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Abstract
Downstream applications often require text001
classification models to be accurate and robust.002
While the accuracy of the state-of-the-art Lan-003
guage Models (LMs) approximates human per-004
formance, they often exhibit a drop in perfor-005
mance on noisy data found in the real world.006
This lack of robustness can be concerning, as007
even small perturbations in the text, irrelevant008
to the target task, can cause classifiers to in-009
correctly change their predictions. A poten-010
tial solution can be the family of Prototype-011
Based Networks (PBNs) that classifies exam-012
ples based on their similarity to prototypical013
examples of a class (prototypes) and has been014
shown to be robust to noise for computer vi-015
sion tasks. In this paper, we study whether016
the robustness properties of PBNs transfer to017
text classification tasks under both targeted and018
static adversarial attack settings. Our results019
show that PBNs, as a mere architectural varia-020
tion of vanilla LMs, offer more robustness com-021
pared to vanilla LMs under both targeted and022
static settings. We showcase how PBNs’ inter-023
pretability can help us to understand PBNs’ ro-024
bustness properties. Finally, our ablation stud-025
ies reveal the sensitivity of PBNs’ robustness026
to how strictly clustering is done in the training027
phase, as tighter clustering results in less robust028
PBNs.029

1 Introduction030

Language models (LMs) are widely used in vari-031

ous NLP tasks and exhibit exceptional performance032

(Chowdhery et al., 2022; Zoph et al., 2022). In light033

of the need for real-world applications of these034

models, the requirements for robustness and inter-035

pretability have become urgent for both Large Lan-036

guage Models (LLMs) and fine-tuned LMs. More037

fundamentally, robustness and interpretability are038

essential components of developing trustworthy039

technology that can be adopted by experts in any040

domain (Wagstaff, 2012; Slack et al., 2022). How-041

ever, LMs have limited interpretability by design042

(Zhao et al., 2023; Gholizadeh and Zhou, 2021), 043

which cannot be fully mitigated by posthoc explain- 044

ability techniques (Zini and Awad, 2022). More- 045

over, LMs lack robustness when exposed to text 046

perturbations, noisy data, or distribution shifts (Jin 047

et al., 2020; Moradi and Samwald, 2021). Report- 048

edly, even LLMs lack robustness when faced with 049

out-of-distribution data and noisy inputs (Wang 050

et al., 2023), a finding that is supported by the em- 051

pirical findings of this paper, too. 052

On this ground, NLP research has increasingly 053

focused on benchmarks, methods, and studies that 054

emphasize robustness and interpretability (e.g., 055

Zhou et al., 2020; Jang et al., 2022; Liu et al., 056

2021). This has also been accompanied by the 057

surge of focus on models that are inherently and 058

architecturally interpretable and robust (e.g., Koh 059

et al., 2020; Papernot and McDaniel, 2018; Keane 060

and Kenny, 2019). An example of such models is 061

the family of Prototype-Based Networks (PBNs) 062

that is designed for robustness and interpretabil- 063

ity (Li et al., 2018b). PBNs are based on the the- 064

ory of categorization in cognitive science (Rosch, 065

1973), where it is governed by the graded degree 066

of possessing prototypical features of different cat- 067

egories, with some members being more central 068

(prototypical) than others. Consider, for example, 069

classifying different types of birds. Then, pelican 070

classification can be done through their prototyp- 071

ical tall necks and similarity to a prototypical pel- 072

ican (Nauta et al., 2021a). Computationally, this 073

idea is implemented by finding prototypical points 074

or examples in the shared embedding space of data 075

points and using the distance between prototypes 076

and data points to accomplish the classification 077

task. Aligned with how humans approach classifi- 078

cation (Linzen, 2020), classifications in PBNs are 079

expected to have human-like robustness because 080

they classify through distances to prototypical ex- 081

amples found in the data. Leveraging distance 082

between points helps to quantify prototypicality, 083
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Figure 1: Classification by a PBN. The model computes distances between the new point and prototypes, d(ej , Pk),
and distances within prototypes, d(Pk, Pl), for both inference and training. During training, the model minimizes the
loss term, L, consisting of Lce, λcLc, λiLi, λsLs, controlling the importance of accuracy, clustering, interpretability,
and separation of prototypes, based on all the computed distances; during inference, distances between the new
point and prototypes are used for classification by a fully connected layer.

which then facilitates identifying noisy or out-of-084

distribution samples (Yang et al., 2018).085

PBNs have been popular in Computer Vision086

(CV) tasks, including image classification (An-087

gelov and Soares, 2020) and novel class detec-088

tion (Hase et al., 2019). Inspired by PBNs in CV,089

NLP researchers have also developed PBN mod-090

els for text classification, in particular, for senti-091

ment classification (Pluciński et al., 2021; Ming092

et al., 2019; Hong et al., 2021), few-shot relation093

extraction (Han et al., 2021; Meng et al., 2023),094

and propaganda detection (Das et al., 2022). Yet,095

while competitive performance and interpretability096

of PBNs have been studied in both NLP (Das et al.,097

2022; Hase and Bansal, 2020) and CV (Gu and098

Ding, 2019; van Aken et al., 2022), their robust-099

ness advantages over vanilla models have only been100

investigated in CV (Yang et al., 2018; Saralajew101

et al., 2020; Vorácek and Hein, 2022).102

In this study, we investigate whether the robust-103

ness properties of PBNs transfer to NLP classifica-104

tion tasks. In particular, our contributions are: (1)105

We adopt a modular and comprehensive approach106

to evaluate PBNs’ robustness properties against107

various well-known adversarial attacks under both108

targeted and static adversarial settings; (2) We con-109

duct a comprehensive analysis of the sensitivity of110

PBNs’ robustness w.r.t. different hyperparameters.111

Our experiments show that PBNs’ robustness112

transfers to realistic perturbations in text classifica-113

tion tasks under both targeted and static adversarial114

settings and can, thus, enhance the text classifica-115

tion robustness of LMs. We note that the robustness116

boost that adversarial augmented training brings117

to LMs with access to additional pieces of rele-118

vant data, is higher than the boost caused by PBNs’119

architecture. Nevertheless, considering that the120

robustness boost in PBNs is only caused by their 121

architecture without any additional resources (data 122

or parameters), and this architecture is interpretable 123

by design, the merits of such models can contribute 124

to the field. Finally, benefiting from inherent inter- 125

pretability, we showcase how PBN interpretability 126

properties help to explain PBNs’ robust behavior. 127

2 Prototype-Based Networks 128

PBNs classify data points based on their similarity 129

to a set of prototypes learned during training. These 130

prototypes summarize prominent semantic patterns 131

of the dataset through two mechanisms: (1) proto- 132

types are defined in the same embedding space as 133

input examples, which makes them interpretable 134

by leveraging input examples in their proximity; 135

and (2) prototypes are designed to cluster semanti- 136

cally similar training examples, which makes them 137

representative of the prominent patterns embed- 138

ded in the data and input examples. The PBN’s 139

decisions, based on quantifiable similarity to proto- 140

types, are robust as noise and perturbations are bet- 141

ter reflected in the computed similarity to familiar 142

prototypical patterns (Hong et al., 2020). Addition- 143

ally, prototypes can provide insight during infer- 144

ence by helping users explain the model’s behavior 145

on input examples through the prototypes utilized 146

for the model’s prediction (Das et al., 2022). 147

Inference. Classification in PBNs is done via 148

a fully connected layer applied on the measured 149

distances between embedded data points and pro- 150

totypes. As shown in Figure 1, given a set of 151

data points xj , j ∈ {1, . . . , N} with labels yj ∈ 152

{1, . . . , C}, and Q prototypes, PBNs first encode 153

examples with a backbone E, resulting in the em- 154

bedding ej = E(xj). Next, PBNs compute the 155
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distances between prototypes and ej using the func-156

tion d. These distances get fed into a fully con-157

nected layer to compute class-wise logits, incorpo-158

rating the similarities to each prototype. Applying159

a softmax on top, the final outputs are ŷc(xj): prob-160

ability that xj belongs to class c ∈ {1, . . . , C}.161

Training. The model is trained using objectives162

that simultaneously tweak the backbone param-163

eters and the (randomly initialized) prototypes,164

thus promoting high performance and meaning-165

ful prototypes. To compute a total loss term166

L, PBNs use the computed distances within pro-167

totypes d(Pk, Pl)k ̸=l, distances between all Q168

prototypes and N training examples given by169

d(ej , Pk)j∈{1,...,N};k∈{1,...,Q}, and the computed170

probabilities ŷc. The prototypes and the weights in171

the backbone are adjusted according to L. The to-172

tal loss L consists of different inner loss terms that173

ensure high accuracy, clustering, interpretability,174

and low redundancy among prototypes; i. e., the175

classification loss Lce, the clustering loss Lc (Li176

et al., 2018b), the interpretability loss Li (Li et al.,177

2018b), and separation loss Ls (Hong et al., 2020):178

L = Lce + λcLc + λiLi − λsLs, (1)179

where λc, λi, λs ≥ 0 are regularization factors to180

adjust the contribution of the auxiliary loss terms.181

Classification loss Lce is defined as the cross-182

entropy loss between predicted and true labels:183

Lce = −
N∑
j=1

log(ŷyj (xj)). (2)184

Clustering loss Lc ensures that the training ex-185

amples close to each prototype form a cluster of186

similar examples. In practice, Lc keeps all the187

training examples as close as possible to at least188

one prototype and minimizes the distance between189

training examples and their closest prototypes:190

Lc =
1

N

N∑
j=1

min
k∈{1,...,Q}

d(Pk, ej). (3)191

Interpretability loss Li ensures that the proto-192

types are interpretable by minimizing the distance193

to their closest training sample:194

Li =
1

Q

Q∑
k=1

min
j∈{1,...,N}

d(Pk, ej). (4)195

Keeping the prototypes close to training samples196

allows PBNs to represent a prototype by its closest197

training samples that are domain-independent and198

enable analysis by task experts.199

Original text Perturbed text

A gentle breeze rustled the leaves. A gèntle wind rustled the lEaves.

rescue Engineer Company Res©ue operation Company

embarrassingly foolish embarrassing1y fo0lish

Table 1: Examples of adversarial perturbations, with the
perturbed tokens highlighted.

Separation loss Ls maximizes the inter- 200

prototype distance to reduce the probability of re- 201

dundant prototypes: 202

Ls =
2

Q(Q− 1)

∑
k,l∈{1,...,Q};k ̸=l;

d(Pk, Pl). (5) 203

3 Robustness Evaluation 204

We assess PBNs’ robustness against adversarial per- 205

turbations of original input text that are intended 206

to preserve the text’s original meaning. The per- 207

turbations change the classification of the target 208

model upon confronting these perturbed examples 209

from the correct behavior to an incorrect one in an 210

effective and efficient way (Dalvi et al., 2004; Ku- 211

rakin et al., 2017a,b; Li et al., 2023). Automatic ap- 212

proaches of finding these perturbations vary (Zhang 213

et al., 2020): perturbations can be focused on dif- 214

ferent granularities, i.e., character-level, word- 215

level, or sentence-level; their generation can be 216

done in different ways, e.g., replacing, inserting, 217

deleting, swapping tokens; they can have different 218

searching strategies for their manipulations, such 219

as context-aware or isolated approaches; and also 220

various salient token identification strategies to 221

maximize their adversarial effect. 222

Orthogonally, these adversarial perturbations are 223

divided into targeted and static. In the targeted set- 224

ting, the attacker has access to the target model and 225

can attack it directly (Si et al., 2021). However, in 226

the static setting, the attacker does not have access 227

to the target model. Hence, adversarial perturba- 228

tions are gathered while attacking external models 229

that the attacker has access to, and the gathered suc- 230

cessful perturbations would be used to assess the 231

robustness of the target model (Wang et al., 2022a). 232

With numerous adversarial perturbation strate- 233

gies in the literature (Zhang et al., 2020; Wang et al., 234

2022c), each with unique advantages (e.g., effec- 235

tiveness vs. efficiency), we use a wide range of 236

existing perturbation strategies in this study. These 237

cover the aforementioned granularities, genera- 238

tion strategies, searching strategies, and salient 239

token identification strategies, under both tar- 240
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geted, and static settings. See examples of adver-241

sarial perturbations covered in our study in Table 1.242

4 Experimental Setup243

4.1 Datasets244

PBNs classify instances based on their similarity to245

prototypes learned during training that summarize246

prominent semantic patterns in a dataset. Thus,247

with more classes, we might need more prototypes248

to govern the more complex system between in-249

stances and prototypes (Yang et al., 2018). To study250

the interplay between the number of classes and251

robustness, we employ three datasets: (1) IMDB252

reviews (Maas et al., 2011): a binary sentiment253

classification dataset; (2) AG_NEWS (Gulli): a col-254

lection of news articles that can be associated with255

four categories; (3) DBPedia:1 a dataset with taxo-256

nomic, hierarchical categories for Wikipedia arti-257

cles (Lehmann et al., 2015), with nine classes. We258

use these three datasets to study the robustness of259

PBNs under both targeted and static adversarial set-260

tings. As an additional source of static adversarial261

perturbations, we adopt the SST-2 binary classifi-262

cation split from the existing Adversarial GLUE263

(AdvGLUE) dataset (Wang et al., 2022a), consist-264

ing of perturbed examples of different granularities,265

filtered both automatically and by human evalua-266

tion for more effectiveness. For statistics of the267

datasets and their perturbations, see Appendix A.268

4.2 Perturbations269

Attacking strategies. We selected five well-270

established adversarial attack methods: BAE (Garg271

and Ramakrishnan, 2020), TextFooler (Jin et al.,272

2020), TextBugger (Li et al., 2018a), DeepWord-273

Bug (Gao et al., 2018), and PWWS (Ren et al.,274

2019).2 As mentioned in Section 3, these at-275

tacks cover a wide range of granularities (e.g.,276

character-based in DeepWordBug and word-based277

in PWWS), generation strategies (e.g., word278

substitution in PWWS and TextFooler and dele-279

tion in TextBugger), searching strategies (e.g.,280

context-aware in BAE and isolated synonym-based281

in TextFooler), and salient token identification282

strategies (e.g., finding the important sentences283

first and then words in TextBugger and finding the284

important words to change in BAE).285

1https://bit.ly/3RgX41H
2We also employed paraphrased-based perturbations (Lei

et al., 2019), generated by GPT3.5 (OpenAI, 2022). However,
both our baselines and PBNs were robust to these perturba-
tions, and we include them in the Appendix in Table 6.

Targeted perturbations. In this setting, the ad- 286

versarial attacks are directly conducted against 287

PBNs and vanilla LMs trained on original datasets. 288

For each attack strategy, we aim for 800 successful 289

perturbations and report the robustness of PBNs 290

against adversarial attacks by Attack Success Rate 291

(ASR; Wu et al., 2021) and Average Percentage of 292

Words Perturbed (APWP; Yoo et al., 2020) to reach 293

the observed ASR. Successful perturbations are 294

those that change the prediction of a target model 295

already fine-tuned on that dataset from the correct 296

prediction to the wrong prediction. 297

Static perturbations. In this setting, the adver- 298

sarial attacks are conducted on external models: 299

BERT (Devlin et al., 2018), RoBERTa (Liu et al., 300

2019), and DistilBERT (Sanh et al., 2019), which 301

are trained on the original datasets, and a compila- 302

tion of the successful perturbations on those models 303

is used to assess the robustness of PBNs against the 304

studied adversarial attacks by their accuracy on the 305

perturbations, similar to the study by Wang et al. 306

(2022a). To obtain the perturbations, each model 307

is fine-tuned on each dataset, and 800 successful 308

perturbations for each attack strategy are obtained. 309

We focus on examples whose perturbations are pre- 310

dicted incorrectly by all three models to maximize 311

the generalizability of this static set of perturbations 312

to a wider range of unseen target models. In princi- 313

ple, the perturbations for each model are different, 314

yielding three variations per original example for 315

a dataset-perturbation pair. For instance, focusing 316

on DBPedia and BAE attack strategy, after 800 317

successful perturbations for each of the three target 318

models, the perturbations of 347 original examples 319

could change all models’ predictions, resulting in a 320

total of 1401 (3× 347) perturbations compiled for 321

BAE attack strategy and DBPedia dataset. 322

4.3 PBNs’ Hyperparameters 323

Backbone (E). Prototype alignment and training 324

are highly dependent on the quality of the latent 325

space created by the backbone encoder E, which 326

in turn affects the performance, robustness, and 327

interpretability of PBNs. We consolidate previous 328

methods for text classification using PBNs (Plu- 329

ciński et al., 2021; Das et al., 2022; Ming et al., 330

2019; Hong et al., 2020) and consider three back- 331

bone architectures: BERT (Devlin et al., 2018), 332

BART encoder (Lewis et al., 2019), and Electra 333

(Clark et al., 2020). Based on our empirical evi- 334

dence, fine-tuning all the layers of the backbone 335
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was causing the PBNs’ training not to converge.336

Hence, we freeze all the layers of the backbones337

except for the last layer when training.338

Distance function (d). The pairwise distance cal-339

culation quantifies how closely the prototypes are340

aligned with the training examples (Figure 1). In341

recent work, Euclidean distance has been shown342

to be better than Cosine distance for similarity cal-343

culation (van Aken et al., 2022; Snell et al., 2017)344

as it helps to align prototypes closer to the training345

examples in the encoder’s latent space. However,346

with some utilizing Cosine distance (Chen et al.,347

2019) while others prioritizing Euclidean distance348

(Mettes et al., 2019), and the two having incompa-349

rable experimental setups, conclusive arguments350

about the superiority of one over the other cannot351

be justified, and the choice of distance function352

is usually treated as a hyperparameter. Accord-353

ingly, we hypothesize that the impact of d will be354

significant in our study of robustness, and hence,355

we consider both Cosine and Euclidean distance356

functions when training PBNs.357

Number of prototypes (Q). Number of proto-358

types in PBNs is a key factor for mapping difficult359

data distributions (Yang et al., 2018; Sourati et al.,360

2023). Hence, to cover a wide range, we consider361

five values for Q = {2, 4, 8, 16, 64}.362

Objective functions (L). Given the partly com-363

plementary goals of loss terms, we investigate the364

effect of interpretability, clustering, and separation365

loss on PBNs’ robustness, keeping the accuracy366

constraint (Lce) intact. To do so, we consider three367

values, {0, 0.9, 10} for λi, λc, and λs. 0 value rep-368

resents the condition where the corresponding loss369

function is not being utilized in the training process.370

0.9 value was empirically found to offer good accu-371

racy, clustering, and interpretability, across datasets372

and was also motivated by prior works (Das et al.,373

2022). 10 value was chosen as an upper bound374

dominating the corresponding loss objective (e.g.,375

interpretability) in the training process.376

4.4 Baselines377

Since PBNs are architectural enhancements of378

vanilla LMs using learned prototypes for classi-379

fication instead of a traditional softmax layer used380

in vanilla LMs, vanilla LMs employed as PBNs’381

backbones serve as a baseline for comparing the382

robustness of PBNs. We also employ adversarial383

augmented training (Goyal et al., 2023) on top384

of the vanilla LMs as another baseline. Note that385

the same layers frozen for PBNs’ training are also 386

frozen for the baselines. As we need additional data 387

for such extra training, we use this baseline under 388

static perturbations, where the set of perturbations 389

has already been compiled beforehand. Finally, al- 390

though we note that LLMs are more appropriate 391

choices for generic chat and text generation due 392

to their decoder-only architecture, and fine-tuned 393

LMs are still superior to LLMs when it comes to 394

task-oriented performance (Chang et al., 2024), we 395

compare PBNs with two LLMs, namely, GPT4o 396

(AI, 2024) and Llama3 (AI@Meta, 2024). 397

5 Results 398

5.1 Robustness of PBNs 399

The robustness report of PBNs under both targeted 400

adversarial attacks and static attacks under different 401

experimental setups (i.e., datasets, backbones, and 402

attack strategies), using the best hyperparameters 403

is presented in Table 2. 3 4 Best hyperparameters 404

were chosen among the permutation of all hyper- 405

parameters presented in Section 4.3 to yield the 406

highest robustness (lowest ASR or highest accu- 407

racy). Under the targeted adversarial attack setting, 408

our results showed that PBNs are more robust than 409

vanilla LMs (having lower ASR) regardless of the 410

utilized backbone, dataset, or attacking strategy. 411

We also saw similar trends analyzing the robust- 412

ness of PBNs compared to vanilla LMs, averaging 413

over all PBN hyperparameters (find the details in 414

Table 8). Focusing on the APWP metric, we ob- 415

served that in 71.0% of the conditions, the PBNs’ 416

robustness was greater than vanilla LMs (having 417

higher APWP), and this superiority dropped to 418

31.0% of the conditions when averaging over all 419

the hyperparameters (find the details in Table 7), 420

which suggested that PBNs’ robustness is sensitive 421

to hyperparameters involved in training. 422

We observed similar trends under static adversar- 423

ial attacks, where the PBNs’ robustness was higher 424

than vanilla LMs (having higher accuracy under 425

attack) in the majority of the conditions (93.7% 426

of all variations of experimental setups and hyper- 427

parameters). We observed that in every experi- 428

mental condition (dataset and attack strategy), a 429

PBN exists with a robustness outperforming LLMs 430

like GPT4o (AI, 2024) and Llama3 (AI@Meta, 431

3The semantic similarity between original and per-
turbed texts using OpenAI text-embedding-ada-002 across
all datasets and attack types was 0.97 (SD = 0.01).

4Our results showed that adversarial perturbations from
TextFooler and PWWS were more effective than others.
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Targeted Attacks; Attack Success Rate (ASR %) reported
AG_News DBPedia IMDB

BAE DWB PWWS TB TF BAE DWB PWWS TB TF BAE DWB PWWS TB TF
BART 14.8 53.2 53.6 31.8 76.5 18.9 28.3 43.1 21.1 71.9 74.1 74.7 99.3 78.5 100.0
+ PBN 11.1 32.3 41.3 23.1 62.2 15.2 14.7 28.7 12.6 45.5 36.1 41.0 75.9 41.3 73.1
BERT 17.0 78.0 69.8 45.7 88.8 13.9 24.8 31.6 22.0 61.3 82.5 79.7 99.9 83.9 99.9

+ PBN 7.7 42.6 47.0 30.4 70.5 9.8 17.3 21.6 13.0 41.0 42.8 41.0 79.7 57.7 79.8
ELEC. 24.8 89.5 69.1 87.8 87.9 14.5 42.8 45.6 42.3 75.3 52.5 49.2 95.3 67.8 99.3
+ PBN 14.0 34.9 42.9 51.8 70.2 7.8 11.5 17.8 19.1 35.6 28.9 27.4 66.6 36.8 78.0

Static Attacks; Accuracy (%) reported
AG_News DBPedia IMDB SST2

BAE DWB PWWS TB TF BAE DWB PWWS TB TF BAE DWB PWWS TB TF GLUE
BART 53.2 76.7 83.2 77.5 85.8 55.5 68.6 58.4 72.5 71.3 74.1 80.5 83.6 85.8 87.6 29.8
+ PBN 57.6 80.6 84.8 79.2 88.8 65.0 71.6 65.7 78.4 74.8 80.4 81.3 86.3 89.3 90.4 50.4
+ Aug. 71.7 78.4 85.5 77.6 90.1 84.0 79.6 89.7 88.8 94.0 85.7 86.7 92.9 89.9 96.5 -
BERT 47.8 64.0 75.9 69.4 80.7 62.3 61.4 75.4 78.4 82.0 75.1 77.1 85.0 83.4 85.9 42.0

+ PBN 52.9 70.4 78.5 73.8 84.3 66.9 66.6 80.3 82.0 85.8 77.6 79.1 85.3 85.0 86.5 51.1
+ Aug. 58.3 71.6 78.3 71.2 85.4 75.5 70.9 84.1 90.5 91.0 83.2 77.6 91.7 90.8 89.2 -
ELEC. 50.4 65.0 73.5 63.9 77.8 79.7 66.9 80.9 81.4 84.4 89.7 90.3 94.6 94.5 95.6 44.3
+ PBN 64.6 74.1 85.1 77.2 89.0 78.7 69.8 79.3 82.5 85.8 90.0 90.8 94.6 95.5 96.3 65.6
+ Aug. 55.0 59.5 71.7 61.6 79.5 86.2 73.8 88.1 84.5 92.8 89.4 93.7 95.3 94.9 95.8 -
GPT4o 57.1 73.3 73.0 76.5 79.9 66.0 63.4 61.0 69.0 44.0 87.0 89.5 91.2 93.7 94.2 59.8
Llama3 57.6 56.4 55.0 65.9 62.8 44.0 53.7 37.8 45.0 44.4 82.0 86.0 93.2 89.0 91.5 56.0

Table 2: Comparison of PBNs and vanilla LMs (+ vanilla LMs with adversarial augmented training under static
attack setting) under both targeted and static adversarial attack perturbations, using the best hyperparameters for
PBNs, on IMBD, AG_News, DBPedia (+ SST-2 from AdvGLUE under static attack setting) datasets, under BAE,
DeepWordBug (DWB), PWWS, TextBugger (TB), TextFooler (TF). The highest accuracy and lowest ASR showing
the superior model for each architecture is boldfaced, and the second best model is underlined for static attacks.

2024) that have orders of magnitude more param-432

eters and are not interpretable by design as op-433

posed to PBNs. Vanilla LMs with adversarial aug-434

mented training demonstrated greater robustness435

than PBNs in 71.2% of the conditions. This high-436

lighted the more effective role of additional data in437

adversarial augmented training compared to PBNs’438

robust architecture and makes PBNs a preferable439

choice when efficiency is prioritized (Goodfellow440

et al., 2014). Analyzing PBNs’ robustness un-441

der the static adversarial setting averaging over all442

PBNs’ hyperparameters, our results showed that in443

only 31.2% of the conditions, PBNs have greater444

robustness compared to vanilla LMs (find the de-445

tails in Table 8), which similar to observations on446

APWP, suggested that PBNs’ robustness is sensi-447

tive to hyperparameters involved in the training.448

To sum up, we observed that PBNs consistently449

and over different metrics were more robust com-450

pared to vanilla LMs and LLMs, using the best hy-451

perparameters without sacrificing performance on452

the original unperturbed samples (find performance453

on original datasets in Table 6). We believe that the454

observed robust behavior is due to the design of the455

PBN architecture. Standard neural networks for456

text classification distinguish classes by drawing457

hyperplanes between samples of different classes458

that are prone to noise (Yang et al., 2018), espe-459

Figure 2: Attack Success Rate (ASR %) of PBNs with
different λc values adjusting the importance of cluster-
ing in the trained PBNs, with other hyperparameters set
to their best values, and averaged across other possible
variables (e.g., backbone and attack type). The dotted
line represents the ASR for the non-PBN model.

cially when dealing with several classes. Instead, 460

PBNs are inherently more robust since they per- 461

form classification based on the similarity of data 462

points to prototypes, acting as class centroids. Fi- 463

nally, we observed that the robustness superiority 464

of PBNs compared to vanilla LMs dropped when 465

averaging over all the possible hyperparameters, 466

which is what we investigate further in Section 5.2. 467

5.2 Sensitivity to Hyperparameters 468

We studied the sensitivity of PBNs’ robustness to 469

the hyperparameters involved in training, covering 470
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Figure 3: Attack Success Rate (ASR %) of PBNs with
different numbers of prototypes, with other hyperpa-
rameters set to their best values, and averaged across
other possible variables (e.g., backbone and attack type).
Dotted line represents the ASR for the non-PBN model.

values discussed in Section 4.3. Focusing on each471

hyperparameter, the value for the other ones was se-472

lected to yield the best performance so that, overall,473

we could better depict the sensitivity and limiting474

effect of the hyperparameter of interest. We did475

not observe any sensitivity from PBNs with respect476

to the backbone, interpretability term (λi; see Sec-477

tion C.5), separation term (λs; see Section C.7),478

and the distance function (d; see Section C.4).479

However, as presented in Figure 2, we observed480

that higher values of λc, promoting tighter cluster-481

ing of input examples around prototypes, hinder482

PBNs’ robustness. Clustering loss is a regulariza-483

tion term that encourages samples to be close to484

prototypes in the embedding space, further enhanc-485

ing interpretability but potentially reducing accu-486

racy by narrowing the diversity in embedding space,487

which is a common phenomenon in loss terms of488

competing goals. The mean and standard deviation489

over (transformed) distances between prototypes490

and samples can be used to describe the spread of491

embedded data points around prototypes. These492

values are (−0.24±1.7)×10−7 with λc = 0.9, and493

(−0.18±1.5)× 10−6 with λc = 10, showing less494

diverse prototypes indicated by smaller measured495

distances caused by stronger clustering.496

Additionally, as depicted in Figure 3, we ob-497

served poor robustness from PBNs when the num-498

ber of prototypes is as low as two, which is intu-499

itive as a low number of prototypes also means a500

lower number of semantic patterns learned, which501

constraints the PBNs’ abilities to distinguish be-502

tween different classes. Noting that more proto-503

types add to the complexity and size of the network504

as a whole, the observed stable trend of the robust-505

ness with the higher number of prototypes (> 2)506

Proto. Representative Training Examples Label
P0 Handly’s Lessee v. Anthony (1820): De-

termined Indiana-Kentucky boundary.
UnitWork

Rasul v. Bush (2004): Decided jurisdiction
over Guantanamo detainees.

UnitWork

P1 Marine Corps Air Station Futenma: U.S.
Marine Corps base, Ginowan, Okinawa; re-
gional military hub.

Place

Özdere: Turkish coastal resort town in
İzmir Province, popular among tourists.

Place

P2 Yevgeni Viktorovich Balyaikin: Russian
footballer for FC Tom Tomsk.

Agent

Gigi Morasco: Fictional character on
ABC’s One Life to Live.

Agent

Table 3: Examples of prototypes, their closest training
examples, alongside their label derived from their clos-
est training examples, extracted from a PBN with 16
prototypes and a BART backbone on DBPedia. Note
that the presented training examples are the summariza-
tion of their longer version for easier interpretation.

suggests that as long as the number of prototypes is 507

not too low, PBNs with lower number of prototypes 508

can be preferred. This corroborates with the studies 509

performed by Yang et al. (2018). Finally, note that 510

the same analysis using other metrics (e.g., APWP) 511

and under static adversarial setting (using accuracy 512

as the studied metric) depicted the same trend and 513

can be found in Section C.6 and Section C.8. 514

5.3 PBNs’ Interpretability w.r.t. Robustness 515

PBNs are interpretable by design, and we can un- 516

derstand their behavior through the distance of 517

input examples to prototypes and the importance 518

of these distances, extracted by the last fully con- 519

nected layer of PBNs transforming vector of dis- 520

tances to log probabilities for classes. Examples 521

of learned prototypes that can be represented by 522

their closest training input examples are shown in 523

Table 3. These input examples help the user iden- 524

tify the semantic features that the prototypes are 525

associated with, which by our observations in our 526

case, were mostly driven by the class label of the 527

closest training examples. 528

We can also benefit from interpretable properties 529

of PBNs to better understand their robustness prop- 530

erties, regardless of the success of perturbations. 531

Table 4 illustrates predictions of a PBN on three 532

original and perturbed examples from the DBPedia 533

dataset, alongside the top-2 prototypes that were 534

utilized by the PBN’s fully connected layer for pre- 535

diction and prototypes’ associated label (by their 536

closest training examples). In the first two exam- 537

ples, PBN correctly classifies both the original and 538

perturbed examples, and from the top-2 prototypes, 539

we observe that this is due to unchanged prototypes 540
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Text Activ. Proto.s Proto.s Labels Pred. Label
Roman Catholic Diocese of Barra: Diocese in Barra, Feira de Santana province, Brazil. P1, P14 Place, Place Place Place
Roman Catholic Bishop of Barra: Episcopal seat in Barra, Feira de Santana province, Brazil. P1, P14 Place, Place Place Place
Inta Ezergailis: Latvian American professor emerita at Cornell University. P2, P8 Agent, Agent Agent Agent
Inta Ezergailis: Latvian American poet and scholar at Cornell University. P2, P7 Agent, Work Agent Agent
Saint Eigrad: 6th-century Precongregational North Wales saint and Patron Saint of Llaneigrad. P2, P8 Agent, Agent Agent Agent
St Eigrad: 6th-century Precongregational street of North Wales and Patron Saint of Llaneigrad. P1, P14 Place, Place Place Agent

Table 4: Examples of the original test (top) and adversarially perturbed examples (bottom) of DBPedia using
TextFooler, classified by a PBN, alongside the top-2 activated prototypes by the PBN’s fully connected layer and
their associated labels. Incorrectly predicted examples are in italic.

utilized in prediction. However, in the last exam-541

ple, the model incorrectly classifies an example542

that is associated with an Agent as a Place. Interest-543

ingly, this incorrect behavior can be explained by544

the change in the top-2 activated prototypes, where545

they are changing from Agent-associated to Place-546

associated prototypes because of the misspelling547

of "saint" with "street." Thus, the use of prototypes548

not only enhances our understanding of the model’s549

decision-making process but also unveils how mi-550

nor perturbations influence the model’s predictions.551

6 Related Work552

Robustness evaluation. Robustness in NLP is553

defined as models’ ability to perform well un-554

der noisy (Ebrahimi et al., 2018) and out-of-555

distribution data (Hendrycks et al., 2020). With556

the wide adoption of NLP models in different do-557

mains and their near-human performance on vari-558

ous benchmarks (Wang et al., 2019; Sarlin et al.,559

2020), concerns have shifted towards models’ per-560

formance facing noisy data (Wang et al., 2022a,b).561

Studies have designed novel and effective adver-562

sarial attacks (Jin et al., 2020; Zhang et al., 2020),563

defense mechanisms (Goyal et al., 2023; Liu et al.,564

2020), and evaluations to better understand the ro-565

bustness properties of NLP models (Wang et al.,566

2022a; Morris et al., 2020a). These evaluations567

are also being extended to LLMs, as they similarly568

lack robustness (Wang et al., 2023; Shi et al., 2023).569

While prior work has studied LMs’ robustness, to570

our knowledge, PBNs’ robustness properties have571

not been explored yet. Our study bridges this gap.572

Prototype-based networks. PBNs are widely573

used in CV (Chen et al., 2019; Hase et al., 2019;574

Kim et al., 2021; Nauta et al., 2021b; Pahde et al.,575

2021) because of their interpretability and robust-576

ness properties (Soares et al., 2022; Yang et al.,577

2018). While limited work has been done in the578

NLP domain, PBNs have recently found applica-579

tion in text classification tasks such as propaganda580

detection (Das et al., 2022), logical fallacy detec-581

tion (Sourati et al., 2023), sentiment analysis (Plu- 582

ciński et al., 2021), and few-shot relation extrac- 583

tion (Meng et al., 2023). ProseNet (Ming et al., 584

2019), a prototype-based text classifier, uses sev- 585

eral criteria for constructing prototypes (He et al., 586

2020), and a special optimization procedure for bet- 587

ter interpretability. ProtoryNet (Hong et al., 2020) 588

leverages RNN-extracted prototype trajectories and 589

deploys a pruning procedure for prototypes, and 590

ProtoTex (Das et al., 2022) uses negative proto- 591

types for handling the absence of features for clas- 592

sification. While PBNs are expected to be robust to 593

perturbations, this property has not been systemati- 594

cally studied in NLP. Our paper consolidates PBN 595

components used in prior studies and studies their 596

robustness in different adversarial settings. 597

7 Conclusions 598

Inspired by the lack of robustness to noisy data 599

of state-of-the-art LMs and LLMs, we study the 600

robustness of PBNs, as an architecturally robust 601

variation of LMs, against both targeted and static 602

adversarial attacks. We find that PBNs are more 603

robust than vanilla LMs and even LLMs such as 604

Llama3, both under targeted and static adversarial 605

attack settings. Our results suggest that this robust- 606

ness can be sensitive to hyperparameters involved 607

in PBNs’ training. More particularly, we note that 608

a low number of prototypes and tight clustering 609

conditions limit the robustness capacities of PBNs. 610

Additionally, benefiting from the inherently inter- 611

pretable architecture of PBNs, we showcase how 612

learned prototypes can be utilized for robustness 613

and also for gaining insights about their behavior 614

facing adversarial perturbations, even when PBNs 615

are wrong. In summary, our work provides en- 616

couraging results for the potential of PBNs to en- 617

hance the robustness of LMs across a variety of 618

text classification tasks and quantifies the impact 619

of architectural components on PBN robustness. 620
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Limitations621

Although we cover a wide range of adversarial per-622

turbations and strategies for their generation, we623

acknowledge that more complicated perturbations624

can also be created that are more effective and625

help the community have a more complete under-626

standing of the models’ robustness. Hence, we do627

not comment on the generalizability of our study628

to all possible textual perturbations besides our629

evaluation on AdvGLUE. Moreover, although it is630

customary in the field to utilize prototype-based631

networks for classification tasks, their application632

and robustness on other tasks remain to be explored.633

Furthermore, while we attempt to use a wide vari-634

ety of backbones for our study, we do not ascertain635

similar patterns for all possible PBN backbones636

and leave this study for future work. Finally, we637

encourage more exploration of the interpretability638

of these models under different attacks to better639

understand the interpretability benefits of models640

when analyzing robustness.641

Ethical Considerations642

Although the datasets and domains we focus on643

do not pose any societal harm, the potential harm644

that is associated with using the publicly available645

tools we used in this study to manipulate models in646

other critical domains should be considered. Issues647

surrounding anonymization and offensive content648

hold importance in data-driven studies, particularly649

in fields like natural language processing. Since we650

utilize datasets like IMDB, AG_News, DBPedia,651

and AdvGLUE that are already content-moderated,652

there is no need for anonymization of data before653

testing for robustness in this study.654

References655

Open AI. 2024. Hello GPT-4o. https://openai.com/656
index/hello-gpt-4o/. [Accessed 15-06-2024].657

AI@Meta. 2024. Llama 3 model card.658

Plamen Angelov and Eduardo Soares. 2020. Towards659
explainable deep neural networks (xdnn). Neural660
Networks, 130:185–194.661

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,662
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,663
Cunxiang Wang, Yidong Wang, et al. 2024. A sur-664
vey on evaluation of large language models. ACM665
Transactions on Intelligent Systems and Technology,666
15(3):1–45.667

Chaofan Chen, Oscar Li, Chaofan Tao, Alina Jade Bar- 668
nett, Jonathan Su, and Cynthia Rudin. 2019. This 669
Looks like That: Deep Learning for Interpretable Im- 670
age Recognition. Curran Associates Inc., Red Hook, 671
NY, USA. 672

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 673
Maarten Bosma, Gaurav Mishra, Adam Roberts, 674
Paul Barham, Hyung Won Chung, Charles Sutton, 675
Sebastian Gehrmann, et al. 2022. Palm: Scaling 676
language modeling with pathways. arXiv preprint 677
arXiv:2204.02311. 678

Kevin Clark, Minh-Thang Luong, Quoc V Le, and 679
Christopher D Manning. 2020. Electra: Pre-training 680
text encoders as discriminators rather than generators. 681
arXiv preprint arXiv:2003.10555. 682

Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sang- 683
hai, and Deepak Verma. 2004. Adversarial classifica- 684
tion. KDD ’04, page 99–108, New York, NY, USA. 685
Association for Computing Machinery. 686

Anubrata Das, Chitrank Gupta, Venelin Kovatchev, 687
Matthew Lease, and Junyi Jessy Li. 2022. ProtoTEx: 688
Explaining model decisions with prototype tensors. 689
In Proceedings of the 60th Annual Meeting of the 690
Association for Computational Linguistics (Volume 691
1: Long Papers), pages 2986–2997, Dublin, Ireland. 692
Association for Computational Linguistics. 693

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 694
Kristina Toutanova. 2018. Bert: Pre-training of deep 695
bidirectional transformers for language understand- 696
ing. arXiv preprint arXiv:1810.04805. 697

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing 698
Dou. 2018. HotFlip: White-box adversarial exam- 699
ples for text classification. In Proceedings of the 56th 700
Annual Meeting of the Association for Computational 701
Linguistics (Volume 2: Short Papers), pages 31–36, 702
Melbourne, Australia. Association for Computational 703
Linguistics. 704

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun 705
Qi. 2018. Black-box generation of adversarial text 706
sequences to evade deep learning classifiers. In 2018 707
IEEE Security and Privacy Workshops (SPW), pages 708
50–56. IEEE. 709

Siddhant Garg and Goutham Ramakrishnan. 2020. 710
BAE: BERT-based adversarial examples for text clas- 711
sification. In Proceedings of the 2020 Conference on 712
Empirical Methods in Natural Language Processing 713
(EMNLP), pages 6174–6181, Online. Association for 714
Computational Linguistics. 715

Shafie Gholizadeh and Nengfeng Zhou. 2021. Model ex- 716
plainability in deep learning based natural language 717
processing. 718

Ian J Goodfellow, Jonathon Shlens, and Christian 719
Szegedy. 2014. Explaining and harnessing adver- 720
sarial examples. arXiv preprint arXiv:1412.6572. 721

9

https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.1145/1014052.1014066
https://doi.org/10.1145/1014052.1014066
https://doi.org/10.1145/1014052.1014066
https://doi.org/10.18653/v1/2022.acl-long.213
https://doi.org/10.18653/v1/2022.acl-long.213
https://doi.org/10.18653/v1/2022.acl-long.213
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/P18-2006
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://doi.org/10.18653/v1/2020.emnlp-main.498
https://doi.org/10.18653/v1/2020.emnlp-main.498
http://arxiv.org/abs/2106.07410
http://arxiv.org/abs/2106.07410
http://arxiv.org/abs/2106.07410
http://arxiv.org/abs/2106.07410
http://arxiv.org/abs/2106.07410


Shreya Goyal, Sumanth Doddapaneni, Mitesh M722
Khapra, and Balaraman Ravindran. 2023. A survey723
of adversarial defenses and robustness in nlp. ACM724
Computing Surveys, 55(14s):1–39.725

Xiaowei Gu and Weiping Ding. 2019. A hierarchical726
prototype-based approach for classification. Informa-727
tion Sciences, 505:325–351.728

Antonio Gulli. AG’s Corpus of News Arti-729
cles. groups.di.unipi.it/~gulli/AG_corpus_730
of_news_articles.html. Accessed 15 June 2024.731

Jiale Han, Bo Cheng, and Wei Lu. 2021. Exploring task732
difficulty for few-shot relation extraction. In Proceed-733
ings of the 2021 Conference on Empirical Methods734
in Natural Language Processing, pages 2605–2616,735
Online and Punta Cana, Dominican Republic. Asso-736
ciation for Computational Linguistics.737

Peter Hase and Mohit Bansal. 2020. Evaluating ex-738
plainable AI: Which algorithmic explanations help739
users predict model behavior? In Proceedings of the740
58th Annual Meeting of the Association for Compu-741
tational Linguistics – ACL2020, pages 5540–5552,742
Online. Association for Computational Linguistics.743

Peter Hase, Chaofan Chen, Oscar Li, and Cynthia Rudin.744
2019. Interpretable image recognition with hierar-745
chical prototypes. In Proceedings of the AAAI Con-746
ference on Human Computation and Crowdsourcing,747
volume 7, pages 32–40.748

Junxian He, Taylor Berg-Kirkpatrick, and Graham Neu-749
big. 2020. Learning sparse prototypes for text gen-750
eration. Advances in Neural Information Processing751
Systems, 33:14724–14735.752

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam753
Dziedzic, Rishabh Krishnan, and Dawn Song. 2020.754
Pretrained transformers improve out-of-distribution755
robustness. In Proceedings of the 58th Annual Meet-756
ing of the Association for Computational Linguistics,757
pages 2744–2751, Online. Association for Computa-758
tional Linguistics.759

Dat Hong, Stephen S Baek, and Tong Wang. 2020. In-760
terpretable sequence classification via prototype tra-761
jectory. arXiv preprint arXiv:2007.01777.762

Dat Hong, Stephen S. Baek, and Tong Wang. 2021.763
Interpretable sequence classification via prototype764
trajectory.765

Myeongjun Jang, Deuk Sin Kwon, and Thomas766
Lukasiewicz. 2022. Becel: Benchmark for consis-767
tency evaluation of language models. In Proceedings768
of the 29th International Conference on Computa-769
tional Linguistics, pages 3680–3696.770

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter771
Szolovits. 2020. Is bert really robust? a strong base-772
line for natural language attack on text classification773
and entailment. In Proceedings of the AAAI con-774
ference on artificial intelligence, volume 34, pages775
8018–8025.776

Mark T Keane and Eoin M Kenny. 2019. How case- 777
based reasoning explains neural networks: A theo- 778
retical analysis of xai using post-hoc explanation-by- 779
example from a survey of ann-cbr twin-systems. In 780
Case-Based Reasoning Research and Development: 781
27th International Conference, ICCBR 2019, Otzen- 782
hausen, Germany, September 8–12, 2019, Proceed- 783
ings 27, pages 155–171. Springer. 784

Eunji Kim, Siwon Kim, Minji Seo, and Sungroh Yoon. 785
2021. Xprotonet: Diagnosis in chest radiography 786
with global and local explanations. In Proceedings of 787
the IEEE/CVF Conference on Computer Vision and 788
Pattern Recognition (CVPR), pages 15719–15728. 789

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen 790
Mussmann, Emma Pierson, Been Kim, and Percy 791
Liang. 2020. Concept bottleneck models. In In- 792
ternational conference on machine learning, pages 793
5338–5348. PMLR. 794

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 795
2017a. Adversarial examples in the physical world. 796

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 797
2017b. Adversarial machine learning at scale. 798

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, 799
Dimitris Kontokostas, Pablo N Mendes, Sebastian 800
Hellmann, Mohamed Morsey, Patrick Van Kleef, 801
Sören Auer, et al. 2015. Dbpedia–a large-scale, mul- 802
tilingual knowledge base extracted from wikipedia. 803
Semantic web, 6(2):167–195. 804

Qi Lei, Lingfei Wu, Pin-Yu Chen, Alex Dimakis, Inder- 805
jit S Dhillon, and Michael J Witbrock. 2019. Discrete 806
adversarial attacks and submodular optimization with 807
applications to text classification. Proceedings of Ma- 808
chine Learning and Systems, 1:146–165. 809

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 810
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 811
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De- 812
noising sequence-to-sequence pre-training for natural 813
language generation, translation, and comprehension. 814

Ang Li, Fangyuan Zhang, Shuangjiao Li, Tianhua Chen, 815
Pan Su, and Hongtao Wang. 2023. Efficiently gen- 816
erating sentence-level textual adversarial examples 817
with seq2seq stacked auto-encoder. Expert Systems 818
with Applications, 213:119170. 819

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting 820
Wang. 2018a. Textbugger: Generating adversarial 821
text against real-world applications. arXiv preprint 822
arXiv:1812.05271. 823

Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin. 824
2018b. Deep learning for case-based reasoning 825
through prototypes: A neural network that explains 826
its predictions. In Proceedings of the Thirty-Second 827
AAAI Conference on Artificial Intelligence and Thir- 828
tieth Innovative Applications of Artificial Intelli- 829
gence Conference and Eighth AAAI Symposium 830
on Educational Advances in Artificial Intelligence, 831
AAAI’18/IAAI’18/EAAI’18. AAAI Press. 832

10

groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
https://doi.org/10.18653/v1/2021.emnlp-main.204
https://doi.org/10.18653/v1/2021.emnlp-main.204
https://doi.org/10.18653/v1/2021.emnlp-main.204
https://doi.org/10.18653/v1/2020.acl-main.491
https://doi.org/10.18653/v1/2020.acl-main.491
https://doi.org/10.18653/v1/2020.acl-main.491
https://doi.org/10.18653/v1/2020.acl-main.491
https://doi.org/10.18653/v1/2020.acl-main.491
https://doi.org/10.18653/v1/2020.acl-main.244
https://doi.org/10.18653/v1/2020.acl-main.244
https://doi.org/10.18653/v1/2020.acl-main.244
http://arxiv.org/abs/2007.01777
http://arxiv.org/abs/2007.01777
http://arxiv.org/abs/2007.01777
http://arxiv.org/abs/1607.02533
http://arxiv.org/abs/1611.01236
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1910.13461


Tal Linzen. 2020. How can we accelerate progress833
towards human-like linguistic generalization? arXiv834
preprint arXiv:2005.00955.835

Pengfei Liu, Jinlan Fu, Yanghua Xiao, Weizhe Yuan,836
Shuaichen Chang, Junqi Dai, Yixin Liu, Zihuiwen837
Ye, Zi-Yi Dou, and Graham Neubig. 2021. Explain-838
aBoard: An Explainable Leaderboard for NLP. In839
Annual Meeting of the Association for Computational840
Linguistics (ACL), System Demonstrations.841

Xiaodong Liu, Hao Cheng, Pengcheng He, Weizhu842
Chen, Yu Wang, Hoifung Poon, and Jianfeng Gao.843
2020. Adversarial training for large neural language844
models. arXiv preprint arXiv:2004.08994.845

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-846
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,847
Luke Zettlemoyer, and Veselin Stoyanov. 2019.848
Roberta: A robustly optimized bert pretraining ap-849
proach. arXiv preprint arXiv:1907.11692.850

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,851
Dan Huang, Andrew Y. Ng, and Christopher Potts.852
2011. Learning word vectors for sentiment analysis.853
In Proceedings of the 49th Annual Meeting of the854
Association for Computational Linguistics: Human855
Language Technologies, pages 142–150, Portland,856
Oregon, USA. Association for Computational Lin-857
guistics.858

Shiao Meng, Xuming Hu, Aiwei Liu, Shu’ang Li, Fukun859
Ma, Yawen Yang, and Lijie Wen. 2023. RAPL:860
A Relation-Aware Prototype Learning Approach861
for Few-Shot Document-Level Relation Extraction.862
arXiv preprint arXiv:2310.15743.863

Pascal Mettes, Elise Van der Pol, and Cees Snoek. 2019.864
Hyperspherical prototype networks. Advances in865
neural information processing systems, 32.866

Yao Ming, Panpan Xu, Huamin Qu, and Liu Ren. 2019.867
Interpretable and steerable sequence learning via pro-868
totypes. In Proceedings of the 25th ACM SIGKDD869
International Conference on Knowledge Discovery870
& Data Mining. ACM.871

Milad Moradi and Matthias Samwald. 2021. Evaluating872
the robustness of neural language models to input873
perturbations.874

John X Morris, Eli Lifland, Jack Lanchantin, Yangfeng875
Ji, and Yanjun Qi. 2020a. Reevaluating adversar-876
ial examples in natural language. arXiv preprint877
arXiv:2004.14174.878

John X. Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,879
Di Jin, and Yanjun Qi. 2020b. Textattack: A frame-880
work for adversarial attacks, data augmentation, and881
adversarial training in nlp.882

Meike Nauta, Annemarie Jutte, Jesper Provoost, and883
Christin Seifert. 2021a. This looks like that, be-884
cause ... explaining prototypes for interpretable im-885
age recognition. In Communications in Computer886
and Information Science, pages 441–456. Springer887
International Publishing.888

Meike Nauta, Ron van Bree, and Christin Seifert. 2021b. 889
Neural prototype trees for interpretable fine-grained 890
image recognition. In Proceedings of the 2021 891
IEEE/CVF Conference on Computer Vision and Pat- 892
tern Recognition – CVPR 2021, pages 14933–14943, 893
Nashville, TN, USA. IEEE. 894

OpenAI. 2022. Chatgpt. https://openai.com/blog/ 895
chatgpt. Accessed: April 30, 2023. 896

Frederik Pahde, Mihai Puscas, Tassilo Klein, and Moin 897
Nabi. 2021. Multimodal prototypical networks for 898
few-shot learning. In Proceedings of the IEEE/CVF 899
Winter Conference on Applications of Computer Vi- 900
sion (WACV), pages 2644–2653. 901

Nicolas Papernot and Patrick McDaniel. 2018. Deep 902
k-nearest neighbors: Towards confident, inter- 903
pretable and robust deep learning. arXiv preprint 904
arXiv:1803.04765. 905
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A Dataset Details 1039
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tions are demonstrated in Table 5. We present both 1042

statistics about the original dataset and statistics 1043

and details about the number of perturbations that 1044

we have gathered on each dataset with different 1045

attack strategies. All the original datasets we use 1046

in this study are gathered by other researchers and 1047

12

https://proceedings.neurips.cc/paper_files/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf
https://doi.org/10.1109/SSCI51031.2022.10022016
https://doi.org/10.1109/SSCI51031.2022.10022016
https://doi.org/10.1109/SSCI51031.2022.10022016
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/2210.08500
http://arxiv.org/abs/2210.08500
http://arxiv.org/abs/2210.08500
http://arxiv.org/abs/2210.08500
http://arxiv.org/abs/2210.08500
https://proceedings.mlr.press/v162/voracek22a.html
https://proceedings.mlr.press/v162/voracek22a.html
https://proceedings.mlr.press/v162/voracek22a.html
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/1804.07461
http://arxiv.org/abs/2111.02840
http://arxiv.org/abs/2111.02840
http://arxiv.org/abs/2111.02840
http://arxiv.org/abs/2111.02840
http://arxiv.org/abs/2111.02840
http://arxiv.org/abs/2302.12095
http://arxiv.org/abs/2302.12095
http://arxiv.org/abs/2302.12095
http://arxiv.org/abs/2212.10264
http://arxiv.org/abs/2212.10264
http://arxiv.org/abs/2212.10264
http://arxiv.org/abs/2112.08313
http://arxiv.org/abs/2112.08313
http://arxiv.org/abs/2112.08313
http://arxiv.org/abs/2009.06368
http://arxiv.org/abs/2009.06368
http://arxiv.org/abs/2009.06368
http://arxiv.org/abs/2009.06368
http://arxiv.org/abs/2009.06368
https://doi.org/10.1145/3529755
https://doi.org/10.1145/3529755
https://doi.org/10.1145/3529755
http://arxiv.org/abs/2202.08906
http://arxiv.org/abs/2202.08906
http://arxiv.org/abs/2202.08906


have been made public by them, mentioning non-1048

commercial use, which aligns with how we use1049

these datasets. We have included information on1050

their descriptions and how they were gathered:1051

IMDB. This dataset is compiled from a set of1052

50000 reviews sourced from IMDB in English, lim-1053

iting each movie to a maximum of 30 reviews. It1054

has maintained an equal count of positive and neg-1055

ative reviews, ensuring a 50% accuracy through1056

random guessing. To align with prior research1057

on polarity classification, the authors specifically1058

focus on highly polarized reviews. A review is1059

considered negative if it scores ≤ 4 out of 10 and1060

positive if it scores ≥ 7 out of 10. Neutral reviews1061

are excluded from this dataset. Authors have made1062

the dataset publicly available, and you can find1063

more information about this dataset at https://1064

ai.stanford.edu/~amaas/data/sentiment/.1065

AG_News. This dataset comprises over 1 million1066

English news articles sourced from 2000+ news1067

outlets over a span of more than a year by Come-1068

ToMyHead, an academic news search engine op-1069

erational since July 2004. Provided by the aca-1070

demic community, this dataset aids research in1071

data mining, information retrieval, data compres-1072

sion, data streaming, and non-commercial activi-1073

ties. This news topic classification dataset features1074

four classes: world, sports, business, and science.1075

The details about the intended use and access condi-1076

tions are provided at http://www.di.unipi.it/1077

~gulli/AG_corpus_of_news_articles.html.1078

DBPedia. DBPedia5 seeks to extract organized1079

information from Wikipedia’s vast content. The1080

gathered subset of data we used offers hierar-1081

chical categories for 342782 Wikipedia articles.1082

These classes are distributed across three lev-1083

els, comprising 9, 70, and 219 classes, respec-1084

tively. We used the version that has nine classes:1085

Agent, Work, Place, Species, UnitOfWork, Event,1086

SportsSeason, Device, and TopicalConcept. Al-1087

though the articles are in English, specific names1088

(e.g., the name of a place or person) can be1089

non-English. Find more information about this1090

dataset at https://huggingface.co/datasets/1091

DeveloperOats/DBPedia_Classes.1092

AdvGLUE. Adversarial GLUE (AdvGLUE)1093

(Wang et al., 2022a) introduces a multi-task En-1094

glish benchmark designed to investigate and assess1095

5https://www.dbpedia.org/

the vulnerabilities of modern large-scale language 1096

models against various adversarial attacks. It en- 1097

compasses five corpora, including SST-2 sentiment 1098

classification, QQP paraphrase test dataset, and 1099

QNLI, RTE, and MNLI, all of which are natural lan- 1100

guage inference datasets. To assess robustness, per- 1101

turbations are applied to these datasets through both 1102

automated and human-evaluated methods, span- 1103

ning word-level, sentence-level, and human-crafted 1104

examples. Our focus primarily centers on SST-2 1105

due to its alignment with the other covered datasets 1106

in our study and its classification nature. This 1107

dataset has been made public by the authors and is 1108

released with CC BY-SA 4.0 license. 1109

B Implementation Details 1110

B.1 Experimental Environment 1111

For all the experiments that involved training or 1112

evaluating PBNs or vanilla LMs, we used three 1113

GPU NVIDIA RTX A5000 devices with Python 1114

v3.9.16 and CUDA v11.6, and each experiment 1115

took between 10 minutes to 2 hours, depending 1116

on the dataset and model used. All Transformer 1117

models were trained using the Transformers pack- 1118

age v4.30.2 and Torch package v2.0.1+cu117. We 1119

used TextAttack v0.3.10 (Morris et al., 2020b) for 1120

implementing the employed attack strategies and 1121

perturbations. 1122

B.2 Training Details 1123

All prototypes are initialized randomly for a fair 1124

comparison, and only the last layer of LM back- 1125

bones are trainable. The prototypes are trained 1126

without being constrained to a certain class from 1127

the beginning, and their corresponding class can 1128

be identified after training. The transformation 1129

from distances to class logits is done through a 1130

simple fully connected layer without intercept to 1131

avoid introducing additional complexity and keep 1132

the prediction interpretable through prototype dis- 1133

tances. Both the backbone of PBNs and their 1134

vanilla counterparts leveraged the same LM and 1135

were fine-tuned separately to show the difference 1136

that is only attributed to the models’ architecture. 1137

Focusing on the BERT-based PBN for evaluation, 1138

since BERT-base is one of the models from which 1139

we extract static perturbations by directly attacking 1140

it, to ensure generalization of the experiments on 1141

different backbones in the evaluation step, we use 1142

BERT-Medium (Turc et al., 2019) as the backbone 1143

for BERT-based PBN and its vanilla counterpart. 1144
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Dataset #Classes #Tokens #Train #Val #Test BAE DWB PWWS TB TF Other

IMDB 2 234 22,500 2,500 25,000 1784 1584 2816 2408 2880 -
AG_News 4 103 112,400 7,600 7,600 663 1287 1533 1383 1893 -
DBPedia 9 38 240,942 36,003 60,794 1041 1143 1401 1281 1836 -

SST-2 2 14 67,349 872 1,821 - - - - - 148

Table 5: Dataset statistics: number of classes, the average number of tokens, and size of the perturbed datasets under
BAE, DeepWordBug (DWB), PWWS, TextBugger (TB), TextFooler (TF), obtained. SST-2 subset comes from the
AdvGlue benchmark (Wang et al., 2022a) after removing the human-generated instances that do not belong to either
category of perturbation classes.

For all the datasets, the training split, valida-1145

tion split, and test splits were used from https://1146

huggingface.co/. During training on the IMDB,1147

SST-2, and DBPedia datasets, the batch size was1148

set to 64. This number was 256 on the AG_News1149

dataset. All the models were trained with the num-1150

ber of epochs adjusted according to an early stop-1151

ping module with patience of 4 and a threshold1152

value of 0.01 for change in accuracy.1153

All the Transformer models were fine-tuned on1154

top of a pre-trained model gathered from https:1155

//huggingface.co/. Details of the models used1156

in our experiments are presented in the following:1157

• Electra (Clark et al., 2020): google/electra-1158

base-discriminator;1159

• BART (Lewis et al., 2019): ModelTC/bart-1160

base-mnli, facebook/bart-base, facebook/bart-1161

large-mnli;1162

• BERT (Devlin et al., 2018): prajjwal1/bert-1163

medium.1164

Furthermore, the models that were used in the1165

process of gathering static perturbations were also1166

pre-trained Transformer models gathered from1167

https://huggingface.co/. Find the details of1168

models used categorized by the dataset below:1169

• IMDB: textattack/bert-base-uncased-imdb,1170

textattack/distilbert-base-uncased-imdb,1171

textattack/roberta-base-imdb;1172

• AG_News: textattack/bert-base-uncased-ag-1173

news, andi611/distilbert-base-uncased-ner-1174

agnews, textattack/roberta-base-ag-news;1175

• DBPedia: dbpedia_bert-base-uncased,1176

dbpedia_distilbert-base-uncased,1177

dbpedia_roberta-base.1178

Since we could not find models from TextAttack1179

(Morris et al., 2020b) library that were fine-tuned1180

on DBPedia, the models that are presented above 1181

were fine-tuned by us on that dataset as well and 1182

then used as the target model. 1183

B.3 GPT4o and Llama3 Baseline 1184

We used GPT4o and Llama3 (AI@Meta, 2024) as 1185

baselines in our experiments to compare its per- 1186

formance on original and perturbed examples with 1187

PBN and their vanilla models. In this section, we 1188

present the prompts that we gave to these models 1189

to generate the baseline responses and the reported 1190

performance in Table 2. We used the following 1191

prompts for the four different datasets: 1192

IMDB: Identify the binary sentiment of the fol- 1193

lowing text: [text]. Strictly output only "negative" 1194

or "positive" according to the sentiment and noth- 1195

ing else. Assistant: 1196

AG_News: Categorize the following news 1197

strictly into only one of the following classes: 1198

world, sports, business, and science. Ensure that 1199

you output only the category name and nothing else. 1200

Text: [text]. Assistant: 1201

DBPedia: Categorize the following text article 1202

strictly into only one taxonomic category from the 1203

following list: Agent, Work, Place, Species, UnitOf- 1204

Work, Event, SportsSeason, Device, and Topical- 1205

Concept. Ensure that you output only the category 1206

name and nothing else. Text: [text]. Assistant: 1207

SST-2: Identify the binary sentiment of the fol- 1208

lowing text: [text]. Strictly output only "negative" 1209

or "positive" according to the sentiment and noth- 1210

ing else. Assistant: 1211

C Additional Experiments 1212

C.1 Robustness of PBNs Against 1213

Paraphrased-Based Perturbations 1214

Comparison between PBNs and vanilla LMs on 1215

the original and paraphrased version of texts from 1216

AG_News, DBPedia, and IMDB datasets that 1217

GPT3.5 generated are shown in Table 6, which 1218
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AG_News DBPedia IMDB
Orig Adv Orig Adv Orig Adv

BART 93.7 92.6 91.2 91.3 97.5 96.0
+ PBN 93.2 93.8 92.0 91.6 97.2 97.0
BERT 92.5 91.0 90.8 90.5 95.5 94.2

+ PBN 92.8 91.2 90.3 90.8 95.2 95.0
ELEC. 93.0 92.1 90.5 90.0 96.0 94.5
+ PBN 93.5 91.8 90.8 89.7 95.8 95.0

Table 6: Comparison between PBNs and vanilla LMs
on the original and paraphrased version of texts from
AG_News, DBPedia, and IMDB datasets that GPT3.5
generated.

illustrated that both PBNs and vanilla LMs are ro-1219

bust to such perturbations.1220

C.2 Robustness of PBNs’ w.r.t. Average1221

Percentage of Words Perturbed1222

The Comparison of PBNs and vanilla LMs’ ro-1223

bustness with respect to the Average Percentage1224

of Words Perturbed (APWP) under different adver-1225

sarial settings, different datasets, and perturbation1226

strategies is shown in Table 7. We observed that1227

while using the best hyperparameters, PBNs are1228

more robust than vanilla LMs in the majority of1229

the cases, this superiority is less salient when aver-1230

aging over all hyperparameters involved in PBNs’1231

training, which entails how PBNs’ robustness is1232

sensitive to hyperparameters.1233

C.3 Robustness of PBNs’ Averaged over1234

Hyperparameters1235

The comparison of PBNs and vanilla LMs under1236

different adversarial settings, on different datasets,1237

and different attacking strategies, averaged over all1238

hyperparameters of PBNs, is shown in Table 8.1239

Comparing the observed trends with the same1240

trends when using the best hyperparameters for1241

PBNs, our results suggested that PBNs’ robustness1242

is sensitive to hyperparameters that are involved in1243

their training.1244

C.4 Effect of Distance Function on1245

Robustness1246

Figure 6, Figure 4, and Figure 5 illustrate the ro-1247

bustness of PBNs compared to vanilla LMs, using1248

different distance functions, showing that PBNs’1249

robustness is not sensitive to this hyperparameter.1250

Figure 4: Attack Success Rate (ASR %) of PBNs with
different distance functions and other hyperparameters
set to their best values and averaged across other pos-
sible variables (e.g., backbone and attack type). The
dotted line represents the ASR for the vanilla LMs.

Figure 5: Average Percentage of Words Perturbed
(APWP) of PBNs with different distance functions and
other hyperparameters set to their best values and aver-
aged across other possible variables (e.g., backbone and
attack type). The dotted line represents the ASR for the
vanilla LMs.
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Using the best hyperparameters
AG_News DBPedia IMDB

BAE DWB PWWS TB TF BAE DWB PWWS TB TF BAE DWB PWWS TB TF
BART 8.7 26.9 20.8 35.7 25.0 9.1 27.3 16.9 50.1 26.2 4.1 6.4 4.2 33.3 5.9
+ PBN 9.0 24.8 22.2 37.7 27.6 10.1 17.1 15.9 43.3 26.0 4.7 6.6 8.1 33.4 13.6
BERT 7.4 26.8 21.6 37.4 24.1 9.7 27.9 19.4 53.8 28.8 4.0 5.7 4.4 30.1 5.0

+ PBN 7.7 26.6 24.1 37.7 28.8 10.9 27.9 22.4 50.0 30.6 4.6 6.7 9.3 35.9 15.4
ELEC. 8.2 23.7 17.5 32.7 20.8 10.9 24.6 17.7 58.0 22.9 5.4 8.1 8.8 44.7 11.2
+ PBN 8.1 21.2 18.9 31.8 24.0 11.9 25.1 19.4 48.5 26.8 5.6 8.4 13.3 38.6 18.5

Averaged over all hyperparameters
AG_News DBPedia IMDB

BAE DWB PWWS TB TF BAE DWB PWWS TB TF BAE DWB PWWS TB TF
BART 8.7 26.9 20.8 35.7 25.0 9.1 27.3 16.9 50.1 26.2 4.1 6.4 4.2 33.3 5.9
+ PBN 8.3 19.3 20.5 32.6 25.2 9.7 17.1 15.9 40.4 24.7 4.4 6.1 6.5 29.5 10.1
BERT 7.4 26.8 21.6 37.4 24.1 9.7 27.9 19.4 53.8 28.8 4.0 5.7 4.4 30.1 5.0

+ PBN 7.2 24.1 21.9 35.0 25.9 9.5 24.1 19.3 43.1 27.6 4.1 5.5 5.0 27.3 7.1
ELEC. 8.2 23.7 17.5 32.7 20.8 10.9 24.6 17.7 58.0 22.9 5.4 8.1 8.8 44.7 11.2
+ PBN 7.7 15.3 16.1 26.1 20.1 10.2 18.2 16.6 40.2 23.7 5.4 6.7 10.1 31.3 13.6

Table 7: Comparison of PBNs and vanilla LMs’ robustness with respect to Average Percentage of Words Perturbed
(APWP) under targeted adversarial attack perturbations, both using the best hyperparameters and averaged over
all hyperparameters for PBNs, on IMBD, AG_News, and DBPeida datasets, under BAE, DeepWordBug (DWB),
PWWS, TextBugger (TB), TextFooler (TF). The highest APWP showing the superior model for each architecture is
boldfaced.

Targeted Attacks; Attack Success Rate (ASR %) reported
AG_News DBPedia IMDB

BAE DWB PWWS TB TF BAE DWB PWWS TB TF BAE DWB PWWS TB TF
BART 14.8 53.2 53.6 31.8 76.5 18.9 28.3 43.1 21.1 71.9 74.1 74.7 99.3 78.5 100.0
+ PBN 14.8 40.4 50.7 29.8 76.2 17.0 14.7 28.7 12.7 49.4 55.5 49.2 86.2 49.7 88.5
BERT 17.0 78.0 69.8 45.7 88.8 13.9 24.8 31.6 22.0 61.3 82.5 79.7 99.9 83.9 99.9

+ PBN 14.0 64.7 57.0 39.3 82.1 13.5 23.4 27.6 19.6 51.3 68.4 61.8 91.3 74.0 92.4
ELEC. 24.8 89.5 69.1 87.8 87.9 14.5 42.8 45.6 42.3 75.3 52.5 49.2 95.3 67.8 99.3
+ PBN 18.5 50.4 55.7 63.6 80.0 12.6 19.4 26.1 27.1 46.5 41.0 35.9 77.7 55.6 86.2

Static Attacks; Accuracy (%) reported
AG_News DBPedia IMDB SST2

BAE DWB PWWS TB TF BAE DWB PWWS TB TF BAE DWB PWWS TB TF GLUE
BART 53.2 76.7 83.2 77.5 85.8 55.5 68.6 58.4 72.5 71.3 74.1 80.5 83.6 85.8 87.6 29.8
+ PBN 50.4 68.3 75.7 70.5 79.6 56.4 65.8 58.7 70.9 69.5 69.2 78.7 79.7 81.9 78.3 37.6
+ Aug. 71.7 78.4 85.5 77.6 90.1 84.0 79.6 89.7 88.8 94.0 85.7 86.7 92.9 89.9 96.5 -
BERT 47.8 64.0 75.9 69.4 80.7 62.3 61.4 75.4 78.4 82.0 75.1 77.1 85.0 83.4 85.9 42.0

+ PBN 49.5 66.2 76.4 71.3 82.3 63.5 61.1 73.9 76.9 79.4 71.0 73.9 81.1 80.2 79.2 47.1
+ Aug. 58.3 71.6 78.3 71.2 85.4 75.5 70.9 84.1 90.5 91.0 83.2 77.6 91.7 90.8 89.2 -

ELECTRA 50.4 65.0 73.5 63.9 77.8 79.7 66.9 80.9 81.4 84.4 89.7 90.3 94.6 94.5 95.6 44.3
+ PBN 52.7 63.9 73.7 67.1 77.8 73.4 64.1 73.0 76.4 80.6 80.6 79.4 79.9 80.2 86.8 56.4
+ Aug. 55.0 59.5 71.7 61.6 79.5 86.2 73.8 88.1 84.5 92.8 89.4 93.7 95.3 94.9 95.8 -

Table 8: Comparison of PBNs and vanilla LMs (+ vanilla LMs with adversarial augmented training under static
attack setting) under both targeted and static adversarial attack perturbations, averaged over all hyperparameters
for PBNs, on IMBD, AG_News, DBPeida (+ SST-2 AdvGLUE under static attack setting) datasets, under BAE,
DeepWordBug (DWB), PWWS, TextBugger (TB), TextFooler (TF). The highest accuracy and lowest ASR showing
the superior model for each architecture is boldfaced, and the second best model is underlined for static attacks.
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Figure 6: Accuracy of PBNs under static adversarial
settings, with different distance functions, with other
hyperparameters set to their best values and averaged
across other possible variables (e.g., backbone and at-
tack type). The dotted line represents the ASR for the
vanilla LMs.

C.5 Effect of Interpretability on Robustness1251

Figure 9, Figure 7, and Figure 8 illustrate the ro-1252

bustness of PBNs compared to vanilla LMs, using1253

different values of λi adjusting the importance of1254

interpretability, showing that overall, PBNs’ robust-1255

ness is not sensitive to this hyperparameter.1256

C.6 Effect of Clustering on Robustness1257

Figure 10, Figure 11 illustrate the robustness of1258

PBNs compared to vanilla LMs, using different1259

values of λc adjusting the importance of cluster-1260

ing, that alongside the trends observed using ASR1261

(see Figure 2), show that overall, PBNs’ robustness1262

degrades with tighter clustering in PBNs’ training.1263

C.7 Effect of Separation on Robustness1264

Figure 14, Figure 12, and Figure 13 illustrate the1265

robustness of PBNs compared to vanilla LMs, us-1266

ing different values of λs adjusting the importance1267

of separability between prototypes, showing that1268

overall, PBNs’ robustness is not sensitive to this1269

hyperparameter.1270

C.8 Effect of Number of Prototypes on1271

Robustness1272

Figure 15, Figure 16 illustrate the robustness of1273

PBNs compared to vanilla LMs, using different1274

numbers of prototypes, that alongside the trends1275

observed using ASR (see Figure 3), show that over-1276

all, PBNs’ robustness degrades with low number1277

of prototypes as PBNs can capture lower number1278

of semantic patterns in such conditions.1279

Figure 7: Attack Success Rate (ASR %) of PBNs with
different λi values adjusting the importance of inter-
pretability of the prototypes in training, with other hy-
perparameters set to their best values, and averaged
across other possible variables (e.g., backbone and at-
tack type). The dotted line represents the ASR for the
non-PBN model.

Figure 8: Average Percentage of Words Perturbed
(APWP) of PBNs with different λi values adjusting
the importance of interpretability of the prototypes in
training, with other hyperparameters set to their best val-
ues, and averaged across other possible variables (e.g.,
backbone and attack type). The dotted line represents
the ASR for the non-PBN model.
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Figure 9: Accuracy of PBNs under static adversarial
settings, with different λi values adjusting the level of
interpretability in PBNs, with other hyperparameters set
to their best values and averaged across other possible
variables (e.g., backbone and attack type). The dotted
line represents the ASR for the vanilla LMs.

Figure 10: Average Percentage of Words Perturbed
(APWP) of PBNs with different λc values adjusting
the importance of clustering of examples in PBNs, with
other hyperparameters set to their best values, and aver-
aged across other possible variables (e.g., backbone and
attack type). The dotted line represents the ASR for the
non-PBN model.

Figure 11: Accuracy of PBNs under static adversarial
settings, with different λc values adjusting the level
of clustering in PBNs, with other hyperparameters set
to their best values and averaged across other possible
variables (e.g., backbone and attack type). The dotted
line represents the ASR for the vanilla LMs.

Figure 12: Attack Success Rate (ASR %) of PBNs
with different λs values adjusting the level of separation
between the prototypes, with other hyperparameters set
to their best values and averaged across other possible
variables (e.g., backbone and attack type). The dotted
line represents the ASR for the vanilla LMs.
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Figure 13: Average Percentage of Words Perturbed
(APWP) of PBNs with different λs values adjusting
the level of separation between the prototypes, with
other hyperparameters set to their best values and aver-
aged across other possible variables (e.g., backbone and
attack type). The dotted line represents the ASR for the
vanilla LMs.

Figure 14: Accuracy of PBNs under static adversarial
settings, with different λs values adjusting the level of
separation between the prototypes, with other hyperpa-
rameters set to their best values and averaged across
other possible variables (e.g., backbone and attack type).
The dotted line represents the ASR for the vanilla LMs.

Figure 15: Average Percentage of Words Perturbed
(APWP) of PBNs with different numbers of prototypes,
with other hyperparameters set to their best values, and
averaged across other possible variables (e.g., backbone
and attack type). The dotted line represents the ASR for
the non-PBN model.

Figure 16: Accuracy of PBNs under static adversar-
ial settings, with different numbers of prototypes, with
other hyperparameters set to their best values and aver-
aged across other possible variables (e.g., backbone and
attack type). The dotted line represents the ASR for the
vanilla LMs.
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