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Abstract

Domain adaptation (DA) attempts to transfer the knowledge from a labeled source
domain to an unlabeled target domain that follows different distribution from the
source. To achieve this, DA methods include a source classification objective LS to
extract the source knowledge and a domain alignment objective LD to diminish the
domain shift, ensuring knowledge transfer. Typically, former DA methods adopt
some weight hyper-parameters to linearly combine the training objectives to form
an overall objective L. However, the gradient directions of these objectives may
conflict with each other due to domain shift. Under such circumstances, the linear
optimization scheme might decrease the overall objective value at the expense of
damaging one of the training objectives, leading to restricted solutions. In this
paper, we rethink the optimization scheme for DA from a gradient-based perspec-
tive. We propose a Pareto Domain Adaptation (ParetoDA) approach to control
the overall optimization direction, aiming to cooperatively optimize all training
objectives. Specifically, to reach a desirable solution on the target domain, we de-
sign a surrogate loss mimicking target classification. To improve target-prediction
accuracy to support the mimicking, we propose a target-prediction refining mecha-
nism which exploits domain labels via Bayes’ theorem. On the other hand, since
prior knowledge of weighting schemes for objectives is often unavailable to guide
optimization to approach the optimal solution on the target domain, we propose a
dynamic preference mechanism to dynamically guide our cooperative optimization
by the gradient of the surrogate loss on a held-out unlabeled target dataset. Our
theoretical analyses show that the held-out data can guide but will not be over-fitted
by the optimization. Extensive experiments on image classification and semantic
segmentation benchmarks demonstrate the effectiveness of ParetoDA. Our code is
available at https://github.com/BIT-DA/ParetoDA.

1 Introduction

Domain adaptation (DA) is a well-established paradigm for learning a model on an unlabeled target
domain with the assistance of a labeled related source domain, which has attracted a surge of interests
in the machine learning community [34, 33, 13]. By bridging the domain gap on the premise of
ensuring the performance of source classification task, DA can adapt the model learned from the
source domain to the target in the presence of data bias, which solves the dilemma of label scarcity in
many real-world applications [55, 47, 11, 45, 3, 57]. Extensive DA approaches have been proposed
in recent years, achieving great performances in many areas such as image classification [11, 27, 56],
semantic segmentation [49, 52, 16], and object detection [39, 43, 54].
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Most DA methods are devoted to aligning the distributions across domains by explicitly minimizing
some discrepancy metrics [26, 28, 56] or adopting adversarial learning [11, 27, 41]. However, since
the domain alignment objective also depends on the target domain that deviates from the source,
the gradient direction of it may conflict with that of classification objective on the source domain.
Thus, when the optimization proceeds to a certain stage, one objective will deteriorate if further
improving the other one. Under this circumstance, no solution can reach the optimal of each objective
at the same time. We can only obtain a set of so-called Pareto optimal solutions instead, where we
cannot further decrease all objectives simultaneously [10]. All Pareto optimal solutions in loss space
compose Pareto front as shown in Fig. 1.
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Figure 1: Illustration of different optimization schemes. In each panel, the blue curve is the Pareto
front where the region underneath is unaccessible. (a)-(b): Linear scheme that adopts weight
hyper-parameters to unify the objectives. The green and purple dash lines represent different hyper-
parameters. (c): Previous gradient-based scheme, which reaches Pareto optimal solutions with
or without the guidance of preference vector. (d): Our ParetoDA that dynamically guides the
optimization by the gradient of the target-classification-mimicking loss on a held-out unlabeled target
dataset, approaching the expected solution that minimizes the target classification loss.
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Figure 2: The non-convex
Pareto fronts of DANN [11]
and CDAN [27] on task W→A
(Office-31).

This dilemma obviously has been overlooked by most former DA
methods, which generally adopt some empirical weight hyper-
parameters to linearly combine the objectives, constructing an
overall objective. This linear weighting scheme has two major
concerns. First, as pointed out in [4], it can only obtain solutions
on the convex part of the Pareto front of the objectives, while
cannot reach the non-convex part, as shown in Fig. 1 (a)-(b). That
is because it only considers reducing the overall objective value,
which might damage some objectives during optimization (see the
red up-arrow). Unfortunately, the Pareto fronts of DA methods
are often non-convex, due to loss conflict caused by domain shift.
See examples shown in Fig. 2. Second, one could hardly reach the
desired solution that performs best on target domain by tuning the
weight hyper-parameters, since the obtained solution will deviate
severely when the trade-offs slightly change (see the slopes of the
dash lines in Fig. 1 (a)-(b) for reference).

To remedy these issues, we rethink the optimization scheme for DA from a gradient-based perspective.
By weighting objectives to control the overall optimization direction so that no objective deteriorates,
one can reach a Pareto optimal solution on the Pareto front [1, 23, 30, 32]. Moreover, [30] precisely
sets objective weights according to a prefixed preference vector (see Fig. 1 (c)). However, neither
of them suits DA, because 1) in DA, the goal is to minimize the target classification loss L∗T , but
neither LS or LD directly corresponds to this goal; 2) the target domain has no label to construct
a classification loss for the goal; 3) prior knowledge of weighting schemes for objectives is often
unavailable to guide optimization to approach the optimal solution that minimizes L∗T .

In this paper, we propose a Pareto Domain Adaptation (ParetoDA) approach, which cooperatively
optimizes training objectives and is specifically designed for DA. Specifically, to minimize L∗T , we
design a target-classification-mimicking (TCM) loss LT by the mutual information [17] leveraging
the target predictions. In this loss, target predictions act as (soft) labels for themselves. Therefore,
the accuracy of the predictions is important to support the mimicking. To refine the predictions by
maximally exploiting the information at hand, we propose a target prediction refining mechanism
which models the domain label as conditional information into the prediction probability by Bayes’
theorem. Intuitively, we ensembles a class-wise domain discriminator (trained with the domain labels)
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as another classifier—only when the class condition is correct, the discriminator can correctly predict
the domain. On the other hand, to weight LT ,LS and LD to guide the cooperative optimization
towards minimizing L∗T , we propose a dynamic preference mechanism to model the gradient of LT

on a held-out unlabeled target dataset as the guidance. We evaluate the performance on the held-out
data because 1) it suggests generalization performance, and 2) it is more stable and convincible than
training data. One may be concerned that involving the gradient of the held-out data in training may
eventually cause over-fitting of the data. Fortunately, our theoretical analyses show that the held-out
data can guide but will not be over-fitted by the optimization of our method. Our contributions are:

• We rethink the optimization scheme in existing DA methods, which can only reach restricted
solutions if the optimization objectives conflict with each other. And existing gradient-based
strategies do not suit DA.

• We propose a Pareto Domain Adaptation method to obtain the desired Pareto optimal
solution learned and dynamically guided (using the held-out unlabeled target data) by the
designed surrogate objective function that mimics target classification. To better support the
mimicking, we also propose a target prediction refining mechanism. As a general technique,
ParetoDA can be plugged into various DA methods and enhance their performance.

• We evaluate ParetoDA on two DA applications: image classification and semantic segmenta-
tion. Experimental results demonstrate the effectiveness of ParetoDA.

2 Background

Consider m objectives, each with a non-negative loss function Li(θ) : Rd → R+, i ∈ [m] =
{1, 2, ...,m}, where θ is the shared parameters of the objectives to be optimized. There may exist no
single solution that can reach the optimal solution of each objective at the same time due to they may
conflict with each other. What we can obtain instead is a set of so-called Pareto optimal solutions, the
related definitions are as follows [58]:

Pareto dominance. Suppose two solutions θ1,θ2 in Rd, we define θ1 ≺ θ2 if Li(θ1) ≤
Li(θ2),∀i ∈ [m] and Li(θ1) < Li(θ2),∃i ∈ [m]. We say that θ1 dominates θ2 iff θ1 ≺ θ2. Note
that θ1 ⊀ θ2 if θ2 is not dominated by θ1.

Pareto optimality. If a solution θ1 dominates θ2, then θ1 is clearly preferable as it perform better
or equally on each objective. A solution θ∗ is Pareto optimal if it is not dominated by any other
solutions. That is, θ ⊀ θ∗,∀θ ∈ Rd − {θ∗}.
Pareto front. The set of all Pareto optimal solutions in loss space is Pareto front, where each point
represents a unique solution.

Preference vector. A Pareto optimal solution can be viewed as an intersection of the Pareto front
with a specific direction in loss space (a ray). We refer to this direction as the preference vector.

In gradient-based optimization, we can reach a Pareto optimal solution by starting from an arbitrary
initialization and iteratively finding the next solution θt+1 that dominates the previous one θt,
i.e., θt+1 = θt − ηddes, where η is the step size and ddes is the optimization direction. Let
gi = ∇θLi be the gradient of the i-th objective function at θ, the descent direction ddes is given by
dTdesgi ≥ 0,∀i ∈ [m]. In other words, the descent direction ddes should optimize or not damage each
objective. Thus, moving against ddes, starting from θ, amounts to a decrease in the objective values.
When dTdesgi = 0, the optimization process ends, implying that no direction can further optimize the
all the objectives simultaneously. At this moment, if we still want to improve the performance of a
specific objective, other objectives will deteriorate.

This paper focuses on dynamically searching for a desired Pareto optimal solution with the aid of the
proposed TCM loss in DA problems, aiming to enhance the performance on the target domain.

3 Related Work

Domain Adaptation aims to transfer knowledge across domains. The theory proposed by Ben-David
et al. [2] reveals that the key ideology of DA is to diminish the domain gap between two domains,
enabling successful transfer. Existing DA methods mainly mitigate domain shift via minimizing
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some statistic metrics [26, 56, 28, 44] or adversarial training [11, 27, 41, 20, 22]. To name a few,
DAN [26] mitigates the layer-wise discrepancy via Maximum Mean Discrepancy (MMD) metric.
MDD [56] introduces Margin Disparity Discrepancy with rigorous generalization bounds to measure
the discrepancy between domains. On the other hand, inspired by GANs [14], DANN [11] introduces
a domain discriminator to enforce the features from two domains to be indistinguishable. CDAN [27]
further extends this idea by integrate classification information into domain discriminator, leading
to precise domain alignment. By contrast, we adopt domain discriminators to refine the target
predictions with domain labels. In addition, these methods directly optimize the linear combination
of all objectives, while overlooking on the potential conflict between them. In such case, the linear
scheme is hard to tune and may only access to restricted solutions on the convex part of pareto front
[4]. We propose a gradient-based optimization scheme to search the desirable Pareto optimal solution
on the entire pareto front without weight hyper-parameters, which is orthogonal to prior DA methods.

Weight-Based Optimization is an intuitive strategy to optimize multiple objectives at the same
time, which unifies all the training objectives using weight hyper-parameters to form an overall
objective. Since it is hard to manually assign proper weights in prior, many DA methods conduct
Deep Embedded Validation [53] to select weight hyper-parameters. Recently, some methods propose
to dynamically weight the objectives leveraging gradient magnitude [6], the rate of change in losses
[25], task uncertainty [19], or learning non-linear loss combinations by implicit differentiation [31].
However, these weight-based methods focus on seeking a balanced solution, which is not bound to
be optimal for target classification in DA. By contrast, we explore the gradient-based optimization,
aiming to find an optimal solution for DA problems.

Multi-Objective Gradient-Based Optimization leverages the gradients of objectives to reach the
final Pareto optimal solution. MGDA [1] proposes to simply update the shared network parameters
along a descent direction which leads to solutions that dominate the previous one. Nonetheless,
MGDA may reach any Pareto optimal solution since it has no extra control for the optimization
direction. To ameliorate this problem, PMTL [23] splits the loss space into separated sub-regions
based on several preference vectors, and achieve Pareto optimal solutions in each sub-region of the
Pareto front. Further, EPO [30] can reach a exact Pareto optimal solution by enforcing the decent
direction correspond a specific preference vector. However, prior knowledge of which Pareto solution
is the optimal one for target classification is often unavailable in DA. In this paper, we propose
ParetoDA algorithm to dynamically searching the desirable Pareto optimal solution for target domain
guided by a introduced TCM loss on a held-out target data .

4 Pareto Domain Adaptation

4.1 Decompose DA

Domain adaptation (DA) aims to train a model that performs well on an unlabeled target domain
with the assistance of a labeled source domain. Formally, in DA, we can access a source domain
Ds = {xs

i , y
s
i }

Ns
i=1 with Ns labeled instances and a target domain Dt = {xt

i}
Nt
i=1 with Nt unlabeled

samples, where ysi ∈ {1, 2, ...,K} is the corresponding label of the source data xs
i . Both source and

target domains share one identical label space Ys that contains K classes.

Existing DA methods are mainly devoted to establishing domain alignment by explicitly minimizing
the domain discrepancy or adversarial training, which have obtained promising results. Discrepancy-
based methods attempt to find a metric that can precisely depict the domain discrepancy, then adopt
it to minimize the domain gap. While adversarial-based methods play a mini-max game between
a feature extractor and a discriminator, where the feature extractor tries to fool the discriminator,
leading to domain-invariant features. All in all, these approaches can be decomposed as follows:

Discrepancy-based: min
θ,φc

LS + LD (1)

Adversarial-based: min
θ,φc

LS + LD, max
φd

LD, (2)

where LS is the source classification loss, LD is the domain alignment loss, and θ,φc,φd are the
parameters of shared feature extractor, classifier and domain discriminator, respectively.

However, the optimization of LD may conflict with that of LS due to the domain shift, under which
circumstances the de facto optimization scheme can only access restricted Pareto optimal solutions.
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Moreover, our goal is to minimize the target classification loss L∗T , but neither LS or LD directly
corresponds to this goal. Therefore, to search for a desirable Pareto optimal solution for this goal, we
propose a gradient-based optimization method for DA. Concretely, we first design a novel surrogate
loss that mimics target classification loss, and then leverage the gradient of it on a held-out target
dataset to guide the cooperative optimization of objectives.

4.2 Gradient-Based Optimization for DA

4.2.1 Target-Prediction Refining Mechanism

The goal of ParetoDA is to cooperatively optimize the multiple objectives in DA, aiming to minimize
the target classification loss L∗T , which is inaccessible due to the absence of target labels. To tackle
this issue, we design a TCM loss LT by the mutual information [17] leveraging the target predictions.
In this loss, target predictions act as (soft) labels for themselves. Therefore, the accuracy of the
predictions is important to support the mimicking.

Former methods generally adopt the outputs of classifier as target predictions, without considering
that the domain labels might be beneficial for classification. To refine the predictions by maximally
exploiting the information at hand, we propose to model the domain label as conditional information
into the prediction probability by Bayes’ theorem. Formally, the class-conditional probability
of sample x is p(y = k | z = d,x,θ,φc) instead of p(y = k | x,θ,φc), where the class
k ∈ {1, . . . ,K} and the domain label d ∈ {0, 1}, K is the number of classes, 0 and 1 denote the
source and target domain respectively. Based on Bayes’ theorem, we have:

p(y = k | z = d,x,θ,φc) =
p(z = d | y = k,x,θ,φc)p(y = k | x,θ,φc)∑
k′ p(z = d | y = k′,x,θ,φc)p(y = k′ | x,θ,φc)

=
p(z = d | x,vk)p(y = k | x,θ,φc)∑
k′ p(z = d | x,vk′)p(y = k′ | x,θ,φc)

= ρk|d.

(3)

Here, we adopt a multi-layer perception (MLP) network to model p(z = d | x,vk), called class-wise
discriminator, where vk denotes the parameters of the k-th domain discriminator corresponding
to class k, which aims to distinguish the domain label of the samples from class k. ρk|d can be
regarded as a multiplicative ensemble of two predictions: p(z=d|x,vk)∑

k′ p(z=d|x,vk′ )
and p(y=k|x,θ,φc)∑

k′ p(y=k′|x,θ,φc) .
We interpret how the former prediction works for target classification: for one specific class-wise
discriminator, it can distinguish the target domain from the source well only when the input samples
contain the corresponding class information, i.e., belong to the corresponding category. Otherwise,
the probability of predicting samples as the target will be low.

We train all the class-wise discriminators with (derivations are in the supplementary material):

min
v1,...,vK

−
K∑

k=1

1∑
d=0

sk|dI(z = d) log p(z = d | x,vk)|. (4)

Note that the sk|d here only acts as a weighting scalar, and for source domain sk|d = I(y = k) is
hard class label (ground truth label) while for target domain, sk|d = ρk|d is soft class label (refined
prediction). This objective is from an Expectation-Maximization derivation.

Now we acquire refined predictions ρk|d for target samples which can substitute for the original
predictions. As discussed in [12, 42], the ideal target predictions should be individually certain
and globally diverse, which can be obtained by maximizing the mutual information between input
samples and the predictions. Thus, we adopt the information maximization (IM) loss [17] on our
improved version prediction ρk|d, the formulation is as follows:

LT =

K∑
k=1

ρ̂k|1logρ̂k|1 − Ex∈Dt

K∑
k=1

ρk|1logρk|1, (5)

where ρk|1 denotes p(y = k | z = 1,x,θ), i.e., the probability that the target sample x is classified
into class k under the prior condition that it is divided into target domain, and ρ̂k|1 denotes Ex∈Dt

ρk|1,
represents the mean of the k-th elements in the outputs of the whole target domain.

Hence, we take LT as the surrogate to mimic the target classification. This loss can be directly added
to original DA methods to assist the model adaption to the target domain. More importantly, we
leverage it to guide the search for the desirable Pareto optimal solution.
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4.2.2 Dynamic Preference Mechanism

This section introduces how we establish gradient-based optimization for DA to handle the inconsis-
tency among objectives and how we dynamically guide the optimization direction towards the desired
Pareto optimal solution.

Given losses LS , LD and LT , in each optimization step, we first model the update direction d as
a convex combination of gradients of the three losses, i.e., d = Gw, where w ∈ Sm = {w ∈
Rm

+ |
∑m

j=1 wj = 1}, m = 3, andG = [∇θLS ,∇θLD,∇θLT ], where θ are the shared parameters,
i.e., the parameters of the shared feature extractor. A fundamental goal of gradient-based optimization
is to find a d to simultaneously minimize all the losses. That is, the network can be optimized along a
consistent direction and learn the shared knowledge between source and target domains efficiently
and stably. Therefore, the direction d first need to satisfy the constraint dTgj ≥ 0,∀j ∈ [m], where
gj is the j-th column of G.

Recently, a state-of-art method EPO [30] further controls the direction to reach a Pareto optimal solu-
tion with designated trade-off among objectives, using a preference vector fixed apriori. Concretely,
EPO guides the optimization direction via minimizing the KL divergence between a normalized loss
vector weighted by the preference vector and a uniform probability vector. Since the prior knowledge
for the trade-off among objectives in DA is often unavailable and may vary with methods and training
procedures, to weight LT ,LS and LD to guide the cooperative optimization towards minimizing L∗T ,
we propose to model the gradient of LT on a held-out unlabeled target dataset as the optimization
guidance. We evaluate the performance on the held-out data because 1) it suggests generalization
performance, and 2) it is more stable and convincible than training data. In practice, we randomly
split 10% data from the original target set as the validation set and the rest 90% are taken as the
training set. Note that we do not use any ground truth labels on the validation set, instead we calculate
the proposed TCM loss on it, and then leverage this validation loss to guide the optimization direction.

Formally, we denote by LV al the TCM loss on the held-out data, then we can directly obtain the
gradient descent direction: ĝv = ∇θLV al. Thus we can replace the guidance direction dbal 1 in EPO
by ĝv as a dynamical guidance of the optimization direction. For clarity, the optimization problem
can be formulated as a linear programming (LP) problem:

w∗ = arg max
w∈Sm

(Gw)T (I(LV al > 0)ĝv + I(LV al = 0)G1/m),

s.t. (Gw)Tgj ≥ I(J 6= ∅)(ĝTv gj), ∀j ∈ J̄ − J∗,
(Gw)Tgj ≥ 0, ∀j ∈ J∗,

(6)

where Sm = {w ∈ Rm
+ |

∑m
j=1 wj = 1}, I(·) is an indicator function, 1 ∈ Rm is a vector whose

elements are all 1, J = {j|ĝTv gj > 0}, J̄ = {j|ĝTv gj ≤ 0}, and J∗ = {j|ĝTv gj = maxj′ ĝ
T
v gj′}.

One may be concerned that involving the gradient of the held-out data in training may eventually
cause over-fitting of the data. Fortunately, we use the following result to show that the held-out data
can guide but will not be over-fitted by the optimization of our method.

Theorem 1. Letw∗ be the solution of the problem in Eq. (6), and d∗ = Gw∗ be the resulted update
direction. If LV al = 0, then the dominating direction d∗ becomes a descent direction, i.e.,

(d∗)Tgj ≥ 0, ∀j ∈ {1, 2, 3}. (7)

On the other hand, if LV alid > 0, Let γ∗ = (d∗)T ĝv be the objective value of the problem in Eq. (6).
Then,

if γ∗ > 0, then (d∗)T ĝv > 0;

if γ∗ ≤ 0, then (d∗)Tgj ≥ 0, ∀j ∈ {1, 2, 3}.
(8)

The proof of Theorem 1 is deferred to the supplementary material. Note that we add a small ε = 1e−3
to relax the condition LV al > 0 and LV al = 0 in Eq. (6) as LV al > ε and LV al ≤ ε in practice,
since the guiding significance of LV al becomes trivial when it is less than a small value.

1See [30] for details.
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Algorithm 1 Update Equations for ParetoDA
1: Input: Shared parameters θt ∈ Rd, step size η
2: Calculate objective values: LS ,LD, LT

3: Calculate guidance loss on target validation set:
Lval (using Eq. (5))

4: Calculate the gradients of training objectives:
G=[g1, g2, g3] =[∇θtLS ,∇θtLD,∇θtLT ]

5: Calculate the gradient of the guidance loss:
ĝv = ∇θtLval

6: Obtain w∗ by solving LP (Eq. (6))
7: Optimization direction: d∗ = Gw∗

8: Output: Updated parameters θt+1 = θt − ηd∗

Now we interpret the learning mechanism
in Eq. (6). When LV al = 0, the learning
is in the pure descent mode, in which the
update direction d∗ = Gw∗ approximates
the mean gradient G1/m, and d∗ can de-
crease all the training losses simultaneously.
Whereas when LV al > 0, the learning is
in the guidance descent mode, in which d∗
approximates ĝv. Since d∗ = Gw∗ is a
convex combination of columns in G, then
γ∗ > 0 means that ĝv is consistent with some
columns in G, and d∗ is forced to decrease
the loss whose gradient is the most consistent
with ĝv—which means the highest contribu-
tion to the model performance. On the other hand, γ∗ ≤ 0 means none of the columns in G is
consistent with ĝv . In this case, d∗ is not forced to consistent with ĝv , but only required to decrease
the training losses, while approximating ĝv to the maximum feasible extent.

In summary, ĝv can dynamically guide the optimization direction towards the desired Pareto solution,
but will not over-fit the held-out data, and we no longer need prior knowledge to set a preference
vector. The theoretical guarantee for the existence of a Pareto optimal is deferred to the supplementary
material. And the updating algorithm of every training iteration is presented in Alg. 1. Note that this
optimize scheme is only applied to the shared parameters.

Time Complexity. Let m ∈ Z+ be the number of objective, and d ∈ Z+ the dimension of model
parameters. The computation of (Gw)T ĝv of (Gw)TG both has run time O(m2d). With the best
LP solver [7], our LP (Eq. 6), that has m variables and at most 2m+ 1 constraints, has a runtime 2 of
O∗(m2.38). As in DA, we usually have d� m, our total run time is O(m2d+m2.38) = O(d).

Theoretical Insight. In Domain adaptation literature, the theory proposed by Ben-David et al. [2]
provides an upper bound for the generalization error on target data, which is composed of three
terms: 1) the expected error on source domain εS(h); 2) the H∆H divergence between two domains
dH∆H(Ds, Dt); 3) the combined error λ of the ideal joint hypothesis h∗. The formulation is:

εT (h) ≤ εS(h) +
1

2
dH∆H(Ds, Dt) + λ, (9)

where λ = εS(h∗) + εT (h∗) and h∗ = arg minh∈H εS(h) + εT (h).

The goal of DA methods is to lower the upper bound of the expected target error. εS(h) is expected to
be small thanks to the supervision in source domain. And λ is also generally considered sufficiently
small [41, 27]. Thus, most DA methods mainly focus on reducing dH∆H(Ds, Dt) by domain
alignment. However, if one of the three terms goes down and another term goes up, the model still
can not effectively reduce the upper bound of εT (h). Excessive either source classification or domain
alignment will cause damage to the other.

In our ParetoDA, by adopting gradient-based optimization, we can simultaneously optimize the
source classification loss and the domain alignment loss, so as to make εS(h) and dH∆H(Ds, Dt)
decrease synchronously. Moreover, both the training of our proposed TCM loss on target data and
the optimization guidance of this loss on held-out data contribute to the classification ability of the
model to the target domain, and then reduce the combined error λ of the ideal joint hypothesis h∗.
Consequently, the upper bound of εT (h) can be effectively reduced in our work, which validates the
effectiveness of ParetoDA theoretically.

5 Experiment

5.1 Dataset and Setup

We evaluate ParetoDA on three object classification datasets and two semantic segmentation datasets.
Office-31 [40] is a typical benchmark for cross-domain object classification involving three distinct

2O∗ is used to hide mo(1) and logO(1)(1/δ) factors, δ being the relative accuracy. See [7] for details.

7



Table 2: Accuracy(%) on Office-Home for unsupervised DA (ResNet-50).
Method Ar:Cl Ar:Pr Ar:Rw Cl:Ar Cl:Pr Cl:Rw Pr:Ar Pr:Cl Pr:Rw Rw:Ar Rw:Cl Rw:Pr Avg.
ResNet [15] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DAN [26] 43.6 57.0 67.9 45.8 56.5 60.4 44.0 43.6 67.7 63.1 51.5 74.3 56.3
TAT [24] 51.6 69.5 75.4 59.4 69.5 68.6 59.5 50.5 76.8 70.9 56.6 81.6 65.8
TPN [35] 51.2 71.2 76.0 65.1 72.9 72.8 55.4 48.9 76.5 70.9 53.4 80.4 66.2
BNM [9] 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9
MDD [56] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
GSP [51] 56.8 75.5 78.9 61.3 69.4 74.9 61.3 52.6 79.9 73.3 54.2 83.2 68.4
DANN [11] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
+BSP [5] 51.4 68.3 75.9 56.0 67.8 68.8 57.0 49.6 75.8 70.4 57.1 80.6 64.9
+MetaAlign [50] 48.6 69.5 76.0 58.1 65.7 68.3 54.9 44.4 75.3 68.5 50.8 80.1 63.3
+ParetoDA 55.2 74.4 79.0 61.9 72.4 72.9 62.1 55.8 81.1 74.4 61.1 82.4 69.4
CDAN [27] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
+BSP [5] 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3
+MetaAlign [50] 55.2 70.5 77.6 61.5 70.0 70.0 58.7 55.7 78.5 73.3 61.0 81.7 67.8
+ParetoDA 56.8 75.9 80.5 64.4 73.5 73.7 65.6 55.2 81.3 75.2 61.1 83.9 70.6

domain: Amazon (A), DSLR (D) and Webcam (W); Office-Home [48] is a more difficult benchmark
composed by four image domains: Art (Ar), Clip Art (Cl), Product (Pr) and Real-World (Rw). The
images of different domains are more visually dissimilar with each other; VisDA-2017 [37] is a
large-scale synthetic-to-real dataset, containing over 280K images across 12 categories; Cityscapes
[8] is a real-world semantic segmentation dataset with 5,000 urban scenes which are divided into
training, validation and test splits; GTA5 [38] includes 24,966 game screenshots from the game
engine of GTA5. Following [46, 20], we establish a transfer semantic segmentation scenario: GTA5
→ Cityscapes. Specifically, we use the shared 19 categories and report the test results on the validation
set of Cityscapes. To evaluate our approach, we apply the proposed ParetoDA on former DA methods,
i.e., DANN, CDAN, and MDD, and split 10% data randomly from the original target set as the
validation set. All experiments are implemented via PyTorch [36], and we adopt the common-used
stochastic gradient descent (SGD) optimizer with momentum 0.9 and weight decay 1e-4 for all
experiments. Following the standard protocols in [27, 11, 29], we take the average classification
accuracy and mean IoU (mIoU) for image classification and semantic segmentation as evaluation
metrics, respectively. More details are presented in the supplementary material due to limited space.

5.2 Experimental Results

Table 1: Classification accuracy (%) on Office-31 (ResNet-
50).

Method A:W D:W W:D A:D D:W W:A Avg
ResNet [15] 68.4 96.7 99.3 68.9 62.5 60.7 76.1
DAN [26] 80.5 97.1 99.6 78.6 63.6 62.8 80.4
JADA [22] 90.5 97.5 100.0 88.2 70.9 70.6 86.1
BNM [9] 91.5 98.5 100.0 90.3 70.9 71.6 87.1
TAT [24] 92.5 99.3 100.0 93.2 73.1 72.1 88.4
GSP [51] 92.9 98.7 99.8 94.5 75.9 74.9 89.5
DANN [11] 82.0 96.9 99.1 79.7 68.2 67.4 82.2
+BSP [5] 93.0 98.0 100.0 90.0 71.9 73.0 87.7
+MCC [18] 95.6 98.6 99.3 93.8 74.0 75.0 89.4
+ParetoDA 95.5 98.7 100.0 93.8 76.7 76.3 90.2
CDAN [27] 94.1 98.6 100.0 92.9 71.0 69.3 87.7
+BSP [5] 93.3 98.2 100.0 93.0 73.6 72.6 88.5
+MCC [18] 94.7 98.6 100.0 95.0 73.0 73.6 89.2
+ParetoDA 95.0 98.9 100.0 95.4 77.6 75.7 90.4
MDD [56] 93.5 98.4 100.0 94.5 74.6 72.2 88.9
+ParetoDA 95.4 98.9 100.0 94.4 76.2 75.8 90.1

Office-31. From the results in Table
1, we can observe that DA methods,
such as DANN and CDAN exceed the
ResNet model. This validates that mit-
igating the domain gap between two
domains is crucial for enhancing the
generalization performance of models.
We evaluate ParetoDA on three basic
DA methods. The results show that
ParetoDA can consistently improve
the performance of the basic methods
significantly. In particular, ParetoDA
improves DANN by 8.0%, revealing
that ParetoDA is an extra booster to
former DA methods. On the other
hand, the encouraging results validate
the importance of searching for a de-
sirable Pareto optimal solution.

Office-Home. Compared with Office-31, Office-Home is a more difficult dataset, whose results are
shown in Table 2. In this difficult scenario, ParetoDA can still enhance the performance of former
DA methods, with 11.8% and 4.8% improvement on DANN and CDAN respectively. Based on these
promising results, we can infer that ParetoDA can reach a desirable Pareto optimal solution which is
beneficial for the performance of models.
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Table 3: Accuracy(%) on VisDA-2017 for unsupervised DA (ResNet-101).
Method plane bcycl. bus car horse knife mcycl. person plant sktbrd train truck Avg.
ResNet [15] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DAN [26] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1
MCD [41] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
JADA [22] 91.9 78.0 81.5 68.7 90.2 84.1 84.0 73.6 88.2 67.2 79.0 38.0 77.0
TPN [35] 93.7 85.1 69.2 81.6 93.5 61.9 89.3 81.4 93.5 81.6 84.5 49.9 80.4
DTA [21] 93.7 82.2 85.6 83.8 93.0 81.0 90.7 82.1 95.1 78.1 86.4 32.1 81.5
DANN [11] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
+BSP [5] 92.2 72.5 83.8 47.5 87.0 54.0 86.8 72.4 80.6 66.9 84.5 37.1 72.1
+ParetoDA 95.3 82.4 82.9 56.2 92.6 95.0 87.1 81.1 90.2 90.8 87.8 46.7 82.4
CDAN [27] 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
+BSP [5] 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9
+ParetoDA 95.9 82.8 81.3 58.7 93.9 93.7 85.9 83.0 91.9 92.0 87.1 51.8 83.2

Table 4: Semantic segmentation performance mIoU (%) on Cityscapes validation set.

Method ro
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mIoU
ResNet-101 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6
AdaSegNet [46] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4
Cycada [16] 86.7 35.6 80.1 19.8 17.5 38.0 39.9 41.5 82.7 27.9 73.6 64.9 19 65.0 12.0 28.6 4.5 31.1 42.0 42.7
CLAN [29] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2
AdvEnt [49] 89.9 36.5 81.6 29.2 25.2 28.5 32.3 22.4 83.9 34.0 77.1 57.4 27.9 83.7 29.4 39.1 1.5 28.4 23.3 43.8
+ParetoDA 79.6 29.1 83.4 30.4 22.4 32.6 39.2 26.7 82.5 26.5 82.2 63.0 29.8 85.9 36.1 43.5 9.2 29.9 43.7 46.1
FDA [52] 90.0 40.5 79.4 25.3 26.7 30.6 31.9 29.3 79.4 28.8 76.5 56.4 27.5 81.7 27.7 45.1 17.0 23.8 29.6 44.6
+ParetoDA 85.4 37.6 84.0 32.0 23.8 33.1 39.6 25.9 84.0 30.6 81.6 61.3 30.9 85.4 31.9 45.0 7.6 32.4 45.4 47.2
CBST [59] 86.8 46.7 76.9 26.3 24.8 42.0 46.0 38.6 80.7 15.7 48.0 57.3 27.9 78.2 24.5 49.6 17.7 25.5 45.1 45.2
+ParetoDA 82.4 50.7 80.2 34.9 36.7 45.9 47.2 45.1 72.9 27.8 46.0 62.3 33.0 81.4 29.5 44.3 14.0 29.8 49.3 48.1

VisDA-2017. To validate the model performance on a large-scale dataset, we carry out experiments
on VisDA-2017. The results are presented in Table 3. As a plug-in module, BSP improves the basic
models by enhancing the discriminability of feature representations. ParetoDA aims to improve the
optimization for DA methods, which is also orthogonal to former DA methods. In addition, ParetoDA
achieves greater performance gains, further indicating the effectiveness and versatility of our method.

GTA5→ Cityscapes. Compared with classification tasks, segmentation demands more cost for the
pixel-level annotation. Hence, it’s of vital importance to conduct domain adaptation for semantic seg-
mentation. We evaluate our method on the adaptive semantic segmentation task, GTA5→ Cityscapes,
aiming to transfer the knowledge from synthesized frames to real scenes. The segmentation results
are exhibited in Table 4. We apply ParetoDA on two methods, i.e., AdvEnt and FDA, which boosts
them by large margins on average. This manifests that ParetoDA can still reach an appropriate
optimization solution for enhancing model performance on this pixel-level transfer scenario. Besides,
ParetoDA is not limited to handle the conflict between the classical source classification loss and
domain alignment loss, our framework can also be applied to where the explicit domain alignment
module doesn’t exist or there exist multiple losses. For instance, we adopt ParetoDA on a self-training
based domain adaptation method CBST [59] and it is clear that ParetoDA is still effective.

5.3 Analytical Experiments

Table 5: Ablation Study of ParetoDA on
Office-31 (ResNet-50).

IM TCM EPO ParetoDA Accuracy
DANN 82.2
DANN X 87.9
DANN X 88.4
DANN X 87.7
DANN X X 89.7
DANN X X 89.9
DANN X X 90.2

Ablation Study. To verify each component of Pare-
toDA, we establish ablation study on Office-31. The
average results are shown in Table 5. TCM performs
better than IM, demonstrating that integrating domain
labels is beneficial for target predictions. Applying
the conventional Pareto optimization method [30]
with fixed preference vector on DANN achieves con-
siderable performance gain. This reveals that the
gradient-based optimization method is superior to the
linear weighting scheme. Further, with our proposed
ParetoDA, DANN obtains the best results, validating the importance of dynamical preference learning
and that TCM loss serves as a better guidance for optimization.
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Figure 3: Analytical experiments conducted on W→A (Office-31) based on DANN. (a): Visualization
of optimization paths of different optimization schemes. (b): Objective scale sensitivity analysis of
ParetoDA by varying the scale factors of objectives.

Optimization Path Visualization. To intuitively verify that ParetoDA can dynamically search the
desired Pareto optimal solution under the guidance of our proposed loss, we visualize the optimization
paths of different optimization schemes (see Fig. 3(a)). Note that all these schemes start from the
same initial point, but we only plot several solutions of the final stage of optimization for better
illustration. It is clear that the linear weighting scheme not only deteriorates one of the objectives at
some steps, but also reaches a solution on the convex part of the Pareto front, which deviates severely
from the ideal one. The conventional gradient-based optimization method EPO (with fixed preference
vector r = [1, 1, 1]) controls the optimization direction to avoid damaging any of the objectives.
However, its solution heavily relies on the pre-defined preference vector for training objectives,
which is ambiguous in DA. By contrast, our proposed ParetoDA further dynamically adjusts the
optimization direction with the gradient direction of the proposed TCM loss. For comparisons, we
illustrate the ideal solution guided by the supervised classification loss on target domain. One can
observe that the optimization direction of ParetoDA is consistent with the ideal one in general, and
reach a final solution closest to the ideal one.

Sensitivity to Different Objective Scales. The scale of the objectives may vary with methods or
datasets. To test the adaptivity of ParetoDA to different objective scales, we conduct experiments
on a random task W→A (Office-31) based on DANN by varying λ0, λ1 ∈ {0.1, 0.5, 1.0, 1.5},
which represent the scale factor of object classification objective and domain alignment objective
respectively. Fig. 3(b) shows that ParetoDA is not sensitive to the scale variety of objectives, which
indicating that ParetoDA is robust across different methods and datasets.

Adaptivity to Deeper Backbone Networks. In this work, we reach a desirable Pareto optimal
solution for the target domain by controlling the optimization direction. Whereas on deeper networks,
it might be more difficult to control the optimization direction due to the increased complexity.

Table 6: Test top-1 accuracy (%) on task W→A (Office-
31) of methods with different backbone networks.

Networks Source-only DANN [11] +ParetoDA
ResNet-50 60.7 67.4 76.3
ResNet-101 65.8 74.5 77.5
ResNet-152 68.2 76.1 79.0

For a fair comparison, we use ResNet-50
on classification tasks. However, ParetoDA
can be easily adapted to deeper backbone
networks. Table 6 presents the results of
ParetoDA based on DANN with different
backbones, demonstrating that ParetoDA
can still consistently enhance the perfor-
mance of the basic method.

6 Conclusion

In this paper, we rethink the optimization scheme for DA from a gradient-based optimization
perspective. We present a Pareto Domain Adaptation (ParetoDA) to dynamically search a desirable
Pareto optimal solution for boosting model performance, which is orthogonal to former DA methods.
Extensive experiments on both classification and segmentation tasks validate the effectiveness of
ParetoDA. It is worth noting that we mainly concentrate on the traditional domain adaptation setting
for clarity, while the generalization to other variants of DA needs to be further explored.
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