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ABSTRACT

Recent advances in AI-powered generative models have enabled the creation of
increasingly realistic synthetic images, posing significant risks to information
integrity and public trust on social media platforms. While robust detection frame-
works and diverse, large-scale datasets are essential to mitigate these risks, existing
academic efforts remain limited in scope: current datasets lack the diversity, scale,
and realism required for social media contexts, and evaluation protocols rarely
account for explanation or out-of-domain generalization. To bridge this gap, we
introduce So-Fake, a comprehensive social media-oriented dataset for forgery
detection consisting of two key components. First, we present So-Fake-Set, a
large-scale dataset with over 2 million photorealistic images from diverse gener-
ative sources, synthesized using a wide range of generative models. Second, to
rigorously evaluate cross-domain robustness, we establish So-Fake-OOD, a novel
and large-scale (100K) out-of-domain benchmark sourced from real social media
platforms and featuring synthetic imagery from commercial models explicitly ex-
cluded from the training distribution, creating a realistic testbed that mirrors actual
deployment scenarios. Leveraging these complementary datasets, we present So-
Fake-R1, a baseline framework that applies reinforcement learning to encourage
interpretable visual rationales. Experiments show that So-Fake surfaces substantial
challenges for existing methods. By integrating a large-scale dataset, a realistic
out-of-domain benchmark, and a multi-dimensional evaluation protocol, So-Fake
establishes a new foundation for social media forgery detection research.

1 INTRODUCTION

The rapid evolution of generative AI (Shuai et al., 2024; Hu et al., 2025) has made it increasingly
difficult to verify the authenticity of social media images, as it enables malicious actors to create
deceptive content that misleads public opinion or spreads false information. This has motivated
the creation of large-scale datasets to study and improve forgery detection. In recent years, several
deepfake datasets (Yan et al., 2024; Bhattacharyya et al., 2024; Zhu et al., 2023) have been proposed
to train more robust forgery detection models. However, they generally exhibit three significant
limitations that make them inadequate for addressing the complex challenges of social media image
forgery detection: 1) Narrow Categorical Scope. Existing datasets (Ricker et al., 2024; Peng et al.,
2024; Yang et al., 2023) focus narrowly on specific categories such as faces, animals, or humans,
failing to represent complex real-world social media contexts. 2) Outdated Generation Quality.
Most datasets (Zhu et al., 2023; Corvi et al., 2023; Huang et al., 2024b) rely on outdated generation
techniques, which result in less convincing forgeries that are easier for both humans and models
to detect. 3) Limited Cross-Domain Evaluation. Existing datasets lack established protocols for
measuring cross-domain generalization and rarely include a dedicated out-of-distribution benchmark.
While recent works (Ricker et al., 2024; Huang et al., 2025b; Dell’Anna et al., 2025) have attempted
to introduce forgery detection datasets for social media images, they face significant constraints
in acquiring authentic platform content. Existing benchmarks approximate social media imagery
indirectly, for instance by re-uploading generated images or substituting generic open datasets. These
proxies fail to capture the fidelity, compression, and topical diversity of authentic social media content,
highlighting the need for datasets that more faithfully reflect real-world conditions.

Beyond dataset limitations, existing evaluation protocols also remain inadequate. Social media
forgeries range from fully synthetic to regionally tampered images (Huang et al., 2025b), which

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

So-Fake-Set

So-Fake-OOD

Data 

Collection

Data 

Generation So-Fake-R1

Detection

Localization

Explanation

Prompt

LLM Caption
Inpainting 

Model

Language 

SAM
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foreground elements. These inconsistencies suggest the cat may have been digitally added to 
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Figure 1: (a) Overview. So-Fake comprises So-Fake-Set (train/val) and So-Fake-OOD (test),
which together enable evaluation of detection, localization, and explanation with So-Fake-R1. (b)
Illustrative Example. A real image from the subreddit pics is captioned by an LLM, combined with
Language SAM and an inpainting model to produce tampered samples. So-Fake-R1 then analyzes
the manipulated image and outputs the class label, localized region, and an interpretable rationale.

calls for benchmarks that evaluate not only detection but also manipulation localization and expla-
nation to foster user trust. Despite progress, most methods remain limited: many target only face
deepfakes as binary classification (Yan et al., 2024; 2023; Kroiß & Reschke, 2025), or extend to
mask prediction (Dong et al., 2023; Guo et al., 2023; Zhang et al., 2024), yet provide little insight
into their decisions. This black-box nature further limits applicability in social media, where diverse
manipulations demand transparent explanations. To address this challenge, recent advances in large
language models (Li et al., 2025; Kang et al., 2025; Xu et al., 2024; Ji et al., 2025) have inspired
explainability methods that generate human-readable rationales, but these depend on costly human
annotations and cannot jointly address tampered and fully synthetic cases. Consequently, existing
methods and protocols remain inadequate for social media forgeries, highlighting the need for joint
evaluation of detection, localization, and explanation to ensure trustworthiness.

To address these limitations, we introduce So-Fake, a comprehensive benchmark for social media
forgery detection with explicit protocols for evaluating detection, localization, and explanation. As
illustrated in Figure 1, it consists of two complementary components. So-Fake-Set is the main
training and validation corpus, comprising over 2M images across 12 diverse categories (see Figure 2
(a) and Figure 3 (a)) and extending beyond traditional face-centric datasets to include humans,
animals, and events. So-Fake-OOD is a 100K-image out-of-distribution benchmark that pairs
authentic social media content from Reddit1 with synthetic imagery generated by leading commercial
models listed in the Leaderboard2 . The 30 generation and manipulation methods in So-Fake-Set are
entirely disjoint from the 10 commercial models in So-Fake-OOD (see Figure 2 (b)), reflecting the
closed-source nature of many real-world tools and enabling realistic evaluation of generalization to
unseen generators. In both datasets, images are labeled as real, tampered, or full synthetic, reflecting
the major forms of fake content encountered on authentic social media environments.

Leveraging these complementary datasets, we further provide So-Fake-R1, a baseline framework
that illustrates the practical use of So-Fake for social media forgery detection. So-Fake-R1 leverages
reinforcement learning (RL) to produce interpretable predictions, enabling comprehensive evaluation
across detection, localization, and explanation. The main contributions of this paper are as follows:

• We introduce So-Fake, a large-scale social media-oriented dataset comprising So-Fake-Set
for training/validation and So-Fake-OOD for out-of-distribution evaluation.

• We propose So-Fake-R1, an RL-based framework that unifies detection, localization, and
explanation of social media forgeries, thereby demonstrating the utility of So-Fake.

• Extensive experiments demonstrate So-Fake’s effectiveness as a comprehensive bench-
mark, with So-Fake-R1 achieving state-of-the-art results across detection, localization, and
explanation tasks while maintaining strong generalization to out-of-distribution domains.

1https://www.reddit.com
2https://artificialanalysis.ai/text-to-image
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Table 1: Comparison with recent image forgery datasets. ”–” in #Methods indicates the number of
generative methods was not specified; ”–” in Latest Fake indicates the specific generative method
was not specified; Column abbreviations: MultiCls = Multiclasses, Expl. = Explanation.

Dataset Social Media Latest Fake #Methods Data Sources #Images MultiCls Mask Expl. OOD
ArtiFact (’23) ✗ Palette (’22) 25 COCO, FFHQ, LSUN 2M+ ✗ ✗ ✗ ✗

DMimage (’23) ✗ DALL-E (’22) 10 COCO, ImageNet 0.4M+ ✗ ✗ ✗ ✗
AIGCD (’23) ✗ Wukong (’22) 16 LSUN, COCO, FFHQ 0.7M+ ✗ ✗ ✗ ✗

SynthScars (’25) ✗ FLUX (’24) - RichHF-18K, Chameleon, FFAA 13K ✗ ✓ ✓ ✗
FakeClue (’25) ✗ FLUX (’24) - GenImage, FF++, Chameleon 0.1M+ ✗ ✗ ✓ ✗
GenImage (’23) ✗ Wukong (’22) 8 ImageNet 2M+ ✗ ✗ ✗ ✗
WildFake (’25) ✗ DALL-E 3 (’23) 27 ImageNet, COCO, FFHQ, LSUN, +3 more 3M+ ✗ ✗ ✗ ✗

Community Forensics (’25) ✗ FLUX (’24) 4803 LAION, ImageNet, COCO, FFHQ, +7 more 2M+ ✗ ✗ ✗ ✓
SID-Set (’24) ✓ FLUX (’24) 2 COCO, Flickr30k, MagicBrush 0.3M ✓ ✓ ✓ ✗

Deepfake-Eval-2024 (’25) ✓ - - X, Tiktok, Instagram 1975 ✗ ✗ ✗ ✗
TrueFake (’25) ✓ FLUX (’24) 8 FFHQ, FORLAB, Facebook, X, Telegram 0.6M+ ✗ ✗ ✗ ✗

So-Fake ✓ Nano Banana (’25) 40 COCO, Flickr30k, WIDER, OpenForensics 2M+ ✓ ✓ ✓ ✓Reddit, OpenImages, FFHQ, CelebA

2 RELATED WORK

2.1 IMAGE FORGERY DETECTION DATASETS

Early datasets such as DFFD (Dang et al., 2020), ForgeryNet (He et al., 2021), and FaceForen-
sics++ (Rössler et al., 2019) established the foundation for deepfake detection research, albeit with
a narrow emphasis on GAN-generated facial forgeries (Karras et al., 2020; 2021a). With the rise
of diffusion models, research has expanded beyond facial manipulations to encompass broader
AI-generated content (AIGC) detection. This trend is reflected in the emergence of recent bench-
marks such as GenImage (Zhu et al., 2023) and DMimage (Corvi et al., 2023). As detection tasks
increasingly target content circulating in real-world environments, attention has shifted towards
constructing specialized datasets for social media forgery detection (Ricker et al., 2024; Huang et al.,
2025b; Dell’Anna et al., 2025). Despite these advances, current datasets exhibit notable shortcomings,
including reliance on outdated generative techniques and insufficient diversity in real-world scenarios.
More recently, WildFake (Hong et al., 2025) collected millions of community-shared synthetic images
from platforms, while Community Forensics (Park & Owens, 2025) systematically sampled from
open-source and commercial generators, achieving unprecedented model coverage. However, both
datasets emphasize open repositories rather than real social media distributions, and neither provides
multi-class labels, tampering masks, or explanations. In contrast, So-Fake is the first dataset explicitly
targeting social media forgeries, with two distinctive advantages: (1) social-media-oriented data col-
lection rather than relying on open repositories or community uploads; and (2) enriched annotations
and benchmarks, including multi-class labels, tampered region masks, explanatory rationales, and a
dedicated OOD split based on real social media data for rigorous cross-domain evaluation. A detailed
comparison with existing image forgery datasets is provided in Table 1.

2.2 IMAGE FORGERY DETECTION, LOCALIZATION, AND EXPLANATION

Recent developments in forgery detection have focused primarily on using deep neural networks to
distinguish authentic content from manipulated content. While these methods (Kroiß & Reschke,
2025; Chen et al., 2022; Pei et al., 2024; Wang et al., 2025b) achieve strong performance by capturing
subtle visual artifacts, they often lack robustness when facing novel manipulation types or content
domains. To address these limitations, researchers have increasingly turned to localization approaches
that identify specific tampered regions. Image forgery detection and localization (IFDL) (Dong et al.,
2023; Guo et al., 2024; Guillaro et al., 2023; Zhang et al., 2023; Liu et al., 2022) provides more
granular and interpretable insights than global classification alone, enabling a better understanding
of manipulation techniques. However, current localization datasets focus almost exclusively on
facial forgeries (Wang et al., 2025a; Liang et al., 2024), neglecting the diverse manipulation types
characteristic of social media images. In parallel with addressing data limitations, interpretability has
emerged as a critical frontier, with recent approaches attempting to generate human-understandable
justifications alongside detection. Motivated by recent vision-language models, several works,
such as ForgeryGPT (Li et al., 2024b), SIDA (Huang et al., 2025b), FakeShield (Xu et al., 2024),
FakeScope (Li et al., 2025), and LEGION (Kang et al., 2025) can generate explanations, they typically
require extensive manual annotations and produce superficial descriptions that fail to reveal genuine
model reasoning. In contrast to these approaches, So-Fake-R1 applies reinforcement learning to
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Figure 2: (a) Category distribution of So-Fake across 12 semantic classes. (b) Generative methods
and examples for each split–task combination.

enhance the consistency and informativeness of model outputs, enabling detection, localization, and
explanation within a unified framework, while reducing reliance on manual annotations.

3 DATASET

3.1 OVERVIEW

Social media platforms host vast volumes of user-generated images that differ substantially from
standard academic datasets. Unlike curated benchmarks, these images cover highly diverse and infor-
mal content categories (Dell’Anna et al., 2025), often contain compression artifacts or mixed editing
traces (Cozzolino et al., 2024; Huang et al., 2025b), and are increasingly interspersed with synthetic
media generated by commercial models such as GPT-4o (Hurst et al., 2024), Hidream3.0 (HiDream-ai,
2025), and Imagen4 (Google, 2025a). These factors make forgery detection in social media partic-
ularly challenging, as models must generalize across heterogeneous, noisy, and manipulation-rich
distributions, highlighting the need for realistic benchmarks. However, collecting and releasing
large-scale authentic social media imagery is severely constrained by platform policies and privacy
concerns, making it infeasible to construct a fully open benchmark directly from these sources.

To address these challenges, we propose So-Fake, a benchmark explicitly designed for social-media-
oriented forgery detection. So-Fake consists of two complementary components: (i) So-Fake-Set,
a controlled in-domain benchmark, and (ii) So-Fake-OOD, for cross-domain robustness testing.
Both components are built under a unified 12-class taxonomy spanning humans, objects, events,
and natural scenes (Figure 2(a)), ensuring broad semantic coverage representative of social media
content. Specifically, So-Fake-Set combines diverse public datasets with systematically generated
forgeries, providing an open and scalable alternative to unreleasable social media data. The complete
list of generative models used in So-Fake-Set is provided in Appendix B.1. So-Fake-OOD integrates
authentic Reddit images with forgeries synthesized by entirely disjoint commercial generative models,
thereby introducing realistic distributional shifts for robust generalization testing (Figure 2(b)).

3.2 DATA COLLECTION

So-Fake-Set. We select real images from COCO (Lin et al., 2014), Flickr30k (Plummer et al., 2017),
OpenImages (Benenson & Ferrari, 2022) and WIDER (Xiong et al., 2015), as these datasets contain
complex scenes with humans, animals, diverse environments, and daily activities typical of social
media content. We also incorporate CelebA (Liu et al., 2015), OpenForensics (Le et al., 2021), and
FFHQ (Karras et al., 2021b) to ensure comprehensive coverage of facial content, which constitutes a
significant portion of social media imagery. In total, So-Fake-Set comprises approximately 650K real
images, 650K fully synthetic samples, and 650K tampered samples, as shown in Figure 3(a) (left).

So-Fake-OOD. For the OOD benchmark, we collect images from Reddit via its official API. Reddit
provides diverse, informal user-generated content across our 12 predefined categories, but with
styles and quality levels that differ markedly from the open datasets used in So-Fake-Set, creating
a realistic domain shift (illustrated in Appendix C.1). Importantly, Reddit’s content policy permits
non-commercial academic use, ensuring legal compliance (Appendix E). From this collection, we
retain around 33K images as real samples, some of which are further used to generate full synthetic
and tampered counterparts, resulting in 33K per class. This design enables evaluation under both real
image shifts and generative method shifts, as demonstrated in Figure 3(a) (right).
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Figure 3: (a) Data collection sources of So-Fake-Set and So-Fake-OOD with representative examples
and statistics. (b) Data generation pipelines for full synthetic and tampered images.

3.3 DATA GENERATION

We generate two types of synthetic images: full synthetic and tampered. Figure 3 (b) illustrates
their corresponding generation pipelines, which we detail below.

Full Synthetic Images. To produce full synthetic images, we adopt two main categories of generation
techniques: GAN-based and diffusion-based. For GAN-based methods, we follow the official
implementation guidelines provided by the authors. For diffusion-based approaches, we employ a text-
to-image generation pipeline, divided into two stages: (1) Caption Generation. We evaluated several
captioning models for generating text-to-image captions and selected Qwen2.5-VL-7B (Bai et al.,
2025) based on experimental results (Appendix B.2). (2) Image Synthesis. The generated captions
are then fed into different sets of generative models. For So-Fake-Set, we employ 30 architectures
spanning both GAN-based and diffusion-based paradigms, selected to maximize architectural diversity
and category coverage (see Appendix B.1). For So-Fake-OOD, we instead adopt state-of-the-art
commercial generators, including Hidream 3.0 (HiDream-ai, 2025), Nano Banana (Google, 2025b),
and Imagen 4 (Google, 2025a), as summarized in Figure 2(b). (3) Quality Assessment. Finally,
all generated outputs from both GAN-based and diffusion-based methods are subjected to the same
quality control process. We combined automated filtering with human evaluation: five expert
reviewers assessed generated samples on realism, consistency, and appropriateness using a five-
point scale, removing low-quality images after secondary review. This process guarantees that both
So-Fake-Set and So-Fake-OOD maintain consistently high quality. Further details are provided in
Appendix B.3, with an illustrative example in Figure 7.

Tampered Images. To simulate partial forgeries common in social media imagery, we employ
image inpainting techniques that replace specific regions while preserving the rest of the original
image. For So-Fake-Set, we use three state-of-the-art inpainting models, including FLUX.1-Fill-
dev (Labs, 2024), Latent Diffusion (Rombach et al., 2022), and Stable Diffusion-XL (Podell et al.,
2024), chosen for their high visual quality and diversity of generative styles. We first use Qwen2.5-
VL-7B (Bai et al., 2025) to generate captions for the source images. An Object Extract module
then identifies candidate entities (e.g., “man”) from these captions using a lightweight NLP parser.
The extracted object labels are passed to LangSAM (lang-sam team, 2024) to generate precise
masks for the corresponding regions. Each inpainting model subsequently receives three inputs—the
original image, the extracted mask, and the caption—ensuring semantic consistency between the
replaced regions and their surrounding context. For So-Fake-OOD, we adopt the same tampering
pipeline as So-Fake-Set but replace the inpainting models with GPT-4o (Hurst et al., 2024), and
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Ideogram 3.0 (Ideogram, 2025), ensuring evaluation on unseen manipulation techniques. This design
simultaneously introduces distribution shift in real images and manipulation methods, yielding a
more realistic OOD benchmark.

4 METHOD

4.1 OVERVIEW

So-Fake-R1

Prompt

SAM2

Detection

Localization

Explanation
<think>…</think><a
nswer>…</answer>

“TAMPERED”

So-Fake-R1Base Model Cold start GRPO

(a)

(b)

𝑥𝑖

𝑥𝑡

Figure 4: (a) Training pipeline with SFT and
GRPO. (b) Inference pipeline producing detection,
localization, and explanation outputs.

We introduce So-Fake-R1 as a unified vi-
sion–language policy optimization baseline for
our benchmark. It formulates forgery detection
as a multi-objective reinforcement learning prob-
lem, where Group Relative Policy Optimization
(GRPO) is used to align three complementary
goals: detection, localization, and explanation.
The two-stage pipeline first establishes a stable
reasoning format through cold-start supervised
tuning, and then refines the model with GRPO
to jointly enhance task synergy, as illustrated in Figure 4 (a). This design offers two advantages:
(i) balanced optimization, where gains in one task do not compromise others, and (ii) structured
interpretability guided by rule-based rewards, reducing reliance on additional human supervision.

4.2 TRAINING

Stage 1: Cold start. We fine-tune the base model on a curated set of 9,000 images from So-Fake-Set
(balanced across the three classes, with annotations generated by GPT-4o and subsequently refined
through strict expert review; see Appendix D.2) to align it with our reasoning format and structured
output requirements. This initialization is essential for teaching the model consistent formatting
and multi-granular reasoning, without which reinforcement learning would fail to converge reliably.
The dataset is intentionally kept small to prevent overfitting while still providing a strong prior for
subsequent optimization, reinforced by structured reasoning cues.

Stage 2: GRPO training. Building on this initialization, we apply GRPO to refine the model
jointly across detection, localization, and explanation. Unlike cold-start stage, which only provides
static supervision, GRPO incorporates rule-based rewards that capture complementary objectives and
encourage balanced improvements across tasks. This stage is particularly critical for harmonizing
reasoning quality with localization precision, while avoiding reliance on manual annotations.

As shown in Section 5.5, the two stages provide complementary gains and yield the best overall
performance. Detailed specifications of the cold-start dataset construction, reward weighting strategy,
and training hyperparameter choices are provided in the Appendix D.2.

4.3 REWARD FUNCTIONS

The reward function is designed to align with the three core outputs of So-Fake-R1: explanation,
detection, and localization. Accordingly, we group the components into three categories, each
providing complementary signals. (1) Explanation format rewards. To encourage interpretable
reasoning, we adopt a format reward that enforces structured outputs. Specifically, explanations must
appear inside <think>...</think> and final answers inside <answer>...</answer> tags.
This ensures parseable reasoning traces and stabilizes optimization. (2) Detection reward. We assign
a reward based on the correctness of the predicted label (REAL, TAMPERED, FULL SYNTHETIC),
extracted from the <answer> tags. Correct predictions for REAL or FULL SYNTHETIC images
receive a base reward. For TAMPERED images, which typically involve subtle and localized
manipulations and are thus harder to detect, a higher reward is assigned. This weighting prevents
optimization from being biased toward the easier classes and ensures balanced training across all
three categories. (3) Localization rewards. For images predicted as TAMPERED, we provide
additional rewards to enforce precise localization: (a) a format reward ensures that bounding boxes
follow a strict coordinate specification; (b) an IoU reward grants a positive score when predicted
boxes achieve Intersection-over-Union (IoU) > 0.5 with the ground truth; (c) an L1 reward further
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refines accuracy by rewarding predictions within 10 pixels of the ground truth coordinates. For REAL
and FULL SYNTHETIC images, default values are assigned to maintain balanced gradient signals
across all classes. The total reward combines these signals:

Rtotal = λfmtRfmt + λclsRcls + λseg fmtRseg fmt + λIoURIoU + λL1RL1, (1)

where λ controls the relative weight of each component. This decomposition ensures that So-Fake-R1
is jointly optimized for structured reasoning, reliable detection, and fine-grained localization. The
exact reward weights, scoring criteria, and implementation details are reported in the Appendix D.1.

4.4 INFERENCE PROCEDURE

At inference time, So-Fake-R1 takes as input an image xi together with a task prompt xt and
produces three complementary outputs, as illustrated in Figure 4(b). Explanation: a hierarchi-
cal reasoning trace enclosed in <think>...</think>, which analyzes the image at different
perspectives before reaching a conclusion. Detection: a class label (REAL, TAMPERED, or
FULL SYNTHETIC) reported within <answer>...</answer> tags. Localization: for tam-
pered cases, So-Fake-R1 outputs bounding-box coordinates in the format <|box start|>(x1,
y1), (x2, y2)<|box end|>|. These coarse boxes are then passed to SAM2 (Ravi et al.,
2024), which refines the bounding boxes into dense segmentation masks.

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

Methods. For a fair and comprehensive comparison of So-Fake-R1 across detection, localization, and
explanation tasks, we evaluate against three representative groups of baselines: (1) Detection-only
methods. CnnSpot (Frank & Holz, 2021), UnivFD (Ojha et al., 2023), FreAware (Tan et al., 2024b),
and NPR (Tan et al., 2024a). (2) Image Forgery Detection and Localization (IFDL) methods.
HIFI-Net (Guo et al., 2024), TruFor (Guillaro et al., 2023), PSCC-Net (Liu et al., 2022), SIDA (Huang
et al., 2025b), and FakeShield (Xu et al., 2024). (3) Explanation-oriented methods. LLaVA-1.5-
13B (Liu et al., 2023), LISA (Lai et al., 2024), InternVL3-8B (Zhu et al., 2025), Qwen2.5-VL-7B (Bai
et al., 2025), and DeepSeek-VL-7B (DeepSeek-AI et al., 2025). Unless otherwise noted, all baselines
are fine-tuned on the So-Fake-Training Set. Exceptions include: FakeShield, which requires paired
image-text inputs and is evaluated using its publicly released checkpoints; and HIFI-Net, which is
evaluated using its pre-trained weights due to the unavailability of complete training code.

Metrics. We evaluate models across the three tasks defined by So-Fake. For detection, we report
image-level accuracy (Acc) and F1. For localization, we adopt Intersection over Union (IoU) and
mask-level F1, which capture the ability to pinpoint subtle local edits that are prevalent in social-
media manipulations. For explanation, we employ two complementary metrics: (1) Cosine Semantic
Similarity (CSS), which captures semantic alignment between embeddings of predicted and ground-
truth explanations, and (2) ROUGE-L, which quantifies textual overlap through longest common
subsequence matching. Ground-truth explanations were first generated with Claude Opus 4.1 (light
logo, 2025), then carefully revised and validated by human experts. In total, over 3,000 high-quality
explanations were curated, providing reliable supervision for quantitative benchmarking.

5.2 COMPARISON RESULTS ON SO-FAKE-SET

As shown in Table 2, our method achieves superior performance across all metrics, surpassing the
second-best method by 1.3% in detection accuracy, 1.1% in localization IoU, and significantly higher
CSS scores for explanation quality. These results demonstrate the effectiveness of So-Fake-R1.

5.3 COMPARISON RESULTS ON SO-FAKE-OOD

For fairness, we evaluate both the zero-shot and fine-tune settings, where models are fine-tuned
on the training split of So-Fake-Set and evaluated on So-Fake-OOD. As shown in Table 3, So-
Fake-R1 achieves the highest performance across all metrics, demonstrating superior cross-domain
generalization compared to other methods.
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Table 2: Performance comparison on So-Fake-Set. Methods marked with ”*” denote results obtained
using publicly released weights without fine-tuning.

Method Year Type Detection Localization Explanation
Acc F1 IOU F1 ROUGE-L CSS

CnnSpot 2021 Detection 89.6 87.7 - - - -
UnivFD 2023 Detection 84.0 63.8 - - - -

FreAware 2024 Detection 85.6 73.1 - - - -
NPR 2024 Detection 81.8 61.5 - - - -

HIFI-Net* 2022 IFDL 39.0 25.2 12.1 18.3 - -
TruFor 2023 IFDL 87.3 85.9 47.5 57.6 - -

PSCC-Net 2022 IFDL 84.2 81.1 46.3 54.8 - -
FakeShield* 2024 IFDL 67.0 64.1 33.7 46.1 0.2412 0.5143

SIDA 2025 IFDL 91.9 91.5 44.1 58.9 0.4313 0.7987
LLaVA-1.5-13B 2024 LLM 83.5 82.9 29.8 38.1 0.4213 0.7877

LISA 2024 LLM 87.4 85.9 40.5 47.6 0.4246 0.7861
DeepSeek-VL-7B 2025 LLM 83.7 81.1 27.8 35.4 0.4376 0.8196
Qwen2.5-VL-7B 2024 LLM 91.2 90.8 42.7 50.1 0.4515 0.8411

InternVL3-8B 2025 LLM 87.6 87.3 41.1 48.5 0.4553 0.8341
Ours 2025 LLM 93.2 92.9 48.6 63.9 0.4718 0.8769

Table 3: Performance comparison on So-Fake-OOD with both zero-shot and fine-tune settings.

Method
Detection Localization Explanation

zero shot fine tune zero shot fine tune zero shot fine tune
Acc F1 Acc F1 IOU F1 IOU F1 ROUGE-L CSS ROUGE-L CSS

CnnSpot 32.8 29.7 65.2 63.8 - - - - - - - -
UnivFD 45.3 43.7 63.3 40.2 - - - - - - - -

FreAware 52.3 48.3 56.5 54.6 - - - - - - - -
NPR 55.6 47.1 57.6 50.9 - - - - - - - -

HIFI-Net* 54.3 47.3 - - 15.2 22.4 - - - - - -
TruFor 44.7 12.6 55.9 53.1 7.8 11.2 32.3 41.1 - - - -

PSCC-Net 35.4 9.9 48.9 46.1 20.5 30.7 41.1 48.7 - - - -
FakeShield* 42.1 35.7 - - 24.9 30.2 - - 0.2561 0.5214 - -

SIDA 50.1 49.8 73.1 72.2 25.4 38.9 40.1 49.3 0.1724 0.4026 0.4135 0.7899
LLaVA-1.5-13B 34.1 33.2 70.9 70.5 9.7 13.8 26.7 35.1 0.1026 0.3321 0.4212 0.7689

LISA 37.6 37.1 70.1 70.0 18.3 21.4 38.2 47.5 0.1663 0.4106 0.4115 0.7881
DeepSeek-VL-7B 35.9 34.0 71.1 70.4 10.3 14.1 25.4 34.6 0.1054 0.3422 0.4212 0.7776
Qwen2.5-VL-7B 38.4 35.7 73.3 72.5 17.5 20.3 42.2 49.9 0.2692 0.5342 0.4371 0.8124

InternVL3-8B 39.1 33.6 71.2 70.1 10.2 13.8 40.4 47.1 0.2653 0.5473 0.4463 0.8231
Ours - - 76.4 75.3 - - 47.8 59.1 - - 0.4695 0.8421

5.4 EXTERNAL EXPERIMENTS

Robustness Evaluation. We evaluate So-Fake-R1’s robustness against common social media
perturbations, including JPEG compression (quality 70/80), resizing (scale 0.5/0.75), and Gaussian
noise (variance 5/10). As shown in Table 4, our model maintains strong performance across all
degradation scenarios, demonstrating its practical applicability for real-world deployment.

Evaluation on External Social Media Benchmark. To further assess generalization capabilities,
we evaluate So-Fake-R1 on SID-Set (Huang et al., 2025b). As shown in Table 5, So-Fake-R1
demonstrates strong cross-dataset generalization after fine-tuning.

Cross-Domain Generalization Analysis. We analyze the generalization capabilities across different
generators to understand the challenges posed by So-Fake. As shown in Figure 5, detectors generalize
reasonably within So-Fake-Set when training and testing generators share architectural traits, but
performance drops sharply across distinct paradigms. In particular, cross-family transfer between
GAN and diffusion models is noticeably weaker, and this gap becomes far more pronounced under
So-Fake-OOD. This suggests that current detection methods may be overfitting to generator-specific
artifacts rather than learning fundamental patterns. Additional analysis is provided in Appendix C.

5.5 ABLATION STUDY

Training Strategy. We evaluate the effectiveness of our two-stage training pipeline. As shown in
Table 6, both the cold-start SFT stage and GRPO refinement contribute to final performance. The
cold-start stage is crucial for establishing basic detection capabilities, while GRPO significantly
improves all metrics. Without cold-start training, the model struggles to properly identify tampered
content categories, demonstrating that GRPO alone is insufficient for our challenging detection tasks.
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Table 4: Performance of So-Fake-R1 under dif-
ferent perturbations.

Detection Localization Explanation

ACC F1 F1 IOU ROUGE-L CSS

JPEG 70 91.5 91.2 60.3 45.1 0.4523 0.8612
JPEG 80 92.0 91.8 61.7 46.3 0.4611 0.8658

Resize 0.5 89.7 89.1 58.4 42.9 0.4352 0.8483
Resize 0.75 90.9 90.3 59.8 44.2 0.4477 0.8540
Gaussian 10 88.3 87.5 54.7 40.5 0.4124 0.8306
Gaussian 5 89.8 89.0 56.1 41.7 0.4239 0.8407

Original 93.2 92.9 63.9 48.6 0.4718 0.8769

Table 5: Comparison of So-Fake-R1 and other
deepfake detection methods on SID-Set.

Methods Real Fake Overall

Acc F1 Acc F1 Acc F1

CnnSpott 89.0 90.8 79.4 76.1 84.2 83.5
Gram-Net 89.2 91.7 93.9 92.8 91.6 92.3

Fusing 89.2 92.7 57.6 60.3 73.4 76.5
UnivFD 68.3 68.5 89.5 94.0 78.9 81.3

AntifakePromp 88.9 89.1 94.2 89.2 91.6 89.2
SIDA-7B 89.1 91.0 95.0 94.8 92.1 92.9

Ours 91.1 92.9 95.6 95.1 93.4 94.0

Table 6: Training strategy.

Cold Start GRPO Detection Acc.

✓ 63.7
✓ 89.3
✓ ✓ 93.2

Table 7: Reward function.

Rcls Rfmt Rseg fmt RIOU RL1 Acc IOU

✓ 93.1 -
✓ ✓ 93.1 -
✓ ✓ ✓ 92.9 -
✓ ✓ ✓ ✓ 93.2 46.7
✓ ✓ ✓ ✓ ✓ 93.2 48.6

Table 8: Policy model.

Policy Model Detection
Acc F1

InternVL3-8B 91.3 90.8
DeepSeek-VL-7B 88.6 88.1
Qwen2.5-VL-7B 93.2 92.9

Figure 5: Cross-generator domain generalization matrix using CNNSpot. Rows indicate training
generators and columns indicate test generators, with So-Fake-Set (left) and So-Fake-OOD (right).

Selection of Reward Functions. We analyze the impact of different reward function combinations
on model performance. As shown in Table 7, using all five reward functions yields the best results.

Policy Model Selection. We evaluate several policy models, and Table 8 shows that Qwen2.5-VL-7B
achieves the best performance, supporting our final choice.

6 CONCLUSION AND LIMITATION

Conclusion. We present So-Fake, a benchmark for social-media forgery detection that includes
So-Fake-Set for training/validation and So-Fake-OOD for cross-domain evaluation. We further
propose So-Fake-R1, an RL-based framework that unifies detection, localization, and explanation,
offering a strong baseline in both in-domain and OOD settings. Limitations. While So-Fake advances
the scale and diversity of forgery benchmarks, it still cannot fully capture the breadth of real-world
social media content or the rapidly evolving landscape of generative models. So-Fake-R1, though
effective, remains computationally demanding and may produce inaccurate localization in challenging
cases, as shown in Appendix D.4. Finally, our benchmark focuses on still images, leaving video and
multimodal forgeries as important directions for future work.
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Ethics Statement. This work adheres to ethical research practices detailed throughout our paper.
Data collection from Reddit follows their public content policy for non-commercial academic use
(Appendix E), with multi-stage human review processes to filter inappropriate content (Appendix B.3).
Our research aims to advance detection capabilities against malicious synthetic media, with datasets
and models released exclusively for academic research under controlled access. We acknowledge the
dual-use nature of generative AI research and commit to responsible disclosure practices to minimize
potential misuse while maximizing societal benefits through improved detection capabilities.

Reproducibility Statement. We provide comprehensive implementation details to ensure full
reproducibility. Complete dataset construction pipelines are detailed in Section 3 and Appendix B,
including all 40 generative methods (Table 9), human evaluation protocols (Section B.3), and
quality control procedures (Figure 6). Training configurations, hyperparameters, and reward function
specifications for So-Fake-R1 are provided in Appendix D.1. Baseline implementations follow official
guidelines where available, with detailed configurations in Section D.2. We commit to releasing
the So-Fake dataset, So-Fake-R1 source code, trained model weights, and evaluation protocols to
facilitate future research and enable direct comparison with our results.

LLM Usage Statement. We declare that large language models (LLMs) were used exclusively
for language editing and stylistic improvements in this manuscript. They did not contribute to the
conceptual, methodological, or experimental aspects of the work.
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Khedr, Roman Rädle, Chloé Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross B. Girshick, Piotr Dollár, and Christoph
Feichtenhofer. SAM 2: Segment anything in images and videos. Arxiv, 2024.

14

https://huggingface.co/Lykon/AbsoluteReality
https://huggingface.co/Lykon/AbsoluteReality
https://www.midjourney.com/home


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Realistic Vision. realistic-vision-v51. https://huggingface.co/
stablediffusionapi/realistic-vision-v51, 2023.

recraftAI. recraft. https://www.recraft.ai/, 2024.

Jonas Ricker, Dennis Assenmacher, Thorsten Holz, Asja Fischer, and Erwin Quiring. Ai-generated
faces in the real world: A large-scale case study of twitter profile images. In RAID, RAID ’24,
2024.

riiwa. rRealism v1.0 riiwa, 2024. URL https://civitai.com/models/565139/
rrealism?modelVersionId=629833.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, 2022.
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A APPENDIX

Contents of the Appendix:

Section B provides full details on dataset construction, including:

- The generative methods used in this paper (Section B.1),

- The selection of caption models (Section B.2),

- Human expert assessment, including source image filtering, model choice, and generative quality
evaluation (Section B.3),

- Construction of the cold start dataset (Section B.4),

- The process of generating the ground-truth explanations (Section B.5).

Section C presents benchmark analyses, including:

- Dataset statistics and distributional comparisons (Section C.1),

- Cross-domain generalization analysis (Section C.2),

- Category-level and forgery-type asymmetry studies (Section C.3),

- Representative dataset samples (Section C.4),

- Duplicate detection analysis (Section C.5).

Section D outlines experimental settings and method details, including:

- Reinforcement learning configuration (Section D.1),

- Implementation settings (Section D.2),

- Qualitative comparison on tampered cases (Section D.3),

- Additional qualitative examples (Section D.4).

Section E discusses the broader social impact of our work.

B DATA CONSTRUCTION

In this section, we present the construction pipeline of the So-Fake dataset. We first describe
the generative methods employed to synthesize both fully synthetic and tampered images in So-
Fake-Set and So-Fake-OOD (Section B.1). We then detail the selection of caption models used to
provide textual descriptions images (Section B.2). Next, we outline the human expert assessment
procedure, including source filtering, model validation, and quality control (Section B.3). We
further introduce the cold start dataset designed to initialize reasoning capabilities with structured
annotations (Section B.4). Finally, we describe the generation of explanation ground-truths, which
serve as reliable supervision for evaluating model outputs (Section B.5).

B.1 GENERATIVE METHODS

We describe the generative models and prompting strategies used to synthesize both fully synthetic
and tampered images in So-Fake-Set and So-Fake-OOD, as shown in Table 9. In total, we employ 40
generative methods to ensure the dataset is comprehensive and diverse. To maintain architectural
balance, we include a range of both GAN-based and diffusion-based models. While some methods are
relatively outdated, a limited number are retained to reflect historical trends and enhance robustness.
For more advanced models such as FLUX (Labs, 2024), SD-3.5 (Esser et al., 2024), SD-XL (Podell
et al., 2024), and Latent Diffusion (Rombach et al., 2022), we generate a larger volume of samples
due to their accessibility and high visual fidelity.
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Table 9: Details of generative methods used in constructing So-Fake-Set and So-Fake-OOD. Column
abbreviations: Set = So-Fake-Set, OOD = So-Fake-OOD, F = fully synthetic images, T = tampered
images. Real data source abbreviations: F30k = Flickr30k, OI = OpenImages, OF = OpenForensics.

ID-Number Method Model Type Data Used Generation Target Year Venue Real Data Source Data Scale Code Link

1 Absolute Reality (Lykon, 2023) Diffusion Set F 2023 None F30k & WIDER 50000 Hyper-link
2 AttGAN (He et al., 2017) GAN Set F 2017 PAMI FFHQ & CelebA 2000 Hyper-link
3 BEGAN (Berthelot et al., 2017) GAN Set F 2017 NeurIPS FFHQ & CelebA 2000 Hyper-link
4 Collaborative Diffusion (Huang et al., 2023) Diffusion Set F 2023 CVPR FFHQ & CelebA 30000 Hyper-link
5 CramerGAN (Bellemare et al., 2017) GAN Set F 2017 NeurIPS FFHQ & CelebA 2000 Hyper-link
6 DiT-XL (Peebles & Xie, 2023) Diffusion Set F 2023 ICCV FFHQ & CelebA 10000 Hyper-link
7 FLUX.1-dev (Labs, 2024) Diffusion Set F & T 2024 None FFHQ & CelebA & OI & COCO & OF 350000+ Hyper-link
8 InfoMaxGAN (Lee et al., 2021) GAN Set F 2021 WACV FFHQ & CelebA 2000 Hyper-link
9 Kandinsky3 (Arkhipkin et al., 2023) Diffusion Set F 2023 None F30k & WIDER 80000 Hyper-link

10 Latent diffusion (Rombach et al., 2022) Diffusion Set F & T 2022 CVPR F30k & WIDER &COCO & OI 250000+ Hyper-link
11 MMDGAN (Li et al., 2017) GAN Set F 2017 NeurIPS FFHQ & CelebA 2000 Hyper-link
12 playground (Li et al., 2024a) Diffusion Set F 2024 None F30k & WIDER 50000 Hyper-link
13 R3GAN (Huang et al., 2024a) GAN Set F 2024 NeurIPS FFHQ & CelebA 30000 Hyper-link
14 RDDM (Liu et al., 2024) Diffusion Set F 2024 CVPR FFHQ & CelebA 10000 Hyper-link
15 rRealism riiwa (riiwa, 2024) Diffusion Set F 2024 None F30k & WIDER 50000 Hyper-link
16 RelGAN (Nie et al., 2019) GAN Set F 2019 ICLR FFHQ & CelebA 2000 Hyper-link
17 SD-3.5 (Esser et al., 2024) Diffusion Set F 2024 ICML FFHQ & CelebA & OI & COCO & F30k 100000+ Hyper-link
18 SD-XL (Podell et al., 2024) Diffusion Set F & T 2024 ICLR F30k & WIDER & COCO &OF 300000+ Hyper-link
19 StyleGAN-2 (Karras et al., 2020) GAN Set F 2020 CVPR FFHQ & CelebA 30000 Hyper-link
20 StyleGAN-3 (Karras et al., 2021a) GAN Set F 2021 NeurIPS FFHQ & CelebA 30000 Hyper-link
21 StyleGAN-XL (Podell et al., 2024) GAN Set F 2022 SIGGRAPH FFHQ & CelebA 30000 Hyper-link
22 SiT-XL (Ma et al., 2024) Diffusion Set F 2024 ECCV FFHQ & CelebA 10000 Hyper-link
23 SNGAN (Miyato et al., 2018) GAN Set F 2018 ICLR FFHQ & CelebA 2000 Hyper-link
24 STGAN (Liu et al., 2019) GAN Set F 2019 CVPR FFHQ & CelebA 2000 Hyper-link
25 VQGAN (Yu et al., 2022) GAN Set F 2022 ICLR FFHQ & CelebA 2000 Hyper-link
26 OpenForensics (Le et al., 2021) GAN Set F 2021 CVPR Google Open Images 10000 Hyper-link
27 Realistic Vision (Realistic Vision, 2023) Diffusion Set F 2023 None F30k & WIDER & COCO &OF 50000 Hyper-link
28 FLUX.1-Kontext-dev (Labs, 2024) Diffusion Set F 2025 None OI 8000+ Hyper-link
29 Qwen-image (Wu et al., 2025) Diffusion Set F 2025 Arxiv OI 3000+ Hyper-link
30 Midjourney (Midourney, 2023) Diffusion Set F 2023 None OI 8000+ Hyper-link
31 Recraft-v3 (recraftAI, 2024) Diffusion OOD F 2024 None Reddit 5000+ Hyper-link
32 GPT-4o(OpenAI, 2023) Diffusion OOD F & T 2025 Arxiv Reddit 8000+ Hyper-link
33 Image3 (Baldridge et al., 2024) Diffusion OOD F 2025 Arxiv Reddit 3000+ Hyper-link
34 Image4 (Baldridge et al., 2024) Diffusion OOD F 2025 Arxiv Reddit 3000+ Hyper-link
35 Nano Banana (Baldridge et al., 2024) Diffusion OOD F 2025 None Reddit 2000+ Hyper-link
36 Seedream3.0 (Gao et al., 2025) Diffusion OOD F 2025 Arxiv Reddit 5000+ Hyper-link
37 Ideogram3.0 (Ideogram, 2025) Diffusion OOD F & T 2025 None Reddit 5000+ Hyper-link
38 Ideogram2.0 (Ideogram, 2024) Diffusion OOD F 2024 None Reddit 5000+ Hyper-link
39 FLUX1.1 pro (Labs, 2025) Diffusion OOD F 2025 None Reddit 3000+ Hyper-link
40 Hi-Dream (HiDream-ai, 2025) Diffusion OOD F 2025 None Reddit 3000+ Hyper-link

Table 10: Comparison of image captioning models for prompt generation using CLIP score.

Method Mean±Std
Qwen2.5-VL-7B 0.3361±0.034
InternVL2-7B 0.3258±0.034
BLIP-2 0.3047±0.036
InstructBLIP 0.2996±0.034
LLaVA-7B 0.2974±0.037

B.2 CAPTION MODEL SELECTION

To ensure high-quality prompts for diffusion-based text-to-image synthesis, we first evaluate multiple
captioning models on their ability to produce detailed descriptions of source images. Specifically, we
randomly sample 1,000 images from So-Fake-Set and use five popular image captioning LLMs to
generate corresponding prompts. We then compare prompt quality using CLIP similarity score, as
shown in Table 10. The results show that Qwen2.5-VL-7B (Bai et al., 2025) achieves the highest
CLIP score, and we therefore adopt it as our unified prompt generator for So-Fake.

B.3 HUMAN EXPERT ASSESSMENT

We conducted a rigorous human evaluation to ensure the quality and appropriateness of our dataset.
Five experts participated in a multi-stage process that included: (1) filtering source images, (2)
validating model selection choices, and (3) assessing the quality of generated synthetic content. The
overall process is illustrated in Figure 6.

Source Image Filtering. To construct a realistic and diverse OOD benchmark, we carefully selected
subreddits based on their popularity, topical diversity, and coverage of broad content categories
representative of typical social media platforms. Specifically, we selected 11 subreddits, includ-
ing (1) pics, (2) HumanPorn, (3) aww, (4) EarthPorn, (5) Getsdraw, (6) Drawme, (7)
TheWayWeWere, (8) Animal, (9) Ittookapicutre, (10) Sports, and (11) cityporn. We
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Figure 6: Human expert assessment process comprising source image filtering, model selection, and
image quality assessment. This multi-stage evaluation ensures the dataset’s authenticity, diversity,
and high visual quality for realistic deepfake detection scenarios.

used the official Reddit API3 to collect images and adhered to Reddit’s Public Content Policy4,
ensuring that all images were used strictly for non-commercial research purposes.

After collecting the initial dataset, experts manually reviewed the Reddit images and filtered out those
deemed inappropriate, harmful, or irrelevant to social media image analysis. This process resulted in
a curated set of 100K high-quality source images for building the So-Fake-OOD benchmark.

Model Selection. Five human experts conducted a thorough evaluation of generative models to
determine which should be included in So-Fake-Set and So-Fake-OOD. Each candidate model was
reviewed based on its visual output quality, prompt controllability, content diversity, and relevance
to current generative trends. The experts considered both widely adopted and emerging models,
ensuring a balanced mix of GAN-based and diffusion-based architectures. This process resulted in
the selection of 40 models, ranging from early GANs like StyleGAN and AttGAN to state-of-the-art
diffusion models such as SD-XL (Podell et al., 2024), FLUX (Labs, 2024), and DiT (Peebles & Xie,
2023). By involving domain experts in model evaluation, we ensured that the final selection reflects
both high technical quality and representative diversity for real-world image forgery scenarios.

Image Quality Assessment. Expert reviewers assessed the realism of generated images using a five-
point scale (0–5, with 5 indicating the highest quality). Images scoring below 3 underwent secondary
review, and confirmed low-quality samples were excluded from the dataset. For So-Fake-Set, we
adopted a two-stage filtering process: an initial automated pass using QwenVL-7B (Bai et al., 2025)
to remove clearly non-photorealistic images, followed by random human spot-checks. In contrast, all
So-Fake-OOD images were subjected to a comprehensive manual review to ensure consistently high
visual quality and realism. An illustrative example is provided in Figure 7.

B.4 COLD-START DATASET CONSTRUCTION

To initialize the reasoning capabilities of So-Fake-R1, we constructed a dedicated cold-start dataset.
Our goal in this stage was not to maximize scale, but to establish a compact yet diverse corpus that
provides consistent supervision signals and prevents overfitting.

Sampling strategy. We evenly sampled images from So-Fake-Set across all 30 generative methods
and 12 semantic categories, ensuring broad coverage of both content and generation styles. In total,
we curated approximately 9,000 images, deliberately balanced across the three classes (real, fully
synthetic, tampered).

Annotation process. For each selected image, we obtained chain-of-thought explanations using GPT-
4o (Hurst et al., 2024), chosen for its strong visual reasoning and descriptive capabilities. The prompts

3https://www.reddit.com/prefs/apps
4https://www.reddit.com/r/reddit/comments/1co0xnu/sharing_our_public_

content_policy_and_a_new/
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Figure 7: Illustrative examples of generation quality and reviewer scores at low, medium, and high
quality levels.

followed a structured template (Listing 1), designed to elicit hierarchical rationales highlighting
at least five concrete visual cues. For tampered images, we additionally attached bounding box
coordinates derived from the corresponding binary manipulation masks, where the box was computed
by extracting the extreme pixel coordinates (top-left and bottom-right) of the altered region. The
standardized format "TAMPERED,<|box start|>" (x1, y1), (x2, y2) "<|box end|>" allows
models to explicitly associate textual justifications with localized manipulated regions.

Quality control. Although the explanations were generated automatically, we conducted lightweight
human verification to ensure semantic consistency and adherence to the prescribed output format.
Outputs exhibiting ambiguity or structural errors were removed. This procedure provided a high-
confidence set of supervision signals without incurring the cost of large-scale manual annotation.

Listing 1: Prompt templates used for constructing the cold-start dataset.

PROMPT_TEMPLATES = {
"REAL": """<image>

You are a forensic image analyst.

This image is known to be **real** (unaltered and directly from a
camera).

TASK:
In <= 1024 characters, describe at least five concrete visual

cues from this specific image that indicate it is authentic
and unedited.

The first sentence should depict the details of the given image.

OUTPUT FORMAT:
Return exactly two blocks:
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1) <think> ...your entire reasoning here... </think>
2) <answer> REAL </answer>

EXAMPLE:
<think>The image shows a woman with voluminous, side-swept wavy

hair, wearing makeup and gazing slightly to the right.
Several visual cues suggest the image is authentic and
unedited: natural, consistent shadows across the face;
realistic skin texture and tonal variation; hair strands
blending smoothly into the background without abrupt edges;
natural facial depth around the nose and cheekbones; and no
signs of digital artifacts or unnatural
blending.</think><answer>REAL</answer>

Now analyze the current image and respond using the exact format
specified above.

""",

"TAMPERED": """<image>
<mask>

You are a forensic image analyst.
You will receive two images. The first image has been

**tampered**. The second image is a binary mask (white =
altered pixels) showing the tampered area of the first image.

TASK:
In <= 1024 characters, first describe the scene, then describe at

least five concrete manipulation clues visible around the
highlighted area (e.g., lighting mismatch, edge artifacts).

Do **not** mention the mask file itself.

OUTPUT FORMAT:
Return exactly two blocks:
1) <think> ...your entire reasoning here... </think>
2) <answer> TAMPERED </answer>

EXAMPLE:
<think>The image shows a crowded subway station where people are

lined up near the platform doors, with a woman prominently
posed in front holding a drink. Manipulation clues include a
lighting mismatch on the woman compared to the ambient scene,
hard edge artifacts around her silhouette, inconsistent
shadowing beneath her, sharper resolution than surrounding
elements, and slight scale distortion making her appear
unnaturally inserted. The image is
tampered.</think><answer>TAMPERED</answer>

Now analyze the current image and respond using the exact format
specified above.

""",

"FULL_SYNTHETIC": """<image>

You are a forensic image analyst.

This image is known to be **fully synthetic** (entirely generated
by AI).
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TASK:
In <= 1024 characters, describe at least five visual cues that

reveal the image was generated artificially.
The first sentence should depict the details of the given image.

OUTPUT FORMAT:
Return exactly two blocks:
1) <think> ...your entire reasoning here... </think>
2) <answer> FULL_SYNTHETIC </answer>

EXAMPLE:
<think>The image shows a shirtless, muscular man with tattoos

walking down a palm-lined street near parked cars. Telltale
signs of AI generation include overly smooth skin texture,
inconsistent lighting between subject and background,
unnatural tattoo symmetry, subtly distorted vehicle details,
and unrealistically perfect muscle definition. The image is
fully synthetic.</think><answer>FULL_SYNTHETIC</answer>

Now analyze the current image and respond using the exact format
specified above.

"""
}

B.5 EXPLANATION GROUND-TRUTH GENERATION

To supervise the explanation component of So-Fake-R1, we constructed textual ground-truth rationales
using a two-step process. First, we employed Claude Opus 4.1 (light logo, 2025), which was
selected due to its strong performance in long-form reasoning and stylistic consistency, to generate
chain-of-thought explanations. Each prompt included the original image, the associated tampered
region mask (for tampered samples only), and the ground-truth class label (REAL, TAMPERED, or
FULL SYNTHETIC). The model then produced reasoning traces in the required output format.

To ensure semantic reliability, a sample of 3,000 generated explanations was systematically reviewed
by human experts. The evaluation applied three criteria:

(1) Accuracy – the rationale must correctly describe visual evidence in the image;

(2) Clarity – the explanation must be concise and unambiguous;

(3) Consistency – reasoning style and conclusions must remain coherent across similar cases.

Outputs that were ambiguous or structurally flawed were refined or discarded. The finalized an-
notations therefore provide a high-confidence benchmark for evaluating multimodal reasoning.
Importantly, these ground-truth explanations are used only for evaluation and are distinct from the
cold start annotations employed during training (Appendix B.4).

C BENCHMARK ANALYSES

In this section, we conduct benchmark analyses to demonstrate the properties and utility of the
So-Fake dataset. We begin with dataset statistics and distributional comparisons between So-Fake-
Set and So-Fake-OOD (Section C.1). We then analyze cross-domain generalization to assess the
challenges introduced by the OOD benchmark (Section C.2). Next, we examine category-level and
forgery-type asymmetries to reveal systematic differences across semantic domains and manipulation
modes (Section C.3). Finally, we provide representative examples that qualitatively illustrate the data
types in So-Fake (Section C.4). Together, these analyses empirically substantiate the scale, diversity,
and difficulty of So-Fake.
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C.1 DATASET STATISTICS AND DISTRIBUTIONAL COMPARISONS

(b) Semantic Space(a) Category Distribution

Figure 8: Cross-domain alignment between So-Fake-Set and So-Fake-OOD. (a) Category distribution
under the 12-class taxonomy. (b) CLIP embedding visualization.

As outlined in Sec. 3.1, a valid OOD benchmark must maintain comparable semantic coverage while
exhibiting measurable distributional shift, particularly in social media contexts. We analyze the
relationship between So-Fake-Set and So-Fake-OOD to verify these properties, confirming both
semantic alignment and realistic domain gap necessary for robust evaluation.

Category distribution: under the unified 12-class taxonomy, the Jensen–Shannon divergence (JSD)
is computed on the real subsets to avoid generation-induced artifacts. The divergence is low (JSD ≈
0.08), indicating that So-Fake-OOD provides similar semantic coverage while avoiding category-
driven bias in OOD evaluation, as illustrated in Figure 8 (a).

Semantic space: CLIP embeddings are extracted from a randomly sampled subset of 10K images
from each domain to capture overall semantic coverage. The embedding analysis shows substantial
overlap between So-Fake-Set and So-Fake-OOD, while maintaining a measurable domain gap, as
illustrate in Figure 8 (b).

Together, these results demonstrate that So-Fake-Set and So-Fake-OOD are semantically aligned yet
distributionally distinct, supporting fair and challenging OOD evaluation.

Table 11: Cross-domain generalization performance on So-Fake-OOD using CNNSpot. ID = In-
domain; OOD = Out-of-domain.

Category Count ID AUROC OOD AUROC Change (%)

GAN-based Methods 14 0.594 0.396 -19.8
Open-source Diffusion 7 0.584 0.471 -11.3
Commercial Diffusion 9 0.483 0.730 +24.7

C.2 CROSS-DOMAIN GENERALIZATION ANALYSIS

To systematically analyze cross-domain generalization patterns, we categorize the 30 training methods
into three groups based on their technical foundation and deployment context:

GAN-based models: BEGAN, CramerGAN, InfoMaxGAN, MMDGAN, RelGAN, SNGAN,
STGAN, AttGAN, VQGAN, StyleGAN2, R3GAN, StyleGAN3, StyleGAN-XL, OpenForensics fake.

Open-source Diffusion Models: Latent Diffusion, Collaborative Diffusion, DiT, RDDM, SiT, Stable
Diffusion-3.5, Stable Diffusion-XL.

Commercial / Proprietary Diffusion Models: FLUX.1-dev, FLUX-1-Kontext-dev, Kandinsky3,
Midjourney, Playground, Qwen-image, Absolute Reality, rRealism riiwa, Realistic Vision.

Our cross-domain evaluation reveals distinct generalization patterns that reflect the evolving techno-
logical landscape of social media forgery. As shown in Table 11 and Figure 5, while GAN-based
methods achieve the strongest performance on So-Fake-Set, they exhibit substantial degradation
on So-Fake-OOD. Conversely, commercial diffusion models demonstrate the weakest performance
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on the training domain but show remarkable cross-domain adaptation, achieving the highest OOD
performance. Open-source diffusion models maintain moderate but stable performance.

These analyses capture an important transition in the landscape of social media forgeries. While
GAN-based methods remain prevalent in targeted facial manipulations due to their controllability
and efficiency, diffusion-based commercial models increasingly dominate the broader ecosystem by
producing diverse, high-fidelity content across multiple categories. This technological stratification
gives rise to asymmetric detection challenges: detectors trained primarily on academic GAN genera-
tors often underperform on emerging commercial diffusion models, whereas detectors exposed to
commercial models exhibit more robust generalization across heterogeneous forgery sources.

The generalization gap between commercial and open source diffusion models reflects fundamental
differences in their development contexts. Commercial generators face diverse real-world deployment
pressures and continuous adversarial challenges in social media environments, leading to distributional
properties that enhance detector generalizability. Open source diffusion models, while providing
controlled experimental conditions and architectural diversity essential for research, may encode
generator-specific artifacts that limit cross-domain transfer.

Importantly, although GAN-based models demonstrate limited OOD generalization, their inclusion
remains essential for comprehensive evaluation. These models continue to drive many facial manip-
ulation techniques prevalent on social media platforms, provide crucial contrast to diffusion-based
methods that illuminates paradigm shifts in generative technology, and represent persistent threats
that detection systems must handle in practice. Taken together, these findings underscore that future
detection strategies should move beyond isolated, single-paradigm benchmarks. Effective systems re-
quire balanced coverage across both GAN-based and diffusion-based forgeries, supported by adaptive
training protocols that account for the diverse threat landscape encountered in real-world deployment
scenarios. By capturing the performance divergence between different generative paradigms, So-Fake
provides a benchmark that reflects the complex and evolving nature of social media forgeries.

Figure 9: AUROC on tampered vs. full
synthetic tests under different settings.

Figure 10: ROC curves for face (left) and none face (right)
tests.

C.3 CATEGORY-LEVEL AND FORGERY-TYPE ASYMMETRY STUDIES

In this section, we move beyond quantitative benchmarks to discuss two key aspects surfaced by
So-Fake: (1) differences between tampered and fully synthetic forgeries and (2) the contrast between
face-centric and non-face content. We report results using CNNSpot as the detector, given its broad
adoption as a generator-agnostic baseline.

Tampered vs. Full Synthetic. Figure 9 reveals a significant transfer detection gap between tampered
and fully synthetic forgeries. Detectors trained on tampered content perform well in-domain (0.779)
but performed relatively poorly on synthetic data (0.704), while synthetic-trained models show
the reverse pattern (0.578 vs. 0.716). This asymmetry suggests fundamentally different forensic
signatures rather than a shared distribution. Mixed training bridges this gap (0.767 vs. 0.724),
demonstrating that a unified three-class approach effectively captures both manipulation types
while preserving generalization performance. This finding directly validates our design choice for
social media forgery detection, where the coexistence of both manipulation types in user feeds
necessitates robust cross-category generalization. Our three-class taxonomy (real, tampered, fully
synthetic) mirrors the spectrum of fake content prevalent on social platforms, where subtle regional
manipulations (e.g., localized inpainting) and entirely AI-generated posts coexist and require unified
detection frameworks to ensure comprehensive coverage of real-world scenarios.
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Face vs. Non-Face Forgeries. Deepfake detection has traditionally centered on facial manipulations,
which constitute the majority of existing benchmarks and detection frameworks. To assess whether
this focus has created domain-specific biases, we examine detection performance across face and
non-face categories on our dataset. Our analysis reveals a clear asymmetry: face-centric forgeries are
substantially easier to detect than non-face ones, as shown in Figure 10. Specifically, models achieve
an AUROC of 0.960 on face content but only 0.562 on non-face content when trained exclusively
on faces, demonstrating a dramatic 39.8% performance drop. However, our integrated approach
combining faces with 11 diverse non-face categories yields improved overall robustness—mixed
training achieves balanced performance with face detection (AUROC = 0.897) and non-face detection
(AUROC = 0.848), representing a 28.6% improvement over face-only training on non-face content.
This design choice directly reflects social media reality, where users encounter heterogeneous content
spanning portraits, landscapes, objects, and events within the same feeds. By explicitly covering this
full spectrum, So-Fake provides a more realistic testbed that addresses the overlooked dimension of
generalizable forgery detection across diverse content types.

So-Fake-Set So-Fake-OOD

Figure 11: Representative real images from So-Fake-Set (left) and So-Fake-OOD (right).

C.4 REPRESENTATIVE DATASET SAMPLES

In this section, we present representative samples from So-Fake-Set and So-Fake-OOD, covering the
three categories of our benchmark: real images from authentic sources, tampered images generated
by localized inpainting with masks, and fully synthetic images created by GANs and diffusion-based
models. Examples are shown in Figure 11 (real images), Figure 12 (tampered images), and Figure 13
(fully synthetic images).

C.5 DUPLICATE DETECTION ANALYSIS

To verify the independence between So-Fake-Set and So-Fake-OOD, we conducted comprehensive
similarity analysis using DINOv3 (ViT-L/16) Siméoni et al. (2025), a state-of-the-art self-supervised
vision model widely adopted for duplicate detection tasks. We evaluate duplicate similarity under the
following configuration:

Data sampling. Due to computational constraints, we randomly sample 10% of the real images from
each split (seed = 42), resulting in 65,000 sampled real images from So-Fake-Set (650K total) and
3,300 from So-Fake-OOD (33K total).
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So-Fake-Set So-Fake-OOD

Figure 12: Representative tampered images from So-Fake-Set (left) and So-Fake-OOD (right).

So-Fake-Set So-Fake-OOD

Figure 13: Representative full synthetic images from So-Fake-Set (left) and So-Fake-OOD (right).

Similarity metric: We compute cosine similarity from DINOv3 embeddings and apply a conservative
threshold of 0.9 to identify potential duplicates.

Results. The experiment identified 19 high-similarity pairs across the two subsets. We manually
inspected all 19 pairs, with representative examples shown in Figure 14. Visual inspection confirms
these pairs represent distinct images exhibiting semantic or compositional similarity rather than actual
duplication. For instance, Pair 1 shows two photographs of Moraine Lake captured under different
lighting and weather conditions, Pair 2 depicts the same vehicle model photographed in different
settings, and Pair 5 presents the same species rendered in different color spaces and environmental
contexts.
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So-Fake-Set So-Fake-OOD So-Fake-OODSo-Fake-Set

Pair 1

Pair 2

Pair 3

Pair 4

Pair 5

Pair 6

Figure 14: Representative high-similarity pairs identified by DINOv3 (cosine similarity ≥ 0.9)
between So-Fake-Set and So-Fake-OOD. Visual inspection confirms these are distinct images with
topic-level similarity rather than actual duplicates, demonstrating minimal overlap between the two
splits.

These findings align with expected behavior when comparing large-scale image collections spanning
overlapping semantic categories. The minimal overlap rate (19 pairs from 68,300 cross-dataset
comparisons, representing 0.028%) confirms that So-Fake-Set and So-Fake-OOD maintain strong
distributional independence, validating So-Fake-OOD as a rigorous out-of-distribution benchmark.

D EXPERIMENTAL SETTINGS AND METHOD DETAILS

In this section, we provide comprehensive implementation details for the So-Fake-R1 framework and
experimental configurations used throughout our evaluation. We begin by detailing the reinforcement
learning setup, including reward function specifications, training hyperparameters, and optimization
procedures (Section D.1). We then outline the implementation specifics for both the baseline methods
and our proposed approach, covering model architectures, training protocols, and computational
requirements (Section D.2). To further contextualize our contributions, we include a comparative
visualization of tampered cases across So-Fake-R1 and competing detectors, highlighting differences
in localization quality (Section D.3). Finally, we present additional qualitative examples that illustrate
the detection, localization, and explanation capabilities of So-Fake-R1 across diverse forgery types
and content categories (Section D.4). These details ensure reproducibility and provide practical
guidance for researchers building upon our work.

D.1 REINFORCEMENT LEARNING CONFIGURATION

As shown in Figure 15, the GRPO training is the core of So-Fake-R1. In this section, we describe the
configuration of the GRPO training setup, including the specific weight assignments and detailed
reward components. We first discuss the rationale for applying GRPO to multi-modal tasks, then
provide detailed specifications of our reward function design and individual reward components.

GRPO for Multi-modal Tasks. Reinforcement learning has recently shown promise in vision-
language tasks by enabling models to develop reasoning capabilities through trial-and-error learning
rather than mimicking human-provided explanations. Among recent advances, Group Relative Policy
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<think> The image depicts a child 
seated in a high chair. Tampering 
clues include: inconsistent lighting 
on the child's face and hair, 
unnatural shadows under the high 
chair, blurred edges around the 
child's silhouette, and a lack of 
depth in the background that 
doesn't match the foreground 
elements. These inconsistencies 
suggest the child may have been 
digitally added to the scene. The 
image is tampered.
</think><answer>TAMPERED,(0,
4),(213,205).</answer>
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Figure 15: (a): Overview of the So-Fake-R1 training process; (b): The detailed So-Fake-R1 GRPO
training process. The example shows a tampered image where a boy has been manipulated.

Table 12: Ablation study on reward weight configurations.

λfmt λcls λseg fmt λIoU λL1 Detection(Acc) Localization(IoU)

1.0 1.0 1.0 1.0 1.0 91.8 45.2
0.1 0.9 0.1 0.9 0.9 93.2 48.6
0.5 1.0 0.5 1.0 1.0 92.1 46.8

Optimization (GRPO) (DeepSeek-AI et al., 2025) has emerged as particularly effective for tasks
requiring minimal human supervision, achieving this through rule-based reward mechanisms that
guide models toward desired behaviors without relying on extensive annotations. This annotation-free
approach makes GRPO particularly valuable for vision-language models (VLMs) (Zhang et al.,
2025; Huang et al., 2025a; Xu et al., 2025), where obtaining detailed human explanations for visual
reasoning is especially challenging. Notable applications include Seg-Zero (Liu et al., 2025a) for
zero-shot segmentation, Visual-RFT (Liu et al., 2025b) for visual question answering, and VLM-
R1 (Shen et al., 2025) for robust object detection, establishing GRPO as a standard approach for
optimizing multi-modal models that require balancing multiple objectives.

Our reward function design follows established practices in multi-modal reinforcement learning: (1)
format rewards ensure structured outputs, which is standard for all structured generation tasks; (2)
task-specific rewards based on ground truth labels, following the standard practice of supervised-to-
RL conversion; and (3) multi-metric combinations (IoU + L1) that align with established practices in
object detection literature. Although GRPO has shown success in various vision-language tasks, it
has not yet been applied to forgery detection, where both accuracy and unbiased explainability are
essential. To our knowledge, So-Fake-R1 is the first framework to use GRPO for forgery detection.

Reward Function Design. The total reward is computed as:

Rtotal = λfmtRfmt + λclsRcls + λseg fmtRseg fmt + λIoURIoU + λL1RL1 (2)

Based on observations from the ablation study on reward design (Table 7), we found that the progress
of GRPO training is less sensitive to formatting rewards, which primarily serve as structural constraints
rather than performance drivers. Therefore, we set λfmt = λseg fmt = 0.1, and λcls = λIOU = λL1 = 0.9,
encouraging the model to prioritize classification accuracy and precise segmentation outputs during
training. This weight allocation is empirically validated through Table 12, demonstrating that each
component contributes to the final performance. Below, we detail each reward component:
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Explanation Format Reward (Rfmt). This reward function encourages structured reasoning by requir-
ing the model to format its output using <think>...</think> for the reasoning process and
<answer>...</answer> for the final answer. The model receives a reward of +1 if the output
follows this format correctly; otherwise, it receives 0. This follows the standard practice in structured
text generation tasks where format compliance is enforced through binary rewards.

Detection Reward (Rcls). This reward encourages accurate multi-class classification among
REAL, TAMPERED, and FULL SYNTHETIC, based on the label provided within the
<answer>...</answer> tags. The model receives a reward of +1 for correctly identifying REAL
or FULL SYNTHETIC images, and a higher reward of +3 for correctly identifying TAMPERED, as
detecting tampered images is more challenging based on our preliminary analysis showing lower
baseline performance on this class. Incorrect classifications receive a reward of 0.

Localization Format Reward (Rseg fmt). This reward ensures that bounding boxes follow a strict
coordinate specification. The model receives a reward of +1 if its output includes properly for-
matted coordinates (i.e., four numerical values enclosed between the tags <|box start|> and
<|box end|>), such as: <|box start|> (x1, y1), (x2, y2) <|box end|>. If the format is
incorrect or missing, the reward is 0.

IoU Reward (RIoU). This reward grants a positive score when predicted boxes achieve meaningful
overlap with ground truth. For TAMPERED images, the model receives a reward of +1 if the predicted
bounding box achieves an Intersection-over-Union (IoU) greater than 0.5 compared to the ground
truth. The 0.5 IoU threshold follows the standard practice in object detection literature for meaningful
overlap assessment. For REAL and FULL SYNTHETIC images, which do not require localization, a
reward of +1 is assigned by default. In all other cases, the reward is 0.

L1 Reward (RL1). This reward further refines localization accuracy by rewarding predictions within
close proximity to ground truth coordinates. For TAMPERED images, the model receives a reward
of +1 if the total L1 distance across all four coordinates is less than 10 pixels. For REAL and
FULL SYNTHETIC samples, which do not require bounding boxes, a default reward of +1 is
assigned. Otherwise, the reward is 0. The combination of IoU and L1 rewards ensures both region
overlap quality and precise boundary alignment, as IoU alone can be satisfied by oversized boxes.

D.2 IMPLEMENTATION DETAILS

Baseline Methods. For detection-only methods including CnnSpot (Frank & Holz, 2021), Uni-
vFD (Ojha et al., 2023), FreAware (Tan et al., 2024b), and NPR (Tan et al., 2024a), we follow
the official implementation guidelines provided in their respective documentation and adopt the
recommended or highest-performing configurations when available.

For image forgery detection and localization (IFDL) methods, we fine-tune TruFor (Guillaro et al.,
2023), PSCC-Net (Liu et al., 2022), and SIDA (Huang et al., 2025b) on So-Fake-Set according to the
official recommended settings. For FakeShield (Xu et al., 2024) and HIFI-Net (Guo et al., 2024), we
use the pre-trained weights for evaluation due to code availability constraints.
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Figure 16: Detection accuracy over
GRPO training steps.

For vision-language models, including LLaVA-1.5-
13B (Liu et al., 2023), InternVL3-8B (Zhu et al., 2025),
Qwen2.5-VL-7B (Bai et al., 2025), and DeepSeek-VL-
7B (DeepSeek-AI et al., 2025), we adopt the ms-swift5

framework for streamlined integration, fast inference, and
effective hyperparameter tuning. For each model, we se-
lect the best-performing checkpoint based on validation
performance. For LISA (Lai et al., 2024), we use the
official codebase and follow the authors’ recommended
hyperparameter settings.

So-Fake-R1 Implementation. We use Qwen2.5-VL-
7B-Instruct Bai et al. (2025) as our policy model and
SAM2 Ravi et al. (2024) for segmentation refinement. Our training follows a two-stage pipeline
comprising a cold-start phase followed by GRPO fine-tuning. In both stages, all input images (and

5https://github.com/modelscope/ms-swift
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masks, when present) are resized to 224 × 224 pixels to ensure consistent input dimensions and
reduce memory consumption.

For the cold-start phase, we apply LoRA (Hu et al., 2021) with α = 32 and rank 16. The model is
trained using a learning rate of 5e-5, weight decay of 0.1, and a maximum token length of 2048. This
stage takes approximately 30 minutes to complete on a single A100 GPU (40GB).

For the GRPO phase, we also apply LoRA with α = 32 and rank 8. The model is trained with a
learning rate of 1e-4, a warmup ratio of 0.05, weight decay of 0.1, and a maximum token length
of 2048. We assign reward weights as λfmt = λseg fmt = 0.1, and λcls = λIOU = λL1 = 0.9 based
on Table 12. GRPO training is conducted on two A100 GPUs (40GB each) and completes in
approximately 24 hours. We select the checkpoint at 5000 training steps, as it achieves the best
overall performance across evaluation metrics, as shown in Figure 16.

D.3 QUALITATIVE COMPARISON ON TAMPERED CASES

We further provide a qualitative comparison of tampered cases against representative IFDL baselines.
As shown in Figure 17, So-Fake-R1 achieves more precise localization of manipulated regions, closely
matching the ground-truth masks. In contrast, competing methods often misidentify boundaries
or overlook subtle edited areas. These results highlight the effectiveness of our reinforcement
learning–based framework in capturing fine-grained tampering artifacts.

D.4 ADDITIONAL QUALITATIVE EXAMPLES

In this section, we present additional examples of So-Fake-R1’s outputs on the So-Fake-OOD
benchmark. Since So-Fake-R1 was not trained on this benchmark, the results include both successful
predictions and failure cases. To ensure fair representation, test images were randomly selected.
These examples illustrate the model’s generalization capabilities, highlight areas for improvement,
and suggest directions for future research. The qualitative examples are shown in Figures 18–25.

E BROADER SOCIAL IMPACT

To ensure quality, fairness, and responsible use, we incorporated multiple safeguards throughout the
development process. Expert reviewers were engaged at every stage, including the selection of source
content, the validation of generative outputs, and the refinement of textual explanations, to guarantee
both reliability and appropriateness. For So-Fake-OOD, we followed Reddit’s Public Content Policy
and applied multi-stage human filtering to exclude unsuitable or sensitive material. All datasets and
models are released strictly for non-commercial, research-only purposes under controlled access.

So-Fake-Set, So-Fake-OOD, and So-Fake-R1 framework are designed to advance the field of multi-
modal forgery detection, with a particular focus on social media contexts. By offering large-scale,
diverse, and well-annotated benchmarks alongside an interpretable and high-performing model, our
work provides valuable resources for the research community. These contributions can support
future developments in robust AI systems, foster academic exploration, and assist in building more
trustworthy digital media ecosystems. We believe our dataset and methods will positively impact the
broader AI and computer vision communities by encouraging progress in transparent, explainable,
and socially beneficial technologies for image authenticity verification.
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Image GT LISA SIDA Ours

Figure 17: Qualitative comparison of tampered cases on So-Fake-Set, comparing ground-truth (GT),
LISA, SIDA, and our So-Fake-R1.
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“Please carefully describe the content of this image and classify it as REAL, TAMPERED, or 
FULL_SYNTHETIC…Additionally, if the image is TAMPERED output the one bbox to depict the tampered area”

<think> The image shows an older man holding a device 
close to his face. Several visual cues suggest the image is 
authentic and unedited: the lighting is natural, casting 
soft shadows on his face; his skin texture appears 
realistic with subtle variations in tone; the device he holds 
has a consistent shape and color gradient typical of real 
objects; the background is blurred but maintains a 
natural depth of field; and there are no visible digital 
artifacts or unnatural blending that would indicate 
manipulation. </think><answer>REAL</answer>

correct

failure <think> The image depicts four cats sitting on a 
wooden surface against a plain background. Visual 
cues indicating authenticity include the natural 
lighting that casts soft shadows and highlights on 
the cats' fur, the realistic texture and color 
variations in their coats, the subtle blending of 
their fur tones, and the absence of any digital 
artifacts or unnatural blending. The cats' postures 
and expressions appear genuine, suggesting they 
were captured in a real-life setting rather than 
digitally created. </think><answer>REAL</answer>

Analysis: A fully synthetic image is misclassified as 
real, suggesting the model fails to detect subtle 
generative artifacts.

<think> The image depicts a child in a white dress with 
a smooth, uniform texture throughout the clothing and 
skin. The lighting appears overly even and lacks natural 
shadows or highlights. The hair has a consistent, almost 
unnaturally smooth texture without visible strands or 
highlights. The background is a solid color with no 
discernible depth or texture, suggesting a lack of real-
world environmental elements. Lastly, the overall 
composition and proportions seem slightly off, hinting at 
artificial generation. 
</think><answer>FULL_SYNTHETIC</answer>

correct

Figure 18: Qualitative results of So-Fake-R1 on the So-Fake-OOD benchmark.
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“Please carefully describe the content of this image and classify it as REAL, TAMPERED, or 
FULL_SYNTHETIC…Additionally, if the image is TAMPERED output the one bbox to depict the tampered area”

failure
<think> The image depicts a person sitting at a table 
with a milkshake. Key indicators of artificial 
generation include the flawless skin texture, perfectly 
symmetrical facial features, unnaturally smooth hair, 
and the lack of any visible imperfections or shadows 
that would typically occur in a real photograph. 
</think><answer>FULL_SYNTHETIC</answer>

Analysis: A tampered image is misclassified as full 
synthetic, suggesting the model confuses localized edits 
with entirely generated content.

GT mask

<think> The image depicts a cat sitting next to a fan in 
a room with sunlight streaming through windows. Key 
indicators of artificial generation include the perfectly 
symmetrical shadow cast by the fan, the uniformity of 
the light and shadows, the lack of visible texture or 
imperfections on the cat's fur, and the slightly 
unrealistic proportions of the objects relative to each 
other. These cues show the image is full 
synthetic.</think><answer>FULL_SYNTHETIC</answer>

correct

<think> The image depicts a cat with an unusual fur 
pattern and coloration, including a mix of gray and white 
that doesn't naturally occur in real cats. The eyes 
appear slightly off-center, and there's a lack of natural 
depth and detail in the background, which is often 
inconsistent in AI-generated images. Additionally, the 
lighting seems overly even and lacks the subtle 
variations seen in real photography. 
</think><answer>FULL_SYNTHETIC</answer>

correct

Figure 19: Qualitative results of So-Fake-R1 on the So-Fake-OOD benchmark.
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“Please carefully describe the content of this image and classify it as REAL, TAMPERED, or 
FULL_SYNTHETIC…Additionally, if the image is TAMPERED output the one bbox to depict the tampered area”

<think> The image depicts a person outdoors in 
autumnal surroundings. Visual cues indicating 
authenticity include natural lighting that creates soft 
shadows on the subject's face; realistic skin texture 
and tone variations; detailed hair strands blending 
seamlessly into the background; natural depth in facial 
features like the nose and cheekbones; and no visible 
digital artifacts or unnatural blending that would 
suggest editing. </think><answer>REAL</answer>

correct

<think> The image appears to be a vintage-style 
portrait with a nameplate below it. Tampering clues 
include: inconsistent lighting on the face compared to 
the background, unnatural shadows under the chin and 
jawline, a lack of detail in the texture of the clothing, 
and a slightly blurred edge around the nameplate, 
suggesting it may have been digitally added after the 
photo was taken. These inconsistencies suggest the 
image has been manipulated. The image is tampered, 
tampered area is 
(48,0),(215,197).</think><answer>TAMPERED,(48,0),(
215,197).</answer>

correct

<think> The image depicts a person in formal attire 
with a top hat, set against a plain background. Key 
indicators of artificial generation include the flawless 
skin texture, lack of natural imperfections, perfectly 
symmetrical facial features, and the absence of any 
environmental context or shadows that would suggest a 
real-world setting. 
</think><answer>FULL_SYNTHETIC</answer>

correct

GT mask

Figure 20: Qualitative results of So-Fake-R1 on the So-Fake-OOD benchmark.
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“Please carefully describe the content of this image and classify it as REAL, TAMPERED, or 
FULL_SYNTHETIC…Additionally, if the image is TAMPERED output the one bbox to depict the tampered area”

failure
<think> The image depicts a truck with a tree branch 
in its bed, set against a backdrop of a residential 
street. Key indicators of artificial generation include 
the unrealistic lighting on the tree flowers, the lack 
of shadows consistent with natural light, and the 
slightly unnatural positioning of the tree branch within 
the truck bed. Additionally, the overall scene appears 
too pristine and lacks the subtle imperfections 
typically found in real-world photography. 
</think><answer>FULL_SYNTHETIC</answer>

Analysis: A tampered image is misclassified as full 
synthetic, suggesting the model confuses localized edits 
with entirely generated content.

<think> The image shows an older man with glasses and 
a mustache, wearing a dark shirt. Several visual cues 
suggest the image is authentic and unedited: the lighting 
is natural, casting soft shadows on his face; his skin has 
realistic texture and tonal variation; the strands of his 
hair and mustache appear detailed and blend naturally 
into the background; the facial features exhibit natural 
depth, particularly around the eyes and nose; and there 
are no signs of digital artifacts, edge warping, or 
unnatural blending that would suggest manipulation. 
</think><answer>REAL</answer>

correct

<think> The image depicts a cat lying on a ledge 
outdoors. Tampering clues include: inconsistent lighting 
on the cat's fur, particularly around its ears and 
back, which appears brighter than the rest of its body; 
unnatural shadows under the cat that do not align with 
the light source; a lack of depth in the background, 
suggesting the cat may have been digitally added; and a 
slightly blurred texture around the edges of the cat, 
indicating it might not be a natural part of the scene. 
The image is tampered, tampered area is 
(84,49),(223,150). </think><answer>TAMPERED, 
(84,49),(223,150).</answer>

correct

GT mask

GT mask

Figure 21: Qualitative results of So-Fake-R1 on the So-Fake-OOD benchmark.
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“Please carefully describe the content of this image and classify it as REAL, TAMPERED, or 
FULL_SYNTHETIC…Additionally, if the image is TAMPERED output the one bbox to depict the tampered area”

failure
<think> The image depicts a group of people posing 
for a formal photograph in an office setting. Key 
indicators of artificial generation include the 
uniformity and perfection of the clothing textures, 
the lack of natural shadows or highlights on faces 
and objects, and the slightly unrealistic proportions 
of the individuals' features and body shapes. All 
these show the image should be full synthetic. 
</think><answer>FULL_SYNTHETIC</answer>

Analysis: A tampered image is misclassified as full 
synthetic, suggesting the model confuses localized edits 
with entirely generated content.

<think> The image depicts a group of people hiking in a 
natural setting. Tampering clues include: inconsistent 
shadowing under the wheelchair user's legs, unnatural 
alignment between the wheelchair and the ground, 
blurred edges around the wheelchair, and a lack of 
depth in the background that doesn't match the 
foreground elements. These inconsistencies suggest the 
wheelchair may have been digitally added or moved from 
another location. The image is tampered, tampered area 
is (45,13),(160,208). </think><answer>TAMPERED, 
(45,13),(160,208).</answer>

correct

<think> The image depicts a person wearing a hat and 
scarf against a plain background. Key indicators of 
artificial generation include the lack of natural shadows 
or highlights, uniformity in the texture of the clothing, 
and the absence of environmental details that would 
suggest a real-world setting. The overall scene appears 
too idealized for a real photograph. 
</think><answer>FULL_SYNTHETIC</answer>

correct

GT mask

GT mask

Figure 22: Qualitative results of So-Fake-R1 on the So-Fake-OOD benchmark.
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“Please carefully describe the content of this image and classify it as REAL, TAMPERED, or 
FULL_SYNTHETIC…Additionally, if the image is TAMPERED output the one bbox to depict the tampered area”

<think> The image depicts a shirtless man sitting in a 
chair, holding a phone. Key indicators of artificial 
generation include the perfectly symmetrical and 
smooth skin texture, the lack of natural shadows or 
highlights, and the slightly unrealistic proportions of 
the arm and shoulder muscles. The overall lighting 
appears uniform across the scene, which is not typical 
for real photography. 
</think><answer>FULL_SYNTHETIC</answer>

correct

<think> The image depicts a person holding a large 
blue fish against an ocean backdrop. Manipulation 
clues include: inconsistent lighting on the fish's scales 
compared to the background, unnatural color gradients 
around the fish, sharp edges and lack of blending 
between the fish and the background, and a slightly 
distorted perspective of the fish relative to the 
person's hand. These visual inconsistencies suggest the 
fish may have been digitally added to the scene. The 
image is tampered, tampered area is (48,0),(219,223). 
</think><answer>TAMPERED,(48,0),(219,223).</ans
wer>

correct

<think> The image depicts a person holding a book in 
front of their face. Manipulation clues include: 
inconsistent lighting on the book and the person's 
face, unnatural shadows and highlights that do not align 
with the background, blurred edges around the book 
and the person's hands, and a lack of depth in the 
background, suggesting the book and the person were 
digitally added rather than being part of the original 
scene. The image is tampered, tampered area is 
(68,0),(223,223). </think><answer>TAMPERED, 
(68,0),(223,223).</answer>

correct

GT mask

GT mask

Figure 23: Qualitative results of So-Fake-R1 on the So-Fake-OOD benchmark.
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“Please carefully describe the content of this image and classify it as REAL, TAMPERED, or 
FULL_SYNTHETIC…Additionally, if the image is TAMPERED output the one bbox to depict the tampered area”

<think> The image depicts a cityscape under a full 
moon. Key indicators of artificial generation include the 
perfectly symmetrical and uniform city lights, the lack 
of atmospheric distortion or shadows that would 
naturally occur in such a scene, and the overly smooth 
texture of the moon's surface without visible craters 
or lunar features. 
</think><answer>FULL_SYNTHETIC</answer>

correct

failure <think> The image depicts a street scene with a large 
mural of a dog on a yellow wall. Tampering clues 
include: inconsistent shadowing under the mural, 
unnatural alignment between the mural and the wall, 
blurred edges around the mural's outline, and a lack of 
perspective consistency in the mural's proportions 
relative to the real-world objects in the foreground. 
These anomalies suggest the mural may have been 
digitally added or altered. The image is tampered, 
tampered area is 
(75,43),(160,168).</think><answer>TAMPERED,(75,4
3),(160,168).</answer>

Analysis: The image is correctly classified as tampered, 
but the predicted coordinates are incorrect, indicating a 
failure in localization.

<think> The image depicts two individuals on a city 
street with a burning trash can. Manipulation clues 
include: inconsistent shadowing under the figures, 
unnatural lighting on their faces and clothing, blurred 
edges around the figures, and a lack of depth in the 
background relative to the foreground objects. These 
inconsistencies suggest the individuals were digitally 
added to the scene. The image is tampered, tampered 
area is (138,79),(196,194). 
</think><answer>TAMPERED,(138,79),(196,194).</a
nswer>

correct

GT mask

GT mask

Figure 24: Qualitative results of So-Fake-R1 on the So-Fake-OOD benchmark.
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Under review as a conference paper at ICLR 2026

“Please carefully describe the content of this image and classify it as REAL, TAMPERED, or 
FULL_SYNTHETIC…Additionally, if the image is TAMPERED output the one bbox to depict the tampered area”

failure
<think> The image depicts a person covering their 
face with their hand. Tampering clues include: 
inconsistent shadowing under the hand, unnatural 
texture and detail in the hand's surface, blurred 
edges around the hand, and a lack of depth in the 
background relative to the hand. These inconsistencies 
suggest the hand may have been digitally added or 
altered. The image is tampered, tampered area is 
(14,0),(223,223). </think><answer>TAMPERED, 
(14,0),(223,223).</answer>

Analysis: A full synthetic image is misclassified as tampered, 
indicating the model's sensitivity to synthetic textures that mimic 
tampering patterns.

<think> The image depicts a soldier hugging a dog in 
an outdoor setting. Key indicators of artificial 
generation include the uniform's texture appearing too 
smooth and consistent, the dog's fur lacking natural 
variation and detail, and the overall scene lacking 
environmental imperfections like shadows or windblown 
elements.
The overall scene appears too idealized for a real 
photograph.</think><answer>FULL_SYNTHETIC</ans
wer>

correct

<think> The image depicts a person wearing a blue 
hoodie against a clear sky backdrop. Key indicators of 
artificial generation include the perfectly uniform 
lighting across the subject's face and clothing, the lack 
of natural shadows or highlights, and the slightly 
unrealistic texture of the fabric. Additionally, the 
background appears too pristine and lacks the subtle 
variations one would expect in a real outdoor setting. 
</think><answer>FULL_SYNTHETIC</answer>

correct

Figure 25: Qualitative results of So-Fake-R1 on the So-Fake-OOD benchmark.
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