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ABSTRACT

Applying compilation transformations in optimal sequences can significantly im-
prove program speed and reduce code size. However, finding these optimal se-
quences, a problem known as the phase-ordering problem, remains a longstanding
challenge. Specifically, modern compilers offer hundreds of available transforma-
tions, making the search space too large to efficiently explore in a reasonable time
frame. Existing solutions tackle this problem by grouping transformations into
short sequences, based on prior knowledge from human experts, and then search-
ing for optimal orders within these sequences. However, such pruning methods
can be aggressive, potentially excluding optimal solutions from the search space.
Additionally, they lack scalability for new transformations.
In this paper, we propose a new, more conservative pruning approach that relies on
Machine Learning to capture dormant information. This approach only excludes
non-optimal solutions from the search space. It does not rely on any prior human
knowledge, making it scalable to new transformations.
To demonstrate the efficiency of this conservative pruning approach, we integrate it
with a classical Reinforcement Learning model, previously used with aggressive
pruning methods. Our solution, named FlexPO, is capable of exploring a search
space that is exponentially larger than those considered in existing solutions. Ex-
perimental results demonstrate that FlexPO generates programs that are 12% faster
or 17.6% smaller than the programs generated by modern compilers.

1 INTRODUCTION

Modern compilers offer hundreds of compilation transformations to modify programs. Extensive
research Ashouri et al. (2016a); Kulkarni & Cavazos (2012); Ashouri et al. (2017); Kulkarni et al.
(2003) has demonstrated that applying these transformations in an optimal order can lead to significant
improvements in program runtime, ranging from 2.4% to 60.37%.

However, the diverse effects of different transformations and the intricate interactions among them
pose challenges in determining the optimal sequences for specific programs. To mitigate this, modern
compilers offer predefined transformation sequences, such as -O3, -Oz, and -Os, which are based
on empirical studies. Despite this, research suggests that these predefined sequences have room
for improvement Gong et al. (2018); Mammadli et al. (2020); Ashouri et al. (2017); Jain et al.
(2022). Applying a one-size-fits-all sequence to different programs can result in suboptimal outcomes,
indicating that these sequences may be too generic to achieve optimal performance.

The phase-ordering problem, which involves selecting and applying transformations in optimal
sequences, remains an unsolved challenge. This complexity arises from the enormous and intricate
search space, which expands exponentially with the number of transformations. For N available
transformations, the search space contains NL potential sequences when applying L transformations.
Predicting the outcomes of these sequences or assessing the similarity between the outputs of different
sequences is particularly challenging, due to the complex interactions among transformations Gong
et al. (2018); Whitfield & Soffa (1997).

Some researchers Ashouri et al. (2017); Jain et al. (2022); Mammadli et al. (2020) propose a pruning
mechanism to reduce the search space. This approach first leverages prior human knowledge to
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cluster transformations into short sequences. It then employs search algorithms to select and order
these sequences. Compared to ordering individual transformations, ordering sequences significantly
reduces the search space, allowing the search process to find good solutions in a reasonable time
frame. However, this approach has two limitations. First, the pruning mechanism is aggressive,
potentially excluding optimal solutions from the pruned search space. Second, the mechanism relies
on human experts to form the transformation sequences, making it less scalable for incorporating
new transformations. In this paper, we refer to this mechanism as aggressive pruning.

In this paper, we propose a new pruning mechanism. This mechanism uses an ML model to learn how
to detect transformations that will not change the program (a.k.a. dormant transformations). It then
guides the search process to focus solely on transformations that are likely to change the program
(a.k.a. active transformations). Compared to the aggressive pruning solution, the new mechanism is
conservative, as it only prunes non-optimal sequences from the search space. Furthermore, it offers
scalability for new transformations, as it does not rely on prior knowledge of the transformations.

The proposed conservative pruning can replace the existing aggressive pruning mechanism. Specifi-
cally, we introduce FlexPO, a framework that integrates conservative pruning with a classical RL
model. This RL model has been used to solve the phase-ordering problem in conjunction with
aggressive pruning mechanisms Jain et al. (2022); Ashouri et al. (2017); Mammadli et al. (2020).
With the new pruning approach, FlexPO can explore a search space that is exponentially larger than
those of other solutions, as shown in Figure 1.

Figure 1: FlexPO supports a search space that is exponentially larger than existing solutions.
The contributions of our paper are listed below:

• Introduce a new mechanism for representing programs using dormant information;

• Propose the use of an ML model to learn the dormant status of transformations and apply
conservative pruning during the phase-ordering problem;

• Replace the aggressive pruning mechanisms in existing solutions with conservative pruning,
and evaluate the improvements using popular C++ applications.

2 RELATED WORK

The phase-ordering problem has long posed a significant challenge for researchers due to the extensive
and intricate search space it involves. Early attempts to address this problem using predictive heuristics
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have proven to be suboptimal, particularly as the number of transformations increased and their
interactions became more complex Triantafyllis et al. (2003). In recent years, the application of
Machine Learning (ML) models has garnered attention for solving this problem. Researchers have
explored various approaches, including Genetic Algorithms Cooper et al. (1999; 2002); Kulkarni
et al. (2004); Martins et al. (2016), Markov models Agakov et al. (2006), and Recommendation
Systems Ashouri et al. (2017), to search for optimal transformation sequences. Reinforcement
Learning (RL) has also emerged as a promising avenue for research. Mammadli et al. Mammadli et al.
(2020) tried to utilize RL model to address the phase-ordering problem. However, their framework
faced difficulties in identifying good sequences within a reasonable time frame due to the expansive
search space.

The current state-of-the-art solutions for the phase-ordering problem often employ aggressive pruning
mechanisms. These approaches involve clustering transformations into short sequences that have
shown good performance, and then searching for the optimal arrangement among these sequences.
This strategy effectively reduces the search space. For example, in the original formulation of the
phase-ordering problem where there are N transformations and a desired sequence length of L, the
search space consists of NL possible sequences. However, by clustering G different transformations
into sequences, we are left with N

G such sequences. Consequently, only L
G of these sequences need to

be selected to form the final solution. This reduces the search space to
(
N
G

) L
G .

There are two main challenges associated with aggressive pruning solutions. First, these methods
typically rely on prior knowledge to cluster transformations into short sequences. Projects such as
POSET-RL Jain et al. (2022) and MICOMP Ashouri et al. (2017) use existing O3 or Oz pipelines as
the basis for creating these sequences. However, this approach has limitations when dealing with
transformations not included in the O3 or Oz pipelines. Second, evaluations conducted in earlier
studies Cooper et al. (2002) have shown that optimal solutions for the phase-ordering problem are
sparsely distributed throughout the search space. As a result, aggressive pruning runs the risk of
excluding these optimal solutions from the pruned search space.

3 INSIGHT

Aggressive pruning methods have the risk to exclude optimal solutions during the pruning process. In
contrast, we propose a conservative pruning strategy in this paper that aims to retain these optimal
solutions within the search space. The fundamental insight behind conservative pruning lies in the
observation that certain transformations are dormant for a given program, meaning they do not change
the program Kulkarni et al. (2004). For instance, if a program has already undergone the inline
transformation, which inlines function calls, applying inline again would likely yield no change.
Likewise, if the loop− unroll transformation has been executed and no loop structures remain in the
program, additional loop-related transformations may become dormant. Based on this understanding,
our conservative pruning approach aims to guide the search process by excluding these dormant
transformations. In doing so, we can substantially reduce the search space while ensuring that optimal
solutions are not pruned away.

We are NOT the first to utilize dormant information for the phase-ordering problem. Work by
Kulkarni et al. Kulkarni et al. (2004) analyzes dormant transformations within an evolutionary
algorithm to eliminate redundant searches of sequences with identical effects. However, existing
solutions do NOT treat dormant information as learnable. On the contrary, they rely on human
expertise to establish rules which are used to identify dormant transformations. As a result, their
solutions are not scalable and support only 15 transformations.

We are the first to consider dormant information as learnable, employing an ML model to predict this
information and apply it during the phase-ordering search process. Unlike existing solutions, our
approach does not depend on human expertise and is scalable to new compilation transformations.
We evaluate our method using 124 transformations in Section 7.

4 PROGRAM REPRESENTATION BY DORMANT INFORMATION

One of the most significant challenges in applying ML algorithms to program optimization is the
representation of programs themselves. Unlike natural language, which follows a linear order,
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programs contain a wealth of information that is not easily representable. Some researchers Ben-Nun
et al. (2018); Cummins et al. (2020) use graph models to capture program characteristics, particularly
control-flow information. However, these methods often involve substantial computational overhead
for program analysis. In the context of the phase-ordering problem, it has been observed that
transformations are sensitive to specific program features. Consequently, researchers Haj-Ali et al.
(2020); Ashouri et al. (2017; 2016b) propose using feature vectors to represent programs. These
feature vectors capture specific attributes, such as the number of loops or the number of branch
instructions, to better inform the optimization process.

In this paper, we propose a new mechanism to represent programs, which represent programs with
activate/dormant status of applied transformation, as shown in Figure 2. The proposed representation
maps programs to vectors, the length is same as the number of available transformations. Each
element in the vector represents whether the corresponding transformation has been applied, and
whether it is dormant if it has been applied. This new representation is used to predict the dormant
status of new transformations.

Figure 2: Different programs show different activate/dormant status when applying the same transfor-
mations. Thus, we propose to represent programs with the activate history of applied transformation.

The utility of the new representation is based on two observations. First, the dormant status of a
transformation is related to specific features of the program. For instance, if all applied loop-related
transformations are dormant for a given program, it is likely that the program has few or no loop
structures. Second, the dormant statuses of different transformations are correlated with each other.
For example, if a constant folding transformation has been activated, it is likely that a subsequent
dead code elimination transformation will also be activated. This is because the constant folding
transformation may generate dead code that the dead code elimination transformation can remove.

Our new mechanism offers several advantages. First, it is lightweight and easy to capture during the
search process. Second, it is scalable and can easily accommodate new transformations proposed in
the future. Third, it requires only a scalar vector to store the program representations, thus consuming
minimal memory. Fourth, it goes beyond capturing simple program features (e.g., number of loops,
number of return instructions) to reflect more complex interactions present within programs. For
example, the activation of the loop-unroll transformation suggests that the program contained a loop
structure, and the transformed programs are expected to feature numerous similar code sections.

5 LEARNING DORMANT INFORMATION

The proposed program representation is used to predict the dormant status of subsequent transforma-
tions, enabling the application of conservative pruning. Figure 3 illustrates an example. The input, the
proposed program representation, is a vector whose length is equal to the number of transformations.
Each element in the vector can be 1, 0, or −1, indicating whether the corresponding transformation
has been applied and, if so, whether it affected the program. For example, in the input vector shown
in Figure 3, the first element is 1, signifying that the corresponding transformation (loop unroll) was
applied and did modify the program. The second element is 0, indicating that Dead Code Elimination
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(DCE) has not been applied. The third element is −1, suggesting that the inline transformation
was applied but had no effect. The output is a vector of the same length as the input, representing
the probability that each corresponding transformation will be active. In the example shown, the
predictor notes that the inline transformation has been applied without affecting the program, making
it unlikely to have an effect if applied again. Consequently, its probability (the third element in the
output vector) is close to zero. The predicted dormant probabilities are crucial in the phase-ordering
search process, as they guide the algorithm to explore transformations more likely to be activated.

Figure 3: The proposed program representation is used to predict the probability that subsequent
transformations will be active.

6 FLEXPO

We have implemented a framework, FlexPO, to address the phase-ordering problem. FlexPO
integrates the activation predictor into a RL model. We intentionally utilize an RL model that is
the same or similar to those in other solutions Ashouri et al. (2017); Jain et al. (2022); Mammadli
et al. (2020); Cummins et al. (2022), in order to demonstrate the improvements brought about by the
activation predictor.

The workflow of FlexPO is illustrated in Figure 4. Initially, the input program is compiled to LLVM
Intermediate Representation (IR) without applying any transformations, resulting in what we refer
to as raw_IR. FlexPO then searches for optimal transformation sequences for raw_IR across N
episodes, each containing L iterations (N and L are hyperparameters). At the beginning of each
episode, the current LLVM IR (curr_IR) is set to the initial raw_IR. FlexPO then carries out L
iterations sequentially. At the start of each iteration, curr_IR is provided to the RL agent as an
observation. The agent analyzes this observation and selects a transformation t. The agent also
outputs an estimated value, denoted as estimated_reward, which represents the expected total
rewards obtainable by applying the selected transformation. This estimated value is recorded for the
purpose of training the agent. Subsequently, FlexPO applies the chosen transformation t to curr_IR,
resulting in a new LLVM IR termed new_IR. FlexPO then compiles new_IR and compares its
runtime performance or code size to that of curr_IR. Any improvements are recorded as rewards
for training the RL agent. After completing an iteration, curr_IR is set to new_IR. Once all L
iterations are finished, FlexPO updates the RL agent using the recorded data. For RL training, FlexPO
employs the generic Proximal Policy Optimization algorithm Schulman et al. (2017).

Figure 4: The workflow of FlexPO.

Observation: FlexPO employs the method proposed in AutoPhase Haj-Ali et al. (2020) to convert
an LLVM IR string into a 56-element vector. Each element is an integrated feature representing a
program attribute (e.g., the number of branch instructions, the number of critical edges, the number of
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binary operations with a constant operand). All these features are static and can be directly extracted
from the IRs without the need for compilation and execution.

Agent: FlexPO uses the Actor-Critic approach. In addition to the actor and critic components, the
Agent also incorporates the activation predictor introduced in Section 5. All three components are im-
plemented as four-layer fully-connected Deep Neural Networks (DNNs) with residual connections He
et al. (2016). The structure of the Agent is depicted in Figure 5.

Figure 5: The workflow for the Agent in FlexPO.

• Critic: The Critic is responsible for estimating the potential runtime speedup or code size
reduction achievable from the current IRs.

• Actor: The Actor receives feature vectors generated by AutoPhase and outputs a vector
whose length is equal to the number of available actions. This vector represents the prob-
ability distribution of all actions. Actions that could yield greater benefits should have
higher probabilities. The output from the Actor is multiplied by the output of the Activation
Predictor to determine the final probability distribution that is used to sample the subsequent
transformations.

• Activation Predictor: To enable conservative pruning, the activation predictor is used
to predict which transformations are likely to be active. It takes the history of applied
transformations as input to predict the dormant status of all subsequent transformations.

Environment The environment applies the transformations selected by the Agent and updates the
observation. Specifically, it first applies the chosen transformation to the current IR to obtain a new
IR. Subsequently, it compiles this new IR to calculate the reward value.

Optimizing for runtime requires the environment to execute the program in each iteration, which
incurs a significant overhead. To mitigate this, FlexPO employs caching as an optimization technique.
This strategy is based on the observation that during the search process, identical IRs are generated
and evaluated multiple times for two primary reasons. First, some transformations are dormant and
do not change the IR. Second, certain pairs of transformations are independent of each other; thus,
changing their order produces identical IRs. In FlexPO, a database keeps track of the evaluated IRs
along with their results. When the environment needs to obtain the runtime for an LLVM IR, it first
queries the database to determine if this IR has been previously evaluated. If the IR exists in the
database, the stored evaluation result is returned directly. Otherwise, the environment compiles and
executes the program, updates the database, and then returns the new results.

Reward: For runtime optimization, the reward is the normalized decrease in runtime. The reward of
code size is almost the same, except code size instead of runtime is used to calculate the rewards.

7 EVALUATION

7.1 SETUP

We implemented FlexPO based on CompilerGym Cummins et al. (2022), a toolkit designed for
applying Reinforcement Learning to compiler optimization tasks. For benchmarking, we utilized
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Ctuning CBench Fursin & Temam (2010), which covers a wide range of applications, including
automotive, security, office, and telecommunications. We selected large datasets for each application
to minimize variance during measurements. Each program was evaluated five times, and the results
were manually analyzed to ensure that both variance and measurement errors were small enough to
be negligible. For assessing code size, we measured the size of the code sections in the generated
binary files. The programs were evaluated on an 11th Gen Intel Core i7-11700 CPU backend.

7.2 ACTIVATION PREDICTOR

In this section, we evaluate the effectiveness of the activation predictor, a crucial component for
applying conservative pruning. Since there is no existing dataset suitable for our purpose, we had to
generate one ourselves. Specifically, we randomly generated transformation sequences, each with a
length of 1000. We then applied these sequences individually and recorded which transformations
resulted in changes to the programs. Using this data, we constructed our dataset. Each sample in this
dataset consists of a tuple: the first element represents the history of applied transformations; the
second element represents the transformation to be predicted; and the third element is the ground
truth label indicating whether the transformation is active or not. The process of dataset generation is
illustrated in Figure 6.

Figure 6: The process of constructing datasets to train the activation predictor.

We generated 921,000 tuples from the qsort program to form the training dataset. For validation,
we generated 392,000 and 248,000 tuples from the dijkstra and sha programs, respectively. The
activation predictor was trained using the Adam optimizer Kingma & Ba (2014) with a learning rate
of 1 × 10−4. The learning curve is depicted in Figure 7. The similarity between the training and
validation datasets indicates that the activation predictor generalizes well across different programs.

Figure 7: The learning curves for training the activation predictor.

Further, the confusion matrix is provided in Table 1. Our analysis reveals that 78% and 76% of
the samples in the dijkstra and sha datasets, respectively, are negative, which implies that most
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transformations are dormant. This further substantiates that conservative pruning can effectively
reduce the search space.

Programs True Positive True Negative False Positive False Negative

Dijkstra 57 693 272 344 35 115 26 848
SHA 37 516 168 456 19 813 22 215

Table 1: The confusion matrix for two validation datasets. The data indicates that most transformations
are dormant, highlighting the importance of pruning dormant transformations.

7.3 COMPARISON OF FLEXPO WITH -OZ AND -O3

Modern compilers offer sets of predefined optimization sequences, among which -O3 and -Oz are the
most commonly used. These pipelines are designed to optimize programs for maximum speed and
minimal code size, respectively.

In our evaluation, FlexPO primarily seeks sequences to achieve the lowest runtime. To limit the
search space, it stops an episode after applying 80 transformations for most programs. However,
for the bitcount, patricia, qsort, and tiff2rgba programs, we found that increasing the number of
iterations to 350 per episode significantly reduces the runtime. FlexPO conducts the search across 20
episodes, leading to 1600 compilations and executions for most programs. These hyperparameters
were empirically determined. The evaluation results are presented in Figure 8. Out of 15 applications,
FlexPO outperforms -O3 in 12, producing up to 10x and 7x speedups for stringsearch and bitcount,
respectively. On average, excluding the stringsearch and bitcount, FlexPO-compiled programs are
12% faster than those compiled with -O3.

Figure 8: Speedup of programs compiled by FlexPO and -O3, compared with unoptimized versions.

We use stringsearch as a case study to elucidate why FlexPO outperforms -O3. The function, which
takes up 99% of the execution time, contains complex control flow. FlexPO discovers a sequence
that optimizes the control flow graph, reducing the number of branch instructions. Profiling data,
shown in Table 2, reveals that FlexPO-generated code has fewer executed instructions and branch
instructions.

Metric Unoptimized -O3 FlexPO

Runtime (sec) 12.231 3.692 0.104
# of Instructions 8.1× 1010 3.6× 1010 1× 109

# of Branches 1.5× 1010 1.0× 1010 4.4× 108

# of Branch Misses 5.4× 107 1.2× 107 4.5× 105

Table 2: Profiling data for the stringsearch program.
Similarly, FlexPO was also used to find sequences that minimize code size. On average, FlexPO
produces programs with text segments that are 17% smaller compared to those generated by -Oz.
Detailed results are provided in the appendix.

7.4 COMPARISON OF AGGRESSIVE AND CONSERVATIVE PRUNING

To demonstrate that the improvement is brought by the proposed conservative pruning instead
of the RL model, we apply the aggressive pruning and the conservative pruning with the same
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RL model. Specifically, we use the sequences proposed in MiCOMP Ashouri et al. (2017) and
POSET-RL Jain et al. (2022) for aggressive pruning. MiCOMP clusters the transformations in the O3
pipeline to generate five sequences and searches based on these sequences. Similarly, POSET-RL
generates 15 sequences by analyzing the Oz pipeline. In the evaluation, we use the same RL model
with different sets of actions: the agent selects a sequence of transformations for the aggressive
pruning (related works) and selects a single transformation for the conservative pruning. We stop an
episode when there are 80 applied transformations to make sure the same amount of transformations
are applied in aggressive/conservative search. MiCOMP uses five sequences, and their lengths are
36, 2, 3, 1, and 4. Thus, to form a sequence with length 80, there are around 3 ∗ 1022 possible
combinations1, which is the size of the search space. For POSET-RL, it contains 15 sequences, and
the size of the search space is around 9 ∗ 1016. For FlexPO, the search space is 12480, which is
exponetially larger than MiCOMP and POSET-RL.

In Figure 9(a), we visualize the search process. The figure records the speed up compared with
unoptimized programs. The sequences proposed in MiCOMP are generated from the O3 pipeline
that contains prior knowledge from human experts. Thus, searching based on these sequences can
find good solutions in a few episodes. On the other hand, FlexPO has a large search space and takes
more episodes to find optimal solutions. However, given enough amount of search time, FlexPO can
always find solutions better than MiCOMP’s. The conclusion is the same when comparing FlexPO
and POSET-RL for code size improvement (Figure 9(b)).

(a) Runtime. (b) Code size.

Figure 9: The comparison of conservative pruning (FlexPO) and aggressive pruning solutions
(MiCOMP and POSET-RL).

We also evaluate the result of searching with/without the activation predictor, and find that with the
activation predictor, FlexPO can find optimal solutions in much fewer episodes/iterations. Addi-
tionally, we also evaluate the impact of tuning the hyperparameter (episode/iteration) for the search
process. The detailed results are recorded in the appendix.

8 CONCLUSION

The phase-ordering problem is challenging due to the large search space. Existing solutions rely on
prior knowledge from human experts to aggressively prune the search space, which may exclude
optimal solutions and is not scalable to new transformations. In this paper, we propose conservative
pruning as an alternative to aggressive pruning. It ensures that the optimal solutions remain within the
search space during the pruning process. The insight behind conservative pruning is the prediction
of the dormant status of each transformation, focusing the search on transformations that are likely
to be activated. Conservative pruning does not rely on human expertise and is scalable to new
transformations. We introduce FlexPO, a toolkit that integrates conservative pruning with a RL model
to solve the phase-ordering problem. Our experimental results demonstrate that FlexPO generates
programs that are 12% faster than those optimized with -O3 and 17.6% smaller than those optimized
with -Oz on average.

1The numbers are calculated by dynamic programming.
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A DETAILED RELATED WORK

The phase-ordering problem is an unsolved problem with a long history. In the early days, some
researchers used predictive heuristics to directly find an optimal transformation sequence without
compiling/executing a program multiple times. However, since the number of transformations in-
creases rapidly Bacon et al. (1994) and the interaction between transformations cannot be precisely
predicted Whitfield & Soffa (1997), these methods always remain suboptimal in many cases Tri-
antafyllis et al. (2003). Thus, nowadays most researchers Bodin et al. (1998); Agakov et al. (2006);
Ashouri et al. (2016b); Cavazos et al. (2007) use iterative compilation to solve the phase-ordering
problem. The compilers using iterative compilation optimize programs with different transformation
sequences, evaluate the generated code, and select the best one. Compared with predictive heuristics,
evaluations are based on the real generated codes, which makes iterative compilation achieve better
solutions Triantafyllis et al. (2003).

Machine Learning models are popular choices to implement iterative compilation. Some researchers
use Genetic Algorithms (GA) to search the optimal sequences Cooper et al. (1999; 2002); Kulkarni
et al. (2004). These methods generate a number of genes (transformation sequences) and compile
the programs accordingly to evaluate the fitness value for each gene and select the best ones. These
methods cannot utilize the information about programs and only regard them as black boxes. Due to
the limited information, these algorithms always require a long time to get a good solution even with
a small set of transformations. And the search has to be re-executed for new programs.

Some researchers propose solutions to utilize the programs’ information during the search. Agakov
et al. (2006) form several classical programs into a dataset and use either the Markov model or the
Independent Identically Distributed (IID) model to learn the distribution of which passes work well
for each program in the dataset. For a new program, the algorithm captures the program’s features
and finds which program p in the dataset has the closest feature. Then, use the distribution learned by
p to sample a sequence as the output. Martins et al. (2016) use a similar method to implement the
search process with GA. Their method uses static features including whether the loops have calls and
the number of instructions in loops. The static features can be captured directly from the programs,
without the need to execute. These features are easily captured but contain limited information.
Cavazos et al. (2007) utilize dynamic features (e.g., cache miss, branch miss) to build the model.
These dynamic features depend on special hardware, which cannot easily be migrated to other
architectures. Some projects Ashouri et al. (2016b;a) use microarchitecture-independent workload
characterization (MICA) Hoste & Eeckhout (2007) to make the trained model portable to different
hardware. Instead of relying on profiling tools to analyze the programs, some researchers use Deep
Neural Networks to directly convert source code into vectors. Cummins et al. (2017) use a Recurrent
Neural Network (RNN) to map source code into a fixed-length vector. This method regards code as
strings, which do not capture the topology information. Neural Code Comprehension Ben-Nun et al.
(2018) proposes a contextual flow graph to capture dataflow information as well. ProGraML Cummins
et al. (2020) further captures the control flow information. The outputs of ProGraML are graphs,
which need to be trained with Graph Neural Networks (GNN). Instead of handling source code,
IR2Vec VenkataKeerthy et al. (2020) maps LLVM IRs to vectors.

The bloom of Machine Learning not only results in more solutions to parse programs but also affects
the search process. Kulkarni & Cavazos (2012) train a Neural Network, which accepts the feature
vectors for the programs and generates the selected transformations. Ashouri et al. (2016a) use
ML models to predict the speed up for a given transformation sequence; Vaswani et al. (2007) use
ML models to predict the performance by using the hardware features as inputs. Both methods can
avoid the workload to execute programs on real hardware. MiCOMP Ashouri et al. (2017) uses the
recommendation system knowledge to explore the search space to avoid the local minima.

As an important area in Machine Learning, Reinforcement Learning also has been used for solving
the phase-ordering problem. Mammadli et al. (2020) utilize Deep Reinforcement Learning to
solve the phase-ordering problem. Their framework supports searching on different granularities:
sequences of transformations (coarse-grained), transformations with default arguments (fine-grained),
and transformations and their arguments (finer-grained), but as reported by the authors, the framework
can hardly find sequences that significantly surpass O3. POSET-RL Jain et al. (2022) uses RL to
search for transformation sequences to reduce the code size. They implement the search process with
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the aggressive pruning; they cluster the transformations in the Oz pipeline into 15 or 34 sequences
and search on them.

Compared with these related works Ashouri et al. (2017); Jain et al. (2022), FlexPO searches on
individual transformations instead of sequences. Thus, FlexPO has a larger search space. Although
the framework in Mammadli et al. (2020) also searches on individual transformations, the framework
finds sequences that surpass the LLVM O3 pipeline only around 3% in a reasonable time. This is due
to it doesn’t apply pruning during searches. Instead, FlexPO applies conservative pruning and finds
sequences 12% better than the LLVM O3 pipeline.

B EVALUATION RESULT

B.1 FLEXPO VS -OZ

The same as the runtime, we use FlexPO to search for sequences that get the smallest code size
(the number of bytes in the text segment). We set episode to 15 and iteration to 150. Other
hyperparameters are the same as the runtime experiments. The result is shown in Figure 10. On
average, FlexPO can generate programs that have 17% smaller text segments compared with Oz.

Figure 10: The code size improvement. The value is computed as Oz code size
F lexPO code size .

B.2 VALIDATION OF THE ACTIVATION PREDICTOR

In this section, FlexPO is used to search optimal sequences with or without the pretrained activation
predictor. The activation predictor is used to avoid exploring transformations that are dormant. Thus,
it is helpful for getting the optimal solutions with fewer searches.

To evaluate the ability of the activation predictor to avoid exploring dormant transformations, we
execute FlexPO 10 episodes, with each episode having only 10 iterations. We visualize the search
process in Figure 11 for three applications (susan, qsort, stringsearch). Without the activation
predictor, the highest improvements are close to 1.0, which means the transformed LLVM IRs have
close performance with the unoptimized LLVM IRs. This indicates that the transformations explored
by FlexPO w/o the predictor do not change the LLVM IR significantly. Instead, with the activation
predictor, FlexPO avoids exploring these dormant transformations. Thus, FlexPO can significantly
improve the runtime by applying only 10 transformations.

B.3 COST FOR SEARCH

Finally, we analyze the relationship between search time and the search result. The search time
depends on the following four factors: the number of episodes E, the number of iterations L, the
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Figure 11: The search process with/without the activation predictor.

time to get reward information R, and the training process T . The amount of time can be roughly
calculated as E ∗ L ∗R+E ∗ T . Since FlexPO uses lightweight DNNs, T is much smaller than R.
Thus, the amount of time can be regarded as E ∗ L ∗R.

For a given program and fixed inputs, the R is a constant. For code size improvement, R is the time
to compile the program, while for runtime improvement, R includes the execute time additionally.

Both E and L are hyperparameters. E is the number of times to search from the unoptimized IRs
(explore), while L is the depth for each search process (exploit). For FlexPO, each iteration selects a
transformation. Thus, L is also the maximum length of the transformation sequence.

First, we set episode E to 10 and search with different L. Then, we set iterations L to 60 and search
with various E. The experiment results are shown in Figure 12(a) and Figure 12(b) respectively. As
we can conclude, generally, FlexPO finds better solutions with larger iterations or episodes. However,
the number of compilations and executions (E ∗ L) increases linearly with the episode or iteration.
Thus, the hyperparameter configuration is a knob for users to decide the trade-off between search
time and output quality.

In our evaluation, we find E = 20 and L = 80 are sufficient to find solutions that outperform O3/Oz
for most applications. The evaluation in Section 7.3 uses this configuration and can find sequences
that surpass O3/Oz. The dijkstra application has the longest execution time (the largest R), thus, it
also has the longest search time. With E = 20 and L = 80, the search takes around 66 minutes.
However, as discussed in Section 6, some IRs are repeatedly shown up during the search, and FlexPO
only executes them the first time it shows up. Thus, in real situations, the search time is much shorter,
around 15 minutes in our evaluation.

(a) Exploit. (b) Explore.

Figure 12: In general, FlexPO finds better solutions with larger episodes (explore) or iterations
(exploit). However, the cost of the search increases linearly with episodes or iterations.
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