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Figure 1: Left: Sample images from our proposed test set generated using GPT-4 + DALL-E 3.
For the class of golden retriever and attribute occlusion, we generate images of varying difficulty.
Intuitively, it is easier to classify the leftmost image as golden retriever compared to rightmost image.
Right: Possible responses (correct/incorrect) of a model on the easy/medium/hard image on the left
side. Cannot solve easy one ! cannot solve difficult one. Can solve difficult one ! can solve easy
one: this hypothesis is only satisfied in 4 (in red) out of 8 possibilities.

ABSTRACT

When a human undertakes a test, their responses likely follow a pattern: if they
answered an easy question (2⇥ 3) incorrectly, they would likely answer a more
difficult one (2 ⇥ 3 ⇥ 4) incorrectly; and if they answered a difficult question
correctly, they would likely answer the easy one correctly. Anything else hints at
memorization. Do current visual recognition models exhibit a similarly structured
learning capacity? In this work, we consider the task of image classification and
study if those models’ responses follow that pattern. Since real images aren’t
labeled with difficulty, we first create a dataset of 100 categories, 10 attributes, and
3 difficulty levels using recent generative models: for each category (e.g., dog)
and attribute (e.g., occlusion), we generate images of increasing difficulty (e.g., a
dog without occlusion, a dog only partly visible). We find that most of the models
do in fact behave similarly to the aforementioned pattern around 80-90% of the
time. Using this property, we then present a new way to evaluate those models’
image recognition ability. Instead of testing the model on every possible test image,
we create an adaptive test akin to GRE, in which the model’s performance on the
current round of images determines the test images in the next round. This allows
the model to skip over questions too easy/hard for itself, and helps us get its overall
performance in fewer steps.

1 INTRODUCTION

Imagine a math teacher grading a student’s answer sheet, and finds that they got the answer of (2⇥ 3)
wrong but the answer for (2 ⇥ 3 ⇥ 4) right. The teacher will rightly wonder whether the student
properly learnt the concept of multiplication or whether they memorized the answer to the more
difficult question. This is because there is a characteristic way in which humans learn any concept:
if they cannot answer an easy question, they very likely cannot answer a more difficult one. And
conversely, if they can answer a difficult question, they most certainly can answer an easier one as
well. Neural networks are also trained to learn concepts to perform a task. Do they also learn those
concepts in a similarly characteristic way?

In this work, we study this question for the task of image classification. Our goal is to see if modern
visual recognition systems (e.g., ConvNext (Liu et al., 2022), ViT Dosovitskiy et al. (2020)) have that
human-like behavior to easy/hard-to-classify images. Since there does not exist any real data labeled
with ground-truth difficulty, we propose to generate one instead. Recent image generative models
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have become capable of generating very high quality images (Rombach et al., 2022), good enough to
be used in training recognition models (Yu et al., 2023; Azizi et al., 2023), and we believe that they
are good enough to be used for our evaluation. With the aid of recent large language and generative
models (GPT-4 Achiam et al. (2023) + DALL-E 3 Ramesh et al. (2021)), we design a prompting
system to generate descriptions of images of three levels of difficulty. For example, an image of a
fully visible dog and an image of dog only partly visible can be considered to be image descriptions
of an easy- and hard-to-classify images respectively. We use DALL-E 3 to take in these different
difficulty level prompts and generate images while faithfully preserving the desired attributes. Fig. 1
(left) gives an example.

Once we have the easy, medium and hard-to-classify test images, we record if the model predicts the
class correctly or incorrectly. Fig. 1 (right) depicts the 8 possibilities of model’s behavior (green/red
represent correct/incorrect response). If the model truly learns to classify images by developing
the aforementioned notion of easy/hard concepts, then its responses should fall under 4 out of the
8 possibilities highlighted in a red box. Our first key finding is that, for most of the current visual
recognition models, their responses do indeed fall under the 4 highlighted categories around 80-90%
of the time. This result hints that even without an explicit supervision, visual recognition models
learn to learn things in a structured way.

While an intriguing result in its own, we believe that this can have applications, especially in the
way we evaluate models. We take inspiration from how students are often tested using standardized
tests, like the Graduate Record Examination (GRE), for admissions into U.S. universities. These tests
are adaptive in nature, where questions in the next round depend on how well the student does in
the current one. So, for example, if the student cannot solve easy-medium questions, there is not
much point giving them difficult questions in the next round; i.e., one can reliably predict that they
will get zero points for those hard questions. We develop a similar GRE-type test to evaluate visual
recognition models on the generated dataset proposed above. The test is broken up into multiple
rounds. In the first round, the model is shown images of medium difficulty on average. Its score
in this round determines the distribution of easy/medium/hard questions in the next round. That
is, similar to GRE, we can skip over images that are too easy/hard for the model to classify. Thus,
instead of evaluating the model on every possible image in the test set, this way of dynamically
selecting the images helps approximate that total score of the model on the whole set using only 25%
of the test images.

Additionally, the newly proposed dataset can have usefulness in and of itself. We generate images
from 100 categories taken from ImageNet (Deng et al., 2009). For each category, we consider
10 attributes. Within each attribute, we generate 12 images for 3 levels of difficulty, bringing the
total number of images to 36,000. However, different from standard benchmarks like the ImageNet
validation set, these 36k images are labeled with attribute value, difficulty, in addition to the ground-
truth class. This can enable analysing models on a much finer level (e.g., ResNet-50 struggles to
detect dogs from a side view).

In summary, our work has the following contributions. We present a new method to study the learning
dynamics of modern visual recognition systems using the concept of example difficulty. To do this,
we create a new test set of synthetic images labeled with class, attribute, and difficulty level. Our
results indicate that most of the models do in fact develop a semantically meaningful notion of
example difficulty while learning visual concepts, without having access to any external supervision.
Using this newly found property, we develop a multi-round adaptive test, inspired by GRE, which
steers the future test images according to a model’s ongoing performance. This facilitates skipping
over too easy/hard questions, and helps assess a model’s performance using a fraction of test images.

2 RELATED WORK

Insights into neural network learning mechanisms. Understanding the internal mechanisms of
neural networks is a key focus in deep learning research, with various methods proposed to interpret
their generalization, visualize features, and analyze behavior. (i) Generalization vs Memorization:
Research shows neural networks can memorize random labels, fueling discussions around this
“paradox” (Zhang et al., 2021; Arpit et al., 2017). Studies suggest generalization depends more on
training data than model capacity (Dinh et al., 2017; Krueger et al., 2017). (ii) Feature Visualization:
Methods like visualizing partial derivatives (Simonyan, 2013) and Class Activation Mapping (CAM)
(Zhou et al., 2016) highlight important image regions used by CNNs for decisions. (iii) Model
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Behavior: Neural networks often prioritize easy-to-learn features like texture (Geirhos et al., 2018),
while harder-to-learn samples, such as shapes, may be neglected (Geirhos et al., 2020). Minority
samples in datasets can also be overlooked (Mehrabi et al., 2021). In contrast to these works, our
paper studies whether visual recognition models learn concepts in a structured way, where if they
can answer something difficult they also can answer something easier, and vice versa, similar to
how humans learn. Note that this is related to curriculum learning (Bengio et al., 2009), but the
key difference is that in curriculum learning, models are trained on tasks of increasing complexity
with explicit or implicit guidance, whereas in our work, we study whether such a capability emerges
automatically for standard cross-entropy/contrastive learning-based image classifiers.

Image classification benchmarks for evaluating fine-grained attributes and difficulty levels. The
Photorealistic Unreal Graphics (PUG) dataset (Bordes et al., 2024), generated using Unreal Engine,
provides photorealistic, controllable synthetic data. PUG-ImageNet complements ImageNet with tests
for changes in factors like pose, background, size, texture, and lighting. ImageNet-X (Idrissi et al.,
2022) offers granular annotations for the ImageNet dataset for naturally occurring attributes such as
changes in pose, background, lighting, scale, etc. to identify failure modes, while Spawrious (Lynch
et al., 2023) uses image-to-text models to probe classifiers’ reliance on spurious correlations. Finally,
ImageNet-D (Zhang et al., 2024) uses stable diffusion to create challenging images that test model
robustness. To our knowledge, our work is the first to consider both attributes and difficulty levels by
designing a prompting system that generates image descriptions across three difficulty levels: Easy,
Medium, and Hard, as well as ten different attributes. We then use DALL-E 3 to generate images
based on these prompts, ensuring that the specified attributes are accurately represented. This allows
for a more detailed analysis of models along both the attribute and difficulty dimensions.

Real and synthetic benchmarks for robustness evaluation. The research community has developed
several approaches to test model robustness on extended versions of ImageNet (Deng et al., 2009),
using datasets that introduce natural distribution shifts (e.g., ImageNetV2 (Recht et al., 2019),
ImageNet-Sketch (Wang et al., 2019), ObjectNet (Barbu et al., 2019), ImageNet Rendition (Hendrycks
et al., 2021a), ImageNet-Hard (Taesiri et al., 2024), and ImageNet Adversarial (Hendrycks et al.,
2021b)) and synthetic shifts (e.g., ImageNet-C (Hendrycks & Dietterich, 2019), ImageNet-9 (Xiao
et al., 2020), and Stylized-ImageNet (Geirhos et al., 2018)). However, repeated evaluations on these
static benchmarks have leaked cues, reducing their effectiveness (Mayilvahanan et al., 2023). To
address this and to reduce the cost of manual collection, recent work generates synthetic images
for robustness testing. ImageNet-D (Zhang et al., 2024) uses Stable Diffusion to create challenging
images, while Spawrious (Lynch et al., 2023) leverages Stable Diffusion to generate datasets with
spurious correlations. PUG (Bordes et al., 2024) offers photorealistic data using Unreal Engine, and
AutoEval (Boyeau et al., 2024) combines human and synthetic data for performance evaluation. Our
approach stands out by systematically incorporating both difficulty levels (Easy, Medium, Hard) and
specific attributes using a detailed prompting system with the powerful generative model DALL-E 3,
unlike other benchmarks that focus on either a single difficulty level, have limited attributes (e.g.,
only foreground and background combinations), or generate unnatural images.

Adaptive model evaluation. Inspired by computerized adaptive testing (CAT) (Van der Linden
& Glas, 2000), used in exams like the GRE, we develop algorithms for adaptive testing in image
classification benchmarks. Similar to CAT, which does not require all questions to be answered
and instead efficiently assesses examinees with fewer questions based on examinee responses, our
framework evaluates classification models by selecting a subset of samples, reducing computational
demands while maintaining assessment accuracy. Prabhu et al. (2024) presents an efficient evaluation
framework to maintain a lifelong benchmark by leveraging dynamic programming to rank and sub-
select samples, whereas our approach generates unseen images using DALL-E, ensuring models are
tested on genuinely new data, mitigating the risk of data leakage, and enhancing the reliability of
generalization evaluation.

3 VISION MODELS’ BEHAVIOR ON EASY ! HARD IMAGES

Humans learn concepts in a progressive way - it is only possible for them to solve hard questions if
they have the ability to solve easier ones first (Zacks & Tversky, 2001; Newtson, 1973). We want to
study if visual recognition models trained for image classification also learn concepts in a similar way.
To do this, we first explain in Sec. 3.1 our process of creating a test data having images of various
difficulty (akin to questions for humans). Then, in Sec. 3.2, we present a method to analyze a model’s
response to such images to see if it mimics a human-like way of learning concepts.
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Figure 2: Visualizing the difficulty of test samples. All of the images are generated using our
proposed pipeline. In each quadrant, we focus on one attribute (e.g., lighting, in the top left), and
from left to right we show the images becoming progressively more difficult to be classified correctly.

3.1 DATASET CREATION

For the task of image classification, the standard data format is images paired with their ground truth
labels D = {(x1, y1), (x2, y2), ...}. However, for our purpose, not only do we need the information
that yi is the ground-truth label of xi, but we also need to know how difficult it is for xi to be classified
as yi. Hence, our first task is to formalize this notion of difficulty for our problem.

3.1.1 UNDERSTANDING SAMPLE DIFFICULTY

Consider Fig. 2 and observe the group of three images in the top right corner. All of the images have
‘golden retriever’ as the main subject. Yet, we, as humans, can intuit that it is easiest to correctly
classify the content of the left most image and most difficult to do it for the right most one. This
is because from left to right, the dog is getting more occluded. Other triplets show similar easy !
hard progression for other attributes. The important point from these figures is that the difficulty of a
sample is best understood in relation to a particular attribute type (e.g., occlusion). However, to the
best of our knowledge, no dataset of real images contains human annotations indicating difficulty
about a sample in that way.

Hence, given the recent advances in large language and image generative models, we propose to
synthesize images with the desired attributes. Text-to-image generative models can now generate very
high quality images (Rombach et al., 2022; OpenAI, 2024), so good that they have even been used to
train image classification models and shown promise (Yu et al., 2023; Azizi et al., 2023). Furthermore,
using the text medium, we can use very precise language to describe more easy/hard-to-classify
images. Hence, we propose to use these generative models to design an evaluation setup.

3.1.2 OVERALL IMAGE GENERATION PIPELINE

Since we want to generate images of various difficulty using text, we need the following information
for a particular prompt: (i) class name (e.g., golden retriever), (ii) attribute type (e.g., occlusion),
and (iii) difficulty type (e.g., hard) for that attribute. Using (ii) and (iii), we can specify a particular
attribute value. Here is an example: An image of a golden retriever heavily occluded by a door. In
this case, golden retriever is the image class, heavily occluded is the hard difficulty for the occlusion
attribute. The first step is to collect the names of the classes we wish to evaluate on. We use 100
object categories out of 1000 classes in ImageNet (see appendix A.2 for the complete list). The next
step is to generate the attribute values, similar to heavily occluded in the above example.

Generating the attributes. We first ask GPT-4 (Achiam et al., 2023) to list 10 common attribute
types that can help describe image content. The second column of Fig. 3 shows the list. After this,
we again prompt GPT-4 with the following for each of those attributes:

“To generate text prompts for DALL-E that will generate images
of varying difficulty levels for vision models to classify,
please create nine levels of difficulty based on <attribute name>
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Figure 3: Overview of the test set generation process. The first step is to collect the names of
the image categories that we wish to test the models on. We then prompt GPT-4 to generate the
appropriate attribute values for those categories with various levels of difficulty. Using those, we
again prompt GPT-4 to generate text prompts for a category (golden retriever), attribute (heavy
occlusion) combination. Finally, we use DALL-E 3 to generate the corresponding images.

attributes and group the nine levels of difficulty into categories
of easy, medium, and hard.”

To this, GPT-4 responds with a list of difficulty varying attribute values (descriptions) for each
attribute type. As an example, here is how the difficulty of an image can vary along the attribute
of occlusion - (i) Easy: “No occlusion, object fully visible”; (ii) Medium: “Significant occlusion
(30-50% of object)”; (iii) Hard: “Majority of object occluded (70-90%)”.

Generating text prompts. Given these basic units, we finally prompt GPT-4 one last time to generate
the text descriptions for DALL-E 3 to generate the images. This description is produced by combining
the information about a certain class with a certain attribute value. For example, golden retriever is
combined with heavy occlusion to produce the prompt - “A golden retriever in a pile of fall leaves,
with only its snout and one eye visible”. Fig. 3 details the whole process.

Dataset size: There are a total of 100 classes, each having the same 10 attributes. For each attribute,
there are a total of 3 difficulty levels. And for each difficulty level, there are 12 images. Hence, the
total size of our dataset is 10⇥ 100⇥ 3⇥ 12 = 36000 images. This dataset is balanced across types
of class, attribute, and difficulty level.

3.2 HIERARCHICAL LEARNING SCORE

We now describe how to use this dataset of easy/medium/hard-to-classify images to study whether
models learn concepts hierarchically. If we consider the combination of each class with its attribute
type, there will be a total of 100⇥ 10 = 1000 combinations ({Golden retriever, occlusion} is one
such example). For each such class-attribute combination, we create 12 triplets, each having one easy,
one medium, and one hard image. Hence, there are a total of 12000 triplets of test images.

For each visual recognition model that is of interest to us, we test it on these images and record whether
their prediction matches the ground-truth object category. The model’s response on each triplet
will follow one of 8 patterns depending on whether it gets the easy/medium/hard image correctly
or incorrectly classified; these are shown in Fig. 1 right (red/green colors mean correct/incorrect
prediction respectively). We compute the percentage of each of these 8 patterns over all 12,000
triplets. Now, if we consider the following human-like hierarchical learning principle - A model
should correctly answer a harder question only if it can answer all easier questions, we see that
only 4 out of those 8 patterns satisfy the requirement (highlighted with red box). We call them
‘principle-following patterns’, and define the hierarchical-learning score to be the percentage of
model’s responses on 12000 triplets that fall under principle-following patterns. The more a model
follows this principle, the higher its hierarchical-learning score should be.

Experiments and Results: We choose three popular architectures - (i) ViT-B16 (Dosovitskiy et al.,
2020), (ii) ConvNext (Liu et al., 2022) and (iii) ResNet-101 (He et al., 2016) - each trained on
ImageNet1k (Deng et al., 2009) and LAION (Schuhmann et al., 2022) using cross-entropy and CLIP
objective (Radford et al., 2021), respectively. This gives us a total of 6 trained models which we test
using the setting described above. The results are shown in Fig. 4 (left), where we plot the percentage
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Figure 4: Left: Plots depicting % of model’s behavior on 12k triplets over the 8 possible patterns of
Easy, Medium, Hard. The bars corresponding to principle-following pattern are colored green; others,
red. All models behave according to the hierarchical learning principle. Top right: Hierarchical
learning score of 6 vision models. Most achieve a score higher than 85%. Bottom Right: Scatter
plot of top-1 accuracy on our test set vs hierarchical learning score of 12 models. PCC value is 0.77.

of a model’s behavior on 12000 triplets over all the patterns. We color the bars corresponding to
principle-following and not following patterns as green and red respectively. Deriving from these
plots, we also report the hierarchical-learning score of these 6 models in Fig. 4 (top right). First, for
all models, the majority behavior on triplets falls under the principle-following pattern, and almost all
get a high hierarchical-learning score of >85%. In fact, in all cases, the 4 most frequent behaviors
correspond to those 4 principle-following patterns. The most frequent behavior across all models
is {Easy: X, Medium: X, Hard: ⇥ }, while the least frequent one is {Easy: ⇥, Medium: ⇥, Hard:
X}. Also, whether a model was trained on ImageNet using cross entropy loss or on LAION to align
images and text, e.g., ResNet101 vs CLIP:ResNet101, the behavior remains roughly the same. These
results indicate that common visual recognition models do in fact follow the human-like hierarchical
learning principle, even when there is no explicit supervision to do so.

Model’s hierarchical learning score vs accuracy: Consider two extreme scenarios. Models A and
B are so good and bad at classifying images that most of their behavior is of the form {X, X, X} and
{⇥,⇥,⇥} respectively. Even though their top-1 classification accuracies could be vastly different,
they would both still have a very high hierarchical-learning score. So, it is unclear what, if anything,
the hierarchical-learning score has to do with classification accuracy. We empirically study this, by
collecting a total of 12 models (6 additional ones compared to previous study; see appendix) and
for each, compute its hierarchical-learning score and top-1 accuracy on our test data. The scatter
plot in Fig. 4 (right) shows these data points. There is a correlation between the top-1 accuracy
and the hierarchical learning score; the Pearson correlation coefficient is 0.77. Since this is merely
a correlation, it is difficult to say whether more accurate models become more accurate because
they learn to learn concepts in a human-like style. Nevertheless, a positive correlation is a sign that,
contrary to the extreme example we discussed above, the learning dynamics of very incapable and
capable models is not symmetric. However, we point out that even the least hierarchical-learning
score for a model is 84.2, which, for the purposes of this work, we consider high enough to say that
the corresponding model still follows the hierarchical-learning principle.

4 ADAPTIVE TESTING OF IMAGE CLASSIFIERS

The fact that humans learn concepts in a hierarchical way has had applications in the way their
learning gets tested. Many standardized tests like the GRE are adaptive in nature. Based on how
well the student is doing at any point, future questions are adapted to match the student’s ability.
For example, if a student is struggling to answer questions like (2 ⇥ 3) and (4 ⇥ 5), there is not
much point in testing them on (22 + 32)⇥ (4 + 5). We can reasonably predict that they will get zero
points for the latter question, and hence can avoid testing them on all possible (easy/medium/hard)
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Figure 5: Adaptive testing of a classifier. The test involves two rounds. Similar to GRE, the first
round is of, on average, medium level difficulty, consisting of 4 test images (1 easy, 2 medium, 1
hard). The model gets a score (max = 9, min = 0) based on which the distribution of images for the
next round is chosen. We show an example of a model getting a score of 7 in round 1, because of
which in next round there are 0 easy, 2 medium, and 3 hard images. Right: Throughout the whole
session, the model gets tested on a total of 9 images; in this case, 1 easy, 4 medium and 4 hard images.

questions, while still being able to accurately assess a student’s capability. Similarly, our setting also
has a test set of 36k images uniformly spread over 100 object categories, 10 attribute types, and 3
levels of difficulty. Given that visual recognition models also seem to learn in a hierarchical way, we
investigate a similar GRE-type test for them, using which we can get a good estimate of model’s
overall performance without needing to test it on every single easy/medium/hard image.

To test a model, we start by iterating over all the classes and attribute types. In each such class +
attribute type combination (there are 1000 of these), there are 3 difficulty levels, each with 12 images,
i.e., 3⇥12 = 36 test images. The goal is to predict how a model performs on these 36 images without
needing to evaluate it on all 36 images. Hence, we conduct a test borrowing principles from GRE.
Instead of the model being tested on all images in the same round at once, we consider two rounds of
test images. In the first round, we randomly select 1 easy, 2 medium, and 1 hard image. The average
difficulty is medium. The model is tested on these 4 images, and we assign it a score based on how
well it did. Similar to GRE, one gets more points for solving harder images. We assign the model 1,
2, and 4 points for correctly classifying an easy, medium, and hard image, respectively; and 0 points
for misclassification. In the next round, the model is tested on 5 new images. The distribution of these
new images depends on the model’s total score in the first round (min/max score is 0/9 respectively).
The mapping from total score to second round images’ distribution is shown in Fig. 5. Similar to
the first round, the model gets assigned points for correctly classifying images. All throughout the
process, the model is tested only on x easy, y medium, and z hard test images, where x+ y + z = 9.
So, after the end of the second round, we can collect the following information about the model: (i)
its total score, and (ii) classification accuracies on easy/medium/hard images.

Once the model has gone through all the class/attribute combinations, and we have collected these
information from each session (first + second round), there are multiple ways to combine that
information to analyze the model. We can get an attribute level score by averaging each session’s
score across all the 100 classes. Similarly, we can get attribute level accuracy, either overall across
easy/medium/hard questions or per difficulty, also averaged across the classes. This is helpful if we
want to study which attributes a model struggles at, discussed more in Sec. 5. Obviously, one can get
a global score/accuracy, averaged across attributes dimension, for the model. The key part in all of
these analyses is that they can be done using only a fraction of the 36k images. In the next section,
we discuss how accurate our predictions (score/accuracy) can be when compared against those same
values computed over the whole set.

5 EXPERIMENTS

In this section, we first validate whether the generated images are appropriately categorized into
easy, medium, and hard difficulty levels. We then evaluate the prediction results of adaptive testing
against full dataset counterpart results. Lastly, we provide a detailed error analysis of various image
classifiers for different attributes and difficulty levels.
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Figure 6: % of our dataset grouped according to classification confidence for the Easy, Medium,
and Hard difficulty levels. We average the sample numbers across six selected classifiers (ViT-
B16 (Dosovitskiy et al., 2020), ConvNext (Liu et al., 2022), ResNet-101 (He et al., 2016), trained on
ImageNet1k (Deng et al., 2009) and LAION (Schuhmann et al., 2022)).

Table 1: Average number of questions tested per difficulty level for adaptive testing. Models with
better performance tend to receive a higher proportion of medium and hard questions, and vice versa.

Difficulty Easy Medium Hard

ResNet18 3.51 3.83 1.55
ResNet101 2.56 3.96 2.48
ViT-B16 2.0 3.89 3.07
ConvNext-B 1.55 3.46 3.98
CLIP-RN101 2.60 3.89 2.51
CLIP-ViT-B16 1.47 3.61 3.93
CLIP-ConvNext-B 1.62 3.79 3.58

5.1 EVALUATING CORRECTNESS OF DIFFICULTY LEVELS IN GENERATED IMAGES

A key ingredient to test our hypothesis, i.e., whether vision models follow the hierarchical learning
principle, has been the usage of generated images. The images shown in Fig. 2 do look good to
our eyes and seem to make sense (some are easier to classify, others more difficult). However, to
make sure that our dataset as a whole is meaningful and does not contain garbage images, we verify
whether those same images of various difficulty can be appropriately categorized into their respective
difficulty levels. To accomplish this, we use six classifiers to assess the prediction confidence for
each sample at each difficulty level. For the easy difficulty level, we expect a high proportion of
samples to exhibit high prediction confidence. Conversely, for the hard difficulty level, we anticipate
a significant number of samples to display low prediction confidence. For the medium difficulty level,
we expect the prediction confidence of many samples to fall between the easy and hard difficulty
levels. By analyzing the distribution of prediction confidence across the difficulty levels for our entire
dataset of 36,000 images in Figure 6, we validate the efficacy of our image generation process and
ensure that the generated images accurately represent the intended difficulty levels.

5.2 IS THE TEST DIFFERENT FOR DIFFERENT MODELS?

The purpose of the adaptive test introduced in Sec. 4 was to test more capable models on harder
samples, and not-so-capable models on easier ones. Given that in each session (first + second rounds)
we test any model on a total of 9 questions, we should hence expect some diversity in what those
9 questions look, on average, for different models. In Table 1, we plot the average distribution of
each/medium/hard test images that 7 visual recognition models face in a session. We see that most
models get tested the most on medium questions. However, there are significant differences among
certain models. For example, ResNet18, which is the weakest model in the list (ImageNet validation
top-1 accuracy = 69.76%) gets tested much more on easier images (3.51) than hard ones (1.55). In
contrast, a stronger & capable model like ConvNext (ImageNet validation top-1 accuracy = 84.06%)
gets tested much more on harder (3.98) than easier images (1.55). So, these results tells us how
different models, owing to their differing capabilities, create their own unique trajectories of test
questions that they get evaluated on.
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Table 2: We evaluate each classifier’s score and accuracy using Static 3 and our adaptative method,
comparing their 10-dimensional vectors—each element representing the score or accuracy of a
specific attribute—against Static 12 using the Mean Squared Error. The evaluation is repeated three
times, and the average error is reported. Our method provides accurate performance estimates with
fewer test images and smaller errors than Static 3, optimizing the evaluation process. (Static #)
represents the number of test images used in each level of difficulty for each attribute of a given class.

Classifier RN101 ViT-B16 ConvN-B C-RN101 C-ViT-B16 C-ConvN-B

Score Static 12 35.3 43.8 59.2 36.4 57.6 51.0
Score Error Static 6 0.8 0.7 0.8 0.9 1.1 1.1
Score Error Static 3 5.4 4.6 3.2 4.5 5.5 4.8
Score Error Ours 4.2 2.7 2.5 2.2 1.5 3.3

Acc Static 12 48.5 56.9 70.2 48.1 69.8 64.6
Acc Error Static 6 0.6 0.6 0.5 1.0 0.7 0.6
Acc Error Static 3 4.9 2.6 2.0 4.4 3.5 1.6
Acc Error Ours 3.6 1.0 0.9 3.6 2.3 0.9

5.3 HOW CLOSELY DOES ADAPTIVE EVALUATION FOLLOW FULL EVALUATION?

We next evaluate our GRE-style adaptive evaluation discussed in Sec. 4, comparing to what the
performance would be with the standard way of evaluating a model on the entire dataset across the
ten attributes and three difficulty levels.

To measure classification performance of a model, in addition to standard classification accuracy, we
compute a GRE-style score to reward getting more difficult examples correct: Score = (correcteasy ⇥
1) + (correctmedium ⇥ 2) + (correcthard ⇥ 4), i.e., 1, 2, and 4 points for correctly classifying an
easy, medium, and hard image; and 0 points for misclassification. Note, one advantage of using a
GRE-style score is its ability to differentiate between models with similar accuracy. For example,
when two models, such as ConvNext-B and CLIP-ViT-B16, achieve close accuracy scores (70.2 and
69.8, respectively) in Table 2, the GRE-style score (59.2 vs. 57.6) can highlight the differences by
showing which model is more successful in handling more challenging questions.

Our full generated test set has a total of 36,000 images—comprising 12 images for each combination
of 100 classes, 10 attributes, and 3 difficulty levels. We refer to the evaluation results from this
complete set as ‘Static 12,’ which serves as our ground truth (full evaluation baseline). To validate
our adaptive testing method, we first establish a baseline called ‘Static 3.’ This baseline is created by
randomly selecting 3 images out of the 12 for each difficulty level. This produces a subset containing
100 (classes) × 10 (attributes) × 3 (difficulty levels) × 3 (images) = 9,000 images. Our adaptive
testing then selects 9 samples across the three difficulty levels for each attribute and class, allowing
the number of selected images for each difficulty level to vary. This also results in a subset of 100
(classes) × 10 (attributes) × 9 (images) = 9,000 images, matching the size of the Static 3 subset, but
with a different difficulty distribution than that of Static 3. We then evaluate the classifier on these
subsets, aiming to achieve results that correlate with the full test set (‘Static 12’) while using fewer
images and potentially maintaining smaller errors compared to the Static 3 strategy.

We compare the performance of Static 3 and our adaptive testing with the full evaluation (Static 12) in
Table 2. This evaluation is repeated three times, and the average error is reported. The results indicate
that our adaptive testing provides accurate performance detail estimates using fewer test images than
the full set and achieves smaller score and accuracy errors compared to the Static 3 strategy. This
confirms that based on the hierarchical learning pattern of common image classification models, it is
possible to perform adaptive testing to expedite the evaluation process.

5.4 DETAILED ERROR ANALYSIS

Since our generated dataset provides granular labels for attributes such as size, color, lighting,
occlusions, and style, we can identify specific failure modes in model performance. We analyze
the mistake types of the six classifiers in Table 3. Similar to what was observed in the ImageNet
validation set (Idrissi et al., 2022), models with similar overall scores tend to have similar per-attribute
scores. For instance, ConvNext-Base and CLIP ViT B16 not only share similar overall scores (59.2
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Table 3: Score of different models for each attribute. Bold/underline indicates best/second best.

Attributes Color Light Occlu Pos Quality Rot Size Style Texture View

ResNet101 41.1 31.1 40.2 39.1 47.0 34.8 30.4 23.7 30.4 35.2
ViT-B16 47.7 39.7 46.6 48.9 56.9 48.0 36.3 34.2 37.8 41.6
ConvNext-B 63.7 60.6 59.4 86.7 66.2 77.5 40.8 41.3 42.9 52.6
CLIP-RN101 39.5 33.4 33.3 62.2 36.6 39.7 34.6 30.2 23.4 31.2
CLIP-ViT-B16 62.2 58.9 46.6 85.3 67.2 59.8 39.8 53.3 50.4 52.4
CLIP-ConvNext-B 53.1 49.9 48.4 79.4 57.4 47.0 36.7 45.1 41.1 47.7

vs 57.6) but also have 6 out of 10 very close attribute scores. Most models, even as their overall
scores improve, consistently struggle with certain factors like size, texture, style, and viewpoint.
Conversely, they perform well on factors such as object position and image quality. In addition to
analyzing attribute-level errors, our generated dataset enables a detailed difficulty-level analysis for
each classifier, as shown in Tables 5, Table 6, and Table 7. Across all models, the performance
decreases as the difficulty level increases. Attributes like ‘Texture’, ‘Style’, and ‘Viewpoint’ generally
have lower accuracies, especially at the ‘Hard’ level. One special case is for the ‘size’ attribute; all
six models perform generally well on easy and medium difficulty but face significant challenges at a
hard level, which often includes examples with many tiny objects.

6 DISCUSSION AND LIMITATIONS

The typical way one evaluates a visual recognition model is to compute its average top-1 accuracy
over a standard test set (e.g., ImageNet). However, there have been concerns that models can get
over optimized on such benchmarks (Recht et al., 2019). We believe that our work can help in a
better assessment of models in two ways. First, since we can always generate (on-the-fly) a new fresh
test dataset for evaluation, there is much less chance for a model overfitting, even if one is simply
interested in classification accuracy. Second, the hierarchical learning score measures a different
dimension of learning ability; it is less about how accurate a model is, but more about whether that
capability is grounded in some fundamental learning principle, or in memorizing examples.

However, this score is not immune to extreme cases. If the model to be tested has completely
overfitted to test images, then it can get {X, X, X} for most of them and hence get a high hierarchical
learning score. Finally, while our approach of using DALL-E 3 to generate a synthetic dataset offers a
novel way to study model behavior across varying difficulty levels, it has certain limitations. DALL-E
sometimes struggles with generating images for unfamiliar classes, such as “African Hunting Dog,”
often producing images of other dog breeds labeled incorrectly, which can lead to noisy annotations.
Additionally, for complex or uncommon prompts like “A carousel in an amusement park, almost
entirely hidden behind a festival tent,” DALL-E may generate simplified images, such as a festival
tent near a carousel but without the intended occlusion, resulting in unintended “easy” sample. These
issues could introduce bias into our dataset, potentially affecting the balanced evaluation of models.
We manually reviewed and removed some of these examples, but future work could explore more
advanced generative models to address these challenges.

7 CONCLUSION

In this work, we explored whether modern visual recognition models exhibit human-like learning
behaviors when classifying images of varying difficulty. By leveraging advanced generative models
(GPT-4 and DALL-E 3), we generated a synthetic dataset annotated with class, attribute, and difficulty
level to test this concept. Our findings reveal that most models do, in fact, demonstrate a structured
understanding of example difficulty, even without explicit supervision. This insight opens up new
possibilities for model evaluation, leading us to develop a multi-round adaptive test inspired by
standardized exams like the GRE. This adaptive testing method significantly reduces evaluation time
by selecting test images based on the model’s ongoing performance, providing a comprehensive
assessment using only a subset of the dataset. Additionally, the synthetic dataset itself, with its detailed
annotations, offers a valuable resource for more granular model analysis. Our work contributes a
novel perspective on understanding learning dynamics in visual recognition models and proposes an
efficient, dynamic approach to their evaluation.
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8 REPRODUCIBILITY STATEMENT

The results and figures in this paper will be reproducible using our open-source code and the synthetic
benchmarks we generated. We will release the synthetic benchmark, with each sample annotated for
both attribute and difficulty level.
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