
in the second part of the sentence. Thus only the last token of the sentence is aligned (positively)
with k⋆, and we have J0 = L. As for v⋆, it encodes whether the word is associated with a positive
or negative sentiment. Note that several tokens are positively or negatively aligned with v⋆, but the
output Y only depends on the token J0. This illustrates the interest of having two latent directions k⋆
and v⋆, one that filters the informative token and one that aligns with the output Y .

that requires the implementation of a customized estimation strategy. It is precisely in this context
that attention models prove their effectiveness, as we demonstrate next.

3 AN ATTENTION-BASED PREDICTOR TO SOLVE THE REGRESSION TASK

In this section, we propose a predictor adapted to the problem (Plearn) and discuss its connection with
attention. In order to make our point as clear as possible, the construction is divided into three steps.
We represent the input sequence in a matrix format X ∈ RL×d, where X = (X1|X2| · · · |XL)

⊤.

Step 1: An oracle non-differentiable predictor. If the vectors (k⋆, v⋆) ∈ (Sd−1)2 were known,
then a natural procedure to solve the task (Plearn) would be to predict Y from X via

T (X) = (Xv⋆)j0(X) = X⊤
j0(X)v

⋆ , where j0(X) = argmax
1⩽ℓ⩽L

(Xk⋆)ℓ . (1)

The argmax part detects the location J0 by exploiting the fact that all Xℓ have zero mean except
XJ0

, while the Xv⋆ part exploits the linear relationship Y = X⊤
J0
v⋆ + ξ. In a more compact format,

this ideal predictor can be rewritten as

T (X) =
L∑

ℓ=1

1argmax(Xk⋆)=ℓ(Xv⋆)ℓ ,

which is a linear regression in the direction v⋆ with non-differentiable weights depending on k⋆.

Step 2: A trainable predictor. In practice, the vectors k⋆ and v⋆ are unknown and must be
estimated from the data. In addition, the non-differentiability of the argmax function poses significant

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

optimization challenges. To solve this problem, the most common approach in machine learning
is to replace argmax with a softmax function with inverse temperature λ > 0, i.e., for z =

(z1, . . . , zL) ∈ RL, [softmax(λz)]j = eλzj/
∑L

ℓ=1 e
λzℓ . This leads us to the model

T
(soft,k,v)
λ (X) =

L∑
ℓ=1

[softmax(λXk)]ℓ(Xv)ℓ = softmax
(
λ Xk︸︷︷︸

L×1

)⊤ Xv︸︷︷︸
L×1

, (2)

where k, v ∈ Sd−1, and the superscript ‘soft’ is used to indicate the presence of the softmax function.

Step 3: The final predictor. The softmax nonlinearity, by inducing a coupling between all tokens,
significantly complicates the mathematical analysis. To alleviate this difficulty, we replace it by the
component-wise nonlinear function erf(z) = 2√

π

∫ z

0
e−t2dt, which is differentiable, increasing on R,

and such that erf(−∞) = −1 and erf(∞) = 1. We are therefore led to our operational model

T
(k,v)
λ (X) = erf

(
λXk

)⊤Xv =

L∑
ℓ=1

erf
(
λX⊤

ℓ k
)
X⊤

ℓ v , (3)

where the erf function is applied component-wise. We emphasize that empirically, this simplification
of softmax using a component-wise nonlinearity has been shown not to degrade performance in
Transformer architectures (Hron et al., 2020; Shen et al., 2023; Wortsman et al., 2023).

Connection to attention. It turns out that our estimation method finds a natural interpretation in
terms of attention models. To see this, consider a model consisting of a single attention layer with a
single head (Vaswani et al., 2017)

T
(Q,K,V,O)
λ (X) = softmax

(
λ XQ︸︷︷︸

L×p

K⊤X⊤︸ ︷︷ ︸
p×L

)
XV︸︷︷︸
L×p

O⊤︸︷︷︸
p×o

, (4)

where the dimensions p, o ∈ N∗ are hyperparameters of the model, the softmax function is applied
row by row, Q,K, V ∈ Rd×p and O ∈ Ro×p are the regular query, key, value, and output matrices,
and λ is usually taken to be 1/

√
p. In practice, the attention head is added to X via a skip connection,

which enforces o = d. In a nutshell, K detects which tokens are relevant in the sentence, V encodes
the regression coefficient, and Q encodes where we store the information.

In a supervised context, it is classical in practice to concatenate in first position an additional token
[CLS] to the tokenized sentence X (see, e.g., Devlin et al., 2019). In this context, only the first
coordinate of the output is used for the prediction task. Thus, we focus on the first row of (4),
corresponding to the embedding of [CLS], namely

T
(Q,K,V,O)
λ (X)1 = softmax

(
λ aK⊤X⊤)XV O⊤, (5)

with a = X⊤
[CLS]Q ∈ R1×p, where X[CLS] ∈ Rd denotes the embedding of the [CLS] token.

It is important to note that only considering the first output coordinate is a valid simplification for a
single attention layer, but not when multiple layers are stacked, as all coordinates of the attention
output contribute. Nevertheless, even in this latter more realistic case, the [CLS] token—or the
similar concepts of attention sinks and registers—has been empirically shown to play a crucial role
(Clark et al., 2019; Darcet et al., 2024; Xiao et al., 2024). This is also confirmed by our experiment
in Figure 1b, where we show that the [CLS] token in pretrained Transformer architectures stores
an internal representation of the sentence that is sufficient to solve simple NLP tasks with a linear
classifier. This further motivates the need to understand how information is stored in this token.

It turns out that there is a direct connection between the model T (soft,k,v)
λ (X) defined in (2) and the

attention model T (Q,K,V,O)
λ (X)1 described in (5). To see this, take o = 1, to adapt the model (5) for

univariate regression, and set p = 1, a reasonable assumption given both empirical and theoretical
evidence suggesting that Transformer parameter matrices are low-rank (Aghajanyan et al., 2021;
Kajitsuka & Sato, 2024). Then, let Q ∈ Rd×1 be any vector with positive correlation with X[CLS]
(for instance it suffices to take Q = X[CLS]), and O = 1. We then deduce that

T
(Q,K,V,O)
λ (X)1 = T

(soft,K,V)

λX⊤
[CLS]Q

(X) .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

In other words, the attention layer (5) matches the considered predictor in (2) with a softmax inverse
temperature proportional to the scalar product between X[CLS] and Q. Thus, our results, in particular
the study of the training dynamics in Section 5, can be seen as a model of how Transformer builds
internal linear representations of the input during training.

4 RISK OF THE ORACLE AND OF THE LINEAR PREDICTORS

Now that we have constructed our predictor T (k,v)
λ (see Eq. (3)), a first key question is to assess

its statistical performance. Recall that k, v ∈ Sd−1 are the two parameters of the model, and their
purpose is to approximate their theoretical counterparts k⋆ and v⋆ defined in (1). This begs in
particular the question of the performance of the oracle predictor T (k⋆,v⋆)

λ . To answer these questions,
we introduce the risk of the predictor, which is measured by the mean squared error

Rλ(k, v) = E
[(

Y − T
(k,v)
λ (X)

)2]
. (6)

To proceed with the analysis, we make the following assumption.
Assumption 1. The vectors k⋆, v⋆ ∈ Sd−1 are orthogonal, i.e., k⋆⊤v⋆ = 0.

This assumption is made everywhere in the paper, even though it is not reminded explicitly at each
result. This assumption is relatively mild in a high-dimensional setting where any two independent
vectors uniformly distributed on the sphere are close to being orthogonal.

Oracle predictor. Our first result characterizes the risk of the proposed transformer model (3) with
oracle parameters (k⋆, v⋆). All the proofs of the paper are deferred to the Appendix.
Theorem 1. There exists a function R<

λ : R5 → R such that, for any (k, v) ∈ (Sd−1)2,

Rλ(k, v) = R<
λ (κ, ν, θ, η, ρ) ,

where κ := k⊤k⋆, ν := v⊤v⋆, θ := v⊤k⋆, η := k⊤v⋆, and ρ := k⊤v. A closed-form expression of
R<

λ is given in Appendix C. In particular,

Rλ(k
⋆, v⋆) = R<

λ (1, 1, 0, 0, 0)

= γ2 − 2γ2 erf

(
λ

√
d

2(1 + 2λ2γ2)

)
+ γ2ζ

(
λ

√
d

2
, λ2γ2

)
+ (L− 1)ζ(0, λ2) + ε2 ,

where, for t, γ ∈ R,

ζ(t, γ2) := E
[
erf2(t+G)

]
, G ∼ N (0, γ2) . (7)

This result is fundamental for the analysis of gradient descent studied in the next section since it
reduces the dimension of the dynamical system defined by the optimization dynamics. Before delving
into the optimization analysis, we study below the statistical optimality of the estimator Rλ(k

⋆, v⋆)
and its comparison with linear regression.

Asymptotic Bayes optimality. Let us start by observing that the Bayes risk associated with problem
(Plearn) is larger than ε2, which follows from elementary properties of the conditional expectation
(Le Gall, 2022, Chapter 11). Indeed, using the Pythagorean theorem, one easily shows that

E[(Y − E[Y |X])2] ⩾ E[(Y − E[Y |X, J0])
2] = E[ξ2] = ε2 . (8)

Then, the following corollary to Theorem 1 shows that the oracle predictor achieves the Bayes-optimal
risk in the asymptotic scaling L ≪ 1/λ2 ≪ d.
Corollary 2. Assume a joint asymptotic scaling where d → ∞ and L = o(d). Taking λ such that
λ
√
d → ∞ and λ

√
L → 0, we have

Rλ(k
⋆, v⋆) −→ ε2 .

Thus, in this asymptotic regime, the oracle predictor T (k⋆,v⋆)
λ is asymptotically Bayes optimal.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Note that Corollary 2 holds for any finite L ∈ N>0, but L may also tend to infinity, as long as
L = o(d). Let us give an intuition on why this result holds and where the scalings of L and λ
intervene. The oracle predictor can be decomposed as

T
(k⋆,v⋆)
λ (X) = X⊤

J0
v⋆︸ ︷︷ ︸

=E[Y |X,J0]

erf(λX⊤
J0
k⋆︸ ︷︷ ︸

=Θ(λ
√
d)

) +
∑
j ̸=J0

X⊤
j v⋆︸ ︷︷ ︸

=Θ(1)

erf(λX⊤
j k⋆︸ ︷︷ ︸

=Θ(λ)

) (9)

With the scaling λ
√
d → ∞, the argument of the first erf nonlinearity diverges to infinity with d.

Thus it reaches the saturating part of erf , so the first term in (9) converges to E[Y |X, J0]. On the
other hand, the argument of the erf nonlinearities inside the sum are of order λ = o(1). Thus they are
in the linear part of erf . Therefore, the sum consists of L− 1 independent terms, each of magnitude λ.
As a consequence, the whole sum is of order Θ(λ

√
L), and we get

T
(k⋆,v⋆)
λ (X) ≈ E[Y |X, J0] + Θ(λ

√
L) .

Due to the scaling λ
√
L → 0, we obtain that the second term decays to zero, and the oracle predictor

therefore implements the conditional expectation of Y given X and J0. This is the best that we
can hope for: the predictor succeeds in inferring the latent variable J0, then gives the best possible
prediction of Y given X and J0. We also see here the crucial role played by the nonlinearity erf ,
whose linear part acts for j ̸= J0 and saturating part for j = J0. In particular, such a reasoning would
not hold if we had simply taken a linear function instead of erf .

Linear model. The asymptotic optimality of our oracle predictor is particularly striking in compari-
son to the risk of the optimal linear predictor. More precisely, let

β⋆ ∈ argmin
β∈RdL

E
[
(Y − (X⊤

1 , . . . , X⊤
L)β)2

]
be the optimal linear predictor for the regression task (Plearn). Its associated risk is R(β⋆) =
E
[
(Y − (X⊤

1 , . . . , X⊤
L)β⋆)2

]
. Both the optimal predictor and its risk can be explicitly characterized

as follows.
Proposition 3. Let pj = P(J0 = j) for j ∈ {1, . . . , L}. Then the optimal linear predictor is
parameterized by

β⋆ =

b1v
⋆

...
bLv

⋆

 , bj =
γ2pj

1 + pj(γ2 − 1)
,

and its risk is

R(β⋆) = ε2 + γ2 − γ4
L∑

j=1

p2j
1 + pj(γ2 − 1)

.

In particular,
R(β⋆) ⩾ ε2 + γ2 − γ2(γ2 + 1) max

j=1,...,L
pj .

This result calls for a few comments. If the number of tokens is L = 1 or if J0 is a constant location
(meaning that one pj is equal to 1 while the others are equal to 0), then the learning problem (Plearn)
corresponds to a standard linear regression. In this case, R(β⋆) = ε2, and the linear predictor
(X1, . . . , XL) 7→ (X⊤

1 , . . . , X⊤
L)β⋆ achieves the Bayes risk. At the other end of the spectrum, in the

case where J0 is uniform over {1, . . . , L}, the formula for the risk of the linear predictor simplifies
to R(β⋆) = ε2 + γ2 − γ4

γ2+L−1 . When L → ∞, this risk tends to ε2 + γ2, that is, the performance
of the null predictor. In other words, the optimal linear predictor performs no better than always
predicting zero. More generally, this conclusion is true in any limit where L → ∞ and max pj → 0.
This can be explained by the fact that the location of the relevant token for prediction is random,
varying from sentence to sentence. Unable to leverage this latent information, the linear regressor
balances all its coefficients, resulting in uniformly poor prediction performance. This stands in sharp
contrast to Corollary 2, which shows that the oracle predictor T (k⋆,v⋆)

λ is able to account for the
complexity of the task, at least asymptotically. This is also illustrated by Figure 3, which compares
the value of the risks given by Theorem 1 and Proposition 3. However, implementing the oracle
predictor requires knowledge of the parameters k⋆ and v⋆. Our goal in the next section is therefore to
show that gradient descent is able to recover these parameters.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000
d

10−1

100

101

R
is

k

L = 5

L = 20

L = 50

Figure 3: Risk of the oracle predictor (Theorem 1, solid lines) and of the best linear predictor
(Proposition 3, dashed lines), depending on the dimensions d and L. The oracle predictor outperforms
the linear predictor when scaling d. We take ε2 = 0, γ = 1/

√
2, λ = 1/d0.4, and all pj equal to 1/L.

5 GRADIENT DESCENT PROVABLY RECOVERS THE ORACLE PREDICTOR

This section is devoted to the analysis of the optimization dynamics in (k, v) ∈ (Sd−1)2 of the risk

Rλ(k, v) = E
[(

Y − T
(k,v)
λ (X)

)2]
= E

[(
Y − erf

(
λXk

)⊤Xv)2] .
We emphasize that Rλ(k, v) is a theoretical risk, which depends on the distribution of the pair (X, Y)
(defined in Section 2). In practice, an empirical version of this risk is minimized. As we show
experimentally (see Figure 5), the stochastic dynamics induced by the empirical version of the risk are
qualitatively similar to the deterministic dynamics of the theoretical risk. Therefore, in the remainder
of the article, we focus on the theoretical risk to avoid overcomplicating the analysis. The transition
to empirical risk is left for future research.

Our optimization method is the Projected (Riemannian) Gradient Descent (PGD), described below.
Definition 1 (PGD). Given an initialization (k0, v0) ∈ (Sd−1)2, a step size α > 0, and an inverse
temperature sequence (λt)t⩾0, the sequence (kt, vt)t⩾0 ∈ (Sd−1)2 is recursively defined by

kt+1 = ProjSd−1(kt − α(Id − ktk
⊤
t)∇kRλt(kt, vt)) =

kt − α(Id − ktk
⊤
t)∇kRλt

(kt, vt)∥∥kt − α(Id − ktk⊤t)∇kRλt
(kt, vt)

∥∥
2

,

vt+1 = ProjSd−1(vt − α(Id − vtv
⊤
t)∇vRλt

(kt, vt)) =
vt − α(Id − vtv

⊤
t)∇vRλt

(kt, vt)∥∥vt − α(Id − vtv⊤t)∇vRλt(kt, vt)
∥∥
2

,

(10)

where ProjSd−1 denotes the Euclidean projection on the unit sphere of Rd.

The operators (Id − ktk
⊤
t) and (Id − vtv

⊤
t) correspond to Riemannian gradient descent (Boumal,

2023, Section 4.3), meaning that we compute the gradient of the risk on the Riemannian manifold
(Sd−1)2. In other words, the gradient step is performed on the tangent space to the sphere at the
current iterate. This is a precaution we are taking because, in the analysis of the dynamics, we rely
on an expression of the risk (6) that is valid only on this manifold. In addition, this ensures that the
subsequent projection on Sd−1 is always well-defined, despite the fact that the sphere is a non-convex
set, because iterates always avoid the pathological cases k = 0 or v = 0.

Experimentally, we observe in Figure 4a that PGD is able to recover the oracle parameters (k⋆, v⋆).
Note that running the PGD iterates (10) involves computing the gradients ∇kRλt

(kt, vt) and
∇vRλt

(kt, vt), which is non-trivial a priori. A direct approach using Monte Carlo simulations
would require a large number of sample points to reduce variance, which is computationally in-
tractable in particular in high-dimension, and in any case gives an approximate result. Instead,
we leverage our closed form formula for R<

λ from Theorem 1 to get (nearly) exact values for the
gradients. Interestingly, we also observe in Figure 4a that v aligns with v⋆ much faster than k aligns
with k⋆. This is typical of two-timescale dynamics, which is a common framework in analysis of

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 50000 100000
Step

0

2

4

6

E
xc

es
s

ri
sk

0 50000 100000
Step

0.00

0.25

0.50

0.75

1.00

A
lig

n
m

en
t

w
it

h
or

ac
le

p
ar

am
et

er
s

|κ|
|ν|

−1 0 1
κ

−1.0

−0.5

0.0

0.5

1.0

ν

0 50000 100000
Step

10−8

10−6

10−4

10−2

100

D
is

ta
n

ce
to

th
e

m
an

if
ol

d
M

(a) From a random initialization on (Sd−1)2.

0 10000 20000
Step

0

2

4

6

E
xc

es
s

ri
sk

0 10000 20000
Step

0.00

0.25

0.50

0.75

1.00
A

lig
n

m
en

t
w

it
h

or
ac

le
p

ar
am

et
er

s

|κ|
|ν|

−1 0 1
κ

−1.0

−0.5

0.0

0.5

1.0

ν

0 10000 20000
Step

10−8

10−6

10−4

10−2

100

D
is

ta
n

ce
to

th
e

m
an

if
ol

d
M

(b) From a random initialization on M (see Eq. (11)).

Figure 4: Convergence of PGD to the oracle parameters. Left: Excess risk as a function of the number
of steps. Middle left: Alignment |κ| = |k⊤k⋆| and |ν| = |v⊤v⋆| with the oracle parameters. Middle
right: Trajectories of κ and ν in two repetitions of the experiments. Each repetition corresponds
to a color, the trajectory starts in the middle and ends at a corner of the plot. Right: Distance to
the invariant manifold M. In all plots except the middle right ones, the experiment is repeated
30 times with independent random initializations, and 95% percentile intervals are plotted (but are
not visible when the variance is too small). Parameters are d = 400, L = 10, γ =

√
1/2, and (a)

λt = 1/(1 + 10−4t), (b) λt = 0.1. More details are given in Appendix E.

non-convex learning dynamics (Heusel et al., 2017; Dagréou et al., 2022; Hong et al., 2023; Marion
& Berthier, 2023; Berthier et al., 2024; Marion et al., 2024).

Moving on to the mathematical study, even with the formula for R<
λ , a full analysis of the dynam-

ics (10) is difficult. For instance, the dynamics (10) can be formulated in terms of the five variables
of R<

λ , but then one needs to study a 5-dimensional highly nonlinear dynamical system. In the
following, we consider the case where the parameters are initialized on the submanifold of (Sd−1)2

M = {(k, v) ∈ Sd−1 × Sd−1, k⊤v⋆ = 0, v⊤k⋆ = 0, k⊤v = 0} . (11)

We introduce this manifold on the one hand owing to the observation in Figure 4a(right) that the
dynamics converge to this manifold even when initialized on the sphere, and on the other hand
because this allows to reduce the problem to a lower-dimensional subspace and to simplify the
expression of the risk. Clearly, due to Assumption 1, the oracle parameters (k⋆, v⋆) belong to M. A
first key property of this manifold is invariance under the PGD dynamics.
Lemma 4. The manifold M is invariant under the PGD dynamics (10), in the sense that if (kt, vt) ∈
M, then (kt+1, vt+1) ∈ M.

This lemma shows that, if the initialization is taken on the manifold, then it is enough to understand
the dynamics on the manifold to conclude. Such analysis on the manifold is tractable. This yields
Theorem 5, our main result, which shows that the sequence (kt, vt)t⩾0 converges to the oracle values
(k⋆, v⋆) (up to a sign) as t → ∞, for any small enough step size, and a constant inverse temperature.
Theorem 5. Take a constant inverse temperature λt ≡ λ > 0. Then there exists α > 0 such that, for
any step size α ⩽ α, and for a generic initialization (k0, v0) ∈ M,

(kt, vt) −−−→
t→∞

±(k⋆, v⋆).

This result shows that, despite the non-convexity of the risk, the attention layer trained by PGD can
recover the underlying structure of the problem. Convergence to (k⋆, v⋆) or (−k⋆,−v⋆) is not at all

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

problematic, since T
(k⋆,v⋆)
λ = T

(−k⋆,−v⋆)
λ by symmetry of the erf function. Furthermore, recovery

is guaranteed for a generic initialization on M, in the sense that the pathological pairs (k0, v0) ∈ M
such that PGD fails to recover the oracle parameters are of Lebesgue measure zero. The results of
Theorem 5 are illustrated by Figure 4b. We observe that, due to roundoff errors, the dynamics are not
exactly on the manifold but stay very close to the manifold.

We emphasize that the manifold M depends on the unknown parameters k⋆ and v⋆, making it
impractical to initialize directly on the manifold. If the initialization is not on M, more diverse
phenomena are possible. As already pointed out in Figure 4a, it is possible to obtain recovery of
(k⋆, v⋆) and convergence to the manifold M from a general initialization on the sphere. This suggests
that our analysis on the manifold is relevant, and completing the analysis for a general initialization is
left for future work. However, we note that using a decreasing inverse temperature sequence λt is
crucial for the recovery of (k⋆, v⋆) when initialized out of M. Indeed, to the best of our experiments,
an iteration-independent choice of λ does not consistently lead to the recovery of k⋆ and v⋆ in this
case (see Appendix E). This contrasts with the behavior on the manifold proven in Theorem 5.

To investigate these behaviors, a fruitful direction would be to investigate the (local) stability of
the manifold M for the PGD dynamics. If the manifold is indeed stable, one can hope to transfer
the analysis on the manifold to dynamics initialized close to the manifold. Furthermore, recall that,
in high dimension, random vectors on the sphere are close to being orthogonal. Thus, with high
probability, a uniform initialization in (Sd−1)2 falls in the neighborhood of the manifold M, so that
the local analysis should allow to conclude.

The proof of the theorem relies on a detailed analysis of the dynamics of the PGD algorithm on the
invariant manifold M, in particular the properties of its stationary points. These arguments, which lie
at the intersection of dynamical systems and topology, are of independent interest. A key idea is to
reduce the problem to a two-dimensional system depending only on |κ| = |k⊤k⋆| and |ν| = |v⊤v⋆|.

0 100000 200000
Step

0

2

4

6

E
xc

es
s

ri
sk

0 100000 200000
Step

0.00

0.25

0.50

0.75

1.00

A
lig

n
m

en
t

w
it

h
or

ac
le

p
ar

am
et

er
s

|κ|
|ν|

−1 0 1
κ

−1.0

−0.5

0.0

0.5

1.0

ν

0 100000 200000
Step

10−8

10−6

10−4

10−2

100

D
is

ta
n

ce
to

th
e

m
an

if
ol

d
M

Figure 5: Convergence of stochastic PGD to the oracle parameters from a random initialization on
(Sd−1)2. Left: Excess risk as a function of the number of steps. Middle left: Alignment |κ| = |k⊤k⋆|
and |ν| = |v⊤v⋆| with the oracle parameters. Middle right: Trajectories of κ and ν in two repetitions
of the experiment. Each repetition corresponds to a color, the trajectory starts in the middle and ends
at a corner of the plot. Right: Distance to the invariant manifold M. In all plots except the middle
right one, the experiment is repeated 30 times with independent random initializations, and 95%

percentile intervals are plotted. Parameters are d = 80, L = 10, γ =
√

1/2, λt = 2/(1 + 10−4t),
and a batch size of 5. More details are given in Appendix E.

6 CONCLUSION

This paper introduced single-location regression, a novel statistical task where the relevant information
in the input sequence is supported by a single token. We analyzed the statistical properties and
optimization dynamics of a natural estimator for this task, which simplifies to a basic attention layer.
We hope this work encourages further research into how Transformer architectures address sparsity
and long-range dependencies, while simultaneously constructing internal linear representations of
their input—–an aspect with significant implications for interpretability. Beyond NLP, potential
applications include problems connected to sparse sequential modeling such as anomaly detection in
time series. A natural extension of our framework is when relevant information is spread across a few
input tokens rather than just one, which relates to multi-head attention. Future mathematical analyses
should consider extensions to general initialization schemes and stochastic dynamics. Our numerical
experiments (Figures 4a and 5) yield encouraging results in both of these directions.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In C. Zong, F. Xia, W. Li, and R. Navigli (eds.),
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 7319–7328. Association for Computational Linguistics, 2021.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems,
volume 36, pp. 45614–45650. Curran Associates, Inc., 2023.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In Y. Bengio and Y. LeCun (eds.), 3rd International Conference on
Learning Representations, 2015.

Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk, Philémon Brakel, and Yoshua Bengio. End-to-
end attention-based large vocabulary speech recognition. In 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 4945–4949, 2016.

Raphaël Berthier, Andrea Montanari, and Kangjie Zhou. Learning time-scales in two-layers neural
networks. Foundations of Computational Mathematics, pp. 1–84, 2024.

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Hervé Jégou, and Léon Bottou. Birth of a
transformer: A memory viewpoint. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and
S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36, pp. 1560–1588.
Curran Associates, Inc., 2023.

Tolga Bolukbasi, Kai-Wei Chang, James Zou, Venkatesh Saligrama, and Adam Kalai. Man is to
computer programmer as woman is to homemaker? Debiasing word embeddings. In D. Lee,
M. Sugiyama, U. von Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 29, pp. 4356–4364. Curran Associates, Inc., 2016.

Tolga Bolukbasi, Adam Pearce, Ann Yuan, Andy Coenen, Emily Reif, Fernanda Viégas, and Martin
Wattenberg. An interpretability illusion for BERT. arXiv:2104.07143, 2021.

Nicolas Boumal. An Introduction to Optimization on Smooth Manifolds. Cambridge University
Press, Cambridge, 2023.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with GPT-4. arXiv:2303.12712, 2023.

Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in
language models without supervision. In The Eleventh International Conference on Learning
Representations, 2023.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv:1904.10509, 2019.

Lénaïc Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What does BERT look
at? An analysis of BERT’s attention. In T. Linzen, G. Chrupała, Y. Belinkov, and D. Hupkes
(eds.), Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, pp. 276–286. Association for Computational Linguistics, 2019.

11

http://github.com/jax-ml/jax

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Gonçalo M. Correia, Vlad Niculae, and André F.T. Martins. Adaptively sparse transformers. In K. Inui,
J. Jiang, V. Ng, and X. Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 2174–2184. Association for Computational Linguistics, 2019.

Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. A framework for bilevel
optimization that enables stochastic and global variance reduction algorithms. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information
Processing Systems, volume 35, pp. 26698–26710. Curran Associates, Inc., 2022.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
registers. In The Twelfth International Conference on Learning Representations, 2024.

Richard D. De Veaux. Mixtures of linear regressions. Computational Statistics & Data Analysis, 8:
227–245, 1989.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational
Linguistics, 2019.

Mirko Farina, Usman Ahmad, Ahmad Taha, Hussein Younes, Yusuf Mesbah, Xiao Yu, and Witold
Pedrycz. Sparsity in transformers: A systematic literature review. Neurocomputing, 582:127468,
2024.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning. Data
Mining, Inference, and Prediction. Springer, New York, 2 edition, 2009.

Bobby He and Thomas Hofmann. Simplifying transformer blocks. In The Twelfth International
Conference on Learning Representations, 2024.

Bobby He, James Martens, Guodong Zhang, Aleksandar Botev, Andrew Brock, Samuel L Smith, and
Yee Whye Teh. Deep transformers without shortcuts: Modifying self-attention for faithful signal
propagation. In The Eleventh International Conference on Learning Representations, 2023.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. GANs
trained by a two time-scale update rule converge to a local nash equilibrium. In I. Guyon, U. von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in
Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale stochastic algorithm
framework for bilevel optimization: Complexity analysis and application to actor-critic. SIAM
Journal on Optimization, 33:147–180, 2023.

Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention: NNGP and
NTK for deep attention networks. In H. Daumé III and A. Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pp. 4376–4386. PMLR, 2020.

Sebastian Jaszczur, Aakanksha Chowdhery, Afroz Mohiuddin, Lukasz Kaiser, Wojciech Gajewski,
Henryk Michalewski, and Jonni Kanerva. Sparse is enough in scaling transformers. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, volume 34, pp. 9895–9907. Curran Associates, Inc., 2021.

Samy Jelassi, Michael Sander, and Yuanzhi Li. Vision transformers provably learn spatial structure.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 37822–37836. Curran Associates, Inc.,
2022.

Tokio Kajitsuka and Issei Sato. Are transformers with one layer self-attention using low-rank
weight matrices universal approximators? In The Twelfth International Conference on Learning
Representations, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sehoon Kim, Sheng Shen, David Thorsley, Amir Gholami, Woosuk Kwon, Joseph Hassoun, and
Kurt Keutzer. Learned token pruning for transformers. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 784–794. Association for Computing
Machinery, 2022.

Kenneth Lange. Optimization. Springer, New York, 2 edition, 2013.

Jean-François Le Gall. Measure Theory, Probability, and Stochastic Processes. Springer Cham,
2022.

Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, and Martin Wattenberg. Inference-time
intervention: Eliciting truthful answers from a language model. In A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing
Systems, volume 36, pp. 41451–41530. Curran Associates, Inc., 2023a.

Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards
a mechanistic understanding. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and
J. Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pp. 19689–19729. PMLR, 2023b.

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of transformers. AI Open, 3:
111–132, 2022.

Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-based
neural machine translation. In L. Màrquez, C. Callison-Burch, and J. Su (eds.), Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 1412–1421.
Association for Computational Linguistics, 2015.

Pierre Marion and Raphaël Berthier. Leveraging the two timescale regime to demonstrate convergence
of neural networks. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine
(eds.), Advances in Neural Information Processing Systems, volume 36, pp. 64996–65029. Curran
Associates, Inc., 2023.

Pierre Marion, Anna Korba, Peter Bartlett, Mathieu Blondel, Valentin De Bortoli, Arnaud Doucet,
Felipe Llinares-López, Courtney Paquette, and Quentin Berthet. Implicit diffusion: Efficient
optimization through stochastic sampling. arXiv:2402.05468, 2024.

Andre Martins and Ramon Astudillo. From softmax to sparsemax: A sparse model of attention and
multi-label classification. In M.F. Balcan and K.Q. Weinberger (eds.), Proceedings of The 33rd
International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pp. 1614–1623. PMLR, 2016.

Peter McCullagh and John A. Nelder. Generalized Linear Models. Chapman & Hall, London, 2
edition, 1983.

Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. Exploiting similarities among languages for machine
translation. arXiv:1309.4168, 2013a.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word
representations. In L. Vanderwende, H. Daumé III, and K. Kirchhoff (eds.), Proceedings of the 2013
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 746–751. Association for Computational Linguistics, 2013b.

Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world models
of self-supervised sequence models. In Y. Belinkov, S. Hao, J. Jumelet, N. Kim, A. McCarthy, and
H. Mohebbi (eds.), Proceedings of the 6th BlackboxNLP Workshop: Analyzing and Interpreting
Neural Networks for NLP, pp. 16–30. Association for Computational Linguistics, 2023.

Vlad Niculae and Mathieu Blondel. A regularized framework for sparse and structured neural
attention. In I. Guyon, U. von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12(85):2825–2830, 2011.

Mary Phuong and Marcus Hutter. Formal algorithms for transformers. arXiv:2207.09238, 2022.

William Press, Saul Teukolsky, William Vetterling, and Brian Flannery. Numerical Recipes: The Art
of Scientific Computing. Cambridge University Press, Cambridge, 3 edition, 2007.

Kai Shen, Junliang Guo, Xu Tan, Siliang Tang, Rui Wang, and Jiang Bian. A study on ReLU and
Softmax in Transformer. arXiv:2302.06461, 2023.

Michael Shub. Global Stability of Dynamical Systems. Springer, New York, 1987.

Youwei Song, Jiahai Wang, Tao Jiang, Zhiyue Liu, and Yanghui Rao. Attentional encoder network
for targeted sentiment classification. arXiv:1902.09314, 2019.

Charles M. Stein. Estimation of the mean of a multivariate normal distribution. The Annals of
Statistics, 9:1135–1151, 1981.

Chi Sun, Luyao Huang, and Xipeng Qiu. Utilizing BERT for aspect-based sentiment analysis via
constructing auxiliary sentence. In J. Burstein, C. Doran, and T. Solorio (eds.), Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 380–385.
Association for Computational Linguistics, 2019.

Yuandong Tian, Yiping Wang, Beidi Chen, and Simon S. Du. Scan and snap: Understanding training
dynamics and token composition in 1-layer transformer. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems,
volume 36, pp. 71911–71947. Curran Associates, Inc., 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 30, pp. 6000–6010. Curran Associates, Inc., 2017.

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, Joao Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett (eds.), Proceedings of
the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 35151–35174. PMLR, 2023.

Andrea W Wen-Yi and David Mimno. Hyperpolyglot LLMs: Cross-lingual interpretability in token
embeddings. In H. Bouamor, J. Pino, and K. Bali (eds.), Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 1124–1131. Association for Computa-
tional Linguistics, 2023.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38–45. Association for Computational Linguistics, 2020.

Mitchell Wortsman, Jaehoon Lee, Justin Gilmer, and Simon Kornblith. Replacing softmax with
ReLU in vision transformers. arXiv:2309.08586, 2023.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning
Representations, 2024.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Hu Xu, Bing Liu, Lei Shu, and Philip Yu. BERT post-training for review reading comprehension
and aspect-based sentiment analysis. In J. Burstein, C. Doran, and T. Solorio (eds.), Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2324–2335.
Association for Computational Linguistics, 2019.

Ge Yang, Edward Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning large neural networks via zero-shot
hyperparameter transfer. Advances in Neural Information Processing Systems, 34:17084–17097,
2021.

Ruiqi Zhang, Spencer Frei, and Peter L. Bartlett. Trained transformers learn linear models in-context.
Journal of Machine Learning Research, 25(49):1–55, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Appendix
Organization of the Appendix. Section A presents the main steps of Theorem 5. The intermediate
results of this proof, as well as the other statements of the main text, are proven in Section B.
Section C provides an expression of the risk R beyond the manifold M that extends the one provided
in Lemma 6 on M. Section D gives some useful technical lemmas. Finally, experimental details and
additional results are in Section E.

Notation. In the whole Appendix, we consider a constant inverse temperature schedule λt ≡ λ > 0,
as in Theorem 5. For this reason, it is not necessary to make explicit the dependence of Rλ and R<

λ
on λ, and we use the lighter notations R and R< instead.

A OUTLINE OF THE PROOF OF THEOREM 5

This section outlines the essential steps for the proof of Theorem 5. For clarity, the proofs are to be
found in Appendix B, except the proof of Proposition 10.

Step 1: Invariant manifold & reparameterization. We first show that the risk R(k, v) has a
simpler expression when considered on the manifold M.

Lemma 6. The risk R(k, v) restricted to M has the form

R(k, v) = γ2 − 2γ2v⊤v⋆ erf

(
λ

√
d

2(1 + 2λ2γ2)
k⊤k⋆

)
+ γ2ζ

(
λ

√
d

2
k⊤k⋆, λ2γ2

)
+ (L− 1)ζ(0, λ2) + ε2,

where, for t, γ ∈ R,

ζ(t, γ2) := E
[
erf2(t+G)

]
, G ∼ N (0, γ2) .

This expression has two main consequences. First, we use it to prove that the manifold M is invariant
by PGD, according to Lemma 4. Second, we observe that the risk on the manifold depends on the
variables (k, v) ∈ Sd−1 × Sd−1 only through the two scalar quantities

κ = k⊤k⋆ and ν = v⊤v⋆ .

This suggests studying the dynamics in terms of the reduced variables (κ, ν) ∈ [−1, 1]2. More
precisely, in the following, we denote by R< the risk function R reparameterized as a function of
(κ, ν), i.e., we let

R<(κ, ν) = γ2− 2γ2ν erf

(
λ

√
d

2(1 + 2λ2γ2)
κ

)
+ γ2ζ

(
λ

√
d

2
κ, λ2γ2

)
+(L− 1)ζ(0, λ2)+ ε2 .

Note that, with a slight abuse of notation, we use R< to denote both the function of five variables
(κ, ν, θ, ρ, η) (as in Theorem 1) and the function of only the first two variables (κ, ν). There should
be no confusion, as both functions coincide on the manifold M where θ = ρ = η = 0. We also
denote the corresponding PGD iterates using this reparameterization by (κt, νt) := (k⊤t k

⋆, v⊤t v
⋆).

With this notation, the following lemma reformulates the PGD iterations as an autonomous discrete
dynamical system in terms of (κt, νt).

Lemma 7. When initialized on the manifold M, the PGD iterations (10) can be reformulated in
terms of the autonomous discrete dynamical system

(κt+1, νt+1) = g(κt, νt) , (12)

where the mapping g : [−1, 1]2 → [−1, 1]2 is given by

g(κ, ν) =

(
κ− α(∂κR<(κ, ν))(1− κ2)√
1 + α2(∂κR<(κ, ν))2(1− κ2)

,
ν − α(∂νR<(κ, ν))(1− ν2)√
1 + α2(∂νR<(κ, ν))2(1− ν2)

)
. (13)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

κ

ν

•

•

•

•

•◦◦

◦ ◦

◦

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.0

0.2

0.4

0.6

0.8

1.0

(a) (b)

Figure 6: Dynamics in (κ, ν) on the manifold M. In (a), the fixed points of the dynamics are
represented; the minimizers, saddle point, and maximizers are respectively depicted in yellow, blue
and red. In (b), the vector field (κ, ν) 7→ −(∂κR<(κ, ν)(1− κ2), ∂νR<(κ, ν)(1− ν2)) is displayed
(the colormap corresponds to the magnitude of the vector field).

Step 2: Analysis of the stationary points. Regarding the dynamics restricted to the invariant
manifold M, we can characterize the limit points of the PGD iterates as follows.
Proposition 8. For a sufficiently small step size α and for any (k0, v0) ∈ M, the risk R< is
decreasing along the PGD iterates. Furthermore, the distance between successive PGD iterates tends
to zero, and, if (κ, ν) is an accumulation point of the sequence of iterates (κt, νt)t⩾0, then

(1− κ2)∂κR<(κ, ν) = 0 and (1− ν2)∂νR<(κ, ν) = 0 . (14)

We stress that the system (14) of equations corresponds to fixed points of the dynamics (12)–(13).
We next solve this system of equations.
Proposition 9. The points (κ, ν) ∈ [−1, 1]2 satisfying (14) are (κ, ν) = (±1,±1)2 and (κ, ν) =
(0, 0).

The identity (κ, ν) = (±1,±1) corresponds to the situation where the variables (k, v) are aligned
(up to sign) with the targets (k⋆, v⋆). As the next proposition shows, these are the only global minima
of R<.
Proposition 10. The fixed points of the dynamics can be classified as follows:

(i) The points (κ, ν) = (−1, 1) and (1,−1) are global maxima of R< on [−1, 1]2.

(ii) The points (κ, ν) = (1, 1) and (−1,−1) are global minima of R< on [−1, 1]2.

(iii) The point (κ, ν) = (0, 0) is a saddle point of R< on [−1, 1]2.

The fixed points of the dynamics as well as the vector field

(κ, ν) 7→ −(∂κR<(κ, ν)(1− κ2), ∂νR<(κ, ν)(1− ν2))

are displayed in Figure 6.

Step 3: Convergence to global minima. The convergence of the sequence of iterates (κt, νt)t⩾0

to a global minimum is shown in two stages. First, we show that the iterates converge to one of the
five fixed points described in Proposition 10.

2This notation is used to designate any extreme point of the square [−1, 1]2, i.e., (κ, ν) = (1, 1), (1,−1),
(−1, 1), and (−1,−1).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proposition 11. For a sufficiently small step size α, the sequence of iterates (κt, νt)t⩾0 converges to
one of the five fixed points {(±1,±1), (0, 0)}.

Proof. According to Proposition 8, the distance between successive iterates (κt, νt) tends to zero.
Therefore, the set of accumulation points of the sequence (κt, νt)t⩾0 is connected (Lange, 2013,
Proposition 12.4.1). Since there is a finite number of possible accumulation points (by Proposition 9),
we deduce that the sequence has a unique accumulation point. Furthermore, the sequence belongs to
a compact. Thus, it converges, and its limit is one of the five fixed points.

It remains to precisely characterize the limit of the sequence (κt, νt)t⩾0. To this aim, we begin by
showing key properties of the gradient mapping g.
Proposition 12. For a sufficiently small step size α, the mapping g is a local diffeomorphism around
(0, 0), whose Jacobian matrix has one eigenvalue in (0, 1) and one eigenvalue in (1,∞). Furthermore,
it is injective on [−1, 1]2, differentiable, and its Jacobian is non-degenerate.

These properties enable us to apply the Center-Stable Manifold theorem (Shub, 1987, Theorem III.7)
to deduce the next proposition.
Proposition 13. For a sufficiently small step size α, the set of initializations such that the sequence
(κt, νt)t⩾0 converges to (−1, 1), (1,−1), or (0, 0) has Lebesgue measure zero (with respect to the
Lebesgue measure on the manifold M).

Combining Proposition 11 and Proposition 13, we conclude that, provided the step size α is chosen
small enough, the sequence (κt, νt)t⩾0 almost surely converges to one of the minimizers, (1, 1) or
(−1,−1). This convergence is almost sure with respect to the Lebesgue measure on the manifold M.
Indeed, Proposition 13 ensures that the pathological initializations converging towards a maximizer
or a saddle point are of Lebesgue measure zero. This concludes the proof of Theorem 5.

B PROOFS OF THE MAIN RESULTS

B.1 PROOF OF LEMMA 6 AND THEOREM 1

We recall the formula for the risk

R(k, v) = E
[(

Y −
L∑

ℓ=1

erf(λX⊤
ℓ k)X⊤

ℓ v
)2]

and the data model

Y = X⊤
J0
v⋆ + ξ,

where

J0 ∼ U({1, . . . , L}) and

{
XJ0

∼ N
(√

d
2k

⋆, γ2Id

)
Xℓ ∼ N (0, Id) for ℓ ̸= J0.

In the above expression for the risk, we can condition on the value of J0. Actually, the conditioned
risk is independent of J0. Thus in this section, we assume without loss of generality that J0 = 1 a.s.:

R(k, v) = E
[(

X⊤
1 v⋆ + ξ − erf(λX⊤

1 k)X⊤
1 v −

L∑
ℓ=2

erf(λX⊤
ℓ k)X⊤

ℓ v
)2]

, (15)

where {
X1 ∼ N

(√
d
2k

⋆, γ2Id

)
Xℓ ∼ N (0, Id) for ℓ ⩾ 2.

We rewrite this quantity in terms of multivariate standard Gaussian random variables. Using Assump-
tion 1, we get

R(k, v) = E
[(

γX̃⊤
1 v⋆ + ξ − erf

(
λ
(√d

2
k⊤∗ k + γX̃⊤

1 k
))(√d

2
k⊤∗ v + γX̃⊤

1 v
)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

−
L∑

ℓ=2

erf(λX⊤
ℓ k)X⊤

ℓ v
)2]

,

where X̃1, X2, . . . , XL ∼ N (0, Id). This can be formulated in terms of the five scalar quantities
κ = k⊤k⋆, ν = v⊤v⋆, θ = v⊤k⋆, η = k⊤v⋆, and ρ = k⊤v. Indeed, we have

R(k, v) = R<(κ, ν, θ, η, ρ)

:= E
[(

γGv⋆

1 + ξ −
(√d

2
θ + γGv

1

)
erf
(
λ
(√d

2
κ+ γGk

1

))
−

L∑
ℓ=2

Gv
ℓ erf(λG

k
ℓ)
)2]

,
(16)

where Gv⋆

1
Gv

1

Gk
1

 , . . . ,

Gv⋆

L
Gv

L

Gk
L

 ∼
i.i.d.

N
(
0,

(
1 ν η
ν 1 ρ
η ρ 1

))
. (17)

This last expression only involves the five parameters κ, ν, θ, η, ρ, which play a role either explicitly
in the function or as parameters of the covariance of the random variables. This proves the first
statement of Theorem 1. A computation of a closed-form formula for this expectation is given in
Appendix C.

On the manifold M defined by θ = η = ρ = 0, we can simplify the expressions (16)–(17)

R<(κ, ν, 0, 0, 0) = E
[(

γGv⋆

1 + ξ − γGv
1erf

(
λ
(√d

2
κ+ γGk

1

))
−

L∑
ℓ=2

Gv
ℓ erf(λG

k
ℓ)
)2]

where
(
Gv⋆

1
Gv

1

)
, . . . ,

(
Gv⋆

L
Gv

L

)
∼

i.i.d.
N
(
0,

(
1 ν
ν 1

))
, Gk

1 , . . . , G
k
L ∼

i.i.d.
N (0, 1), and ξ ∼ N (0, ε2) are

independent.

We first expand in ξ and obtain

R<(κ, ν, 0, 0, 0) = ε2 + E
[(

γGv⋆

1 − γGv
1erf

(
λ
(√d

2
κ+ γGk

1

))
−

L∑
ℓ=2

Gv
ℓ erf(λG

k
ℓ)
)2]

.

We now expand the square, as follows:

R<(κ, ν, 0, 0, 0) = ε2 + γ2E
[
(Gv⋆

1)2
]
− 2γ2E

[
Gv⋆

1 Gv
1erf

(
λ
(√d

2
κ+ γGk

1

))]
+ γ2E

[
(Gv

1)
2erf2

(
λ
(√d

2
κ+ γGk

1

))]
− 2

L∑
ℓ=2

γE
[(

Gv⋆

1 −Gv
1erf

(
λ
(√d

2
κ+ γGk

1

)))
Gv

ℓ erf(λG
k
ℓ)
]

+

L∑
ℓ,m=2

E[Gv
ℓ erf(λG

k
ℓ)G

v
merf(λGk

m)] .

We address each term in this sum separately.

• Since Gv⋆

1 ∼ N (0, 1), γ2E
[
(Gv⋆

1)2
]
= γ2.

• Since
(
Gv⋆

1
Gv

1

)
∼ N

(
0,

(
1 ν
ν 1

))
is independent from Gk

1 ∼ N (0, 1), we have

−2γ2E
[
Gv⋆

1 Gv
1erf

(
λ
(√d

2
κ+ γGk

1

))]
= −2γ2E

[
Gv⋆

1 Gv
1

]
E
[
erf
(
λ
(√d

2
κ+ γGk

1

))]
= −2γ2νE

[
erf
(
λ
(√d

2
κ+ γGk

1

))]
.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Finally, using Lemma 18(ii), we obtain

−2γ2E
[
Gv⋆

1 Gv
1erf

(
λ
(√d

2
κ+ γGk

1

))]
= −2γ2νerf

(
λ

√
d

2

κ√
1 + 2λ2γ2

)
.

• Since Gv
1, G

k
1 ∼i.i.d. N (0, 1), we have

γ2E
[
(Gv

1)
2erf2

(
λ
(√d

2
κ+ γGk

1

))]
= γ2E

[
(Gv

1)
2
]
E
[
erf2

(
λ
(√d

2
κ+ γGk

1

))]
= γ2E

[
erf2

(
λ
(√d

2
κ+ γGk

1

))]
.

Using the definition of ζ in Eq. (7), we have

γ2E
[
(Gv

1)
2erf2

(
λ
(√d

2
κ+ γGk

1

))]
= γ2E

[
(Gv

1)
2
]
E
[
erf2

(
λ
(√d

2
κ+ γGk

1

))]
= γ2ζ

(
λ

√
d

2
κ, λ2γ2

)
.

• For ℓ = 2, . . . , L, (Gv⋆

1 , Gv
1, G

k
1), G

v
ℓ , and Gk

ℓ are independent. Thus

E
[(

Gv⋆

1 −Gv
1erf

(
λ
(√d

2
κ+ γGk

1

)))
Gv

ℓ erf(λG
k
ℓ)
]

= E
[(

Gv⋆

1 −Gv
1erf

(
λ
(√d

2
κ+ γGk

1

)))]
E
[
Gv

ℓ

]
E
[
erf(λGk

ℓ)
]
= 0 ,

where in the last step we use E[Gv
ℓ] = 0.

• Finally, to tackle the last term, we address the cases ℓ ̸= m and ℓ = m separately. If ℓ ̸= m,
as Gv

ℓ , G
k
ℓ , G

v
m, and Gk

m are independent, we have

E[Gv
ℓ erf(λG

k
ℓ)G

v
merf(λGk

m)] = E[Gv
ℓ]E[erf(λGk

ℓ)]E[Gv
m]E[erf(λGk

m)] = 0 .

If ℓ = m, as Gv
ℓ , G

k
ℓ ∼i.i.d. N (0, 1), we have

E[(Gv
ℓ)

2erf2(λGk
ℓ)] = E[(Gv

ℓ)
2]E[erf2(λGk

ℓ)] = ζ(0, λ2) .

Putting together these computations, we obtain

R<(κ, ν, 0, 0, 0) = ε2 + γ2 − 2γ2νerf
(
λ

√
d

2

κ√
1 + 2λ2γ2

)
+ γ2ζ

(
λ

√
d

2
κ, λ2γ2

)
+ (L− 1)ζ(0, λ2) .

This proves Lemma 6. Taking κ = ν = 1 proves Theorem 1.

B.2 PROOF OF COROLLARY 2

Recall that, according to Theorem 1,

Rλ(k
⋆, v⋆) = γ2 − 2γ2 erf

(
λ

√
d

2(1 + 2λ2γ2)

)
+ γ2ζ

(
λ

√
d

2
, λ2γ2

)
+ (L− 1)ζ(0, λ2) + ε2 ,

where, for t, γ ∈ R,

ζ(t, γ2) := E
[
erf2(t+ γG)

]
, G ∼ N (0, 1) .

We compute the limit of each term separately. First, we have

λ

√
d

2(1 + 2λ2γ2)
∼ λ

√
d√
2

d→∞−−−→ ∞ . (18)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Therefore, the second term of Rλ(k
⋆, v⋆) tends to −2γ2. To handle the third term, note by Jensen’s

inequality that

1 ⩾ ζ
(
λ

√
d

2
, λ2γ2

)
= E

[
erf2

(
λ

√
d

2
+ λγG

)]
⩾ E

[
erf
(
λ

√
d

2
+ λγG

)]2
.

Thus, by Lemma 18(ii),

1 ⩾ ζ
(
λ

√
d

2
, λ2γ2

)
⩾ erf2

(
λ

√
d

2(1 + 2λ2γ2)

)
→ 1 ,

where we used (18). Thus the third term of Rλ(k
⋆, v⋆) converges to γ2. As for the fourth term,

observe by Lemma 17 that

erf2(u) ⩽
4

π
u2 ,

hence
0 ⩽ ζ(0, λ2) ⩽

4

π
λ2E[G2] =

4

π
λ2 .

Since λ
√
L → 0, we get

(L− 1)ζ(0, λ2) = O(λ2L) = o(1) .

Putting everything together, we obtain

Rλ(k
⋆, v⋆)

d→∞−−−→ γ2 − 2γ2 + γ2 + 0 + ε2 = ε2 .

Since we already know by (8) that the Bayes risk is lower-bounded by ε2, this proves that the Bayes
risk is asymptotically equal to ε2, and that the oracle predictor is asymptotically Bayes optimal.

B.3 PROOF OF PROPOSITION 3

Let us first introduce a useful notation for the proof. If M is a block matrix, we denote by M[ij] its
(i, j)-th block, and likewise, if u is a block vector, we denote by u[j] its j-th block. Next, note that

E[Y 2] = ε2 + E
[
((v⋆)⊤XJ0

)2
]

= ε2 + γ2∥v⋆∥22
= ε2 + γ2,

since ∥v⋆∥22 = 1. Recall that

β⋆ ∈ argmin
β∈RdL

E
[
(Y − (X⊤

1 , . . . , X⊤
L)β)2

]
is the optimal linear predictor. The classical formula for linear regression shows that

β⋆ =

E


X1

...
XL

 (X⊤
1 , . . . , X⊤

L)




−1

E

((v⋆)⊤XJ0
+ ξ)

X1

...
XL


 .

On the one hand, let

M =

X1

...
XL

 (X⊤
1 , . . . , X⊤

L) .

Then E[M] = E[E[M |J0]], and E[M |J0] is a block-diagonal matrix, where, for j, j′ ∈ {1, . . . , L},

E[M |J0 = j][j′,j′] = δj ̸=j′Id + δj=j′(γ
2Id +

d

2
k⋆(k⋆)⊤) .

Thus

E[M][j′,j′] = (1− pj′)Id + pj′(γ
2Id +

d

2
k⋆(k⋆)⊤) = Id + pj′(γ

2 − 1)Id + pj′
d

2
k⋆(k⋆)⊤ .

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

On the other hand, let

u = ((v⋆)⊤XJ0 + ξ)

X1

...
XL

 .

Then

E [u] = E


X1

...
XL

X⊤
J0

 v⋆ = E

E

X1

...
XL

X⊤
J0


∣∣∣∣∣∣∣J0
 v⋆

=

p1(γ
2Id + d

2k
⋆(k⋆)⊤)

...
pL(γ

2Id + d
2k

⋆(k⋆)⊤)

 v⋆ = γ2

p1v
⋆

...
pLv

⋆

 ,

since, by Assumption 1, k⋆⊤v⋆ = 0.

Since E[M] is a block-diagonal matrix and E[u] is a block vector, we get by standard computation
rules for block matrices

β⋆
[j] = (E[M]−1E[u])[j] = E[M]−1

[j,j]E[u][j] =
(
Id + pj(γ

2 − 1)Id + pj
d

2
k⋆(k⋆)⊤

)−1

γ2pjv
⋆ .

Recall the Sherman-Morrison formula (Press et al., 2007, Section 2.7.1), which states that for
any vectors u, v ∈ Rd, (Id + uu⊤)−1v =

(
Id − uu⊤/(1 + u⊤u)

)
v. Applying this formula with

orthogonal vectors, we obtain

β⋆
[j] =

(
1 + pj(γ

2 − 1)
)−1

γ2pjv
⋆ =

γ2pj
1 + pj(γ2 − 1)

v⋆ ,

which shows the first formula of the proposition. Finally, the risk associated with the optimal linear
predictor (X⊤

1 , . . . , X⊤
L) 7→ (X⊤

1 , . . . , X⊤
L)β⋆ is given by

R(β⋆) = E[Y 2]− E[Y (X⊤
1 . . . X⊤

L)β⋆]

= ε2 + γ2 − γ2 ·
(
p1(v

⋆)⊤, . . . , pL(v
⋆)⊤
)β⋆

[1]

...
β⋆
[L]


= ε2 + γ2 − γ4

L∑
j=1

p2j
1 + pj(γ2 − 1)

. (19)

This shows the formula for the risk given in the Proposition. To obtain the last bound, observe that,
if γ2 ⩾ 1, we have 1 + pj(γ

2 − 1) ⩾ 1. If γ2 ⩽ 1, since pj ⩽ 1, we have 1 + pj(γ
2 − 1) ⩾

1 + (γ2 − 1) = γ2. Thus we obtain 1 + pj(γ
2 − 1) ⩾ min(1, γ2). Therefore,

R(β⋆) ⩾ ε2 + γ2 −max(γ4, γ2)

L∑
j=1

p2j

⩾ ε2 + γ2 −max(γ4, γ2)

L∑
j=1

pj · max
j=1,...,L

pj

⩾ ε2 + γ2 − (γ4 + γ2) max
j=1,...,L

pj

⩾ ε2 + γ2 − γ2(γ2 + 1) max
j=1,...,L

pj .

When all pj are equal to 1/L, all terms in the sum are equal, and Eq. (19) simplifies to

R(β⋆) = ε2 + γ2 − Lγ4
1
L2

1 + 1
L (γ

2 − 1)
= ε2 + γ2 − γ4

L+ γ2 − 1
.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

B.4 PROOF OF LEMMA 4

As a first step in the proof, we prove the next lemma, which is the key towards the invariance property
we are aiming at, in that it shows that, for a point on the manifold M (defined by θ = η = ρ = 0),
the gradient of the risk does not “push” the point outside of the manifold. Its proof leverages the
expression of the risk as a function of five parameters derived in the previous section
Lemma 14. At any point (κ, ν, θ, η, ρ) such that θ = η = ρ = 0, we have ∂θR< = ∂ηR< =
∂ρR< = 0.

Proof. We use Eq. (16)–(17) and change signs in the square function:

R<(κ, ν, θ, η, ρ)

= E
[(

γGv⋆

1 + ξ −
(√d

2
θ + γGv

1

)
erf
(
λ
(√d

2
κ+ γGk

1

))
−

L∑
ℓ=2

Gv
ℓ erf(λG

k
ℓ)
)2]

= E
[(

γ(−Gv⋆

1)− ξ −
(√d

2
(−θ) + γ(−Gv

1)
)
erf
(
λ
(√d

2
κ+ γGk

1

))
−

L∑
ℓ=2

(−Gv
ℓ)erf(λG

k
ℓ)
)2]

,

where Gv⋆

1
Gv

1

Gk
1

 , . . . ,

Gv⋆

L
Gv

L

Gk
L

 ∼
i.i.d.

N
(
0,

(
1 ν η
ν 1 ρ
η ρ 1

))
, ξ ∼ N (0, ε2) .

Thus −Gv⋆

1
−Gv

1

Gk
1

 , . . . ,

−Gv⋆

L
−Gv

L

Gk
L

 ∼
i.i.d.

N
(
0,

(
1 ν −η
ν 1 −ρ
−η −ρ 1

))
, −ξ ∼ N (0, ε2) .

As a consequence,

R<(κ, ν, θ, η, ρ) = R<(κ, ν,−θ,−η,−ρ) .

Taking the partial derivative in θ, we are led to

∂θR<(κ, ν, θ, η, ρ) = −R<(κ, ν,−θ,−η,−ρ) .

At a point such that θ = η = ρ = 0, this gives ∂θR<(κ, ν, 0, 0, 0) = −∂θR<(κ, ν, 0, 0, 0) and thus
∂θR<(κ, ν, 0, 0, 0) = 0. The proof for the other two derivatives ∂ηR, ∂ρR is identical.

We now complete the proof of Lemma 4. By the chain rule for total derivatives applied to R(k, v) =
R<(κ, ν, θ, η, ρ), and then by Lemma 14, on the manifold M, we have

∇kR = (∂κR<)k⋆ + (∂ηR<)v⋆ + (∂ρR<)v = (∂κR<)k⋆ , (20)

and, similarly,

∇vR = (∂νR<)v⋆ + (∂θR<)k⋆ + (∂ρR)k = (∂νR<)v⋆ . (21)

Recall the formulas for the PGD updates

kt+1 = ProjSd−1(kt − α(I − ktk
⊤
t)∇kR(kt, vt)) =

kt − α(I − ktk
⊤
t)∇kR(kt, vt)∥∥kt − α(I − ktk⊤t)∇kR(kt, vt)

∥∥
2

,

vt+1 = ProjSd−1(vt − α(I − vtv
⊤
t)∇vR(kt, vt)) =

vt − α(I − vtv
⊤
t)∇vR(kt, vt)∥∥vt − α(I − vtv⊤t)∇vR(kt, vt)

∥∥
2

.

Let ck =
∥∥kt − α(I − ktk

⊤
t)∇kR(kt, vt)

∥∥
2

and cv =
∥∥vt − α(I − vtv

⊤
t)∇vR(kt, vt)

∥∥
2
. Then, if

(kt, vt) ∈ M,

(v⋆)⊤kt+1 =
(v⋆)⊤kt − α(v⋆)⊤(I − ktk

⊤
t)(∂κR<(κt, νt))k

⋆

ck
= 0,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(k⋆)⊤vt+1 =
(k⋆)⊤vt − α(k⋆)⊤(I − vtv

⊤
t)(∂νR<(κt, νt))v

⋆

cv
= 0,

and

v⊤t+1kt+1 =
v⊤t kt − α(∂νR<)((I − vtv

⊤
t)v

⋆)⊤kt − α(∂κR<)((I − ktk
⊤
t)k

⋆)⊤vt
cvck

+
α2(∂κR<)(∂νR<)((I − ktk

⊤
t)k

⋆)⊤(I − vtv
⊤
t)v

⋆

cvck
= 0 ,

where we have omitted the dependence of (∂κR<) and (∂νR<) in (κt, νt) in the last expression for
the ease of readability. Note that the last term is equal to zero since

((I − ktk
⊤
t)k

⋆)⊤(I − vtv
⊤
t)v

⋆ = (k⋆ − κtkt)
⊤(v⋆ − νtvt) = 0 .

This shows that (kt+1, vt+1) ∈ M.

B.5 PROOF OF LEMMA 7

By definition of the PGD iterates and by (20)–(21), one has

κt+1 = k⊤t+1k
⋆ =

κt − α∂κR<(κt, νt)(k
⋆)⊤(I − ktk

⊤
t)k

⋆√
1 + α2(∂κR<)2∥(I − ktk⊤t)k

⋆∥22
=

κt − α(∂κR<)(1− κ2
t)√

1 + α2(∂κR<)2(1− κ2
t)
,

νt+1 = v⊤t+1v
⋆ =

νt − α∂νR<(κt, νt)(v
⋆)⊤(I − vtv

⊤
t)v

⋆√
1 + α2(∂νR<)2∥(I − vtv⊤t)v

⋆∥22
=

νt − α(∂νR<)(1− ν2t)√
1 + α2(∂νR<)2(1− ν2t)

,

where we have used the Pythagorean theorem and the idempotent property of projection matrices for
the denominator.

B.6 PROOF OF PROPOSITION 8

In this proof, C denotes a constant that does not depend on the step t nor on the step size α, and
which may vary from line to line. First note that the risk R< is C∞ on the compact set [−1, 1]2. In
particular, it is a Λ-smooth function for some Λ > 0, in the sense that its gradient is Λ-Lipschitz
continuous. Thus

R<(κt+1, νt+1) ⩽ R<(κt, νt) + (∇R<(κt, νt))
⊤
(
κt+1 − κt

νt+1 − νt

)
+

Λ

2

∥∥∥∥(κt+1 − κt

νt+1 − νt

)∥∥∥∥2
2

,

i.e.,

R<(κt+1, νt+1)−R<(κt, νt)

⩽ (∂κR<)(κt+1 − κt) + (∂νR<)(νt+1 − νt) +
Λ

2

[
(κt+1 − κt)

2 + (νt+1 − νt)
2
]
. (22)

Our goal in the following computations is to derive an inequality of the form

R<(κt+1, νt+1)−R<(κt, νt) ⩽ −α(∂κR<)2(1− κ2
t)− α(∂νR<)2(1− ν2t)

+ Cα2(∂κR<)2(1− κ2
t) + Cα2(∂νR<)2(1− ν2t) ,

which shall give us a descent lemma for α small enough. To this aim, observe that, by definition of
the iterates (κt, νt) given by (12)–(13), one has

κt+1 − κt =

[
1√

1 + α2(∂κR<)2(1− κ2
t)

− 1

]
κt −

α(∂κR<)(1− κ2
t)√

1 + α2(∂κR<)2(1− κ2
t)

(23)

= −α(∂κR<)(1− κ2
t)

+

[
1√

1 + α2(∂κR<)2(1− κ2
t)

− 1

]
(κt − α(∂κR<)(1− κ2

t)) .

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

As a consequence,

|κt+1 − κt + α(∂κR<)(1− κ2
t)| ⩽

∣∣∣ 1√
1 + α2(∂κR<)2(1− κ2

t)
− 1
∣∣∣|κt − α(∂κR<)(1− κ2

t)|

⩽ α2(∂κR<)2(1− κ2
t)|κt − α(∂κR<)(1− κ2

t)|
⩽ Cα2(∂κR<)2(1− κ2

t) , (24)

where the second inequality holds by Lemma 16 and the last bound holds since the function (κ, ν) 7→
|κ− α(∂κR<(κ, ν))(1− κ2)| is uniformly bounded for all α ⩽ 1. This bound has two implications.
First,

(∂κR<)(κt+1 − κt) + α(∂κR<)2(1− κ2
t) = (∂κR<)((κt+1 − κt) + α(∂κR<)(1− κ2

t))

⩽ |∂κR<||κt+1 − κt + α(∂κR<)(1− κ2
t)|

⩽ Cα2(∂κR<)2(1− κ2
t) , (25)

where we use the fact that |∂κR<| is bounded, and the bound (24). Second, since the square function
is Lipschitz on compact sets, we have

|(κt+1 − κt)
2 − (α(∂κR<)(1− κ2

t))
2| ⩽ Cα2(∂κR<)2(1− κ2

t) .

Thus

(κt+1 − κt)
2 ⩽ α2(∂κR<)2(1− κ2

t)
2 + Cα2(∂κR<)2(1− κ2

t)

⩽ Cα2(∂κR<)2(1− κ2
t) . (26)

We also obtain analogous bounds to (25)–(26) for ν, namely

(∂νR<)(νt+1 − νt) + α(∂νR<)(1− ν2t) ⩽ Cα2(∂νR<)2(1− ν2t) , (27)

and
(νt+1 − νt)

2 ⩽ Cα2(∂νR<)2(1− ν2t) . (28)

Plugging the bounds (25)–(28) into Eq. (22), we obtain the desired inequality

R<(κt+1, νt+1)−R<(κt, νt) ⩽ −α(∂κR<)2(1− κ2
t)− α(∂νR<)2(1− ν2t)

+ Cα2(∂κR<)2(1− κ2
t) + Cα2(∂νR<)2(1− ν2t) .

By choosing the step size α ⩽ 1
2C , this ensures that

R<(κt+1, νt+1)−R<(κt, νt) ⩽ −α

2
(∂κR<)2(1− κ2

t)−
α

2
(∂νR<)2(1− ν2t).

This shows that the risk is decreasing along the PGD iterates. Next, introducing R<
min =

min(κ,ν)∈[0,1]2 R<(κ, ν) and using a telescopic sum, we have, for all T ⩾ 0,

R<(κ0, ν0)−R<
min ⩾ R<(κ0, ν0)−R<(κT , νT)

⩾
α

2

T−1∑
t=0

[
(∂κR<)2(1− κ2

t) + (∂νR<)2(1− ν2t)
]
.

Since the left-hand side is finite, and the terms of the sum are nonnegative, we conclude that the series
converges as T → ∞. In particular, the generic term (∂κR<)2(1− κ2

t) + (∂νR<)2(1− ν2t) of the
series converges to 0 as t → ∞. Therefore, the accumulation points (κ∞, ν∞) satisfy{

∂κR<(κ∞, ν∞) = 0 or κ2
∞ = 1

∂νR<(κ∞, ν∞) = 0 or ν2∞ = 1.

Inspecting identity (23), we observe that the convergence of the general term also implies κt+1−κt →
0. We obtain similarly that νt+1 − νt → 0.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

B.7 PROOF OF PROPOSITION 9

Recall that the risk in terms of (κ, ν) is given by

R<(κ, ν) = γ2 − 2γ2ν erf

(
λ
√

d/2κ√
1 + 2λ2γ2

)
+ γ2ζ

(
λ

√
d

2
κ, λ2γ2

)
+ (L− 1)ζ(0, λ2) + ε2 .

Then the gradients of R< are given by

∂κR<(κ, ν)

= −2γ2λ

√
d

2(1 + 2λ2γ2)
erf ′
(

λ
√
d/2κ√

1 + 2λ2γ2

)(
ν − erf

(
λ
√
d/2κ√

(1 + 2λ2γ2)(1 + 4λ2γ2)

))
and

∂νR<(κ, ν) = −2γ2erf

(
λ
√
d/2κ√

1 + 2λ2γ2

)
.

Therefore, the solutions of the system (14) satisfy{−ν + erf(c1κ) = 0 or κ = ±1

κ = 0 or ν = ±1 ,

with c1 = λ√
4λ2γ2+1

√
d

2(1+2λ2γ2) . The solutions of this system are

(κ, ν) = (0, 0) or (κ, ν) = (±1,±1) .

B.8 PROOF OF PROPOSITION 10

Since R< is a smooth function, the extrema of this function on [−1, 1]2 are either critical points
(admitting null derivatives) or points on the boundary of the square [−1, 1]2. Starting with critical
points, the only critical point is (0, 0), and it is a saddle point. Indeed, the Hessian of R< at (0,0) is

HR<(0, 0) = − 4√
π
γ2λ

√
d

2(1 + 2λ2γ2)

(
c 1
1 0

)
︸ ︷︷ ︸

:=M

where c = − 2λ√
π(4λ2γ2+1)

√
d

2(1+2λ2γ2) < 0. Then, as det(M) = −1, the two eigenvalues of

HR<(0, 0) have opposite signs, (0, 0) is thus a saddle point. The extrema of R< must therefore be
on the boundary of the square, which we examine next.

For any (κ, ν) ∈ (−1, 1)2, one has, by inspecting the signs of the gradients given in the proof of
Proposition 9,

R<(1, 1) < R<(κ, 1) < R<(−1, 1) and R<(1, 1) < R<(1, ν) < R<(1,−1) .

This shows that the minimum of R< on {(κ, 1), κ ∈ [−1, 1]} ∪ {(1, ν), ν ∈ [−1, 1]} is reached
at (1, 1), and the maximum is reached both at (1,−1) and (−1, 1), since R< is even. Using again
evenness of R<, we conclude that the extrema of R< on the whole boundary of the square, and
thus on the whole square, are the minimizers (1, 1) and (−1,−1), and the maximizers (1,−1) and
(−1, 1).

B.9 PROOF OF PROPOSITION 12

We prove the statements of the proposition one by one.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

The mapping g is a local diffeomorphism around (0, 0), whose Jacobian matrix has one eigen-
value in (0, 1) and one eigenvalue in (1,∞). Consider the Taylor expansion of the first component
g(κ, ν)1 of g(κ, ν). Since ∂κR<(0, 0) = 0, and R< is smooth, letting x = (κ, ν), we have
(∂κR<(κ, ν))2 = O(∥x∥2). Thus,

g(κ, ν)1 =
κ− α(∂κR<(κ, ν))(1− κ2)√
1 + α2(∂κR<(κ, ν))2(1− κ2)

=
κ− α(∂κR<(κ, ν))(1− κ2)√

1 +O(∥x∥2)
= (κ− α(∂κR<(κ, ν))(1− κ2))

(
1 +O(∥x∥2)

)
= κ− α∂κR<(κ, ν) +O(∥x∥2) .

Proceeding similarly with the second component of g, we obtain that the Jacobian of g at (0, 0) is
given by

Jg(0, 0) = I2 − αHR<(0, 0) = I2 + α · 4√
π
γ2λ

√
d

2(1 + 2λ2γ2)

(
c 1
1 0

)
︸ ︷︷ ︸

=:M

,

where c = − 2λ√
π(4λ2γ2+1)

√
d

2(1+2λ2γ2) < 0. Since det(M) = −1, one can choose α small enough

so that one eigenvalue of Jg(0, 0) is strictly between 0 and 1 and the other one is strictly larger than 1.
Therefore, Jg(0, 0) is invertible, showing that g is a local diffeomorphism around (0, 0).

The mapping g is differentiable on [−1, 1]2, and its Jacobian is not degenerate. The mapping g
is clearly differentiable as a composition of differentiable function. The more delicate part is to show
that its Jacobian cannot be degenerate. To show this statement, observe first that, for x ∈ [−1, 1]2,
we may write g(x) = x+ αh(x), where the first component of h is given by

h(κ, ν)1 =
1

α
(g(κ, ν)1 − κ)

=
1

α

(κ− α(∂κR<(κ, ν))(1− κ2)√
1 + α2(∂κR<(κ, ν))2(1− κ2)

− κ
)

=
κ

α

(1√
1 + α2(∂κR<(κ, ν))2(1− κ2)

− 1
)

︸ ︷︷ ︸
=:f

(1)
α (κ,ν)

− (∂κR<(κ, ν))(1− κ2)√
1 + α2(∂κR<(κ, ν))2(1− κ2)︸ ︷︷ ︸

=:f
(2)
α (κ,ν)

.

Let us prove that the gradient of h(κ, ν)1 is bounded uniformly over α ⩽ 1. The uniform boundedness
is clear for the gradient of f (2)

α , which writes as a composition of functions with uniformly bounded
gradients for α ⩽ 1. Moving on to f

(1)
α and letting

g :

{
[−1, 1]× [0, B] → R
(a, b) 7→ a

α

(
1√

1+α2b
− 1
) , B = sup

(κ,ν)∈[−1,1]2
(∂κR<(κ, ν))2(1− κ2) ,

we observe that f (1)
α is the composition of g with a smooth function independent of α. In particular,

it suffices to show the uniform boundedness of ∇g to deduce the one of ∇f
(1)
α . We further have, by

Lemma 16, and for α ⩽ 1, ∣∣∂ag(a, b)∣∣ = 1

α

∣∣∣ 1√
1 + α2b

− 1
∣∣∣ ⩽ αb ⩽ B

and ∣∣∂bg(a, b)∣∣ = ∣∣∣− αa

2(1 + α2b)3/2

∣∣∣ ⩽ α

2
⩽

1

2
.

Therefore, the gradient of h(κ, ν)1 is bounded uniformly over α ⩽ 1. Proceeding similarly with
the gradient of h(κ, ν)2, we obtain that the Jacobian of h(κ, ν) is uniformly bounded over α ⩽ 1.
Recall now that Jg(κ, ν) = I2 + αJh(κ, ν). Therefore, taking α small enough, we obtain that the
eigenvalues of Jg have to be bounded away from zero.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

The mapping g is injective. The computation above shows that h is β-Lipschitz continuous with β
independent of α (for α small enough). In particular we can choose α such that α < 1/β. Now, let
x ̸= y ∈ [−1, 1]2 be such that g(x) = g(y). Then

∥x− y∥ ⩽ α∥h(x)− h(y)∥ ⩽ αβ∥x− y∥ < ∥x− y∥ .
This is a contradiction, showing that g is injective.

B.10 PROOF OF PROPOSITION 13

Recall that (1,−1) and (−1, 1) are maxima of the risk R< on [−1, 1]2 by Proposition 10, and that
the value of the risk decreases along the iterates of PGD by Proposition 8. Thus the only possible
way to converge to these points is to start the dynamics from them.

The case of the point (0, 0) is more delicate. We apply the Center-Stable Manifold theorem (Shub,
1987, Theorem III.7) to g, which is a local diffeomorphism around (0, 0) by Proposition 12. This
guarantees the existence of a local center-stable manifold W cs

loc, which verifies the following properties.
First, its codimension is equal to the number of eigenvalues of Jg(0, 0) of magnitude larger than 1, that
is, 1, by Proposition 12. Hence it has Lebesgue measure zero. Second, there exists a neighborhood
B of 0 such that

⋂∞
t=0 g

−t(B) ⊂ W cs
loc. Then, let W s be the set of all x which converge to (0, 0)

under the gradient map g, and take x ∈ W s. Then there exists a T such that gt(x) ∈ B for all t ⩾ T .
This means that gT (x) ∈ ⋂∞

s=0 g
−s(B), and thus gT (x) ∈ W cs

loc. So, x ∈ g−T (W cs
loc). We have just

shown that
W s ⊂

⋃
T⩾0

g−T (W cs
loc) .

Finally, we prove that the pre-image of sets of measure zero by gT has measure zero for any T ⩾ 0.
This shall conclude the proof of the result since countable unions of sets of measure zero have
measure zero. To show this, note that g is injective by Proposition 12, and therefore gT is injective
too. This allows to define an inverse g−T of gT defined on the image of gT , and the pre-image
by gT of W cs

loc is exactly the image by g−T of W cs
loc (intersected with the domain of definition of

g−T). Furthermore, by Proposition 12, the Jacobian of gT is invertible. This guarantees that g−T is
differentiable by the inverse function theorem. The conclusion follows by recalling that differentiable
functions map sets of measure zero to sets of measure zero.

C EXPRESSION OF THE RISK BEYOND THE INVARIANT MANIFOLD

In this appendix, we provide an expression of the risk R beyond the manifold M that extends the one
provided in Lemma 6. This result is not needed to prove Theorem 5, and its proof is more involved
that the one of Lemma 6. However, we provide it since it might be relevant to follow-up works that
would study the dynamics if not initialized on the invariant manifold M. It is also useful for the
numerical simulations (see Appendix E).

Proposition 15. We have the closed-form expression

R<
λ (κ, ν, θ, η, ρ) = ε2 + γ2

− 2γ2νerf

(
λ
√
d/2κ√

1 + 2λ2γ2

)
− 2λγ2

√
d

2
ηθ

1√
1 + 2λ2γ2

erf ′
(

λ
√
d/2κ√

1 + 2λ2γ2

)
− 2λ2γ4ηρ

1 + 2λ2γ2
erf ′′

(
λ
√
d/2κ√

1 + 2λ2γ2

)
+ (

d

2
θ2 + γ2)ζ

(
λ

√
d

2
κ, λ2γ2

)
+

√
d

2

(
θρ− λ2γ2ρ2κ

1 + 2λ2γ2

)
4λγ2√

1 + 2λ2γ2
erf

(
λ
√
d/2κ√

(1 + 4λ2γ2)(1 + 2λ2γ2)

)
erf ′
(

λ
√
d/2κ√

1 + 2λ2γ2

)
+

4λ2γ4ρ2
√
π
√
1 + 4λ2γ2(1 + 2λ2γ2)

erf ′
(
− λ

√
dκ√

1 + 4λ2γ2

)
+ (L− 1)

[
ζ(0, λ2) +

8λ2

π
√
1 + 4λ2(1 + 2λ2)

ρ2
]
+

4λ2

(1 + 2λ2)π
(L− 1)(L− 2)ρ2

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

+
4λ(L− 1)ρ√
(1 + 2λ2)π

(√
d

2
θ erf

(
λ
√
d/2κ√

1 + 2λ2γ2

)
+

λγ2ρ√
1 + 2λ2γ2

erf ′
(

λ
√
d/2κ√

1 + 2λ2γ2

))
.

Proof. We first recall the notations for the five scalar products that are used throughout this proof.

ν = v⊤v⋆ , κ = k⊤k⋆ , θ = v⊤k⋆ , η = k⊤v⋆ , ρ = k⊤v .

A first decomposition. We start back from the expression (15) obtained for the risk. By expanding
in ξ, then expanding the square, we obtain

R(k, v) = E
((

X⊤
1 v⋆ −

L∑
ℓ=1

X⊤
ℓ v erf(λX⊤

ℓ k)
)2)

+ ε2

= E
((

X⊤
1 v⋆ −X⊤

1 v erf(λX⊤
1 k)−

L∑
ℓ=2

X⊤
ℓ v erf(λX⊤

ℓ k)
)2)

+ ε2

= E
((

X⊤
1 v⋆ −X⊤

1 v erf(λX⊤
1 k)

)2)
︸ ︷︷ ︸

=:R1

+

L∑
ℓ=2

E
((

X⊤
ℓ v erf(λX⊤

ℓ k)
)2)

︸ ︷︷ ︸
=:R2

+

L∑
ℓ ̸=j⩾2

E
(
X⊤

ℓ v erf(λX⊤
ℓ k)X⊤

j v erf(λX⊤
j k)

)
︸ ︷︷ ︸

=:R3

−2

L∑
ℓ=2

E
((

X⊤
1 v⋆ −X⊤

1 v erf(λX⊤
1 k)

)
X⊤

ℓ v erf(λX⊤
ℓ k)

)
︸ ︷︷ ︸

=:R4

+ ε2 .

Computation of R1. By expanding the square,

E
((

X⊤
1 v⋆ −X⊤

1 v erf(λX⊤
1 k)

)2)
= E

((
X⊤

1 v⋆
)2)− 2E

(
X⊤

1 v⋆X⊤
1 v erf(λX⊤

1 k)
)
+ E

((
X⊤

1 v erf(λX⊤
1 k)

)2)
.

These three terms are computed hereafter. First we have

E
((

X⊤
1 v⋆

)2)
=
(
E
(
X⊤

1 v⋆
))2

+ Var
(
X⊤

1 v⋆
)
= (

√
d

2
(k⋆)⊤v⋆)2 + γ2 = γ2 .

Second,

E
(
X⊤

1 v⋆X⊤
1 v erf(λX⊤

1 k)
)

= E

[(√
d

2
(k⋆)⊤v⋆ + Z1

)(√
d

2
(k⋆)⊤v + Z2

)
erf

(
λ

√
d

2
(k⋆)⊤k + λZ3

)]
,

= E

[
Z1

(√
d

2
θ + Z2

)
erf

(
λ

√
d

2
κ+ λZ3

)]
,

with (
Z1

Z2

Z3

)
∼ N

0, γ2

 1 v⊤v⋆ k⊤v⋆

v⊤v⋆ 1 v⊤k
k⊤v⋆ v⊤k 1

 = N
(
0, γ2

(
1 ν η
ν 1 ρ
η ρ 1

))
.

Recall the multivariate version of Stein’s lemma (Stein, 1981), which states that, when Z,G1, . . . , Gp

are centered and jointly Gaussian, and σ : Rp → R,

E [Zσ(G1, . . . , Gp)] =

p∑
i=1

Cov(Z,Gi)E [∂iσ(G1, . . . , Gp)] .

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Therefore,

E
(
X⊤

1 v⋆X⊤
1 verf(λX⊤

1 k)
)

= γ2νE

[
erf

(
λ

√
d

2
κ+ λZ3

)]
+ λγ2ηE

[(√
d

2
θ + Z2

)
erf ′

(
λ

√
d

2
κ+ λZ3

)]

= γ2νE

[
erf

(
λ

√
d

2
κ+ λZ3

)]
+ λγ2

√
d

2
ηθE

[
erf ′

(
λ

√
d

2
κ+ λZ3

)]

+ λ2γ4ηρE

[
erf ′′

(
λ

√
d

2
κ+ λZ3

)]

= γ2νerf

(
λ
√
d/2κ√

1 + 2λ2γ2

)
+

√
d

2

λγ2ηθ√
1 + 2λ2γ2

erf ′

(
λ
√
d/2κ√

1 + 2λ2γ2

)

+
λ2γ4ηρ

1 + 2γ2λ2
erf ′′

(
λ
√
d/2κ√

1 + 2λ2γ2

)
by using Lemma 18(i)− (iii). Finally, using again Stein’s lemma and Lemma 18(iv)− (vi), the
computation of the last term is as follows:

E
[(
X⊤

1 v erf(λX⊤
1 k)

)2]
= E

[(√
d

2
(k⋆)⊤v + Z2

)2

erf

(
λ

√
d

2
k⊤k⋆ + λZ3

)2
]

= E

[
d

2
θ2 erf2

(
λ

√
d

2
κ+ λZ3

)]
+ 2E

[√
d

2
θZ2 erf

2

(
λ

√
d

2
κ+ λZ3

)]

+ E

[
Z2
2 erf

2

(
λ

√
d

2
κ+ λZ3

)]

=
d

2
θ2E

[
erf2

(
λ

√
d

2
κ+ λZ3

)]

+ 4λγ2

√
d

2
θρE

[
erf

(
λ

√
d

2
κ+ λZ3

)
erf ′
(
λ

√
d

2
κ+ λZ3

)]
+ γ2E

[
erf2

(
λ

√
d

2
κ+ λZ3

)]

+ 2λγ2ρE

[
Z2 erf

(
λ

√
d

2
κ+ λZ3

)
erf ′
(
λ

√
d

2
κ+ λZ3

)]

= (
d

2
θ2 + γ2)E

[
erf2

(
λ

√
d

2
κ+ λZ3

)]

+ 4λγ2

√
d

2
θρE

[
erf

(
λ

√
d

2
κ+ λZ3

)
erf ′
(
λ

√
d

2
κ+ λZ3

)]

+ 2λ2γ4ρ2

(
E

[
erf

(
λ

√
d

2
κ+ λZ3

)
erf ′′

(
λ

√
d

2
κ+ λZ3

)]
+ E

[
(erf ′)2

(
λ

√
d

2
κ+ λZ3

)])

= (
d

2
θ2 + γ2)ζ

(
λ

√
d

2
κ, λ2γ2

)
+ 4λγ2

√
d

2
θρE

[
erf

(
λ

√
d

2
κ+ λZ3

)
erf ′

(
λ

√
d

2
κ+ λZ3

)]

+
2λ2γ4ρ2

1 + 2λ2γ2

(
−2λ

√
d

2
κE

[
erf

(
λ

√
d

2
κ+ λZ3

)
erf ′

(
λ

√
d

2
κ+ λZ3

)]

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

+E

[
(erf ′)2

(
λ

√
d

2
κ+ λZ3

)])

= (
d

2
θ2 + γ2)ζ

(
λ

√
d

2
κ, λ2γ2

)
+ 4λγ2

√
d

2

(
θρ− λ2γ2ρ2κ

1 + 2λ2γ2

)
E

[
erf

(
λ

√
d

2
κ+ λZ3

)
erf ′

(
λ

√
d

2
κ+ λZ3

)]

+
2λ2γ4ρ2

1 + 2λ2γ2
E

[
(erf ′)2

(
λ

√
d

2
κ+ λZ3

)]

= (
d

2
θ2 + γ2)ζ

(
λ

√
d

2
κ, λ2γ2

)
+

√
d

2

(
θρ− λ2γ2ρ2κ

1 + 2λ2γ2

)
4λγ2√

1 + 2λ2γ2
erf

(
λ
√
d/2κ√

(1 + 4λ2γ2)(1 + 2λ2γ2)

)
erf ′
(

λ
√
d/2κ√

1 + 2λ2γ2

)

+
2λ2γ4ρ2

1 + 2λ2γ2

(
2

√
π
√
1 + 4λ2γ2

erf ′
(
− λ

√
dκ√

1 + 4λ2γ2

))
by Lemma 18(iv)− (vi).

Computation of R2. We have

R2 =

L∑
ℓ=2

E
((

X⊤
ℓ v erf(λX⊤

ℓ k)
)2)

= (L− 1)E
((

X⊤
2 v erf(λX⊤

2 k)
)2)

.

Thus, using previous calculations with γ2 = 1, θ = 0, and κ = 0, we obtain

R2 = (L− 1)

[
ζ(0, λ2) +

4λ2

√
π
√
4λ2 + 1(1 + 2λ2)

ρ2erf ′ (0)

]
= (L− 1)

[
ζ(0, λ2) +

8λ2

π
√
4λ2 + 1(1 + 2λ2)

ρ2
]
.

Computation of R3. Regarding the cross-product terms, by independence of the (Xℓ)’s and Stein’s
lemma, one gets

E
(
X⊤

ℓ v erf(λX⊤
ℓ k)X⊤

j v erf(λX⊤
j k)

)
= E

(
X⊤

ℓ v erf(λX⊤
ℓ k)

)
E
(
X⊤

j v erf(λX⊤
j k)

)
= C2ρ2 ,

with C := λE(erf ′(λX⊤
ℓ k)) = 2λ/

√
(1 + 2λ2)π by Lemma 18(i). This leads to

R3 =
4λ2

(1 + 2λ2)π
(L− 1)(L− 2)ρ2.

Computation of R4. We have, again by independence and Stein’s lemma,

E
((

X⊤
1 v⋆ −X⊤

1 v erf(λX⊤
1 k)

)
X⊤

ℓ v erf(λX⊤
ℓ k)

)
= E

(
X⊤

1 v⋆ −X⊤
1 v erf(λX⊤

1 k)
)
E
(
X⊤

ℓ v erf(λX⊤
ℓ k)

)
=
(√d

2
(k⋆)⊤v⋆ − E(X⊤

1 v erf(λX⊤
1 k))

)
E
(
X⊤

ℓ v erf(λX⊤
ℓ k)

)
= −E(X⊤

1 v erf(λX⊤
1 k)) · Cρ

= − 2λρ√
(1 + 2λ2)π

E(X⊤
1 v erf(λX⊤

1 k)) .

Note that, still using Stein’s lemma,

−E(X⊤
1 v erf(λX⊤

1 k))

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

= −E(
√

d

2
(k⋆)⊤v erf(λX⊤

1 k))− E((X⊤
1 v −

√
d

2
(k⋆)⊤v) erf(λX⊤

1 k))

= −E(
√

d

2
θ erf(λX⊤

1 k))− Cov
(
X⊤

1 v, erf(λX⊤
1 k)

)
= −

√
d

2
θE(erf(λX⊤

1 k))− λCov
(
X⊤

1 v,X⊤
1 k
)
E
(
erf ′(λX⊤

1 k)
)

= −
√

d

2
θ erf

(
λ
√
d/2κ√

1 + 2λ2γ2

)
− λγ2(k⊤v)

1√
1 + 2γ2λ2

erf ′

(
λ
√
d/2κ√

1 + 2λ2γ2

)
,

where we used that λX⊤
1 k

L
= λ

√
d/2κ + G with G ∼ N (0, λ2γ2), in combination with

Lemma 18(i)− (ii). Thus

R4 =
4λ(L− 1)ρ√
(1 + 2λ2)π

(√
d

2
θ erf

(λ
√
d/2κ√

1 + 2λ2γ2

)
+

λγ2ρ√
1 + 2γ2λ2

erf ′
(λ

√
d/2κ√

1 + 2λ2γ2

))
.

All in all. Putting everything together, we obtain

R(k, v) = ε2

+ γ2 − 2γ2νerf

(
λ
√
d/2κ√

1 + 2λ2γ2

)
− 2λγ2

√
d

2
ηθ

1√
1 + 2λ2γ2

erf ′
(

λ
√
d/2κ√

1 + 2λ2γ2

)
− 2λ2γ4ηρ

1 + 2λ2γ2
erf ′′

(
λ
√
d/2κ√

1 + 2λ2γ2

)
+ (

d

2
θ2 + γ2)ζ

(
λ

√
d

2
κ, λ2γ2

)
+

√
d

2

(
θρ− λ2γ2ρ2κ

1 + 2λ2γ2

)
4λγ2√

1 + 2λ2γ2
erf

(
λ
√
d/2κ√

(1 + 4λ2γ2)(1 + 2λ2γ2)

)
erf ′
(

λ
√
d/2κ√

1 + 2λ2γ2

)
+

4λ2γ4ρ2
√
π
√
1 + 4λ2γ2(1 + 2λ2γ2)

erf ′
(
− λ

√
dκ√

1 + 4λ2γ2

)
+ (L− 1)

[
ζ(0, λ2) +

8λ2

π
√
1 + 4λ2(1 + 2λ2)

ρ2
]
+

4λ2

(1 + 2λ2)π
(L− 1)(L− 2)ρ2

+
4λ(L− 1)ρ√
(1 + 2λ2)π

(√
d

2
θ erf

(
λ
√
d/2κ√

1 + 2λ2γ2

)
+

λγ2ρ√
1 + 2λ2γ2

erf ′
(

λ
√
d/2κ√

1 + 2λ2γ2

)
.

This concludes the proof.

D TECHNICAL RESULTS

This section gathers formulas that are useful in the proofs, in particular regarding expectation of
functions of Gaussian random variables involving erf .
Lemma 16. For u ⩾ 0, ∣∣∣ 1√

1 + u
− 1
∣∣∣ ⩽ u .

Proof. The argument of the absolute value is non-positive for u ⩾ 0, hence we need to show that

f(u) := 1− 1√
1 + u

− u

is non-positive for u ⩾ 0. Just note that

f(0) = 0 and f ′(u) =
1

(1 + u)3+2
− 1 ⩽ 0 .

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Recall that the erf function is defined on R as

erf(u) =
2√
π

∫ u

0

e−t2dt .

Lemma 17 (Properties of the erf function). We have

erf ′(u) =
2√
π
e−u2

,

erf ′′(u) = − 4√
π
ue−u2

= −2uerf ′(u) ,

|erf(u)| ⩽ 2√
π
|u| .

Proof. The first two statements are clear by usual differentiation rules. Regarding the last statement,
since erf is an odd function, it is sufficient to prove the statement for u ⩾ 0. Moreover, erf is concave
on [0,∞), so we get, for u ⩾ 0,

|erf(u)| = |erf(u)− erf(0)| ⩽ erf ′(0)u =
2√
π
u ,

which concludes the proof.

Lemma 18. Let G ∼ N (0, γ2). For t ∈ R,

(i) E
[
erf ′(t+G)

]
= 1√

1+2γ2
erf ′
(

t√
1+2γ2

)
.

(ii) E [erf(t+G)] = erf
(

t√
1+2γ2

)
.

(iii) E
[
erf ′′(t+G)

]
= 1

1+2γ2 erf
′′
(

t√
1+2γ2

)
.

(iv) E
[
(erf ′)2(t+G)

]
= 2√

π
√

1+4γ2
erf ′
(
−

√
2t√

1+4γ2

)
.

(v) (1+2γ2)E[erf(t+G)erf ′′(t+G)] = −2tE[erf(t+G)erf ′(t+G)]−2γ2E[(erf ′(t+G))2].

(vi) E
[
erf(t+G)erf ′(t+G)

]
= 1√

1+2γ2
erf
(

t√
(1+4γ2)(1+2γ2)

)
erf ′
(

t√
1+2γ2

)
.

Proof. (i) By Lemma 17,

E
[
erf ′(t+G)

]
=

√
2

πγ

∫
e−(t+g)2e

− g2

2γ2 dg

=

√
2

πγ

∫
e−

g2

c e−2gte−t2dg for c :=
2γ2

1 + 2γ2

=

√
2

πγ

∫
e−

(g+ct)2

c +ct2−t2dg

=

√
2

πγ
e−t2(1−c)

∫
e−

(g+ct)2

c dg︸ ︷︷ ︸
=
√
πc

=
2√

π(1 + 2γ2)
exp

(
−t2

(
1− 2γ2

1 + 2γ2

))
=

2
√
π
√
1 + 2γ2

exp

(
− t2

1 + 2γ2

)
.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

(ii) By (i),

E [erf(t+G)] =

∫ t

−∞
E
[
erf ′(s+G)

]
ds

=

∫ t

−∞

2
√
π
√

1 + 2γ2
exp

(
− s2

1 + 2γ2

)
ds

=

∫ t/
√

1+2γ2

−∞

2√
π
exp

(
−u2

)
ds

= erf
(t√

1 + 2γ2

)
.

(iii) By Lemma 17, and following the same steps as in (i),

E
[
erf ′′(t+G)

]
= − 2

√
2√

πγ

∫
(t+ g)e−(t+g)2e

− g2

2γ2 dg

= −2
√
2

πγ
e−t2(1−c)

∫
(t+ g)e−

(g+ct)2

c dg

= −2
√
2

πγ
e−t2(1−c)

(
t
√
πc+

√
πcE(N (−ct,

c

2
))
)

= −2
√
2c√
πγ

e−t2(1−c)(t− ct)

= − 4√
π(1 + 2γ2)

e−t2(1−c) 1

1 + 2γ2
t

= − 4t√
π(1 + 2γ2)3/2

exp

(
− t2

1 + 2γ2

)
.

(iv) By Lemma 17,

E
[
(erf ′)2(t+G)

]
=

1√
2πγ

∫
(erf ′)2(t+ g)e

− g2

2γ2 dg

=
2
√
2

γπ3/2

∫
e−2(t+g)2e

− g2

2γ2 dg

=
2
√
2

γπ3/2

∫
e−

g2

2Γ2 e−4gte−2t2 dg with Γ2 := γ2/(1 + 4γ2)

=
2
√
2

γπ3/2

∫
e−

(g+4Γ2t)2

2Γ2 e8Γ
2t2e−2t2 dg

=
2
√
2

γπ3/2
e−2t2(1−4Γ2)

∫
e−

(g+4Γ2t)2

2Γ2 dg

=
2
√
2

γπ3/2
e−2t2(1−4Γ2)

√
2πΓ

=
4

π
√
1 + 4γ2

exp

(
− 2t2

1 + 4γ2

)
.

(v) We use Lemma 17 and then Stein’s lemma:

E[erf(t+G)erf ′′(t+G)]

= −2E
[
(t+G)erf(t+G)erf ′(t+G)

]
= −2tE

[
erf(t+G)erf ′(t+G)

]
− 2E

[
Gerf(t+G)erf ′(t+G)

]
= −2tE

[
erf(t+G)erf ′(t+G)

]
34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

− 2γ2
(
E
[
erf ′(t+G)2

]
+ E

[
erf(t+G)erf ′′(t+G)

])
.

Reordering terms, this gives the desired equation.

(vi) We define the function

f(t) = E
[
erf(t+G)erf ′(t+G)

]
.

Then, using Lemma 18(v), we have

f ′(t) = E
[
erf ′(t+G)2

]
+ E

[
erf(t+G)erf ′′(t+G)

]
= E

[
erf ′(t+G)2

]
− 2t

1 + 2γ2
E
[
erf(t+G)erf ′(t+G)

]
− 2γ2

1 + 2γ2
E
[
(erf ′(t+G))2

]
=

1

1 + 2γ2
E
[
(erf ′(t+G))2

]
− 2t

1 + 2γ2
f(t) .

We solve this differential equation by the method of variation of parameters: we have

d

dt

(
f(t)et

2/(1+2γ2)
)
=

1

1 + 2γ2
E
[
(erf ′(t+G))2

]
et

2/(1+2γ2) .

We use Lemmas 17 and 18(iv):

d

dt

(
f(t)et

2/(1+2γ2)
)
=

2√
π

1

(1 + 2γ2)
√
1 + 4γ2

erf ′

(
−

√
2t√

1 + 4γ2

)
et

2/(1+2γ2)

=
4

π

1

(1 + 2γ2)
√

1 + 4γ2
e−2t2/(1+4γ2)et

2/(1+2γ2)

=
4

π

1

(1 + 2γ2)
√

1 + 4γ2
exp

(
− t2

(1 + 2γ2)(1 + 4γ2)

)

=
2√
π

1

(1 + 2γ2)
√
1 + 4γ2

erf ′

(
t√

(1 + 2γ2)(1 + 4γ2)

)
.

As the distribution of G is symmetric and erf is an odd function, we have that f(0) =
E
[
erf(G)erf ′(G)

]
= 0. Thus integrating the above derivative, we obtain

f(t)et
2/(1+2γ2) =

2√
π

1

(1 + 2γ2)
√
1 + 4γ2

∫ t

0

ds erf ′

(
s√

(1 + 2γ2)(1 + 4γ2)

)

=
2√
π

1√
1 + 2γ2

erf

(
t√

(1 + 2γ2)(1 + 4γ2)

)
.

Using again Lemma 17, we obtain the claimed result:

f(t) =
1√

1 + 2γ2
erf ′

(
t√

1 + 2γ2

)
erf

(
t√

(1 + 2γ2)(1 + 4γ2)

)
.

E EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

Our code is available at [XXX].

We use the Transformers (Wolf et al., 2020) and scikit-learn (Pedregosa et al., 2011) libraries for
the experiment of Section 2, and JAX (Bradbury et al., 2018) for the experiment of Section 5. All
experiments run in a short time (less than one hour) on a standard laptop.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

E.1 EXPERIMENT OF SECTION 2 (NLP MOTIVATIONS)

Data generation. We use synthetically-generated data for this experiment. To create our train set,
we generate sentences according to the patterns

The city is [SENTIMENT ADJ]. [PRONOUN] [COLOR ADJ] [ANIMAL] is
[ADV] [SENTIMENT ADJ].

and

The city is [SENTIMENT ADJ]. [PRONOUN] [SENTIMENT ADJ] [ANIMAL] is
[ADV] [COLOR ADJ].

where ADJ stands for adjective and ADV for adverb. Note that the difference between the two patterns
is that the locations of the sentiment and of the color adjectives are swapped. Each element between
brackets corresponds to a word, which can take a few different values that are chosen manually.
For instance, some possible sentiment adjectives are nice, clean, cute, delightful, mean,
dirty, or nasty. A possible value for some words is ∅, meaning that we remove the word from
the sentence, which creates more variety in sentence length. By doing the Cartesian product over
the possible values of each word in brackets, we generate in this way a large number of examples.
Then, the label associated to each example depends solely on the sentiment adjective appearing in the
second sentence. For instance, the words nice, clean, cute, or delightful are associated to
a label +1, while the words delightful, mean, and dirty are associated to a label −1.

We now explain how the test sets are generated. We generate four test sets in order to assess the
robustness of the model to various out-of-distribution changes. The baseline test set uses the same
sentence patterns and the same sentiment adjectives as in the training set, but other words in the
example (e.g., animals, adverb) are different. In particular, a given sentence cannot appear both in the
train set and in the test set. Then, we generate another test set by using sentiment adjectives that are
not present in the training set. We emphasize that the sentiment adjective fully determines the label,
so using unseen adjectives at test time makes the task significantly harder. The third test set uses the
same adjectives as in the train set, but another sentence pattern, namely

Hello, how are you? Good evening, [PRONOUN] [COLOR ADJ] [ANIMAL]
is [ADV] [SENTIMENT ADJ].

Finally, the fourth test set combines a different sentence pattern and unseen adjectives. The size of
the datasets is given in the table below. All datasets have the same number of +1 and −1 labels.

Name Number of examples
Train set 15552
Test set 4608

Test w. OOD tokens 3072
Test w. OOD structure 144

Test w. OOD structure+tokens 96

Table 1: Size of the generated datasets.

Model. We recall that there exists several families of Transformer architectures, which in particular
are not all best suited for sequence classification. An appropriate family is called encoder-only
Transformer, and a foremost example is BERT (Devlin et al., 2019). We refer to Phuong & Hutter
(2022) for an introductory discussion of Transformer architectures and associated algorithms. Here,
we use a pretrained BERT model from the Hugging Face Transformers library (Wolf et al., 2020),
with the default configuration, namely bert-base-uncased. The model has 110M parameters,
12 layers, the tokens have dimension d = 768, and each attention layer has 12 heads. It was pretrained
by masked language modeling, namely some tokens in the input are hidden, and the model learns
to predict the missing tokens. We refer to Devlin et al. (2019) for details on the architecture and
pretraining procedure. We do not perform any fine-tuning on the model.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Experiment design. Our experiment consists in performing logistic regression on embeddings of
[CLS] tokens in the hidden layers of the pretrained BERT model, where we recall that the [CLS]
token is a special token added to the beginning of each input sequence. This is a particular case of the
so-called linear probing, which is a common technique in the field of LLMs interpretability. More
precisely, let ℓ denote a layer index between 0 and 12, where the index 0 corresponds to the input
to the model (after tokenization and embedding in Rd). Then, for each value of ℓ ∈ {0, . . . , 12},
we train a logistic regression classifier, where, for each example, the input to the classifier is the
embedding of the [CLS] token at layer ℓ (that is, a d-dimensional vector), and the label is simply the
label of the sentence as described above.

Results. For ℓ = 0 (blue bar in Figure 1b), the embedding of [CLS] is a fixed vector that does not
depend on the rest of the sequence, so the classifier has a pure-chance accuracy of 50%. However,
as soon as ℓ > 0, thanks to the attention mechanism, the [CLS] token contains information about
the sequence. We report in Figure 1b the average accuracy over ℓ ∈ {1, . . . , 12} for the train set (in
orange) and the test sets (in green). We observe that the information contained in the [CLS] token
is actually very rich, since logistic regression achieves a perfect accuracy of 100% in the train set.
In other words, the data fed to the classifier is linearly separable. We emphasize that the size of
the train set is significantly larger than the ambient dimension d, so it is far from trivial that this
procedure would yield a linearly-separable dataset. Therefore, obtaining linearly-separable data
demonstrates that the model constructs a linear representations of the input inside the [CLS] token.
Moving on to the test sets, the accuracy on the baseline test set is very good (95%), which suggests
some generalization abilities of the model. The accuracy on the out-of-distribution test sets degrades
(between 64% and 75%), but remains largely superior to pure-chance performance. This suggests
that the internal representation built by the Transformer model is to some extent universal, in the
sense that it is robust to the specifics of the sentence structure and of the word choice.

E.2 EXPERIMENT OF SECTION 5 (GRADIENT DESCENT RECOVERS THE ORACLE PREDICTOR)

We begin by providing additional results before giving experimental details.

PGD with an initialization on the sphere and constant inverse temperature schedule. As
emphasized in Section 5, the dynamics of PGD with a general initialization on (Sd−1)2 depend on the
choice of the inverse temperature schedule λt. The experiment presented in the main text in Figure 4a
is for a decreasing schedule λt = 1/(1+10−4t). We report in Figure 7 results when taking a constant
inverse temperature. We observe distinct patterns depending on the value of this parameter. With
a large inverse temperature (Figure 7a), we observe that the dynamics in (κ, ν) always escape the
neighborhood of 0. Furthermore, the direction v⋆ is almost perfectly recovered, i.e., ν ≈ 1. However,
the value of k⋆ is only partially recovered: the dynamics stabilize around κ ≈ 0.3. Moreover, the
excess risk plateaus at a high value, while the dynamics stay far away from the manifold M. In the
case of a smaller inverse temperature (Figure 7b), the situation is different. We observe that some
initializations lead to a convergence to the point (κ, ν) = (0, 0), in which case the dynamics stay far
from the manifold M. In other words, there is no recovery of k⋆ and v⋆. Other initializations lead to
perfect recovery of k⋆ and v⋆. In all cases, the final excess risk is low. Theoretical study of these
observations is left for future work.

Implementation details. The implementation of the PGD algorithm (10) requires to compute the
gradient of the risk. To this aim, we use the formula for the risk given by Proposition 15. Note that all
quantities appearing in this expression have explicit derivatives. The only quantity for which this is
not directly clear is the function ζ , which needs to be differentiated with respect to its first variable to
compute the derivative of the risk with respect to κ. However, recall that ζ(t, γ2) := E

[
erf2(t+G)

]
.

Then, by Lemma (18),

∂tζ(t, γ
2) = 2E

[
(erf erf ′)(t+G)

]
=

2√
1 + 2γ2

erf

(
t√

(1 + 4γ2)(1 + 2γ2)

)
erf ′

(
t√

1 + 2γ2

)
.

Evaluating ζ itself (and not its derivative) is not required to simulate the dynamics, but is useful for
reporting the value of the risk. For this, we also use the formula above, and use numerical quadrature

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

0 50000 100000
Step

0

2

4

6

E
xc

es
s

ri
sk

0 50000 100000
Step

0.00

0.25

0.50

0.75

1.00

A
lig

n
m

en
t

w
it

h
or

ac
le

p
ar

am
et

er
s

|κ|
|ν|

−1 0 1
κ

−1.0

−0.5

0.0

0.5

1.0

ν

0 50000 100000
Step

10−8

10−6

10−4

10−2

100

D
is

ta
n

ce
to

th
e

m
an

if
ol

d
M

(a) For λt = 0.9.

0 10000 20000
Step

0

2

4

6

E
xc

es
s

ri
sk

0 10000 20000
Step

0.00

0.25

0.50

0.75

1.00
A

lig
n

m
en

t
w

it
h

or
ac

le
p

ar
am

et
er

s

|κ|
|ν|

−1 0 1
κ

−1.0

−0.5

0.0

0.5

1.0

ν

0 10000 20000
10−8

10−6

10−4

10−2

100

D
is

ta
n

ce
to

th
e

m
an

if
ol

d
M

(b) For λt = 0.1.

Figure 7: Dynamics of PGD from a random initialization on (Sd−1)2, for two iteration-independent
values of λt. Left: Excess risk as a function of the number of steps. Middle left: Alignment
|κ| = |k⊤k⋆| and |ν| = |v⊤v⋆| with the oracle parameters. Middle right: Trajectories of κ and ν in
a few repetitions of the experiments. Each repetition corresponds to a color, the end point of each
trajectory is in blue. Right: Distance to the invariant manifold M. In all plots except the middle
right ones, the experiment is repeated 30 times with independent random initializations, and either
95% percentile intervals are plotted or all the curves are plotted. Parameters are d = 400, L = 10,
and γ =

√
1/2.

to compute the value of

ζ(t, γ2) =

∫ t

−∞
∂sζ(s, γ

2)ds .

We report in the figures the value of the excess risk, i.e., the risk Rλ(k, v) − ε2. To compute the
distance to the manifold M, recall that it is defined by

M = {(k, v) ∈ Sd−1 × Sd−1, k⊤v⋆ = 0, v⊤k⋆ = 0, k⊤v = 0} .
For a point (k, v) ∈ Sd−1 × Sd−1, its distance to M is therefore computed as

dM((k, v)) =
√
(k⊤v⋆)2 + (v⊤k⋆)2 + (k⊤v)2 .

Parameter values. The following table summarizes the value of the parameters in our experiments.

Name Figure 4a Figure 4b Figure 5 Figure 7a Figure 7b
d 400 400 80 400 400
L 10 10 10 10 10
γ 1/

√
2 1/

√
2 1/

√
2 1/

√
2 1/

√
2

λt 1/(1 + 10−4t) 0.1 2/(1 + 10−4t) 0.9 0.1
α 4 · 10−3 4 · 10−3 10−3 10−3 4 · 10−3

Number of steps 120k 20k 200k 120k 20k
N. of repetitions 30 30 30 30 30

Batch size - - 5 - -
ε 0 0 0.1 0 0

Table 2: Parameter values for the experiments on recovery of the oracle predictor by gradient descent.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

F ADDITIONAL EXPERIMENTS

Transformer layer. The most general formulation of the Transformer layer we consider writes, for
X ∈ RL×d,

X̃ = concat(r,X)

X̂ = X̃+

H∑
h=1

softmax

(
1√
p
LN(X̃)Qh︸ ︷︷ ︸
(L+1)×p

K⊤
h LN(X̃)⊤︸ ︷︷ ︸
p×(L+1)

)
LN(X̃)Vh︸ ︷︷ ︸
(L+1)×p

O⊤
h︸︷︷︸

p×d

,

T (X) = X̂+ReLU(X̂W⊤
1 + 1b⊤1)W

⊤
2 + 1b⊤2 ,

(29)

where

• concat(r,X) ∈ R(L+1)×d adds a new token at the beginning of the sequence by concate-
nating r ∈ Rd to X ∈ RL×d. This token corresponds to the [CLS] or register token (see
Section 3 for discussion and references). In all our experiments, r ∈ Rd is a vector with
i.i.d. Gaussian entries of variance 1/d, which is not trained;

• LN denotes layer normalization, softmax denotes row-wise softmax, and 1 ∈ RL+1 is the
vector filled with 1;

• the parameters are Qh,Kh, Vh, Oh ∈ Rd×p, W1 ∈ Rd×m, b1 ∈ Rm, W2 ∈ Rm×d, and
b2 ∈ Rd.

Experiment with single-head Transformer layer on single-location regression. We first consider
the case of single-head attention, where H = 1 and p = d. For ease of notation, we drop the
subscripts h in the parameters of the attention layer. We also set O to be the identity matrix. We aim
at training the Transformer layer on the single-location regression task, to check that our simplified
model is a good description of the Transformer layer. First note that the output of the Transformer
layer (29) is a matrix in R(L+1)×d while the target of single-location regression is a scalar. Thus, we
consider only the first row of T (X), corresponding to the register token, and learn a linear projection
of this row to R. In other words, the Transformer layer should learn to store in the register token
global information about the sequence, as described in Sections 2 and 3. Overall, letting θ ∈ Rd, our
risk writes

R(Q,K, V,W1, b1,W2, b2, θ) = E
[(
Y − T (X)1θ

)2]
,

where (X, Y) are distributed according to the single-location task as described in Section 2. We train
using single-pass stochastic gradient descent (meaning that fresh samples are used at each step), for
8, 000 steps with a batch size of 128 and a learning rate of 0.01. The experiment is repeated 20 times
with independent random initializations, and 95% percentile intervals are plotted (but are not visible
when the variance is too small). Parameters K, V , W1, W2 are initialized with Gaussian entries of
variance 2/(din + dout). The bias terms are initialized to 0, as well as the query matrix Q, following a
standard recommendation in the literature on signal propagation in Transformer (Yang et al., 2021;
He et al., 2023; He & Hofmann, 2024). The output weights θ are initialized with Gaussian entries
of variance 1/d2, following the mean-field regime (Chizat et al., 2019). Parameters are L = 10,
d = p = 80, m = 200, ε2 = 0.01, γ2 = 0.5.

Results are given in Figure 8. We observe in Figure 8a that the Transformer layer is able to
solve single-layer regression. Furthermore, as shown by Figure 8b, it does so by encoding in its
weights the underlying structure of the problem, namely the oracle parameters k⋆ and v⋆, as in
our simplified model (see Section 5). More precisely, in the case of our model, we showed that
the two parameters k, v ∈ (Rd)2 converge to (k⋆, v⋆). To make appear the equivalent of k and v
in the more complex parametrization (29), we let k be the first left singular vector of K, and
v = V (I + W1W2)θ/∥V (I + W1W2)θ∥. We check numerically that the weight matrix QK⊤ is
nearly rank-one after training3, which validates taking k as the first singular vector of K in the present
experiment. It also validates considering vector-valued parameters in our simplified model. The role
of the vector k is to select the relevant token among all input tokens, while the vector v describes how
successive transformations (the value matrix of the attention layer, the MLP with skip connection,

3The ratio between its first and second singular value is of the order of 106 at the end of training.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

and the final linear projection) map this token to the output of the model. We observe that these two
vectors align perfectly with k⋆ and v⋆. This validates that our simplified model is a good description
of how the Transformer layer solves single-location regression.

0 2000 4000 6000 8000
Step

10−2

10−1

E
xc

es
s

ri
sk

(a) Excess test risk as a function of the number of steps.

0 2000 4000 6000 8000
Step

0.00

0.25

0.50

0.75

1.00

A
lig

n
m

en
t

w
it

h
or

ac
le

p
ar

am
et

er
s

Alignment with k?

Alignment with v?

(b) Alignment between Transformer parameters and
oracle parameters k⋆ and v⋆. We plot |k⊤k⋆| and
v⊤v⋆ as a function of the number of steps, where
k is the first left singular vector of K, and v :=
V (I +W1W2)θ/∥V (I +W1W2)θ∥.

Figure 8: Training a full Transformer layer on single-location regression. The Transformer layer
solves the task, and encodes the structure of the problem in its weights.

Multiple-location regression. A natural extension of single-location regression is when the output
depends on s > 1 tokens instead of just one. This task, which we name multiple-location regression,
can be written as

Y =

s∑
h=1

X⊤
J(h)v

⋆
h + ξ, (30)

where J(1), . . . , J(s) are latent discrete random variables on {1, . . . , L}, all different, and such that,
conditionally on J(1), . . . , J(s),{

XJ(h) ∼ N
(√

d
2k

⋆
h, γ

2Id

)
Xℓ ∼ N (0, Id) for ℓ /∈ {P (1), . . . , P (s)} .

Experiment with simplified predictor on multiple-location regression. In accordance with the
above, a natural extension of the model presented in the main text is the multi-head predictor

T
(k1,v1,...,kh,vh)
λ (X) =

s∑
h=1

erf
(
λXkh

)⊤Xvh . (31)

The hope is that each head (kh, vh) should align with one of the oracle directions (k⋆h, v
⋆
h). As a first

attempt in investigating this question, we run stochastic PGD in a setup similar to the one presented in
Figure 5. We take s = 2, the pair (J(1), J(2)) takes uniform values among disjoint pairs of indices in
{1, . . . , L}. The directions (k⋆1 , v

⋆
1) and (k⋆2 , v

⋆
2) are sampled independently uniformly on the sphere,

such that (k⋆i)
⊤v⋆i = 0. Parameter values are the same as in Figure 5, except that the number of steps

is set to 105, the number of repetitions is set to 20, and the inverse temperature λt is constant after
2.5 · 104 steps. Results are given in Figure 9. We observe (Figure 9a) that our predictor is able to
solve the task. However, the recovery of oracle parameters is only partial, as shown in Figures 9b and
9c: each head partially aligns with the oracle parameters, but the alignment is not perfect. In other
words, the model is not able to well separate the signal coming from the different XP (h). This calls
for additional research in understanding how attention heads differentiate from each other in order to
attend to various signals, and why in our setup the heads are not well-separated.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

0 25000 50000 75000 100000
Step

10−1

100

101

E
xc

es
s

ri
sk

(a) Excess test risk as a function of
the number of steps.

0 25000 50000 75000 100000
Step

0.0

0.2

0.4

0.6

0.8

1.0

A
lig

n
m

en
t

w
it

h
k
? h h=1

h=2

(b) Alignment |k⊤k⋆
h| with the ora-

cle parameters.

0 25000 50000 75000 100000
Step

0.0

0.2

0.4

0.6

0.8

1.0

A
lig

n
m

en
t

w
it

h
v
? h h=1

h=2

(c) Alignment |v⊤v⋆h| with the ora-
cle parameters.

Figure 9: Training the multi-head predictor (31) on the multiple-location regression task (30). The
predictor is able to reach a low-risk region. The recovery of oracle parameters by the predictor is
partial. In the middle plot, for each repetition and each oracle parameter k⋆h, we look at the end of
training which head among k1 and k2 is closer to k⋆h, and report the alignment between k⋆h and that
head along training. If the alignment were perfect, this quantity would be close to 1. The same holds
for the right plot.

Experiment with multi-head Transformer layer on multiple-location regression. We train a
multi-head Transformer layer on the multiple-location regression task (30), taking H = s = 2. The
data is generated as in the previous experiment. Parameters are as in the experiment for single-head
Transformer, except the dimension p = d/H = 40, the number of repetitions set to 10, and the
learning rate set to 0.02. Mimicking the single-head experiment, we let kh be the first left singular
vector of Kh, and vh = VhO

⊤
h (I +W1W2)θ/∥VhO

⊤
h (I +W1W2)θ∥. We also check numerically

that all weight matrices QhK
⊤
h are nearly rank-one after training. Results are reported in Figure 10.

The conclusions are similar to the previous experiment: the excess risk is low at the end of training,
but we observe partial recovery of the oracle parameters (although the recovery is somewhat better
than with the simplified predictor, especially for k⋆h). This suggests that our simplified predictor
might be a first good testbed to understand the training dynamics of multi-head Transformer for this
task.

0 2500 5000 7500 10000
Step

10−2

10−1

100

E
xc

es
s

ri
sk

(a) Excess test risk as a function of
the number of steps.

0 2500 5000 7500 10000
Step

0.0

0.2

0.4

0.6

0.8

1.0

A
lig

n
m

en
t

w
it

h
k
? h

h=1

h=2

(b) Alignment |k⊤k⋆
h| with the ora-

cle parameters.

0 2500 5000 7500 10000
Step

0.0

0.2

0.4

0.6

0.8

1.0

A
lig

n
m

en
t

w
it

h
v
? h h=1

h=2

(c) Alignment v⊤v⋆h with the oracle
parameters.

Figure 10: Training the multi-head Transformer layer (29) on the multiple-location regression
task (30). The predictor is able to reach a low-risk region. The recovery of oracle parameters by
the predictor is partial. For each h ∈ {1, 2}, we let kh be the first left singular vector of Kh, and
vh = VhO

⊤
h (I +W1W2)θ/∥VhO

⊤
h (I +W1W2)θ∥. In the middle plot, for each repetition and each

oracle parameter k⋆h, we look at the end of training which head among k1 and k2 is closer to k⋆h, and
report the alignment between k⋆h and that head along training. If the alignment were perfect, this
quantity would be close to 1. The same holds for the right plot.

41

	Introduction
	Single-location regression task
	Statistical setting
	Language processing motivation

	An attention-based predictor to solve the regression task
	Risk of the oracle and of the linear predictors
	Gradient descent provably recovers the oracle predictor
	Conclusion
	Outline of the proof of Theorem 5
	Proofs of the main results
	Proof of Lemma 6 and Theorem 1
	Proof of Corollary 2
	Proof of Proposition 3
	Proof of Lemma 4
	Proof of Lemma 7
	Proof of Proposition 8
	Proof of Proposition 9
	Proof of Proposition 10
	Proof of Proposition 12
	Proof of Proposition 13

	Expression of the risk beyond the invariant manifold
	Technical results
	Experimental details and additional results
	Experiment of Section 2 (NLP motivations)
	Experiment of Section 5 (Gradient descent recovers the oracle predictor)

	Additional experiments

