
Published in Transactions on Machine Learning Research (10/2024)

DrGNN: Deep Residual Graph Neural Network with
Contrastive Learning

Lecheng Zheng∗ lecheng4@illinois.edu
University of Illinois Urbana-Champaign

Dongqi Fu∗ dongqifu@meta.com
Meta AI

Ross Maciejewski rmacieje@asu.edu
Arizona State University

Jingrui He jingrui@illinois.edu
University of Illinois Urbana-Champaign

Reviewed on OpenReview: https: // openreview. net/ forum? id= frb6sLbACS

Abstract

Recent studies reveal that deep representation learning models without proper regularization
can suffer from the dimensional collapse problem, i.e., representation vectors span over a lower
dimensional space. In the domain of graph deep representation learning, the phenomenon
that the node representations are indistinguishable and even shrink to a constant vector is
called oversmoothing. Based on the analysis of the rank of node representations, we find
that representation oversmoothing and dimensional collapse are highly related to each other
in deep graph neural networks, and the oversmoothing problem can be interpreted by the
dimensional collapse of the node representation matrix. Then, to address the dimensional
collapse and the oversmoothing together in deep graph neural networks, we first find vanilla
residual connections and contrastive learning producing sub-optimal outcomes by ignoring
the structured constraints of graph data. Motivated by this, we propose a novel graph
neural network named DrGNN to alleviate the oversmoothing issue from the perspective of
addressing dimensional collapse. Specifically, in DrGNN, we design a topology-preserving
residual connection for graph neural networks to force the low-rank of hidden representations
close to the full-rank input features. Also, we propose the structure-guided contrastive
learning to ensure only close neighbors who share similar local connections can have similar
representations. Empirical experiments on multiple real-world datasets demonstrate that
DrGNN outperforms state-of-the-art deep graph representation baseline algorithms. The code
of our method is available at the GitHub link: https://github.com/zhenglecheng/DrGNN.

1 Introduction

Representation learning models have achieved outstanding performance for various application domains by
outputting informative hidden representations, such as computer vision and natural language processing.
Recent studies (Hua et al., 2021; Jing et al., 2022; Guo et al., 2023) show that the deep representation learning
models without proper regularization tend to produce representations that collapse along certain directions,
known as the dimensional collapse, which can be further interpreted by the visualization of the singularity
ranking of the matrices of representations (Hua et al., 2021).

∗Equal Contribution

1

https://openreview.net/forum?id=frb6sLbACS
https://github.com/zhenglecheng/DrGNN

Published in Transactions on Machine Learning Research (10/2024)

With the advent of big data, graph structures recently received increasing research attention for their ability to
encode complex interactions (Fu et al., 2024a;b; 2022). Similarly, the deep representation learning models on
graphs are also found affected by representation issues. Especially, the node representation vectors outputted
by deeper graph neural networks are not discriminative from each other and directly hurt the performance of
node classification and link prediction tasks and their corresponding applications. This phenomenon is called
oversmoothing in the graph representation learning domain (Li et al., 2018; Oono & Suzuki, 2020; Rusch
et al., 2023).

To begin with, we find that the oversmoothing in graph deep learning can be interpreted by dimensional
collapse from the low rank of the representation matrix. A detailed theoretical derivation can be found in
Appendix A. To empirically demonstrate the existence of dimensional collapse in deep graph neural networks,
we conduct a toy experiment on the Cora benchmark dataset (Lu & Getoor, 2003) by exploring the rank of the
covariance matrix of the node representations. The analysis is visualized in Figure 1, where the x-axis is the
index of the sorted singular values of the covariance matrix of the representation matrix, and the y-axis is the
logarithm of the singular value. In Figure 1, we can see that the number of non-zero singular values is much
smaller than the number of representation dimensions for a deep Graph Convolutional Network (GCN) (Kipf
& Welling, 2017). This suggests that the representation matrix is low-rank, and the discrimination of node
representation vectors only relies on a few dimensions, which naturally increases the difficulty of effectively
discriminating node presentations and makes tasks (e.g., node classification and link prediction) groundless.

(a) (b)
Figure 1: (a). A toy example on the Cora dataset demonstrates the rank deficiency, where GCN is chosen as
the backbone, the number of layers is set to 64, and the dimension of representation is 100. WGResNet and
SCL are two major components of our proposed DrGNN, which are model-agnostic and can be added on
GCN for example. (b) The visualization about how vanilla residual connections of neural layers turn the
low-rank representation Z into a full-rank representation Z ′.

However, stacking more graph neural layers is indispensable in some cases (e.g., heterophily, long-range
interaction, etc.). For example, for a certain query node, the close neighbors can have missing features and
labels; then, we may need the information from distant neighbors to represent the query node, as two case
studies show in Section 3.2. According to the message passing of graph neural networks (Xu et al., 2018),
adding one graph neural network layer equals aggregating information from one-hop neighbors, such that we
need to stack multiple graph neural network layers. Thus, how to stack more graph neural network
layers to maintain and even boost the representation power motivates our paper.

Addressing the dimensional collapse problem for deep neural networks, previous study of residual connec-
tions (He et al., 2016) among neural layers can be an effective manner, i.e., it has been discovered that
residual connections across neural network layers force the low-rank of hidden representations close to the
full-rank input features (Jing et al., 2022), as shown in Figure 1 (b). The residual connections pave the
way for eliminating the dimensional collapse for deep neural networks and indicate the de-oversmoothing
probability for deep graph neural networks, but for non-IID graph data, the vanilla residual connections
ignore the topological assumption of homophilous graph data that closer neighbors are more important during
the embedding process. Formally, adding vanilla residual connection can induce the drawback of what we call
the “shading neighbors” effects, i.e., close neighbors become less important during the neural representation
process. The details are discussed in Section 2.2.

2

Published in Transactions on Machine Learning Research (10/2024)

Figure 2: An Arbitrary GNN Backbone with the Proposed DrGNN.

Moreover, for the oversmoothing phenomenon in the graph representation learning domain, the direct result
is that individual representations are indistinguishable. Hence, contrastive learning serves as a viable solution,
but the existing work (Guo et al., 2023) simply introduces vanilla contrastive loss as a regularization while
failing to consider the topological relationship of positive and negative pairs.

Facing the latent dimensional collapse problem (i.e., non-sufficient singular values of covariance matrix of
representations) and observable oversmoothing problem (i.e., non-discriminative node embedding vectors),
we propose two effective solutions, i.e., Weight-Decaying Graph Residual Connection (WG-ResNet) and
Structure-Guided Contrastive Learning (SCL) for deep graph neural networks. In brief, WG-ResNet applies
weighted residual connections to preserve the input graph topology, and SCL also weighs different positive
and negative pairs based on their topological relations. Besides the theoretical analysis, a visualization of
SCL and WG-ResNet in addressing dimensional collapse is also shown in Figure 1 (a). Moreover, it can be
observed that SCL itself can alleviate the dimensional collapse to some extent, i.e., alleviating oversmoothing
by contrastive learning can alleviate the dimensional collapse, which suggests the close relationship between
dimensional collapse and oversmoothing.

Hence, we propose an end-to-end graph neural network model DrGNN, which encloses SCL and WG-ResNet
in a model-agnostic manner to help arbitrary graph neural networks go deeper effectively compared to state-
of-the-art baselines, supported by theoretical and empirical analysis. Furthermore, we designed extensive
ablation studies to show that SCL and WG-ResNet both contribute to boosting the representation power,
and their combination can reach optimal results in terms of node classification.

2 The Proposed DrGNN

In this section, we begin with the overview of DrGNN and then provide the details of the Weight-decaying
Graph Residual Connection (WG-ResNet) and Structure-guided Contrastive Learning (SCL). We formalize
the problem of graph embedding within the context of an undirected graph G = (V, E , X), where V consists
of n nodes, E consists of m edges, X ∈ Rn×d denotes the feature matrix and d is the feature dimension. We
let A ∈ Rn×n denote the adjacency matrix and denote Ai ∈ Rn as the adjacency vector for node vi. Hi ∈ Rh

is the hidden representation vector of vi.

2.1 Overview

The overview of our proposed DrGNN is shown in Figure 2 and DrGNN consists of two parts, including
the graph architecture WG-ResNet and contrastive loss SCL. Specifically, the green dash line stands for
WG-ResNet, where H(l) at the l-th layer will be adjusted by its second last layer H(l−2) and the first layer
H(1) with proper weights. The red dash line in Figure 2 stands for SCL, where we sample positive node
pairs and negative node pairs based on the input graph topology such that the hidden representations of

3

Published in Transactions on Machine Learning Research (10/2024)

positive node pairs get closer and negative ones are pushed farther apart. The overall of DrGNN in terms of
loss functions and architectures is expressed as follows.

LDrGNN = LGNN + αLSCL (1)

where LGNN denotes the loss of the downstream task (e.g., node classification) using an arbitrary GNN model
(e.g., GCN (Kipf & Welling, 2017)) equipped with WD-ResNet, LSCL is the structure-guided contrastive loss
function, and α is a constant hyperparameter. The details of WG-ResNet (Section 2.2) and SCL (Section 2.3)
are introduced below.

2.2 Weight-Decaying Graph Residual Connection (WG-ResNet)

As shown in Figure 1 (b), the vanilla residual connections (e.g., ResNet (He et al., 2016)) have the potential
to alleviate the dimensional collapse of deep neural networks. But for deep graph neural networks, we discover
that simply adding residual connections leads to the sub-optimal solution. As the way of ResNet stacking
graph neural network layers, the importance of close neighbors’ features gradually decreases during the GNN
information aggregation process, and the faraway neighbor information becomes dominant. More concretely
speaking, because the residual connection of ResNet connects the current neural layer with its second last
layer, taking graph convolutional network (GCN) (Kipf & Welling, 2017) as an example, the vanilla residual
connection of ResNet is expressed as follows.

H(l) = RELU(ÂH(l−1)W (l−1)) + H(l−2) (2)

where l(≥ 2) denotes the index of layers, H(l−1) and H(l−2) are the hidden representations at corresponding
layers, RELU is the activation function, W (l−1) is the learnable weight matrix, and Â is the re-normalized
self-looped adjacency matrix with Â = D̃− 1

2 ÃD̃− 1
2 and Ã = A + I, where D̃ is the degree matrix. Without

loss of generality, we can assume the last layer of GNNs l is divisible by 2. Then, just by extending the
dangling H(l−t) iteratively (e.g., first substituting H(l−2) with its previous residual blocks), the above Eq. 2
for the standard residual connection (i.e., the way of ResNet (He et al., 2016)) could be rewritten as follows.

H(l) = RELU(ÂH(l−1)W (l−1)) + RELU(ÂH(l−3)W (l−3)) + H(l−4)

= RELU(ÂH(l−1)W (l−1)) + RELU(ÂH(l−3)W (l−3)) + · · ·︸ ︷︷ ︸
Information aggregated from the faraway neighbors

+ RELU(ÂH(i)W (i)) + · · · + RELU(ÂH(1)W (1))︸ ︷︷ ︸
Information aggregated from the nearest neighbors

(3)

According to (Xu et al., 2019), stacking l layers in GNNs and obtaining H(l) can be interpreted as aggregating
information from l-hop neighbors for node hidden representations. As shown in Eq. 3, when we stack more
layers in GNNs, the information collected from faraway neighbors becomes dominant (as there are more terms
regarding the information from faraway neighbors), and dilutes the information collected from the nearest
neighbors (e.g., 1-hop or 2-hop neighbors). This phenomenon contradicts the general intuition on homophilous
graph that the close neighbors of a node carry the most important information, and the importance degrades
with faraway neighbors. Formally, we describe this phenomenon as shading neighbors effect when stacking
graph neural layers, as the importance of the nearest neighbors is diminishing. As the enlarging the field of
information aggregation, this way cannot essentially get rid of the overshooting problem. We empirically
demonstrate that the shading neighbors effect degrades GNN performance in downstream tasks in Section F:
Specifically, we show that (1) vanilla residual connection of ResNet exhibits the shading neighbors effect in
graph representation learning; (2) jumping knowledge (Xu et al., 2018) can be a viable solution to mitigate
the shading neighbors effect to some extent; (3) our proposed WG-ResNet achieves the best effectiveness in
addressing the shading neighbors effect.

To formally introduce our proposed generic graph architecture, i.e., Weight-Decaying Graph Residual
Connection (WG-ResNet), we first introduce the formulation and then provide insights regarding why it
can work. Specifically, our WG-ResNet introduces the layer similarity and weight decaying factor as follows.

H(l) = ecos(H(1), H̃(l))−l/λ · H̃(l) + H(l−2), and H̃(l) = RELU(ÂH(l−1)W (l−1)) (4)

4

Published in Transactions on Machine Learning Research (10/2024)

where cos(H(1), H̃(l)) = 1
n

∑
i

H
(1)
i

(H̃
(l)
i

)⊤

∥H
(1)
i

∥∥H̃
(l)
i

∥
measures the similarity between the l-th layer and the 1-st layer,

and we use the exponential function e(·) to map the cosine similarity ranging from [−1, 1] to [e−1, e1] to
avoid the negative similarity weights. Moreover, the term e−l/λ is the decaying factor to further adjust the
similarity weight of H̃(l), where λ is a constant hyperparameter.

Our introduced similarity ecos(H(1), H̃(l))−l/λ is not fixed but dynamic during each training iteration to
reflect the optimized similarity of different layers, which also expands the hypothesis space of deeper GNNs.
More importantly, the introduced decaying factor e−l/λ aims to mitigate the shading neighbor effect by
strengthening layer-wise dependency and preserving topology information in deeper GNNs. As λ is a positive
constant, the value of e−l/λ is decreasing as l increases, such that the later stacked layers become less
influential than the previously stacked ones due to the decaying weight. In contrast, without the decaying
factor, the layer-wise weights remain independent, and the shading neighbors effect persists. Moreover, we
visualize the layer-wise weight distribution of different residual connection methods and their effectiveness
in Appendix B. From another perspective, the hyperparameter λ of the decaying factor actually controls
the number of effective neural layers in deeper GNNs, i.e., after the effective layer, stacking more layers just
maintains the performance or brings marginal upgrade. We find its value directly related to the diameter of
the input graph, and this finding is quite important to avoid heavy hyperparameter tuning. The detailed
discussion can be found in Section 3.4.

2.3 Structure-Guided Contrastive Learning (SCL)

According to (Hua et al., 2021; Jing et al., 2022), contrastive representation learning methods show success in
preventing dimensional collapse for image recognition. For graph data, the contrastive methods are able to
construct the positive and negative sets and minimize the similarity of the negative pairs (Wang & Isola,
2020; Guo et al., 2023). However, simply adopting the idea of contrastive regularization in deep graph neural
networks could not fully alleviate the oversmoothing issue due to ignoring the topological relation of non-IID
graph data. To address this issue with the geometry consideration, we propose the Structure-guided
Contrastive Learning (SCL) as follows. Intuitively, for an anchor node vi, its positive sample (i.e.,
connected node) should have close node representations, and its negative sample (i.e., disconnected node)
should have discriminative node representations. Moreover, we propose σ and γ to distinguish the importance
of positive and negative samples based on the input structure.

LSCL = −Evi∈V [Evj∈Ni(σij log(f(zi,zj))) + Evk∈N̄i
(γik log(1 − f(zi, zk)))]

σij = n2

m
· 1 − dist(Ai, Aj)/n∑

vi′ ∈V,vj′ ∈Ni′ (1 − dist(Ai′ , Aj′)/n) and γik = n2

n2 − m
· 1 + dist(Ai, Ak)/n∑

vi′ ∈V,vk′ ∈N̄i′ (1 + dist(Ai′ , Ak′)/n)
(5)

where the connected edge (vi, vj) forms the positive pair, and the disconnected edge (vi, vk) forms the negative
pair. zi = g(H(l)

i), g(·) is an encoder mapping H
(l)
i , f(·) is a similarity function (e.g., f(a, b) = e

ab⊤
||a||||b||),

dist(·) is a distance measurement function (e.g., hamming distance (Norouzi et al., 2012)), Ni is the set
containing one-hop neighbors of node vi, N̄i is the complement of the set Ni, m is the number of edges and n
is the number of vertices. Moreover, (vi′ , vj′) iterates over all connected edges in the input graph, and (vi′ ,
vk′) iterates over all disconnected edges in the input graph.

The intuition of Eq. 5 is to maximize the similarity of the representations of the positive pairs and to
minimize the similarity of the representations of the negative pairs, such that the node representations become
discriminative. In which process, some previous research works (Perozzi et al., 2014; Grover & Leskovec, 2016;
Le, 2021) would first assume that the importance of each edge is identical. However, such an assumption does
not always get satisfied in many applications (Velickovic et al., 2017; Faisal et al., 2015). To address this issue,
we reweigh the importance of edges by considering the graph topological structure via importance scores σ
and γ. Therefore, for a positive pair, if two nodes have similar topological structures (e.g., ego-networks), the
importance score σ of this node pair should be large; but for a negative pair, if two nodes also have similar
topological structures, the importance score γ of this negative pair should be small.

5

Published in Transactions on Machine Learning Research (10/2024)

Next, we show how our proposed SCL mitigates the oversmoothing issue with the theoretical analysis. Note
that, in the following derivation, we refer the edge e to any possible connection, which can be either an
existing edge or a non-existing edge. To be specific, if node i and node k do not connect in the input graph,
then Eik represents the non-existing edge between node i and node k, denoted as a negative edge.

To begin with, we denote the probability of sampling a connection Eij and it is a positive connection as
P̃pos(Eij) ∝ P (Eij , y = 1), i.e., the sampled pair of two nodes vi and vj connect in the input undirected
graph. Then, P̃pos(Eij) can be further expressed as P̃pos(Eij) = σijPpos(Eij), where Ppos(Eij) = 2m

n2 is the
prior probability that the sampling is positive, and σij is the conditional probability for the joint probability
P̃pos(Eij). Note that a positive connection (e.g., Eij) stands for two connected nodes vi and vj forming a
positive pair. Similarly, for disconnected two nodes vi and vk (i.e., the negative pair or negative connection
Eik), we denote P̃neg(Eik) = γikPneg(Eik), where Pneg(Eik) = 1 − 2m

n2 is the prior probability of sampling a
negative connection, and we interpret γik as the conditional probability for the joint probability P̃neg(Eik).
Finally, we denote θ to be the parameters of the multi-layer GNN model Gθ(·), i.e., Z = Gθ(A, X), such that
we can prove that SCL could alleviate the oversmoothing issue from the perspective of generative adversarial
network (GAN) (Goodfellow et al., 2014) as follows.
Proposition 2.1. LSCL, the loss function based on contrastive learning, can be interpreted as the objective
function of a generative adversarial network (GAN) (Goodfellow et al., 2014),

min
θ

LSCL = max
θ

∫
E

(P̃pos(E) log(D(E)) + P̃neg(E) log(1 − D(E)))dE

where D(E) = f(zi, zj) is the discriminator of GAN with edge E = (vi, vj) being connected or not, by node
representations zi and zj. Probabilities P̃pos(E) = σPpos(E) and P̃neg(E) = γPneg(E) are defined above.
(Proof in Appendix C)

According to Proposition 2.1, the proposed LSCL can be interpreted as distinguishing the existence of a
certain edge based on the representation vectors of two nodes. Next, we then derive how this design helps, as
a regularizer, to alleviate the oversmoothing problem (Rusch et al., 2023) (i.e., hidden representation vectors
of different nodes are similar given a selected distance function) based on positive and negative samples.
Theorem 2.2. Given an optimized discriminator D∗(E), to achieve the optimization process of Proposi-
tion 2.1, regularization term LSCL enforces that connected nodes have different representation vectors than
disconnected nodes. The theoretical optimum1 of D∗(E) is P̃pos(E)

P̃pos(E)+P̃neg(E) . (Proof in Appendix C)

3 Experiments
In this section, we design comprehensive experiments to answer the following research questions.

• RQ1: When do we need more layers of graph neural networks? (Answered in Section 3.2)

• RQ2: When it is necessary to be deep, can DrGNN alleviate dimensional collapse and maintain or
even boost task performance for deeper architecture? (Answered in Section 3.3 and Section 3.4)

• RQ3: In practice, can DrGNN be agnostic to help various off-the-shelf graph neural network
architectures? (Answered in Section 3.5)

• RQ4: Is every component of DrGNN helpful and irreplaceable? (Answered in Appendix F)

3.1 Experiment Setup
Datasets. Cora (Lu & Getoor, 2003) dataset is a citation network consisting of 5,429 edges and 2,708
scientific publications from 7 classes. The edge in the graph represents the citation of one paper by another.
CiteSeer (Lu & Getoor, 2003) dataset consists of 3,327 scientific publications which could be categorized into
6 classes, and this citation network has 9,228 edges. PubMed (Namata et al., 2012) is a citation network
consisting of 88,651 edges and 19,717 scientific publications from 3 classes. Reddit (Hamilton et al., 2017b)

1In practice, the optimum discriminator is usually approximated by the converged neural network.

6

Published in Transactions on Machine Learning Research (10/2024)

dataset is extracted from Reddit posts, which consists of 4,584 nodes and 19,460 edges. Notice that we follow
the splitting strategy used in (Zhao & Akoglu, 2020) by randomly sampling 3% of the nodes as the training
samples, 10% of the nodes as the validation samples, and the remaining 87% as the test samples. Moreover,
we follow the OGB benchmark (Hu et al., 2020) for the large-scale dataset OGB-arXiv (Wang et al., 2020)
which is a citation network and consists of 1,166,243 edges and 169,343 nodes from 40 classes. Also, we adopt
the non-homophilous benchmark (Lim et al., 2021) for the heterophilous version of OGB-arXiv, which is
denoted as arXiv-year and the edge homophily is just 0.222.

Baselines. We compare the performance of our method with the following baselines: (1) GCN (Kipf &
Welling, 2017): the vanilla graph convolutional network; (2) GCNII (Chen et al., 2020): an extension of GCN
with skip connections and additional identity matrices; (3) DGN (Zhou et al., 2020): the differentiable group
normalization for GNNs to normalize nodes within the same group and separate nodes among different groups;
(4) PairNorm (Zhao & Akoglu, 2020): a GNN normalization layer designed to prevent node representations
from becoming too similar; (5) DropEdge (Rong et al., 2020): a GNN-agnostic framework that randomly
removes a certain number of edges from the input graph; (6) RevGCN-Deep (Li et al., 2021): equilibrium
model based deep graph neural networks; (7) EGNN (Zhou et al., 2021): Dirichlet energy constrained deep
graph neural networks; (8) ContraNrom (Guo et al., 2023): a contrastive learning-based layer normalization
method. Detailed reproducibility with released code can be found in Appendix D.

3.2 When do we need more layers of graph neural networks?
Case 1: Missing Features. We first consider a scenario where some attribute values are missing in the input
graph. In such cases, shallow GNNs may not perform well because they cannot gather enough information
from close neighbors due to the presence of numerous missing values. By increasing the number of layers,
GNNs can gather more information and capture latent knowledge to compensate for missing features. To verify
this, we conducted the following experiment: we randomly masked p% of attributes (i.e., setting the masked
attributes to be 0), gradually increased the number of layers, and recorded the accuracy for each setting. In
this case study, we selected the number of layers from the set {2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 60},
and the backbone model used was GCN. For a fair comparison, we added residual connection of ResNet (He
et al., 2016) to baselines if adding it could enhance the baseline’s performance, denoted as (+RC). We
repeated the experiments five times and recorded the mean accuracy and standard deviation.

Table 1: Node Classification by Masking p% of Input Node Attributes (L denotes the number of layers that
achieves the best performance).

Node Feature Missing Rate p = 25% p = 50% p = 75%
Dataset Method Accuracy L Accuracy L Accuracy L

Cora

GCN (+RC) 0.7503 ± 0.0101 7 0.7435 ± 0.0048 10 0.7226 ± 0.0099 10
PairNorm (+RC) 0.7529 ± 0.0129 10 0.7482 ± 0.0172 20 0.7262 ± 0.0178 40
DropEdge (+RC) 0.7634 ± 0.0112 15 0.7611 ± 0.0102 20 0.7297 ± 0.0168 8

GCNII (+RC) 0.2667 ± 0.0063 25 0.3351 ± 0.0066 25 0.2914 ± 0.0106 40
DGN 0.6850 ± 0.0184 30 0.6846 ± 0.0147 50 0.6717 ± 0.0156 25

ContraNorm (+RC) 0.7319 ± 0.0099 2 0.7189 ± 0.0091 3 0.6902 ± 0.0107 3
DrGNN 0.7915 ± 0.0060 10 0.7848 ± 0.0043 20 0.7598 ± 0.0081 60

CiteSeer

GCN (+RC) 0.6141 ± 0.0080 4 0.5811 ± 0.0093 10 0.5149 ± 0.0173 9
PairNorm (+RC) 0.6184 ± 0.0087 8 0.5947 ± 0.0083 20 0.5176 ± 0.0075 10
DropEdge (+RC) 0.6348 ± 0.0156 4 0.6083 ± 0.0128 6 0.5240 ± 0.0128 10

GCNII (+RC) 0.2453 ± 0.0045 40 0.2338 ± 0.0028 20 0.2403 ± 0.0046 25
DGN 0.4560 ± 0.0162 20 0.4593 ± 0.0117 15 0.4498 ± 0.0292 15

ContraNorm (+RC) 0.5893 ± 0.0114 2 0.5621 ± 0.0111 3 0.4646 ± 0.0076 4
DrGNN 0.6524 ± 0.0087 20 0.6169 ± 0.0063 60 0.5576 ± 0.0070 50

From Table 1, we find that when the missing rate is 25%, shallow GCN with residual connections has enough
capacity to achieve the best performance. Given that, our proposed method further improves the performance
by more than 3.83% on the CiterSeer dataset and 4.08% on the Cora dataset by stacking a few layers.
However, when we increase the missing rate to 50% and 75%, we observe that most methods tend to achieve
the best performance by stacking more layers. Specifically, PairNorm achieves the best performance at 10
layers when 25% features are missing, while it has the best performance at 40 layers when 75% features

7

Published in Transactions on Machine Learning Research (10/2024)

are missing. A similar observation could also be found with GCNII on the Cora dataset, DropEdge on the
CiteSeer dataset as well as our proposed methods in both datasets. Overall, the experimental results verify
that the more features a dataset are missing, the more layers GNNs need to be stacked to achieve better
performance. Our explanation for this observation is that if the number of layers increases, more information
will be collected from the distant neighbors to recover the missing information of its close neighbors.

Case 2: Missing Labels. We then conducted another case study using a toy example to demonstrate
that nearby neighbors may not necessarily share similar contents. Initially, we utilized an existing package
(specifically, the draw circle function in the Scikit-learn package) to generate a synthetic dataset with 1,000
data points and a noise level set to 0.01. Subsequently, we computed the Euclidean distance between each
pair of data points. If the distance between two data points is less than a predefined threshold, we connect
them in a graph, resulting in the derivation of the adjacency matrix with added self-loops. Following this,
we randomly sampled 1% of the data points as the training set, 9% as the validation set, and 90% as the
test set. These data points are visualized in Figure 3a, and the corresponding experimental results are
presented in Figure 3b. In Figure 3a, we observed that the query node (i.e., the blue diamond within the
dashed circle) could not just rely on its closest labeled neighbor (i.e., the red star within the dashed circle) to
predict its label (red or blue) correctly. Exploring longer paths consisting of more similar neighbors can help
to accurately predict its label as blue (as indicated by the blue star within the dashed circle). Figure 3b
compares the classification accuracy of shallow and deep GNNs with the same backbones. Notably, deeper
GNNs exhibited a significant performance improvement of over 11% compared to shallow ones, contributing
to their capability of exploring longer paths in the graph.

(a) (b)

Figure 3: A Toy Example to Demonstrate the Benefit of Deeper GNN Models: (a) Two groups of nodes
in the semi-supervised setting. Stars are labeled, dots are unlabeled, and the diamond is the query node.
Euclidean distance between two nodes determines the edge connection. (b) Comparison of node classification
accuracy between shallow and deeper GNN models using data on the left. The deeper GNNs are realized by
DrGNN with the corresponding same backbones.

Case 3: Heterophilous Graphs. In this section, we evaluate the performance of DrGNN on a large
heterophilous graph (i.e., arXiv-year) from the benchmark (Lim et al., 2021). In brief, heterophily means the
connected two nodes do not share the same label.

Table 2: Node Classification on the arXiv-year dataset.

Method arXiv-year Method arXiv-year
GCN 0.4602 ± 0.0026 GAT 0.4605 ± 0.0051

GCNJK 0.4628 ± 0.0029 GATJK 0.4580 ± 0.0072
APPNP 0.3815 ± 0.0026 H2GCN 0.4909 ± 0.0010
MixHop 0.5181 ± 0.0017 GPR-GNN 0.4507 ± 0.0021
GCNII 0.4721 ± 0.0028 DrGNN (10 layers) 0.4816 ± 0.0008

DrGNN (20 layers) 0.4835 ± 0.0008 DrGNN (30 layers) 0.4871 ± 0.0007
DrGNN (50 layers) 0.4995 ± 0.0006

8

Published in Transactions on Machine Learning Research (10/2024)

As shown in Table 2, our DrGNN achieves the second place performance in terms of node classification
accuracy, among other state-of-the-art graph neural network methods. Also, we can observe that stacking
more layers can increase the performance of DrGNN, because multi-hop neighbor information is aggregated
for the message passing in heterphilous graphs. The reason why DrGNN can not achieve the best is that,
although stacking layers can aggregate information from multi-hop neighbors, the loss SCL is still regulating
that close neighbors should share similar representations, which is generally based on the homophilous
condition for more common settings. Note that our design of DrGNN is not solely for heterphilous graphs
but for how to stack layers wisely for upgrading performance when the stacking operation is necessary and
unavoidable. Heterophily is not the only reason for stacking graph neural layers; at least, the reasoning can
also originate from missing features and labels, as shown above, where we need to stack more graph neural
layers to mitigate the missing features by incorporating more neighbors.

3.3 Effectiveness Analysis of DrGNN
Motivated by the above subsection, we then aim to answer the question: whether our DrGNN can perform if
stacking more layers is inevitable? Therefore, we prepare different deep settings to test if DrGNN can always
outperform baseline methods.

In Table 3, for a fair comparison, the backbone model for all methods we used in these experiments is GCN,
and we set the dimension of the hidden layer to 50 and vary the number of hidden layers from 2 to 16, 32,
and 64 for all methods. Additionally, in Table 4, we test DrGNN on the large-scale dataset OGB-arXiv,
where we fix the feature dimension of the hidden layer as 100, set the total iteration to 3000, and choose
GCN as the backbone model. Due to memory limitations, we set the number of layers to 2, 10, and 20. The
experiments are repeated 5 times, and we record the mean accuracy as well as the standard deviation.

Table 3: Node Classification on Small Datasets with Varying Layers L (GCN as the Backbone).

Dataset Method L = 2 L = 16 L = 32 L = 64

Cora

GCN 0.7643 ± 0.0040 0.5262 ± 0.0732 0.3284 ± 0.0066 0.3274 ± 0.0189
PairNorm 0.7818 ± 0.0027 0.6080 ± 0.0310 0.5138 ± 0.0299 0.2932 ± 0.0120
DropEdge 0.7828 ± 0.0075 0.7557 ± 0.0072 0.7306 ± 0.0134 0.2685 ± 0.0647

GCNII 0.6778 ± 0.0065 0.7237 ± 0.0055 0.7142 ± 0.0015 0.7107 ± 0.0047
DGN 0.7545 ± 0.0003 0.6785 ± 0.0169 0.7067 ± 0.0190 0.7104 ± 0.0192

ContraNorm 0.7682 ± 0.0044 0.6590 ± 0.0291 0.5128 ± 0.0241 0.4328 ± 0.0320
DrGNN 0.7768 ± 0.0057 0.8002 ± 0.0058 0.7961 ± 0.0055 0.8022 ± 0.0061

CiteSeer

GCN 0.6452 ± 0.0072 0.4514 ± 0.0987 0.2689 ± 0.0099 0.2680 ± 0.0093
PairNorm 0.6030 ± 0.0153 0.2268 ± 0.0398 0.2096 ± 0.0029 0.2076 ± 0.0033
DropEdge 0.6532 ± 0.0068 0.6117 ± 0.0229 0.5101 ± 0.0430 0.2138 ± 0.0198

GCNII 0.5912 ± 0.0106 0.6180 ± 0.0031 0.6159 ± 0.0019 0.6101 ± 0.0017
DGN 0.4872 ± 0.0168 0.4753 ± 0.0591 0.4604 ± 0.0162 0.4417 ± 0.0219

ContraNorm 0.6263 ± 0.0061 0.4621 ± 0.0237 0.3965 ± 0.0196 0.2128 ± 0.0208
DrGNN 0.6577 ± 0.0065 0.6650 ± 0.0059 0.6655 ± 0.0031 0.6685 ± 0.0066

PubMed

GCN 0.7990 ± 0.0017 0.5383 ± 0.0200 0.5463 ± 0.0391 0.5566 ± 0.0086
PairNorm 0.8120 ± 0.0076 0.4408 ± 0.0683 0.3972 ± 0.0094 0.3960 ± 0.0097
DropEdge 0.8035 ± 0.0020 0.7893 ± 0.0042 0.7902 ± 0.0032 0.3951 ± 0.0108

GCNII 0.8070 ± 0.0009 0.8094 ± 0.0010 0.8089 ± 0.0007 0.8097 ± 0.0009
DGN 0.7947 ± 0.0358 0.7553 ± 0.0295 0.7733 ± 0.0143 0.7632 ± 0.0226

ContraNorm 0.8061 ± 0.0020 0.5672 ± 0.0684 0.4348 ± 0.0379 0.3971 ± 0.0057
DrGNN 0.8175 ± 0.0016 0.8097 ± 0.0038 0.8098 ± 0.0025 0.8109 ± 0.0033

Reddit

GCN 0.8757 ± 0.0054 0.8540 ± 0.0451 0.3655 ± 0.0251 0.3410 ± 0.0288
PairNorm 0.7704 ± 0.0052 0.8636 ± 0.0448 0.6468 ± 0.0429 0.1230 ± 0.0299
DropEdge 0.8564 ± 0.0059 0.8526 ± 0.0046 0.5384 ± 0.1049 0.1053 ± 0.0148

GCNII 0.6184 ± 0.0108 0.7157 ± 0.0016 0.6972 ± 0.0039 0.6963 ± 0.0059
DGN 0.7829 ± 0.0137 0.7397 ± 0.0371 0.6806 ± 0.0639 0.5058 ± 0.0754

ContraNorm 0.6576 ± 0.0094 0.2563 ± 0.0091 0.2547 ± 0.0170 0.2664 ± 0.0140
DrGNN 0.8762 ± 0.0060 0.9676 ± 0.0033 0.9693 ± 0.0023 0.9721 ± 0.0011

Based on the observation in Table 3 and Table 4, we find that existing SOTA graph de-oversmoothing methods,
e.g., DropEdge, PairNorm, ContraNorm, achieve the best performance with the shallow layer (i.e., L = 2),
and their performance begins to decrease as the number of layers increases. However, DrGNN can outperform

9

Published in Transactions on Machine Learning Research (10/2024)

Table 4: Node Classification on Large Dataset with Varying Layers L (GCN as the Backbone).

Dataset Method L = 2 L = 10 L = 20

OGB-arXiv

GCN 0.7136 ± 0.0044 0.7021 ± 0.0018 0.5377 ± 0.0756
PairNorm 0.7186 ± 0.0008 0.7158 ± 0.0035 0.5796 ± 0.0090
DropEdge 0.7178 ± 0.0012 0.6531 ± 0.0056 0.2198 ± 0.0097

GCNII 0.5966 ± 0.0013 0.6340 ± 0.0017 0.6246 ± 0.0015
DGN 0.6039 ± 0.0037 0.5746 ± 0.0033 0.5027 ± 0.0056

ContraNorm 0.7294 ± 0.0025 0.6941 ± 0.0030 0.5821 ± 0.0324
DrGNN 0.7369 ± 0.0014 0.7386 ± 0.0006 0.7401 ± 0.0009

robustly even if the GNN becomes deep, and the performance gain is obvious. For example, at layer 16, in
the Cora dataset, DrGNN can achieve 80.02% accuracy. Additional comparison with RevGCN-Deep and
EGNN can be found in Appendix E.

To echo with Table 3 and Table 4, we visualize the corresponding number of the nonzero singular values
on those datasets in Figure 4. In Figure 4, taking Cora and OGB-arXiv as examples, we observe that (1)
PairNorm and ContraNorm begin to suffer from the dimensional collapse issue on both datasets when the
number of layers is greater than 10; (2) Dropedge, DGN, and GCNII perform well on the small dataset but
fail to preserve the full-rank representation on the large dataset; (3) node representations by DrGNN are
full-rank on both datasets, indicating that DrGNN effectively alleviates the dimensional collapse.

(a) Cora Dataset (b) CiteSeer Dataset (c) PubMed Dataset

(d) Reddit Dataset (e) OGB-arXiv Dataset

Figure 4: The x-axis is the number of layers and the y-axis is the number of the non-zero singular values of
the covariance matrix of the node representations by different methods.

Although the above results have proven that our DrGNN can outperform robustly in different deep settings,
we also observe that there seems to be a peak in terms of the number of graph neural network layers. In
other words, after a certain depth, the performance gain seems marginal or missing. For example, in the
Cora dataset, the performance of our DrGNN increases from 77.68% to 80.02% from 2 layers to 16 layers.
However, the performances are maintained when stacking to the 32nd layer or the 64th layer. Therefore, we
may ask if there are a number of effective neural layers? and if the number exists, how can we
find it before the training to avoid the heavy hyperparameter tuning process? Luckily, we found
the answer in the following subsection.

10

Published in Transactions on Machine Learning Research (10/2024)

3.4 Number of Effective Layers in Deep Graph Neural Networks
We conduct the hyperparameter analysis of DrGNN, regarding λ in the weight decaying function of Eq. 4.
For example, when λ = 10, the decaying factor for the 10-th layer is 0.3679 (i.e., e−1); but for the 30-th
layer, it is 0.0049 (i.e., e−3). This decay limits the effective information aggregation scope of deeper GNNs
because the later stacked layers will become significantly less important. Based on this controlling property
of λ, a natural follow-up question is whether its value depends on the property of input graphs. Basically, it
suggests that initially stacking a few layers is effective, but more deeper layers do not help (or do not help
much) boost performance.

Interestingly, through our experiments, we find that the optimal λ is very close to the diameter of
input graphs (if it is connected) or the largest component (if it does not have many separate
components). This observation verifies our conjecture regarding the property of λ (i.e., it controls the
number of effective layers or the number of hops during the message passing aggregation schema of GNNs).
Hence, the value of λ can be searched around the diameter of the input graph.

(a) Cora (b) CiteSeer (c) PubMed (d) Reddit

Figure 5: Hyperparameter Analysis, i.e., λ vs Node Classification Accuracy on Four Datasets.
In details, to analyze the hyperparameter λ, we fix the feature dimension of the hidden layer to be 50, the
total iteration is set to be 3000, the number of layers is set to be 60, the sampling batch size for DrGNN is
10, and GCN is chosen as the backbone model. The experiment is repeated five times for each configuration.
In each sub-figure of Figure 5, the x-axis is the value of λ, and the y-axis is the accuracy of 60-layer GCN in
the above setting.

Specifically, we find that the optimal λ = 20 on the Cora dataset, the optimal λ = 10 on the CiteSeer dataset,
the optimal λ = 18 on the PubMed dataset, and the optimal λ = 20 on the Reddit dataset. Then, natural
questions to ask are (1) what determines the optimal value of λ in different datasets? (2) can we gather some
heuristics to narrow down the hyperparameter search space to efficiently establish effective GNNs?

Thus, we provide our discovery. In Eq. 4, we have analyzed that the decaying factor λ controls the number of
effective layers in deeper GNNs by introducing the layer-wise dependency. It means that larger λ slows down
the weight decay and gives considerably large weights to more layers such that they can be effective, and
the information aggregation scope of GNN extends as more multi-hop neighbor features are collected and
aggregated. In graph theory, diameter represents the scope of the graph, which is the largest value of the
shortest path between any node pairs in the graph. Therefore, the optimal λ should be restricted by the
input graph, i.e., being close to the input graph diameter.

Table 5: Graph Statistics of Each Dataset.
Metric Cora Citeseer PubMed Reddit
Number of Nodes 2,708 3,327 19,717 4,854
Connected Graph No No Yes Yes
Number of Components 78 438 1 1
Diameter of the Graph (or the Largest Component) 19 28 18 17

Interestingly, our experiments reflect this observation. Combining the optimal λ in Figure 5 and the diameter
in Table 5, for connected graphs PubMed and Reddit, the optimal λ is very close to the graph diameter. This
also happens to Cora (even though Cora is not connected), because the number of components is not large.
As for CiteSeer, the optimal λ is less than the diameter of its largest component. A possible reason is that
CiteSeer has many (i.e., 438) small components, which shrinks the information propagation scope, such that
we do not need to stack many layers and we do not need to enlarge λ to the largest diameter (i.e., 28). In

11

Published in Transactions on Machine Learning Research (10/2024)

general, based on the above analysis, we find the optimal value of λ can be searched around the diameter of
the input graph.

3.5 Different Backbones of DrGNN
Here, we show the performance of our proposed DrGNN cooperating with different backbone models (e.g.,
GAT (Velickovic et al., 2018) and GraphSage (Hamilton et al., 2017a)). In Figure 6, we set the numbers of
the hidden layers as 60 for all methods and the dimension of the hidden layer as 50. The total number of
training iterations is 1500.

Figure 6: Accuracy of Different Backbone Models with 64 Hidden Layers on Four Datasets.
By observation, we find that both GAT and GraphSage tend to have worse performance when the architecture
becomes deeper, and our proposed method DrGNN greatly boosts the performance by 40%-60% on average
over four datasets. Specifically, compared with the vanilla GraphSage, our DrGNN boosts its performance by
43% on the CiteSeer dataset and more than 67% on the Reddit dataset.

3.6 Discussion and Limitation
The major assumption of our proposed method is that the close neighbors of a node carry the most important
information, and the importance degrades with faraway neighbors. This assumption is mainly based on
the characteristics of homophilous graphs. In the experiments, we show the great performance of DrGNN
in several homophilous graphs. Despite the limited assumption on the heterophilous graph, our proposed
method can still achieve competitive performance compared to the state-of-the-art methods, as shown in
Table 2.

4 Conclusion
In this paper, we focus on building deeper graph neural networks to effectively model graph data and
illustrate the oversmoothing cause from the perspective of dimensional collapse. To this end, we first provide
insights regarding why the vanilla residual connection of ResNet is not best suited for many deeper graph
neural network solutions, i.e., the shading neighbors effect. Then, we propose a new residual architecture,
Weight-decaying Graph Residual Connection (WG-ResNet), to alleviate this effect. In addition, we propose
a Structure-guided Contrastive Learning (SCL) to alleviate the problem from another viewpoint, where
we utilize graph topological information, pull the representations of connected node pairs closer, and push
remote node pairs farther apart via contrastive learning regularization. Combining WG-ResNet with SCL, an
end-to-end model DrGNN is proposed for deep graph neural networks. We provide the theoretical analysis of
our proposed method and demonstrate the effectiveness of DrGNN by extensive experiment comparing with
state-of-the-art methods.

Acknowledgments
This work was supported by National Science Foundation under Award No. IIS-2117902, and the U.S.
Department of Homeland Security under Grant Award Number, 17STQAC00001-08-01. The views and
conclusions are those of the authors and should not be interpreted as representing the official policies of the
funding agencies or the government.

12

Published in Transactions on Machine Learning Research (10/2024)

References
Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph convolutional

networks. In ICML, 2020.

John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. JMLR, 2011.

S. M. Faisal, Georgios Tziantzioulis, Ali Murat Gok, Nikolaos Hardavellas, Seda Ogrenci Memik, and
Srinivasan Parthasarathy. Edge importance identification for energy efficient graph processing. In 2015
IEEE International Conference on Big Data (IEEE BigData 2015), Santa Clara, CA, USA, October 29 -
November 1, 2015, pp. 347–354. IEEE Computer Society, 2015.

Dongqi Fu, Liri Fang, Ross Maciejewski, Vetle I. Torvik, and Jingrui He. Meta-learned metrics over multi-
evolution temporal graphs. In Aidong Zhang and Huzefa Rangwala (eds.), KDD ’22: The 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18,
2022, pp. 367–377. ACM, 2022. doi: 10.1145/3534678.3539313. URL https://doi.org/10.1145/3534678.
3539313.

Dongqi Fu, Zhigang Hua, Yan Xie, Jin Fang, Si Zhang, Kaan Sancak, Hao Wu, Andrey Malevich, Jingrui
He, and Bo Long. Vcr-graphormer: A mini-batch graph transformer via virtual connections. CoRR,
abs/2403.16030, 2024a. doi: 10.48550/ARXIV.2403.16030. URL https://doi.org/10.48550/arXiv.
2403.16030.

Dongqi Fu, Yada Zhu, Hanghang Tong, Kommy Weldemariam, Onkar Bhardwaj, and Jingrui He. Gen-
erating fine-grained causality in climate time series data for forecasting and anomaly detection. CoRR,
abs/2408.04254, 2024b. doi: 10.48550/ARXIV.2408.04254. URL https://doi.org/10.48550/arXiv.
2408.04254.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C.
Courville, and Yoshua Bengio. Generative adversarial networks. CoRR, abs/1406.2661, 2014. URL
http://arxiv.org/abs/1406.2661.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Balaji Krishnapuram,
Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi (eds.), Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San
Francisco, CA, USA, August 13-17, 2016, pp. 855–864. ACM, 2016.

Xiaojun Guo, Yifei Wang, Tianqi Du, and Yisen Wang. Contranorm: A contrastive learning perspective on
oversmoothing and beyond. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/pdf?id=
SM7XkJouWHm.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. Advances
in neural information processing systems, 30, 2017a.

William L. Hamilton, Justine Zhang, Cristian Danescu-Niculescu-Mizil, Dan Jurafsky, and Jure Leskovec.
Loyalty in online communities. In Proceedings of the Eleventh International Conference on Web and Social
Media, ICWSM 2017, Montréal, Québec, Canada, May 15-18, 2017, pp. 540–543. AAAI Press, 2017b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
CVPR, 2016.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html.

13

https://doi.org/10.1145/3534678.3539313
https://doi.org/10.1145/3534678.3539313
https://doi.org/10.48550/arXiv.2403.16030
https://doi.org/10.48550/arXiv.2403.16030
https://doi.org/10.48550/arXiv.2408.04254
https://doi.org/10.48550/arXiv.2408.04254
http://arxiv.org/abs/1406.2661
https://openreview.net/pdf?id=SM7XkJouWHm
https://openreview.net/pdf?id=SM7XkJouWHm
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html

Published in Transactions on Machine Learning Research (10/2024)

Tianyu Hua, Wenxiao Wang, Zihui Xue, Sucheng Ren, Yue Wang, and Hang Zhao. On feature decorrelation
in self-supervised learning. In 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021,
Montreal, QC, Canada, October 10-17, 2021, pp. 9578–9588. IEEE, 2021.

Kexin Huang and Marinka Zitnik. Graph meta learning via local subgraphs. In NeurIPS, 2020.

Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse in contrastive
self-supervised learning. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
ICLR, 2017.

Can M. Le. Edge sampling using local network information. J. Mach. Learn. Res., 22:88:1–88:29, 2021.

Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. Training graph neural networks with
1000 layers. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on
Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine
Learning Research, pp. 6437–6449. PMLR, 2021.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-
supervised learning. In AAAI, 2018.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and Ser Nam Lim.
Large scale learning on non-homophilous graphs: New benchmarks and strong simple methods. Advances
in Neural Information Processing Systems, 34:20887–20902, 2021.

Qing Lu and Lise Getoor. Link-based classification. In Tom Fawcett and Nina Mishra (eds.), Machine Learning,
Proceedings of the Twentieth International Conference (ICML 2003), August 21-24, 2003, Washington,
DC, USA, pp. 496–503. AAAI Press, 2003.

Galileo Namata, Ben London, Lise Getoor, Bert Huang, and U Edu. Query-driven active surveying for
collective classification. In 10th International Workshop on Mining and Learning with Graphs, volume 8,
2012.

Mohammad Norouzi, David J Fleet, and Russ R Salakhutdinov. Hamming distance metric learning. Advances
in neural information processing systems, 25, 2012.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node classification.
In ICLR, 2020.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social representations. In
Sofus A. Macskassy, Claudia Perlich, Jure Leskovec, Wei Wang, and Rayid Ghani (eds.), The 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14, New York, NY,
USA - August 24 - 27, 2014, pp. 701–710. ACM, 2014.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph convolutional
networks on node classification. In ICLR, 2020.

T. Konstantin Rusch, Michael M. Bronstein, and Siddhartha Mishra. A survey on oversmoothing in
graph neural networks. CoRR, abs/2303.10993, 2023. doi: 10.48550/arXiv.2303.10993. URL https:
//doi.org/10.48550/arXiv.2303.10993.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks. CoRR, abs/1710.10903, 2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks. In ICLR, 2018.

14

https://doi.org/10.48550/arXiv.2303.10993
https://doi.org/10.48550/arXiv.2303.10993

Published in Transactions on Machine Learning Research (10/2024)

Hongwei Wang and Jure Leskovec. Unifying graph convolutional neural networks and label propagation.
CoRR, 2020.

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul Kanakia. Microsoft
academic graph: When experts are not enough. Quantitative Science Studies, 1(1):396–413, 2020.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through alignment and
uniformity on the hypersphere. In Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp.
9929–9939. PMLR, 2020.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
Representation learning on graphs with jumping knowledge networks. In Jennifer G. Dy and Andreas
Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning
Research, pp. 5449–5458. PMLR, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
ICLR, 2019.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. In ICLR, 2020.

Kaixiong Zhou, Xiao Huang, Yuening Li, Daochen Zha, Rui Chen, and Xia Hu. Towards deeper graph neural
networks with differentiable group normalization. In NeurIPS, 2020.

Kaixiong Zhou, Xiao Huang, Daochen Zha, Rui Chen, Li Li, Soo-Hyun Choi, and Xia Hu. Dirichlet energy
constrained learning for deep graph neural networks. In Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14,
2021, virtual, pp. 21834–21846, 2021.

A Similarity between Oversmoothing and Dimensional Collapse

In (Rusch et al., 2023), the authors describe oversmoothing as a phenomenon that the node representation
vectors are indistinguishable from each other and thus deteriorate the performance of downstream tasks.
Inspired by this, we could measure the magnitude of graph oversmoothing by the metric of covariance mean
as follows:

covariance(h) = 1
n

∑
i

(hi − h̄)(hi − h̄)

h̄ = 1
n

∑
i

hi

where hi is the node representation for node i and covariance(h) = 0 indicates that the learned representation
is indistinguishable and the deep model suffers from an oversmoothing issue. Notice that the dimensional
collapse is observed when the covariance matrix of the node representations is not full-rank (i.e., the number
of non-zero singular values is less than the dimension of the node representation in Figure 1). When
covariance(h) = 0, it also indicates that hi = hj = h̄ for all i and j, and the rank of the covariance matrix of
the node representation matrix is 0 (While a large value of covariance(h) does not mean that the performance
is). In other words, the graph model suffers from complete collapse, where all node representations shrink to
a single point. Thus, we could see that the oversmoothing issue is highly related to dimensional collapse.

B Visualization of the Weight of Each Layer With Different Weighting Functions

Here, we visualize the weight of each layer with different weighting functions on the Cora dataset. In this
experiment, we fix the feature dimension of the hidden layer to be 50; the total iteration is set to be 3000; the

15

Published in Transactions on Machine Learning Research (10/2024)

Figure 7: Weight Visualization. The y-axis represents the weight of each layer, and the x-axis represents the
index of each layer, in deeper models.

number of layers is set to be 60; the sampling batch size for DrGNN is 10; GCN is chosen as the backbone
model; λ is set to be 20. In Figure 7, The x-axis is the index of each layer, and the y-axis is the weight for
each layer. DrGNN-S removes the similarity measurement ecos(H(1),H̃(l)) in Eq. 5 and DrGNN-D removes the
decaying weight factor and only keeps the exponential cosine similarity ecos(H(1),H̃(l)) to measure the weight
for each layer. DrGNN-S achieves the simplified WG-ResNet in DrGNN, which removes the exponential
cosine similarity ecos(H(1),H̃(l)) in DrGNN. By observation, we find that (1) ResNet sets the weight of each
layer to be 1, which easily leads to shading neighbors effect when stacking more layers, because the faraway
neighbor information becomes more dominant in the GCN information aggregation; (2) without weight
decaying factor, the weight for each layer in DrGNN-D fluctuates because they are randomly independent.
More specially, the weights for the last several layers (e.g., L=58 or L=60) are larger than the weights for the
first several layers, which contradicts the intuition that the first several layers should be more important than
the last several layers; (3) the weights for each layer in both DrGNN and DrGNN-S reduce as the number of
layers increase, which suggests that both of them could address the shading neighbors effect to some extents;
(4) combining the results from Table 8, DrGNN achieves better performance than DrGNN-S, as it imposes
larger weights to the first several layers, which verifies that the learnable similarity sim(H(1), H̃(l)) achieves
better performance with the enlarged hypothesis space for neural networks.

C Theoretical Proof

Proposition 2.1. LSCL, the loss function based on contrastive learning, can be interpreted as the objective
function of a generative adversarial network (GAN) (Goodfellow et al., 2014),

min
θ

LSCL = max
θ

∫
E

(P̃pos(E) log(D(E)) + P̃neg(E) log(1 − D(E)))dE

where D(E) = f(zi, zj) is the discriminator of GAN with edge Eij = (vi, vj) being connected or not, by node
representations zi and zj . Probabilities P̃pos(Eij) = σijPpos(Eij) and P̃neg(Eik) = γikPneg(Eik).

Proof. Represent D(E) by f(zi, zj), we can have

min
θ

LSCL = −Evi∈V [Evj∈Ni(σij log(f(zi, zj))) + Evk∈N̄i
(γik log(1 − f(zi, zk)))]

= min
θ

−
∫

E

(Ppos(E)σ) log(D(E)) + (Pneg(E)γ) log(1 − D(E))dE

Since Ppos, Pneg, and D(·) are independent of θ, then

= max
θ

∫
E

(P̃pos(E) log(D(E)) + P̃neg(E) log(1 − D(E)))dE

16

Published in Transactions on Machine Learning Research (10/2024)

Theorem 2.2. Given an optimized discriminator D∗(E), to achieve the optimization process of Proposition 2.1,
regularization term LSCL enforces that connected nodes have different representation vectors than disconnected
nodes. The theoretical optimum of D∗(E) is P̃pos(E)

P̃pos(E)+P̃neg(E) .

Proof. Based on Proposition 2.1, a free D(E) is replaced by D(E) = f(zi, zj).

According to Eq 5, f(zi, zj) = e
ziz⊤

j
||zi||||zj || , then, f(zi, zj) ∈ [e−1, e1].

Next, consider a function a log(x) + b log(e − x), where a and b are two positive constants, e is Euler’s number,
and x is a variable. Suppose that a

a+b ≥ e−1, it is easy to prove that the function a log(x) + b log(e − x) has
the maximum in [e−1, e1] at a

a+b .

Hence, we first have D∗(E) = P̃pos(E)
P̃pos(E)+P̃neg(E) .

Second, given D∗(E) = P̃pos(E)
P̃pos(E)+P̃neg(E) and P̃pos(Eij) = σijPpos(Eij) and P̃neg(Eik) = γikPneg(Eik) defined

in Proposition 2.1, we have

D∗(E) = σ ∗ Ppos(E)
σ ∗ Ppos(E) + γ ∗ Pneg(E)

= P (E|y = 1)P (y = 1)
P (E|y = 1)P (y = 1) + P (E|y = 0)P (y = 0)

= P (y = 1|E)

Therefore, towards D∗(E), D(E) is maximizing the conditional log-likelihood P (y = 1|E), where y = 1
indicates edge E is a positive (i.e., exiting) edge.

In other words, the discriminator D(E) is defined on a node pair in terms of their representation vectors,
i.e., D(E) is able to distinguish whether a node pair is positive or not, then the corresponding hidden
representations of different nodes are different. For example, for a positive (i.e., existing) edge (vi, vj) and a
negative (i.e., non-existing) edge (vi, vk), f(zi, zj) is maximized and f(zi, zk) is minimized, then zj and zk

are different. Back to Proposition 2.1, node vectors zj and zk are obtained through θ. That’s why optimizing
loss LSCL can alleviate the oversmoothing problem, according to the definition of oversmoothing (Rusch et al.,
2023), the final layer node representation vectors are similar given a certain threshold and a certain similarity
function, and the common functions can be Dirichlet energy and mean-average distance.

D Reproducibility

For a fair comparison, we set the dropout rate to 0.5, the weight decay rate to 0.0005, and the total number
of iterations to 1500 for all baseline methods in Table 1 and Table 3; if not specialized, GCN is chosen as the
backbone, and the dimension of each layer is set to 50 for all the graph neural network baseline methods.

In Section F, for DrGNN and DrGNN-S, we sample 10 instances and 5 neighbors for each class from the
training set, dist(·) is the hamming distance, and f(·) is the cosine similarity measurement.

The experiments are repeated 10 times if not otherwise specified. All of the real-world datasets are publicly
available. The experiments are performed on a Windows machine with a 16GB RTX 5000 GPU.

The code of our algorithm is in an anonymous link 2. We provide the detailed experimental setting for each
experiment shown in Table 6.

Moreover, we set the learning rate to be 0.001 and the optimizer is RMSProp, which is one variant of
ADAGRAD (Duchi et al., 2011).

2https://drive.google.com/file/d/1cbNI74lhTb3LsOKhgVHT1btNz20ZLb60/view?usp=sharing

17

https://drive.google.com/file/d/1cbNI74lhTb3LsOKhgVHT1btNz20ZLb60/view?usp=sharing

Published in Transactions on Machine Learning Research (10/2024)

Table 6: Hyperparameters for DrGNN shown in Table 3.

Method DrGNN
Cora λ = 20, α = 0.03

CiteSeer λ = 10, α = 0.02
PubMed λ = 18, α = 0.1
Reddit λ = 20, α = 0.02

E Additional Effectiveness Analysis

We conduct the additional experiments by comparing our proposed method with RevGCN-Deep (Li et al.,
2021) and EGNN (Zhou et al., 2021). We set the number of layers for all baseline methods to 60 for Cora,
Citeseer, PubMed, and Reddit. For the OGB-arXiv dataset, we set the number of layers to 10 for all methods.

Table 7: Additional Node Classification Comparison.

Method Cora (L = 60) CiteSeer (L = 60) PubMed (L = 60) Reddit (L = 60) OGB-arXiv (L = 10)
RevGCN-Deep 0.7458 ± 0.0084 0.5137 ± 0.0099 0.8139 ± 0.0015 0.8853 ± 0.0383 0.7354 ± 0.0009

EGNN 0.7961 ± 0.0036 0.6566 ± 0.0060 0.8138 ± 0.0026 0.8772 ± 0.0040 0.7247 ± 0.0015
GearGNN 0.8059 ± 0.0028 0.6655 ± 0.0117 0.8185 ± 0.0016 0.9721 ± 0.0011 0.7401 ± 0.0009

F Ablation Study of DrGNN

Here, we conduct the ablation study to show the effectiveness and irreplaceability of WG-ResNet and SCL in
terms of node classification in Table 8. In this experiment, we fix the total iteration set as 3000, and GCN is
chosen as the backbone model. For the Cora dataset, the feature dimension of the hidden layer is 50 and the
number of layers is 64; for the OGB-arXiv dataset the feature dimension of the hidden layer is 100 and the
number of layers is 20. In Table 8, DrGNN-T removes SCL, DrGNN-D removes the weight decaying factor
in WG-ResNet and DrGNN-JK replaces the WG-ResNet by Jumping Knowledge (Xu et al., 2018).

Table 8: Ablation Study w.r.t. Node Classification Accuracy.

Method Cora (L = 64) CiteSeer (L = 64) PubMed (L = 64) Reddit (L = 64) OGB-arXiv (L = 20)
GCN (+RC) 0.7252 ± 0.0176 0.6213 ± 0.0056 0.7985 ± 0.0068 0.9432 ± 0.0037 0.7144 ± 0.0013
DrGNN-D 0.7498 ± 0.0139 0.6567 ± 0.0052 0.8050 ± 0.0031 0.9654 ± 0.0028 0.7363 ± 0.0011
DrGNN-T 0.7875 ± 0.0092 0.5750 ± 0.0244 0.8078 ± 0.0047 0.9397 ± 0.0042 0.7335 ± 0.0024

DrGNN-JK 0.7955 ± 0.0078 0.6600 ± 0.0085 0.8061 ± 0.0038 0.9659 ± 0.0046 0.7368 ± 0.0012
DrGNN 0.8022 ± 0.0061 0.6685 ± 0.0066 0.8109 ± 0.0033 0.9721 ± 0.0011 0.7401 ± 0.0009

In Table 8, we have the following observations (1) comparing DrGNN with DrGNN-T, we find that DrGNN
boosts the performance by 1.84% on the Cora dataset after adding SCL, which demonstrates the effectiveness
of SCL to alleviate the oversmoothing issue; (2) DrGNN outperforms DrGNN-D on Cora dataset by 5.61%,
which shows that DrGNN could alleviate the shading neighbors effect by adding the weight decaying factor;
(3) comparing DrGNN with DrGNN-JK, we verify that our proposed WG-ResNet is more effective than
DrGNN-JK. Besides, one drawback of jumping knowledge is its high memory required as the number of
layers increases, while our proposed WG-ResNet doesn’t; (4) DrGNN outperforms GCN (+RC) by more
than 7.7% on the Cora dataset and 2.6% on the OGB-arXiv dataset, which indicates that WG-ResNet could
alleviate the shading neighbors effect.

Also, we conduct an additional ablation study to evaluate the performance of each component (i.e., the cosine
similarity function in Eq. 4 and SCL formulated in Eq. 5). In Table 9, DrGNN-S denotes the variant of
DrGNN after removing the cosine similarity function in Eq. 4 and SCL denotes the variant of DrGNN by
removing the WG-ResNet. We have the following observations: (1). DrGNN outperforms DrGNN-S on most
datasets except PubMed, which suggests that introducing the layer similarity (i.e., cosine similarity between

18

Published in Transactions on Machine Learning Research (10/2024)

the first layer and the l-th layer) can increase the performance of DrGNN(̇2). Compared to ContraNorm, our
proposed structure-guided contrastive learning (SCL) can further boost the performance by more than 29%
on average, which demonstrates the effectiveness of SCL over ContraNorm.

Table 9: Additional Ablation Study w.r.t. Node Classification Accuracy.

Method Cora (L = 64) CiteSeer (L = 64) PubMed (L = 64) Reddit (L = 64) OGB-arXiv (L = 20)
DrGNN 0.8022 ± 0.0061 0.6685 ± 0.0066 0.8109 ± 0.0033 0.9721 ± 0.0011 0.7401 ± 0.0009

DrGNN-S 0.7931 ± 0.0153 0.6555 ± 0.0085 0.8173 ± 0.0030 0.9621 ± 0.0035 0.7335 ± 0.0024
ContraNorm 0.4328 ± 0.0320 0.2128 ± 0.0208 0.3971 ± 0.0057 0.2664 ± 0.0140 0.5821 ± 0.0324

SCL 0.5751 ± 0.0264 0.3933 ± 0.0076 0.7601 ± 0.0043 0.9305 ± 0.0266 0.6952 ± 0.0011

G Additional Hyperarameter Analysis

Here, we conduct additional hyperparameter analysis of DrGNN, i.e., α in the overall loss function of Eq 1.

Figure 8: Hyperparameter Analysis, i.e., α vs Node Classification Accuracy.

To analyze the hyperparameter α in DrGNN, we fix the feature dimension of the hidden layer to be 50, the
total iteration is set to be 3000, the number of layers is set to be 60, the sampling batch size for DrGNN
is 10, GCN is chosen as the backbone model, and the dataset is Cora. We gradually increase the value of
α and record the accuracy. The experiment is repeated five times in each setting. In Figure 8, the x-axis
is α and the y-axis is the accuracy score. By observation, when α = 1, the performance is worst and the
performance begins to increase by decreasing the value of α. It achieves the best accuracy when α = 0.03.
The performance starts to decrease again if we further decrease the value of α. We conjecture that when
α is large, it will dominate the overall objective function, thus jeopardizing the classification performance.
Besides, the performance also decreases if we set the value of α to be a small number (i.e., α = 0.001). In
addition, comparing with the performance without using SCL regularization (i.e., α = 0), our proposed
method with α = 0.03 can boost the performance by more than 1.8%, which demonstrates that our proposed
SCL alleviates the issue of oversmoothing to some extent.

H Efficiency Analysis

Here, we conduct an efficiency analysis regarding our proposed method in the Cora dataset. We fix the
feature dimension of the hidden layer to be 50, the total iteration is set to be 1500, the sampling batch size for
DrGNN and DrGNN-S is 10, and GCN is chosen as the backbone model. We gradually increase the number
of layers and record the running time.

In Figure 9, the x-axis is the number of layers and the y-axis is the running time in seconds. We observe that
the running time of both DrGNN and DrGNN-S is linearly proportional to the number of layers. Comparing
the running time of DrGNN, the running time of DrGNN-S is further reduced after the weighting function
in DrGNN (e.g., sim(·)) is replaced by a constant.

19

Published in Transactions on Machine Learning Research (10/2024)

Figure 9: The Number of Layers vs Running Time (in seconds) on Cora.

I Sampling Method for SCL

To realize SCL expressed in Eq. 5, we need to get the positive nodes vj and negative nodes vk towards the
selected central node vi. To avoid iterating over all existing nodes or randomly sampling several nodes, we
propose to sample positive nodes vj and negative nodes vk from the star subgraph Si of the central node vi.
Moreover, to make the sampling scalable and to reduce the search space of negative nodes, we propose a
batch sampling method.

Figure 10: Batch Sampling. Each star node in the figure corresponds to node vi in Eq. 5.

As shown in Figure 10, the batch size is controlled by the number of central nodes (i.e., star nodes in the
figure). For each central node, the positive nodes are those 1-hop neighbors, and the negative nodes consist
of unreachable nodes. In our batch sampling, we strictly constrain that the positive nodes are only from
the 1-hop neighborhood for the following three reasons: (1) they are efficient to be accessed; (2) considering
all k-hop neighbors as positive will enlarge the scope of positive nodes and further decrease the intimacy
of the directly connected nodes; (3) 1-hop positive nodes in the star subgraph can preserve enough useful
information, compared to the positive nodes from the whole graph. For the third point, we prove it through
the graph influence loss (Huang & Zitnik, 2020) in Proposition I.1, and the formal definition of graph influence
loss is given in the following paragraph after Proposition I.1.
Proposition I.1 (Bounded Graph Influence Loss for Sampling Positive Pairs Locally). Taking GCN as
an example of GNN, the graph influence loss R(vc) on node vc w.r.t positive nodes from the whole
graph against positive nodes from the 1-hop neighborhood star subgraph is bounded by R(vc) ≤
(n − dc) µ

(DP̄∗
GM

)|P̄∗|
, where n is the number of nodes, dc is the degree of node vc including the self-loop, µ is a

constant, P̄∗ is the path from center node vc to a 1-hop outside node vs which has the maximal node influence
Ivc,vs , and |P̄∗| denotes the number of nodes in path P̄∗.

20

Published in Transactions on Machine Learning Research (10/2024)

Proof. According to the assumption of (Wang & Leskovec, 2020), σ(·) can be identity function and W (·)

can be identity matrix. Then, the hidden node representation (of node vc) in the last layer of GCN can be
written as follows.

h(∞)
c = 1

Dc,c

∑
vi∈Nc

Ac,ih
(∞)
i

Then, based on the above equation, we can iteratively replace h
(∞)
i with its neighbors until the representation

h
(∞)
s of node vs is included. The extension procedure is written as follows.

h(∞)
c = 1

Dc,c

∑
vi∈Nc

Ac,i
1

Di,i

∑
vj∈Ni

Ai,j . . .

1
Dk,k

∑
vs∈Nk

Ak,sh(∞)
s

The above equation suggests that the influence from the positive node vs to the center node vc is through the
path P = (vc, vi, vj , . . . , vk, vs).

Following the above path formation and assuming the edge weight A(i, j) as the positive constant, according
to (Huang & Zitnik, 2020), we can obtain the node influence Ivc,vs

of vs on vc as follows.

Ivc,vs
= ∥∂h(∞)

c /∂h(∞)
s ∥ ≤ µ

(DP̄
GM)|P̄|

where µ is a constant, DP̄
GM is the geometric mean of the degree of nodes sitting in path P̄ , and P̄ is the path

from the positive node vs to the center node vc that could generate the maximal multiplication of normalized
edge weight, |P̄| denotes the number of nodes in path P̄.

The above analysis suggests that the node influence of positive long-distance nodes is decaying.

Hence, the graph influence loss about learning node vc from the whole graph positive nodes versus from
the 1-hop localized positive nodes can be expressed as follows.

IG(vc) − IL(vc) = Ivc,v1 + Ivc,v2 + . . . + Ivc,vn−dc

≤
n−dc∑
i=1

µi

(DP̄i

GM)|P̄i|

≤ (n − dc) µ∗

(DP̄∗
GM)|P̄∗|

where IG(vc) denotes global influence, IL(vc) is the influence for star subgraph, dc is the degree of node vc

(including self-loop), and µ∗

(DP̄∗
GM

)|P̄∗|
is the maximal among all µi

(D
P̄i
GM

)|P̄i|
.

Specifically, the graph influence loss (Huang & Zitnik, 2020) R(vc) can be expressed as R(vc) = IG(vc)−IL(vc),
which is determined by the global graph influence on vc (i.e., IG(vc)) and the star subgraph influence on vc

(i.e., IL(vc)). Then, to compute the graph influence IG(vc), we need to compute the node influence of each
node vj to node vc, where node vj is reachable from node vc. Based on the final output node representation
vectors, the node influence is expressed as Ivc,vj = ∥∂h

(∞)
c /∂h

(∞)
j ∥, and the norm can be any subordinate

norm (Wang & Leskovec, 2020). Then, IG(vc) is computed by the L1-norm of the following vector, i.e.,
IG(vc) = ∥[Ivc,v1 , Ivc,v2 , . . . , Ivc,vn

]∥1. Similarly, we can compute the star subgraph influence IL(vc) on node
vc. The only difference is that we collect each reachable node vj in the star subgraph L (i.e., 1-hop neighbors
of vc). Overall, in Proposition I.1, we show why positive pairs can be locally sampled with the support from
graph influence loss of a node representation vector output by the GCN final layer.

21

	Introduction
	The Proposed DrGNN
	Overview
	Weight-Decaying Graph Residual Connection (WG-ResNet)
	Structure-Guided Contrastive Learning (SCL)

	Experiments
	Experiment Setup
	When do we need more layers of graph neural networks?
	Effectiveness Analysis of DrGNN
	Number of Effective Layers in Deep Graph Neural Networks
	Different Backbones of DrGNN
	Discussion and Limitation

	Conclusion
	Similarity between Oversmoothing and Dimensional Collapse
	Visualization of the Weight of Each Layer With Different Weighting Functions
	Theoretical Proof
	Reproducibility
	Additional Effectiveness Analysis
	Ablation Study of DrGNN
	Additional Hyperarameter Analysis
	Efficiency Analysis
	Sampling Method for SCL

