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Abstract

Time series foundation models (TSFMs) have shown strong results on public1

benchmarks, prompting comparisons to a “BERT moment” for time series. Their2

effectiveness in industrial settings, however, remains uncertain. We examine why3

TSFMs often struggle to generalize and highlight spectral shift (a mismatch between4

the dominant frequency components in downstream tasks and those represented5

during pretraining) as a key factor. We present evidence from an industrial-scale6

player engagement prediction task in mobile gaming, where TSFMs underperform7

domain-adapted baselines. To isolate the mechanism, we design controlled syn-8

thetic experiments contrasting signals with seen versus unseen frequency bands,9

observing systematic degradation under spectral mismatch. These findings position10

frequency awareness as critical for robust TSFM deployment and motivate new11

pretraining and evaluation protocols that explicitly account for spectral diversity.12

1 Introduction13

Time series data are pervasive across various domains, including finance, healthcare, energy, and14

gaming. Rapid expansion of time series applications, combined with the success of deep learning in15

computer vision and natural language processing [15, 14, 18], has led to increased efforts to adapt16

these models to temporal data. As the volume of time series data continues to grow, manual annotation17

becomes increasingly expensive and difficult to scale. In response, foundation models trained via18

self-supervised learning (SSL) have gained attention as a scalable solution. These models are trained19

on large collections of unlabeled time series using techniques such as contrastive learning [16],20

next-value prediction, and masked autoencoding [7], as well as recently developed joint embedding21

predictive architectures (JEPA) [6].22

However, time series are heterogeneous across domains, as sampling rates, periodicities, and non-23

stationarities differ significantly between, e.g., electricity, healthcare, finance, and gaming. Such24

diversity is especially pronounced in gaming telemetry, where player behavior exhibits irregular,25

multi-scale rhythms. This raises a central question: why do Time Series Foundation Models (TSFMs)26

that excel on curated public datasets underperform in real gaming applications?27

We present evidence from an industrial-scale Player Engagement Prediction (PEP) task and propose28

a frequency-based explanation for the TSFM underperformance. Specifically, we hypothesize that29

TSFMs rely on frequency components memorized during pretraining; when a downstream dataset’s30

dominant bands fall outside this spectrum, generalization suffers. To probe this, we build controlled31

synthetic experiments that contrast “seen” versus “unseen” spectral bands.32
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2 An Industrial Case: Player Engagement Prediction (PEP) in Gaming33

PEP refers to the task of predicting a player’s future behavioral and transactional outcomes over a34

fixed horizon, based on their past interaction history. In this work, we consider a 30-day prediction35

horizon and use multivariate time series (MTS) data extracted from a casual mobile game1. Each36

MTS sample corresponds to a player’s gameplay sequence over a recent lookback window. We define37

two labels to be predicted:38

1. Purchase vs No Purchase: a binary classification label indicating whether the player is39

expected to make a purchase within the 30-day horizon.40

2. Engagement Score: a continuous regression target reflecting in-game behavioral intensity41

(e.g., playtime). Values are normalized to avoid disclosure of business-sensitive information.42

2.1 The Industrial Dataset and Evaluation Protocol43

Each input sample is an MTS consisting of up to 512 completed gamerounds (time steps) from a single44

player, captured over a maximum lookback window of 30 days. The input includes 32 univariate45

time series features, and the missing values are explicitly encoded. Non-exhaustive example features46

and their categories include:47

• Progression: level difficulty, success/fail, attempt count, etc.
• Gameplay: time between rounds, number of moves, etc.
• Resource: purchase/usage/balance of lives, booster, etc.
• Strategy: participation in special game features, etc.
• Context: hour of day, days since install, device type, etc.
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Figure 1: An example MTS sample.

48

All features are scaled using min-max or log transformations with application-specific capping, and49

categorical fields are encoded numerically when applicable. Commercially sensitive financial signals50

are normalized and anonymized where present. Player-identifiable data are not used in our dataset.51

We evaluate models on two complementary sets: (i) a player-holdout set, where train, validation,52

and test splits are created on disjoint groups of players without temporal separation, ensuring no53

per-user leakage while largely preserving stationarity; and (ii) a temporal-holdout set, where models54

are trained and validated on earlier periods and then evaluated zero-shot on the future evaluation set,55

with no tuning of model weights or hyper-parameters. The primary industrial dataset spans 226 days56

and contains 824,208 MTS samples from approximately 40,000 selected players, with validation and57

test (a.k.a., player-holdout) sets of 178,279 and 176,632 samples. The temporal-holdout set covers58

a 28-day period about two months after the end of the primary dataset window, comprising 34,27959

samples from roughly 7,000 players. All features are standardized per-feature using training statistics.60

2.2 The Industrial Benchmarking61

We evaluate (i) industrial baselines (XGBoost [3], TabNet[2]) on temporally aggregated features, (ii)62

PatchTST [11] as a strong task fine-tuned model [17], and (iii) TSFMs that include a representative63

open model (MOMENT-small) [14]. TSFMs are assessed under linear probing with lightweight64

heads. Unless noted, temporal-holdout results are zero-shot on the temporal-holdout set, with65

baselines trained on the primary data directly evaluated on that holdout month.66

We report Accuracy/AUC for the purchase classification label and MSE/MAE for the engagement-67

intensity regression label. Table 1 summarizes the results. Despite public-benchmark success, the68

TSFM lags behind the domain-adapted PatchTST and tabular baselines in this industrial setting.69

3 A Frequency Perspective70

As discussed in the previous section, we observe that foundation models for time series, such71

as MOMENT, underperform compared to traditional fully supervised baselines when considering72

datasets from real-world use cases. From a spectral analysis of the set of frequencies present in the73

considered dataset and the pretraining dataset, we observe the existence of a gap (complete study is74

1The game will be disclosed after the double-blind review period.
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Table 1: Experimental results for Player Engagement Prediction (PEP).

Model Accuracy → AUC → MSE ↑ MAE ↑
player

holdout
temporal
holdout

player
holdout

temporal
holdout

player
holdout

temporal
holdout

player
holdout

temporal
holdout

XGBoost 0.841 0.801 0.915 0.883 1.200 1.310 0.780 0.850
TabNet 0.836 0.795 0.911 0.852 1.304 2.140 0.852 1.169
PatchTST 0.939 0.921 0.982 0.975 0.518 0.711 0.489 0.586
MOMENT-small 0.778 –→ 0.836 –→ 1.459 –→ 0.940 –→

→ Temporal-holdout results for MOMENT-small are omitted for now as experiments are still running. We will update the table
with complete results as well as standard deviations in the camera-ready version.

provided in Appendix B). We consequently hypothesize that this performance gap stems, at least in75

part, from a fundamental mismatch between the statistical properties of the pretraining data and those76

of the downstream tasks. In contrast to text-based foundation models (e.g., large language models),77

where linguistic structure and semantics exhibit strong shared patterns across domains, time series78

data are highly sensitive to changes in frequency, resolution, and temporal dynamics. A minor shift79

in dominant frequency bands can result in drastically different signal characteristics, undermining the80

generalization capacity of pretrained models.81

Consequently, while LLMs have had some success in the generalization aspect of text-related tasks,82

where structural and semantic consistency support robust transfer, time series data often lack such83

stability. Domain-specific variations, such as sampling rate and seasonality, can lead to significant84

distribution shifts that current Time Series-based Foundation Models are not able to handle. While85

other factors, such as covariate shift, nonstationarity, and label misalignment, also play important86

roles, we argue that the potential frequency shift is a primary driver of transfer degradation.87

Main Hypothesis: Time Series Foundation Models (TSFMs) transfer effectively88

when the downstream series share dominant frequency bands with those represented89

during pretraining; performance degrades significantly otherwise.90

To validate this hypothesis, we empirically investigate how shifts in frequency affect the downstream91

performance of a TSFM. We design a controlled setup in which we contrast the model’s performance92

on data with seen versus unseen frequency bands. Specifically, starting from a dataset used during93

pretraining, we construct two derived datasets: one that preserves the dominant frequency components94

from pretraining, and another with altered spectral characteristics outside the pretrained distribution.95

By design, the foundation model has been exposed to the frequency profile of the first dataset, while96

the second represents a spectral domain it has not encountered. Poor generalization to the latter97

would suggest that the model has not truly learned generalizable temporal representations, but rather98

memorized patterns associated with specific frequency bands.99

3.1 Experimental Setup.100

While we provide an exhaustive description of the data generation process in Appendix C, we101

highlight the main steps taken in the following section. Given a chosen time series dataset that was102

used for the pretraining, the data generation process can be summarized as follows:103

1. Frequency extraction: For each series, we compute the FFT and retain the top-5 dominant104

frequencies. Let [f low, f high] denote the resulting band of interest.105

2. Signal generation: We synthesize two sets of signals: Seen band, where frequencies are sampled106

uniformly from [f low, f high]; and Unseen band, where frequencies are sampled from [f low +107

ω, f high + ω]. The shift ω is chosen such that the two intervals are disjoint and remain within the108

overall frequency range of the original series. Each signal is constructed as a sum of sinusoids109

with random phases and light additive noise.110

3. Labeling: Regression targets are the z-score normalized sum of sampled frequencies to remove111

scale effects; classification labels indicate whether a sample comes from the seen or unseen band.112

4. Evaluation: We freeze a pretrained TSFM backbone and train lightweight regression or classifi-113

cation heads on each synthetic variant.114
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Following the generation process, we consider MOMENT [14] as the basis TSFM for our experiment.115

We used a linear head to produce the final prediction, which was trained during the downstream116

task. We based our experiments on a set of classification datasets that were used to train the117

model. Specifically, we considered time series representing sensor outputs (FordA, FordB [5] and118

FaultDetectionA and FaultDetectionB [9]), we additionally considered time series representing119

consumers’ electricity behavior (SmallKitchenAppliances and ElectricDevices [10]). For all the120

experiments, the models were trained using the Adam optimizer, binary cross-entropy loss (for121

classification) and mean-square error loss (for regression). All experiments were run 3 times, and122

we report the average and standard deviation to ensure a robust analysis and to reduce the effect of123

randomness. Additional details about our implementation are provided in Appendix E.124

3.2 Experimental Results125

Table 2 reports the mean (and corresponding standard deviation) Mean-squared error (MSE) and126

Mean Absolute Error (MAE) of the seen and unseen generated datasets. As expected, we see that in127

all cases, the resulting MSE and MAE for the seen dataset are smaller than those from the unseen128

datasets. We note that for these experiments, the model is kept frozen while only a regression head is129

trained; therefore, we are testing the model’s ability to extract meaningful representations of the time130

series, which could be useful for the downstream task. From these results, we can conclude that the131

MOMENT model has a better ability to deal with datasets with similar semantic characteristics (such132

as frequencies) to those used for training.133

Table 2: Regression performance of a frozen TSFM encoder (MOMENT-small) with a trainable
regressor on synthetic datasets.

Dataset Test MSE Test MAE
Seen (↭) Unseen (↓) Seen (↭) Unseen (↓)

FordA 0.333± 0.010 0.366± 0.005 0.439± 0.005 0.457± 0.005
FordB 0.333± 0.010 0.358± 0.008 0.426± 0.005 0.456± 0.005
ElectricDevices 0.644± 0.002 0.952± 0.003 0.559± 0.001 0.791± 0.004
SmallKitchenAppliances 0.691± 0.059 0.877± 0.017 0.686± 0.031 0.752± 0.007
FaultDetectionA 0.689± 0.001 0.942± 0.004 0.666± 0.001 0.779± 0.001
FaultDetectionB 1.129± 0.172 2.005± 0.266 0.875± 0.084 1.140± 0.034

In addition to the previously considered regression task, we also extended the results and the study to134

include a classification downstream task, where similar trends are observed, further validating our135

hypothesis. The results of the analysis are provided in Appendix D.136

3.3 Limitations and Practical Implications137

In this section, we would like to declare a few limitations of this study. Our evidence is drawn from138

one industrial domain (mobile gaming) and a single TSFM configuration, and we are conducting139

broader validations at the moment. The synthetic probes also simplify real-world dynamics, relying140

on sinusoidal signals that do not fully capture irregular sampling, burstiness, or regime shifts. Despite141

these constraints, the consistent trends suggest practical guidance: practitioners should assess spectral142

overlap between downstream data and pretraining corpora, apply frequency-aware augmentations or143

light adaptation when overlap is low, and adopt benchmarks that explicitly stress-test robustness under144

spectral shifts. We share more detailed discussions about frequency-aware pretraining in Appendix F.145

4 Conclusion146

Most recent works on TSFMs report strong results on carefully curated public benchmarks. However,147

the statistical properties of these datasets are far from those encountered in messy, real-world148

applications. Benchmark success does not guarantee industrial transfer. Using an industrial-scale149

gaming task and controlled experiments, we trace TSFM underperformance to spectral shift between150

pretraining and downstream signals. Because frequency composition varies sharply across domains,151

sampling regimes, and tasks, addressing spectral shift is essential for TSFMs to move from benchmark152

success towards universality. We recommend (i) quantifying spectral overlap between pretraining153

corpora and downstream datasets, (ii) incorporating frequency-aware augmentations and pretraining154

strategies, and (iii) adopting benchmarks that explicitly probe robustness to spectral diversity.155
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