
Published as a conference paper at ICLR 2025

BLOCK VERIFICATION ACCELERATES SPECULATIVE
DECODING

Ziteng Sun∗
Google Research
zitengsun@

Uri Mendlovic∗
Google Research
urimend@

Yaniv Leviathan∗
Google Research
leviathan@

Asaf Aharoni∗
Google Research
asafaharoni@

Jae Hun Ro∗
Google Research
jaero@

Ahmad Beirami∗
Google Research
beirami@

Ananda Theertha Suresh∗
Google Research
theertha@

ABSTRACT

Speculative decoding is an effective method for lossless acceleration of large lan-
guage models during inference. It uses a fast model to draft a block of tokens
which are then verified in parallel by the target model, and provides a guarantee
that the output is distributed identically to a sample from the target model. In
prior works, draft verification is performed independently token-by-token. Sur-
prisingly, we show that this approach is not optimal. We propose Block Verifica-
tion, a simple draft verification algorithm that verifies the entire block jointly and
provides additional wall-clock speedup. We prove that the proposed mechanism
is optimal in the expected number of tokens produced each iteration and specifi-
cally is never worse than the standard token-level verification. Empirically, block
verification provides modest but consistent wall-clock speedups over the standard
token verification algorithm of 5%-8% in a range of tasks and datasets. Given that
block verification does not increase code complexity, maintains the strong loss-
less guarantee of the standard speculative decoding verification algorithm, cannot
deteriorate performance, and, in fact, consistently improves it, it can be used as a
good default in speculative decoding implementations.

1 INTRODUCTION

Large language models (LLMs) (Chowdhery et al., 2022; Touvron et al., 2023; Achiam et al., 2023;
Gemini Team et al., 2023) are often decoded through autoregressive sampling, where generating k
tokens requires k costly serial evaluations of the model. To improve generation latency, Leviathan
et al. (2022) proposed speculative decoding, which enables an LLM to generate several tokens con-
currently. In each iteration, conditioned on the current decoded prefix, a guess of the next block of
γ tokens is made by a fast drafter (e.g., a small model or a heuristic). Each of the resulting γ + 1
prefixes are then evaluated by the large target model in parallel. To guarantee that the final output
follows the same distribution as that of the large model, some of the generated tokens are accepted
while others are rejected. The accepted tokens1 are then appended to the prefix, and the process
repeats until generation ends. See Figure 1 and Algorithm 3.

In Leviathan et al. (2022), the drafts are verified through a sequence of token-level rejection steps.
More specifically, given a prefix c, let X1, X2, . . . , Xγ be one sample block of length γ from the
draft modelMs, where ∀i ≤ γ, Xi ∼ Ms(· | c, Xi−1). Using the conditional distributions under
the target large modelMb returned by the parallel evaluation step (∀0 ≤ i ≤ γ,Mb(· | c, Xi)) ,
the algorithm iterates over the draft tokens sequentially, and accepts each token Xi with probability

min

{
1,
Mb(Xi | c, Xi−1)

Ms(Xi | c, Xi−1)

}
, (1)

∗All emails @google.com.
1With an extra token sampled from either a residual distribution or the large model distribution.

1

Published as a conference paper at ICLR 2025

will be mostly cloudy

Tomorrow, the weather will be sunny

Next iteration
(if not E.O.S.)

will be mostly sunny

Tomorrow, the weather

Prefix Sample a block of tokens
from small model

Evaluate draft
with large model

Draft verification
and correctionAdd to the prefix

Figure 1: One iteration of speculative decoding (Algorithm 3). The prefixes and verified tokens
are in blue, the unverified tokens from the draft model are in red, and the tokens sampled from the
residual distribution are underlined.

The process continues until a token is rejected, at which point an extra token is sampled, for free,
according to a residual distribution (see Algorithm 1 and Leviathan et al. (2022) for more details).
We refer to this algorithm as Token Verification. Since its introduction in Leviathan et al. (2022), this
token-by-token verification procedure has been the standard for follow-up works (see Section 7).

In this work, we make the surprising observation that the standard token verification algorithm, is not
optimal, and propose a strictly better method. Our key observation is that we can increase the number
of accepted tokens, while maintaining the identical distribution guarantee, by jointly verifying the
entire block of draft tokens instead of verifying each token independently. Our proposed algorithm,
which we call Block Verification, has the following advantages:

• Simple to use. The algorithm is a plug-and-play replacement of the standard token verifi-
cation algorithm of speculative decoding. It does not incur additional computation or code
complexity costs. See Algorithms 1 and 2 for a side-by-side comparison.

• Identical distribution. Importantly, our method is not an approximation and maintains the
identical distribution guarantee of speculative decoding (Theorem 1).

• Optimal improvement. With the same drafting model, the speedup of block verification is
no worse than that of standard token verification. Moreover, we show that block verification
is an optimal verification procedure (Theorem 2).

We empirically test block verification and compare it with the standard token verification on a range
of tasks and datasets. We show that our algorithm consistently improves over block efficiency (i.e.
the expected number of generated tokens) by 7%-10% and overall empirical wall clock times by
5%-8% (see Table 1). Notably, our algorithm provides improvements only through the verification
phase of speculative decoding, and hence the improvements can be combined with improvements
obtained from other works that aim at improving the drafting phase. Since these improvements come
for free, our block verification algorithm can be used as the draft verification algorithm by default in
speculative decoding implementations.

2 A MOTIVATING EXAMPLE

The standard token verification algorithm stochastically rejects draft tokens with a higher probability
fromMs than fromMb. This is necessary to guarantee that the generated tokens follow the same
distribution as that of Mb. Our main observation is that considering whether to reject a block of
draft tokens jointly, instead of one-by-one, can result in accepting more tokens. We now illustrate
this through a simple example.

Consider the following trivial language model whose token space consists only of 2 tokens: A and
B. Further, assume that both the large modelMb and the small modelMs are context-independent,
and specifically that ∀c,

Mb(A) = 1/3, Mb(B) = 2/3, Ms(A) = 2/3, Ms(B) = 1/3. (2)

2

Published as a conference paper at ICLR 2025

In this setting, token verification will accept each draft token X independently with probability 1
if X = B and 1/2 if X = A. With a block size of γ = 2, since the total variation (TV) dis-
tance dTV(Mb,Ms) = 1/3, the expected number of accepted tokens2 from Ms with the token
verification algorithm is 1− 1/3 + (1− 1/3)2 = 10/9 (see analysis in Leviathan et al. (2022)).

An ideal algorithm with full information. Suppose an algorithm can decide on what tokens to
accept fromMs based on the full joint distributions of both tokens, i.e.,

Mb(AA) = 1/9, Mb(AB) = 2/9, Mb(BA) = 2/9, Mb(BB) = 4/9,

Ms(AA) = 4/9, Ms(AB) = 2/9, Ms(BA) = 2/9, Ms(BB) = 1/9.

The algorithm would have performed the following improved acceptance logic: always acceptX1X2

when X1X2 = AB, BA, or BB sinceMb(X1X2) ≥ Ms(X1X2), and accept AA with probability
Mb(AA)/Ms(AA) = 1/4 (correcting the samples to BB). The expected number of accepted tokens
fromMs now becomes: 2(Ms(AB) +Ms(BA) +Ms(BB) + 1/4 ×Ms(AA)) = 12/9 > 10/9.
This illustrates the benefit of considering the distribution of draft blocks jointly.

Verification with partial information. In general the full distribution over the next block of tokens
is intractable to calculate. Instead, we only have access to the conditional distributions of the next
token along the sample path of the draft block, Mb(· | c, Xi),Ms(· | c, Xi) for various i’s. To
emphasize, the ideal rejection logic does not need access to the full distribution, but care is needed
in properly assigning the residual distribution. Our block verification does exactly this, as follows.

For the simple toy example describe above, we propose the following improved algorithm, which
is a simplified version of the general block verification algorithm stated in Algorithm 2. When the
draft tokens X1X2 = AB or BB, Pr (Accept X1X2) = 1 similar to the idealized algorithm. When
X1X2 = AA, Pr (Accept X1X2) = 1/4, and else the algorithm rejects both tokens and only corrects
the first token to B since the algorithm doesn’t have access to Mb(· | B). When X1X2 = BA, it
always accepts B, and then accepts A with probability 1/2 (else it corrects the second token to B).
Importantly, the marginal distributions of the generated tokens at the first token and the second
token are alwaysMb(·). Moreover, the algorithm only uses distributions that are conditioned on the
sample path of the draft block, and hence it works in the partial information setting. We then simply
add the generated tokens to the prefix and proceed to the next iteration. The expected number of
accepted tokens is 2× (Ms(AB)+Ms(BB))+(1+1/2)×Ms(BA)+1/4×2×Ms(AA) = 11/9,
which is better than the 10/9 obtained by token verification. This example proves the following
result:

Lemma 1. The standard token verification algorithm of speculative decoding is not optimal.

Note that while the expected number of accepted tokens in the example for block verification (11/9)
is higher than that of the standard token verification algorithm (10/9), it is still less than that of
the ideal algorithm with access to the full distribution (12/9). In Section 4, we show that block
verification is indeed optimal in the partial information case, with natural assumptions.

3 BLOCK VERIFICATION

In this section, we extend the above intuition to develop a general block verification algorithm, which
works for standard speculative decoding with partial information. The high-level idea is to couple
the acceptance of each draft token with other draft tokens. To do this, the algorithm considers draft
sub-blocks with different lengths, and decides whether to accept each sub-block independently. The
final accepted draft block is the longest accepted sub-block in the above process. The acceptance
probabilities for each sub-block and the residual distributions are carefully chosen to maintain the
distribution guarantee of the final output, and achieve optimal speedup.

See Algorithm 2 for a sketch implementation of block verification, and Algorithm 1 for a sketch
implementation of the standard token verification for comparison. Note that the implementations
follow the same overall structure (the differences are highlighted).

2This is different from the number of generated token in one iteration, which is the number of accepted
tokens plus one (corrected token).

3

Published as a conference paper at ICLR 2025

Algorithm 1 Token Verification
Input: Draft blockXγ ; small model distribu-

tions ∀i < γ,Ms(· | c, Xi); large model
distributions ∀i ≤ γ,Mb(· | c, Xi).

1: Sample η1, . . . , ηγ ∼ U(0, 1).
2: Set τ = 0.
3: for i = 1, . . . γ do

4: Set htokeni = min{Mb(Xi|c,Xi−1)
Ms(Xi|c,Xi−1) , 1}.

5: if ηi ≤ htokeni then
6: Set τ = i.
7: else
8: break.
9: end if

10: end for
11: if τ = γ then
12: Sample Y fromMb(· | c, Xγ).
13: else
14: Sample Y from ptokenres (· | c, Xτ) as in

Equation (3).
15: end if
16: Return Xτ , Y .

Algorithm 2 Block Verification
Input: Draft blockXγ ; small model distribu-

tions ∀i < γ,Ms(· | c, Xi); large model
distributions ∀i ≤ γ,Mb(· | c, Xi).

1: Sample η1, . . . , ηγ ∼ U(0, 1).
2: Set τ = 0, p0 = 1 .
3: for i = 1, . . . γ do

4: Set pi = min{pi−1Mb(Xi|c,Xi−1)
Ms(Xi|c,Xi−1) , 1}.

5: Set hblocki as in Equation (5).
6: if ηi ≤ hblocki then
7: Set τ = i.
8: else
9: continue.

10: end if
11: end for
12: if τ = γ then
13: Sample Y fromMb(· | c, Xγ).
14: else
15: Sample Y from pblockres (· | c, Xτ) as in

Equation (4).
16: end if
17: Return Xτ , Y .

Residual distribution in Algorithm 1 (Line 15): ∀x ∈ X ,

ptokenres (x | c, Xi) =
max{Mb(x | c, Xi)−Ms(x | c, Xi), 0}∑
x′∈XMb(x′ | c, Xi)−Ms(x′ | c, Xi), 0}

. (3)

Residual distribution in Algorithm 2 (Line 15): ∀x ∈ X ,

pblockres (x | c, Xi) =
max{ pi · Mb(x | c, Xi)−Ms(x | c, Xi), 0}∑

x′∈X max{ pi · Mb(x′ | c, Xi)−Ms(x′ | c, Xi), 0}
. (4)

Acceptance probability in Algorithm 2 (Line 5): hblockγ = pγ , and when i < γ,

hblocki =

∑
x′∈X max{pi · Mb(x

′ | c, Xi)−Ms(x
′ | c, Xi), 0}∑

x′∈X max{pi · Mb(x′ | c, Xi)−Ms(x′ | c, Xi), 0}+ 1− pi
. (5)

Figure 2: The acceptance probabilities and residual distributions in Algorithms 1 and 2.

Importantly, token verification stops as soon as a token is rejected (the break in Line 9 of Algo-
rithm 1), while block verification always operates on the full block. Equivalently, in token verifi-
cation, τ = argmin{ηi ≤ htokeni } while in block verification, τ = argmax{ηi ≤ hblocki }. This
difference makes block verification tend to accept longer sub-blocks compared to token verification,
resulting in higher block efficiencies. In Figure 3, we plot the empirical complementary CDF of the
acceptance length for both algorithms with the toy models introduced in Equation (2) to demonstrate
this.

See Algorithm 3 for the outer loop of the speculative decoding algorithm, which remains unchanged
for both verification methods. See Figure 2 for additional definitions. See Appendix A for sketch
Python implementations. Due to the simplicity of the change, the algorithm can be easily imple-
mented without incurring additional code complexity in practical systems.

4

Published as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8 9 100.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y
(

x)

Token Verification
Block Verification

Figure 3: Empirical complementary CDF of τ for both algorithms with draft length γ = 10. The
draft and target models are the context-independent toy models introduced in Equation (2).

Algorithm 3 Speculative decoding (SPECDEC) (Leviathan et al., 2022)
Input: Prefix c, target modelMb, draft modelMs. Draft length γ. Verification algorithm VERIFY.

1: while E.O.S /∈ (Xτ , Y) do
2: Sample X1, . . . , Xγ ∼Ms(· | c) using autoregressive sampling, keep the conditional

probabilities at each stepMs(· | c, Xi) for i = 0, . . . , γ − 1. {Obtain draft block.}
3: Call the large modelMb and compute conditional probabilitiesMb(· | c, Xi)

for i = 0, 1, . . . , γ in parallel. {Parallel scoring.}
4: Get the accepted tokens with draft verification {Draft verification and correction.}

Xτ , Y = VERIFY(Xγ , {Ms(· | c, Xi)}γ−1i=0 , {Mb(· | c, Xi)}γi=0).

5: c← c, Xτ , Y. {Add decoded tokens to the prefix.}
6: end while

Theoretical guarantees. Speculative decoding with block verification preserves the distribution
of its outputs (Theorem 1). Moreover, block verification achieves the optimal speedup among all
valid draft verification algorithms in the outer loop of speculative decoding (Algorithm 3), resulting
in a strict improvement over the standard token verification (Theorem 2). We defer the formal
statements and the intuitions the parameter choices in Algorithm 2 to Section 4.

4 THEORETICAL GUARANTEES

In this section, we present the formal theoretical guarantees of block verification. Notably, that it
produces the correct distribution and that it is optimal in terms of the expected number of generated
tokens. LetM∗(· | c) denote the distribution of the sequence up to the end of the generative process
under modelM and context c.

Definition 1 (Valid draft verification algorithm). A draft verification algorithm VERIFY takes the
draft block Xγ , small model distributions and large model distributions along the sample path,
namely ∀i < γ,Ms(· | c, Xi) and ∀i ≤ γ,Mb(· | c, Xi) as inputs, and outputs a prefix Xτ , τ ≤ γ
of Xγ , and an additional token Y . VERIFY is said to be a valid draft verification algorithm if
∀c, modelsMs,Mb, and block length γ, the outputs of Algorithm 3 (SPECDEC) with verification
algorithm VERIFY satisfy

SPECDEC(c,Mb,Ms, γ,VERIFY) ∼pM∗b(· | c)3, (6)

i.e., the distribution of the outputs is preserved.

Note for example that the standard token verification algorithm is a valid draft verification algorithm
(Appendix A.1 in Leviathan et al. (2022)).

3We use ∼p to denote that two distributions are the same.

5

Published as a conference paper at ICLR 2025

We now claim the following:

Theorem 1. Block verification (Algorithm 2) is a valid draft verification algorithm.

In other words, speculative decoding with block verification preserves the distribution of the output
sequence.

We now further claim that block verification is optimal for all valid draft verification algorithms4.

Theorem 2. For i > 0, let N(i) be the number of decoded tokens after i iterations in Algorithm 3.
For any valid draft verification algorithm VERIFY in Definition 1, we have ∀c,Ms,Mb, γ, and i,

EBLOCKVERIFY[N(i)] ≥ EVERIFY[N(i)],

where the randomness is over the randomness of the draft block and the randomness of the algo-
rithm.

In particular,

EBLOCKVERIFY[N(i)] ≥ ETOKENVERIFY[N(i)].

In other words, among all valid verification algorithms, speculative decoding with block verification
decodes the highest number of tokens in expectation in a fixed number of iterations. Note that since
the computation overhead added by block verification is negligibly small, this establishes the overall
optimality of the block verification algorithm. In particular, block verification provides a greater
speedup than the standard token verification. We defer the proofs to Appendix B. Below we give
intuitions on the algorithm changes that contribute to achieving the above guarantees.

Intuition on parameter choices and theoretical guarantees. The key quantities for achieving the
speedup and distribution matching guarantees are pi’s. In Lemma 3 in Appendix B.1, we show
that pi corresponds to the probability that the sub-block Xi will be kept in the final output. This is
guaranteed by choosing the per-step acceptance probability properly since block verification keeps
the longest accepted sub-block. Next we discuss how pi’s contribute to the distribution matching
and optimality guarantees.

Distribution matching guarantee (Theorem 1). To start, we ignore the minimum operation in the
recursive definition of pi’s. In such case, each pi is simply Mb(X

i | c)/Ms(X
i | c), which is

an upper bound on the actual pi’s. As shown in Lemma 3, for any Xi, the probability that it is
in the accepted block is Ms(X

i)pi(X
i). Since the draft block Xi is generated with probability

Ms(X
i | c), this guarantees that the probability of getting Xi by accepting it from the draft will be

at mostMb(X
i | c), and hence the algorithm is not accepting Xi more than needed.

The remaining part is to choose a suitable residual distribution pblockres ’s so that the distribution on
the next token followsMb(· | Xi). Note that for any possible next token x, (Xi, x) could also be
obtained by accepting Xi+1 when Xi+1 = x, with a probability ofMs(X

i, x)pi+1(X
i, x), which

should be subtracted to obtain the residual mass on (Xi, x). This leads to the choice of pblockres in
Equation (4) after proper normalization.

Optimality guarantee (Theorem 2). For optimality guarantee, the main proof is to show that for any
prefix Xi in the draft block, pi(Xi) is the maximum probability that a valid verification algorithm
can accept Xi, which is stated in Lemma 4. This implies that in one iteration, block verification
accepts the most tokens in expectation, and the multi-iteration case can be obtained by an induction
argument.

To see that why pi(X
i) is the upper bound on the acceptance probability, we show that this is

necessary to guarantee that for any prefix Xi that could be obtained from multiple draft sample
paths, the distribution over subsequent tokens are always the same Mb(· | c, Xi). This enables
block verification to be used as a plug-and-play replacement of token verification in the outer loop
of speculative decoding (Algorithm 3).

4We use BLOCKVERIFY and TOKENVERIFY to denote block verification and token verification respec-
tively when convenient.

6

Published as a conference paper at ICLR 2025

Finally, we note that the optimality guarantee holds for all verification algorithms that can be used
in Algorithm 3 as is. Specifically, there exist verification procedures that force the decoding logic to
depend on the previous accept/reject decisions that produce more accepted tokens in average in one
iteration. However, this will affect the decoding speed in subsequent iterations. In Appendix C, we
present such an algorithm and name it greedy block verification. We empirically observe that block
verification consistently outperforms it, so we include it mainly as a theoretical result.

5 EXPERIMENT SETUP

We conduct experiments using PALM-2 models (Chowdhery et al., 2022), and Vicuna models (Chi-
ang et al., 2023).

For the experiments on PALM-2 models, we use PALM-2-S as the large target model and PALM-2-
XXS / PALM-2-XXXS as the small drafter model. The order of the sizes of the models is PALM-2-
XXXS < PALM-2-XXS < PALM-2-S. We evaluate on prompts from a wide range of datasets and
tasks, including language modeling with one-billion language benchmark (LM1B) (Chelba et al.,
2013), ChatGPT prompts sourced from LearnGPT (GPT Prompt) (Rashad, 2023), reasoning ques-
tions (WebQA) (Berant et al., 2013), physical commonsense reasoning questions (PIQA) (Bisk et al.,
2020), scraped conversations with ChatGPT (ShareGPT) (Rashad, 2023; RyokoAI, 2023), summa-
rization tasks (XSum) (Narayan et al., 2018), grade school math problems (GSM8K) (Cobbe et al.,
2021), and German to English translation (WMT DeEn) (Bojar et al., 2014). For all datasets, we
decode the first 1000 prompts using a max input prompt length of 512 and decode up to 128 output
tokens. We use a batch size of 1 in all experiments except for the experiments in Appendix D.1. Note
that since our method only modifies the verification phase of the algorithm and doesn’t introduce
additional draft tokens, the speedup we get is independent of the batch size. We use a temperature
of 1.0 for the experiments on PALM-2 models.

For Vicuna family of models (Chiang et al., 2023), we conduct the set of experiments in Spec-Bench
(Xia et al., 2024). We discussed detailed settings for these expereiments in Section 6.2.

6 RESULTS

We focus our main experiments on the comparison between block verification and token verification.
Recent works (Sun et al., 2023; Miao et al., 2023) have extended speculative decoding to the case
with multiple draft blocks to improve block efficiency. However, these methods also increase the
required computation from the large model to verify the drafts, which is undesirable when query
batching is performed. We empirically show that our method outperforms these methods in the
large batch setting even with only one draft block. We defer the results to Appendix D.1 and focus
on the one draft case in the main section below.

6.1 EXPERIMENTAL RESULTS ON PALM-2 MODELS

We empirically compare speculative decoding with block verification to speculative decoding with
token verification, and find that block verification provides small yet consistent improvements in a
wide range of settings, both when measuring idealized block efficiency and real world wall clock
time.

Block efficiency measures the speedup in an idealized settings where we neglect the evaluation time
of the draft model and assume that we have enough compute capacity for evaluating the large model
on all draft prefixes in parallel. Specifically, it measures the average number of decoded tokens
per serial call to the target model. We observe consistent improvements for all datasets and draft
models. For γ = 8 with PALM-2-XXS as the drafter, the improvement in block efficiency ranges
from 7.00% to 10.06% with an average of 8.30%.

We also observe consistent improvements in wall clock time, which measures the actual speedup,
including all the real-world overheads. See (Leviathan et al., 2022; Chen et al., 2023a) for a more de-
tailed discussion of these overheads. For γ = 8 with PALM-2-XXS as the drafter, the improvement
in block efficiency ranges from 5.36% to 8.14% with an average of 6.49%. The detailed numbers
for this setting are listed in Table 1.

7

Published as a conference paper at ICLR 2025

Table 1: Speedup comparison between token verification (TOKENV) and block verification
(BLOCKV) with γ = 8 with PALM-2-S as the target model and PALM-2-XXS as the draft model
on various datasets and tasks. We list the average and standard deviation across 3 runs with different
seeds on 1000 test prompts.

Dataset Block efficiency Wall clock time speedup over baseline

TOKENV BLOCKV Improve. ↑ % TOKENV BLOCKV Improve. ↑ %

LM1B 3.21± 0.01 3.49± 0.02 8.68± 0.79 2.17± 0.01 2.32± 0.01 6.85± 0.74
GPT Prompt 3.41± 0.04 3.76± 0.02 10.06± 1.66 2.30± 0.02 2.48± 0.01 8.14± 1.55

WebQA 3.44± 0.01 3.70± 0.01 7.53± 0.24 2.32± 0.00 2.45± 0.01 5.75± 0.22
PIQA 3.40± 0.02 3.68± 0.00 8.30± 0.62 2.29± 0.01 2.44± 0.00 6.52± 0.58

ShareGPT 3.34± 0.01 3.62± 0.03 8.45± 0.98 2.25± 0.01 2.40± 0.02 6.68± 0.91
XSum 3.49± 0.02 3.76± 0.01 7.63± 0.94 2.35± 0.01 2.49± 0.01 5.82± 0.88

GSM8K 3.81± 0.01 4.15± 0.03 8.74± 0.56 2.55± 0.01 2.73± 0.02 6.84± 0.51
WMT-DeEn 3.19± 0.01 3.41± 0.02 7.00± 0.78 2.15± 0.01 2.27± 0.01 5.36± 0.73

Average 3.41 3.70 8.30 2.30 2.45 6.49

The effect of draft length γ. We also perform comparisons of the algorithms for other block
lengths (γ = 4 and γ = 6) and observe consistent improvements. We plot the average improvement
over all datasets in Figure 5 with the numbers in Figure 4. With the same drafter, the relative
improvement of block verification over token verification increases as γ increases. This is consistent
with our intuition since when γ = 1, the two algorithms are the same and as γ increases, block
verification would benefit more from coordinating the acceptance rule considering the realization of
all tokens in the draft block.

As shown in Figure 4, similar to token verification, the block efficiency of block verification in-
creases as γ increases. However, the wall clock speedup peaks at a certain draft length (γ = 4 or
γ = 6 for all settings) due to the increased computation cost in the verification phase. Hence we
focus on γ ≤ 8 in our experiments.

The effect of the drafter. We also consider the effect of the quality of the drafter on the improve-
ment. In Figure 4, we list the average block efficiency and wall clock speed up under different draft
lengths for both drafters. Note that PALM-2-XXS is a larger model than PALM-2-XXXS, and hence
a better drafter in terms of quality, as demonstrated by the better average block efficiencies in the
table. In Figure 5, we plot the average improvement under different drafter models, PALM-2-XXS
and PALM-2-XXXS. The improvements hold for both drafters. And the relative improvement in
block efficiency under PALM-2-XXS is greater than that under PALM-2-XXXS. This shows that
the improvement obtained from block verification can be combined with the improvement on the
quality of the drafter, and the improvement might be more significant under better drafters.

Detailed results for experiments performed with different drafters, different datasets, and different
draft lengths are listed in Appendix D.

6.2 EXPERIMENTAL RESULTS ON SPEC-BENCH WITH VICUNA MODELS

We also conduct the set of experiments proposed in Spec-Bench (Xia et al., 2024) with Vicuna fam-
ily of models (Chiang et al., 2023). The benchmark includes various generation subtasks including
multi-turn conversation, retrieval-augmented generation, summarization, translation, question an-
swering, and mathematical reasoning. See Xia et al. (2024) for a detailed discussion of the subtasks.
For all experiments in this section, we use a single NVIDIA H100 GPU with a batch size of 1 and a
max generation length of 1024. We use Vincuna-7B-v1.3 as the target model and Vincuna-68M as
the draft model. To study the effect of temperature, we consider temperatures in {0.2, 0.6, 1.0} and
fix γ = 8. The results are listed in Table 2. The reported numbers are the average of 3 runs.

8

Published as a conference paper at ICLR 2025

γ Drafter TOKENV BLOCKV
BE WS BE WS

4
XXS 2.89 2.44 2.99 2.50

XXXS 2.35 2.36 2.43 2.43

6
XXS 3.23 2.43 3.43 2.54

XXXS 2.50 2.39 2.63 2.50

8
XXS 3.41 2.30 3.70 2.45

XXXS 2.57 2.28 2.73 2.40

Figure 4: Table on average block efficiency
(BE) and wall clock speedup (WS) across
all datasets for token verification (TOKENV)
and block verification (BLOCKV) with dif-
ferent γ. The large model is PALM-2-S
and the drafter model is either PALM-2-XXS
(XXS) or PALM-2-XXXS (XXXS).

4 5 6 7 8
Draft length

3

4

5

6

7

8

Im
pr

ov
em

en
t %

BE, XXS
WS, XXS
BE, XXXS
WS, XXXS

Figure 5: Average relative improvement of
block verification over token verification in
block efficiency (BE) and wall clock speedup
(WS) across all datasets for different drafters
and draft lengths.

Our algorithm obtains consistent improvement compared to token verification (up to 8.7% in block
efficiency and up to 6.7% in wall clock speedup) across different draft lengths for all temperatures
bigger than 0. This demonstrates the applicability of our method for different families of models.

The effect of temperature. Note that for temperature of 0, which corresponds to greedy decoding,
our algorithm degenerates to token verification and doesn’t provide additional speedups. In non-zero
temperature settings, the advantage is consistent and the additional improvement is higher for larger
temperatures. The observation is consistent with the intuition behind the algorithm, which obtains
improvement on block efficiency by coordinating the randomness in the acceptance decisions at
different token locations.

Table 2: Speedup comparisons between token verification (TOKENV) and block verification
(BLOCKV) on Spec-Bench (Xia et al., 2024) for temperature T ∈ {0.2, 0.6, 1.0}. We use Vicuna-
7B-v1.3 as the target model and Vicuna-68M as the draft model. γ = 8 for all experiments and each
number is an average of 3 runs.

T
Block efficiency Wall clock speedup over baseline

TOKENV BLOCKV Improve. ↑ % TOKENV BLOCKV Improve. ↑ %

0.2 2.75 2.85 3.72 1.22 1.24 1.66
0.6 2.75 2.90 5.32 1.23 1.29 4.24
1.0 2.79 3.04 8.70 1.27 1.34 6.07

7 RELATED WORK

Parallel decoding. Our work improves speculative decoding (Leviathan et al., 2022), a framework
for decoding several tokens concurrently. Draft and verify (Stern et al., 2018) was an earlier work,
which proposed to independently predict and decode several tokens in parallel, for the greedy de-
coding case (zero temperature). Speculative decoding has later also been proposed in Chen et al.
(2023a).

Single draft improvements. There have been many works aiming to improve speculative decoding
without making use of more than one decoding draft. In Table 3, we list a set of works in the
draft and verify framework with a breakdown of their drafting and verification algorithms. See
Xia et al. (2024) for a comprehensive study. In the single-draft case, several works have worked

9

Published as a conference paper at ICLR 2025

Table 3: Recent works based on the draft and verify framework. Temperature 0 refers to greedy
decoding and non-zero temperature refers to sampling.

Work # drafts Temp. Drafting Verification

Stern et al. (2018) 1 0 parallel softmax layers token matching
Yang et al. (2023) 1 0 additional text token matching

Leviathan et al. (2022) 1 ≥ 0 small LM TOKENVERIFY (Algorithm 1)
Chen et al. (2023a) 1 ≥ 0 small LM TOKENVERIFY (Algorithm 1)

He et al. (2023) 1 ≥ 0 database retrieval TOKENVERIFY (Algorithm 1)
Chen et al. (2023b) 1 ≥ 0 cascade of small LMs TOKENVERIFY (Algorithm 1)

Sun et al. (2024) 1 ≥ 0 hierarchical drafters TOKENVERIFY (Algorithm 1)
Zhou et al. (2023) 1 ≥ 0 distilled small LMs TOKENVERIFY (Algorithm 1)
Liu et al. (2023) 1 ≥ 0 distilled small LMs TOKENVERIFY (Algorithm 1)

Gloeckle et al. (2024) 1 ≥ 0 parallel softmax layers TOKENVERIFY (Algorithm 1)
Zhang et al. (2024) 1 ≥ 0 layer skip TOKENVERIFY (Algorithm 1)

Elhoushi et al. (2024) 1 ≥ 0 early exit TOKENVERIFY (Algorithm 1)

This work 1 ≥ 0 small LM BLOCKVERIFY (Algorithm 2)

Sun et al. (2023) ≥ 2 ≥ 0 small LM SpecTr
Miao et al. (2023) ≥ 2 ≥ 0 small LM multi-round TOKENVERIFY

Li et al. (2024) ≥ 2 ≥ 0 small LM multi-round TOKENVERIFY
Chen et al. (2024) ≥ 2 ≥ 0 small LM multi-round TOKENVERIFY

on improving the drafting phase of speculative decoding (He et al., 2023; Chen et al., 2023b; Sun
et al., 2024; Zhou et al., 2023; Liu et al., 2023; Gloeckle et al., 2024; Zhang et al., 2024; Elhoushi
et al., 2024). However, these algorithms all use the same token verification algorithm. Our proposed
block verification algorithm can be used in tandem with the drafting techniques in Table 3, yielding
combined gains. We leave a more systematic study of the improvement of block verification in these
cases for future study.

The only other work that we are aware of that improves the verification step in speculative decoding
is the independent work of Hu and Huang (2024), which uses tree Monte Carlo to improve specu-
lative decoding in the single draft case, and have proved that their algorithm improves over token
verification. On the contrary, we prove that our algorithm achieves the optimal speedup among all
valid verification algorithms, including theirs. Our algorithm also requires minimal changes to the
original token verification algorithm, making it easy to implement and adapt everywhere in practice.

Multiple drafts. Recently, speculative decoding is extended to multiple drafts (Sun et al., 2023;
Miao et al., 2023) and new verification algorithms for the multi-draft scenario are proposed (Li
et al., 2024; Chen et al., 2024). While increasing the number of draft sequences has shown to
improve the overall speedup, it comes at the cost of more computation. In Appendix D.1, we show
that in the large batch setting, where the inference is less memory bound, our method outperforms
these methods without increasing the number of draft blocks. In all of these works, the verification
algorithm is a generalization of the token verification procedure. Extending block verification to the
multi-sample case is an interesting future direction.

8 DISCUSSION

We showed that the standard token verification algorithm used by speculative decoding is not op-
timal. Further, we proposed a new verification algorithm, block verification and proved that it is
an optimal verification algorithm. We also demonstrated empirically that block verification consis-
tently outperforms token verification in a range of tasks. While the theoretical proofs are somewhat
involved, the actual implementation of block verification is not more complex than the standard al-
gorithm (see Appendix A), and since our proposed algorithm can only perform better, never worse,
than the standard token verification algorithm (see Theorem 2), it can be used as a good default in
speculative decoding implementations.

10

Published as a conference paper at ICLR 2025

REFERENCES

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt,
S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

J. Berant, A. Chou, R. Frostig, and P. Liang. Semantic parsing on Freebase from question-answer
pairs. In D. Yarowsky, T. Baldwin, A. Korhonen, K. Livescu, and S. Bethard, editors, Proceedings
of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1533–
1544, Seattle, Washington, USA, Oct. 2013. Association for Computational Linguistics. URL
https://aclanthology.org/D13-1160.

Y. Bisk, R. Zellers, R. Le bras, J. Gao, and Y. Choi. Piqa: Reasoning about physical commonsense
in natural language. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):7432–
7439, Apr. 2020. doi: 10.1609/aaai.v34i05.6239. URL https://ojs.aaai.org/index.
php/AAAI/article/view/6239.

O. Bojar, C. Buck, C. Federmann, B. Haddow, P. Koehn, J. Leveling, C. Monz, P. Pecina, M. Post,
H. Saint-Amand, R. Soricut, L. Specia, and A. s. Tamchyna. Findings of the 2014 workshop
on statistical machine translation. In Proceedings of the Ninth Workshop on Statistical Machine
Translation, pages 12–58, Baltimore, Maryland, USA, June 2014. Association for Computational
Linguistics. URL http://www.aclweb.org/anthology/W/W14/W14-3302.

C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn, and T. Robinson. One bil-
lion word benchmark for measuring progress in statistical language modeling. arXiv preprint
arXiv:1312.3005, 2013.

C. Chen, S. Borgeaud, G. Irving, J.-B. Lespiau, L. Sifre, and J. Jumper. Accelerating large language
model decoding with speculative sampling. arXiv preprint arXiv:2302.01318, 2023a.

Z. Chen, X. Yang, J. Lin, C. Sun, J. Huang, and K. C.-C. Chang. Cascade speculative drafting for
even faster llm inference. arXiv preprint arXiv:2312.11462, 2023b.

Z. Chen, A. May, R. Svirschevski, Y. Huang, M. Ryabinin, Z. Jia, and B. Chen. Sequoia: Scalable,
robust, and hardware-aware speculative decoding, 2024.

W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng, S. Zhuang, Y. Zhuang, J. E. Gon-
zalez, I. Stoica, and E. P. Xing. Vicuna: An open-source chatbot impressing gpt-4 with 90%* chat-
gpt quality, March 2023. URL https://lmsys.org/blog/2023-03-30-vicuna/.

A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung,
C. Sutton, S. Gehrmann, et al. Palm: Scaling language modeling with pathways. arXiv preprint
arXiv:2204.02311, 2022.

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton,
R. Nakano, C. Hesse, and J. Schulman. Training verifiers to solve math word problems. arXiv
preprint arXiv:2110.14168, 2021.

M. Elhoushi, A. Shrivastava, D. Liskovich, B. Hosmer, B. Wasti, L. Lai, A. Mahmoud, B. Acun,
S. Agarwal, A. Roman, A. A. Aly, B. Chen, and C.-J. Wu. Layerskip: Enabling early exit infer-
ence and self-speculative decoding, 2024.

Gemini Team, R. Anil, S. Borgeaud, Y. Wu, J.-B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk, A. M.
Dai, A. Hauth, et al. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 2023.

F. Gloeckle, B. Y. Idrissi, B. Rozière, D. Lopez-Paz, and G. Synnaeve. Better & faster large language
models via multi-token prediction, 2024.

Z. He, Z. Zhong, T. Cai, J. D. Lee, and D. He. Rest: Retrieval-based speculative decoding. arXiv
preprint arXiv:2311.08252, 2023.

Z. Hu and H. Huang. Accelerated speculative sampling based on tree monte carlo. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/
forum?id=stMhi1Sn2G.

11

https://aclanthology.org/D13-1160
https://ojs.aaai.org/index.php/AAAI/article/view/6239
https://ojs.aaai.org/index.php/AAAI/article/view/6239
http://www.aclweb.org/anthology/W/W14/W14-3302
https://lmsys.org/blog/2023-03-30-vicuna/
https://openreview.net/forum?id=stMhi1Sn2G
https://openreview.net/forum?id=stMhi1Sn2G

Published as a conference paper at ICLR 2025

W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez, H. Zhang, and I. Sto-
ica. Efficient memory management for large language model serving with pagedattention. In
Proceedings of the 29th Symposium on Operating Systems Principles, SOSP ’23, page 611–626,
New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400702297. doi:
10.1145/3600006.3613165. URL https://doi.org/10.1145/3600006.3613165.

Y. Leviathan, M. Kalman, and Y. Matias. Fast inference from transformers via speculative decoding.
In International Conference on Machine Learning, pages 19274–19286. PMLR, 2022.

Y. Li, F. Wei, C. Zhang, and H. Zhang. Eagle: Speculative sampling requires rethinking feature
uncertainty, 2024.

X. Liu, L. Hu, P. Bailis, I. Stoica, Z. Deng, A. Cheung, and H. Zhang. Online speculative decoding,
2023.

X. Miao, G. Oliaro, Z. Zhang, X. Cheng, Z. Wang, R. Y. Y. Wong, Z. Chen, D. Arfeen, R. Abhyankar,
and Z. Jia. Specinfer: Accelerating generative llm serving with speculative inference and token
tree verification. arXiv preprint arXiv:2305.09781, 2023.

S. Narayan, S. B. Cohen, and M. Lapata. Don’t give me the details, just the summary! topic-aware
convolutional neural networks for extreme summarization. ArXiv, abs/1808.08745, 2018.

J. P. Quirk and R. Saposnik. Admissibility and measurable utility functions. The Review of Economic
Studies, 29(2):140–146, 1962.

M. Rashad. Chatgpt-prompts. https://huggingface.co/datasets/MohamedRashad/
ChatGPT-prompts, 2023.

RyokoAI. Sharegpt. https://huggingface.co/datasets/RyokoAI/ShareGPT52K,
2023.

M. Stern, N. Shazeer, and J. Uszkoreit. Blockwise parallel decoding for deep autoregressive models.
Advances in Neural Information Processing Systems, 31, 2018.

H. Sun, Z. Chen, X. Yang, Y. Tian, and B. Chen. Triforce: Lossless acceleration of long sequence
generation with hierarchical speculative decoding, 2024.

Z. Sun, A. T. Suresh, J. H. Ro, A. Beirami, H. Jain, and F. Yu. Spectr: Fast speculative decoding via
optimal transport. arXiv preprint arXiv:2310.15141, 2023.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023.

C. Villani et al. Optimal transport: old and new, volume 338. Springer, 2009.

H. Xia, Z. Yang, Q. Dong, P. Wang, Y. Li, T. Ge, T. Liu, W. Li, and Z. Sui. Unlocking effi-
ciency in large language model inference: A comprehensive survey of speculative decoding.
In L.-W. Ku, A. Martins, and V. Srikumar, editors, Findings of the Association for Computa-
tional Linguistics ACL 2024, pages 7655–7671, Bangkok, Thailand and virtual meeting, Aug.
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.456. URL
https://aclanthology.org/2024.findings-acl.456.

N. Yang, T. Ge, L. Wang, B. Jiao, D. Jiang, L. Yang, R. Majumder, and F. Wei. Inference with
reference: Lossless acceleration of large language models. arXiv preprint arXiv:2304.04487,
2023.

J. Zhang, J. Wang, H. Li, L. Shou, K. Chen, G. Chen, and S. Mehrotra. Draft & verify: Lossless
large language model acceleration via self-speculative decoding, 2024.

Y. Zhou, K. Lyu, A. S. Rawat, A. K. Menon, A. Rostamizadeh, S. Kumar, J.-F. Kagy, and R. Agar-
wal. Distillspec: Improving speculative decoding via knowledge distillation, 2023.

12

https://doi.org/10.1145/3600006.3613165
https://huggingface.co/datasets/ MohamedRashad/ChatGPT-prompts
https://huggingface.co/datasets/ MohamedRashad/ChatGPT-prompts
https://huggingface.co/datasets/RyokoAI/ShareGPT52K
https://aclanthology.org/2024.findings-acl.456

Published as a conference paper at ICLR 2025

A PYTHON IMPLEMENTATION

In this section we provide a sketch implementation of block verification (Algorithm 2) in Python.
Note that these are meant for illustration purposes only and are not fit for practical use.

Let V = |X | be the size of the vocabulary. The inputs to the algorithm are:

• ps: an (γ+1)×V numpy array with the distributions from the large modelMb(· | c, Xi);
• qs: an γ × V numpy array with the distributions from the draft modelMs(· | c, Xi);
• drafts: a length-γ numpy array with the ids of the draft tokens Xγ ;

def block_verification(
ps: np.ndarray, qs: np.ndarray, drafts: np.ndarray) -> list[int]:
draft_length, vocab_size = qs.shape
qs.resize((draft_length+1, vocab_size)) # Append a zero vector
token_sequence = [] # Will include the token sequence we return
accept_probability = 1.0 # Acceptance prob. for each sub-block
probability_ratios = ps / qs
Add one token to indicate rejecting the sequence
vocab_plus_one = np.arange(vocab_size + 1)
for token_index, token_value in enumerate(xs):

Unnormalized residual probability
sampling_weights[:vocab_size] = np.maximum(

0, ps[token_index] * accept_probability - qs[token_index])
Unnormalized probability of rejecting the sequence
sampling_weights[vocab_size] = 1 - accept_probability
sampling_weights /= np.sum(sampling_weights)
chosen_token = np.random.choice(vocab_plus_one,

p=sampling_weights)
Update the sequence
if chosen_token < vocab_size:

token_sequence = xs[:token_index] + [chosen_token]
Update the acceptance probability
accept_probability = min(1, probability_ratios[

token_index, token_value] * accept_probability)
return token_sequence

For reference, here is a sketch implementation of the token verification algorithm (Algorithm 1):

def token_verification(
ps: np.ndarray, qs: np.ndarray, drafts: np.ndarray) -> list[int]:
draft_length, vocab_size = qs.shape
qs.resize((draft_length+1, vocab_size)) # Append a zero vector.
token_sequence = [] # Will include the token sequence we return
probability_ratios = ps / qs
token_index = 0
vocab_range = np.arange(vocab_size)
for token_value in xs:

accept_probability = probability_ratios[token_index, token_value]
if (not np.isfinite(accept_probability) or

np.random.random() > accept_probability): # Rejection
break

token_index += 1
token_sequence.append(token_value)

Calculate the residual distribution
sampling_weights = np.maximum(0, ps[token_index] - qs[token_index])
sampling_weights /= np.sum(sampling_weights)

13

Published as a conference paper at ICLR 2025

token_sequence.append(np.random.choice(vocab_range,
p=sampling_weights))

return token_sequence

B FORMAL PROOFS

We start by setting up a few necessary notations. Let X be the space of output tokens. For ` > 1,
we useM`(· | c) to denote the joint distribution of the next ` tokens conditioned on the prefix under
M, i.e., for all x1, . . . x` ∈ X `,M`(x1, . . . , x` | c) =

∏`
i=1M(xi | c, xi−1). We useM∗(· | c)

to denote the distribution of the sequence up to the end of the generative process. Below we first
describe a necessary and sufficient condition for a valid draft verification algorithm in Algorithm 3.

Lemma 2. ∀c,Ms,Mb, γ, let Xγ be generated fromMγ
s (· | c), and

Xτ , Y = VERIFY(Xγ , {Ms(· | c, Xi)}γ−1i=0 , {Mb(· | c, Xi)}γi=0).

Let Zγ−τ be generated fromMγ−τ
b (· | c, Xτ , Y).

VERIFY is a valid draft verification algorithm (Definition 1) if and only if ∀c,Ms,Mb, γ,

Xτ , Y, Zγ−τ ∼pMγ+1
b (· | c). (7)

Proof. We first prove the forward direction (Equation (7) implies that VERIFY satisfies Definition 1)
by induction on the maximum generation length of Mb(· | c). When the maximum generation
length is 0, for all new context c′, we have the next token is a point mass over E.O.S, i.e.,

Mb(x | c, c′) = δ{x = E.O.S}.

Then Equation (7) implies that VERIFY will only output E.O.S, which is the same as Defini-
tion 1. Suppose Equation (6) holds for all context and Mb with generation length at most T , for
a context c and Mb with maximum generation length at most T + 1, we have that the output of
SPECDEC(c,Mb,Ms, γ,VERIFY) is

Xτ , Y, SPECDEC((c, Xτ , Y),Mb,Ms, γ,VERIFY).

Let Zγ−τ be the first γ − τ tokens from SPECDEC((c, Xτ , Y),Mb,Ms, γ,VERIFY), and O∗ be
the tokens after. Since Xτ , Y is at least of length one, the generation length ofMb(· | c, Xτ , Y) is
at most T . By the induction hypothesis, we have

Zγ−τ ∼pMγ−τ
b (· | c, Xτ , Y),

and
O∗ ∼pM∗b(· | c, Xτ , Y, Zγ−τ).

And hence by Equation (7),

SPECDEC(c,Mb,Ms, γ,VERIFY) = Xτ , Y, SPECDEC((c, Xτ , Y),Mb,Ms, γ,VERIFY)

= Xτ , Y, Zγ−τ , O∗

∼pM∗b(· | c).

This completes the proof for the forward direction.

For the backward direction, we have Equation (6) implies that for all Xτ , Y ,

SPECDEC((c, Xτ , Y),Mb,Ms, γ,VERIFY)[: γ − τ]5 ∼pMγ−τ
b (· | c, Xτ , Y).

Let Zγ−τ be a draw fromMγ−τ
b (· | c, Xτ , Y), then

Zγ−τ ∼p SPECDEC((c, Xτ , Y),Mb,Ms, γ,VERIFY)[: γ − τ].
5We use v[i : j] to denote the entries i to j in v.

14

Published as a conference paper at ICLR 2025

And hence when Xτ , Y is the output of VERIFY,

Xτ , Y, Zγ−τ ∼p X
τ , Y, SPECDEC((c, Xτ , Y),Mb,Ms, γ,VERIFY)[: γ − τ]

∼p SPECDEC(c,Mb,Ms, γ,VERIFY)[: γ + 1]

∼pMγ+1
b (· | c),

where the last derivation follows from Equation (6) in Definition 1.

In all proofs below, we fix the context c, and the modelsMs andMb. We note that the proofs won’t
use specific information about these choices and hence can be easily extended to all cases.

B.1 PROOF OF THEOREM 1

By Lemma 2, it would be enough to prove that block verification satisfies Equation (7). For simplic-
ity, we often refer to the sequence (Xτ , Y, Zγ−τ) by Oγ+1. Note that Oγ+1 ∼ Mb(· | c, Oγ)
always holds since when τ < γ, Oγ+1 ∼ Mb(· | c, Oγ) by definition and when τ = γ,
Oγ+1 = Y ∼Mb(· | c, Xγ) =Mb(· | c, Oγ). Hence it is enough to prove the following

∀` ≤ γ,∀x` ∈ X `, Pr
(
O` = x`

)
=M`

b(x
` | c), (8)

Note that in block verification, pi’s depend on the draft tokens Xγ . The following definition makes
this explicit. Let pi be such that p0 = 1, and ∀1 ≤ i ≤ γ, xi ∈ X i,

pi(x
i | c) = min

{
pi−1(x

i | c)Mb(xi | c, xi−1)
Ms(xi | c, xi−1)

, 1

}
. (9)

For most cases, when the prefix c is clear, we will ignore c and simply use pi(xi) = pi(x
i | c). We

will only make the prefix explicit when necessary.

We first state the following lemma on the distribution of the number of tokens accepted by block
verification.

Lemma 3. Let Xγ ∼Mγ
s (· | c), and

Xτ , Y = BLOCKVERIFY(Xγ , {Ms(· | c, Xi)}γ−1i=0 , {Mb(· | c, Xi)}γi=0).

Then we have ∀i ≤ γ, and xi ∈ X i,

Pr
(
τ ≥ i | Xi = xi

)
= pi(x

i).

We first prove Theorem 1 based on Lemma 3 and defer the proof of the lemma to Appendix B.3.
We prove Equation (8) by induction on the time index `. When ` = 1, O1 is either X1, or a residual
sample from pblockres (· | c) where

pblockres (· | c) = max{Mb(x | c)−Ms(x | c), 0}∑
x′ max{Mb(x′ | c)−Ms(x′ | c), 0}

,

Hence we have ∀x ∈ X , by Lemma 3,

Pr (O1 = x)

= Pr (O1 = x, τ ≥ 1) + Pr (O1 = x, τ = 0)

= Pr (X1 = x) Pr (τ ≥ 1 | X1 = x) +
∑
x′

Pr (X1 = x′)(1− Pr (τ ≥ 1 | X1 = x′)) · pblockres (x | c)

=Ms(x | c) · p1(x) +
∑
x′

Ms(x
′ | c)(1− p1(x′)) · pblockres (x | c)

= min{Mb(x | c),Ms(x | c)}+
∑
x′

max{Mb(x
′ | c)−Ms(x

′ | c), 0} · pblockres (x | c) (10)

= min{Mb(x | c),Ms(x | c)}+max{Mb(x | c)−Ms(x | c), 0} (11)
=Mb(x | c),

15

Published as a conference paper at ICLR 2025

where Equation (10) comes from the definition of p1 in Equation (9) and Equation (11) is due to
Equation (4) with i = 0. Hence the Equation (8) holds for ` = 1. Suppose Equation (8) holds
up to ` < γ. For ` = ` + 1, we have O`+1 is either equal to X`+1 when τ ≥ ` + 1, or a
sample from pblockres (· | c, X`) when τ = `, or a sample fromMb(· | c, O`) when τ < `. Hence
Pr
(
O`+1 = x`+1

)
can be broken down below:

Pr
(
O`+1 = x`+1

)
=

Pr
(
O`+1 = x`+1, τ ≥ `+ 1

)
+ Pr

(
O`+1 = x`+1, τ = `

)
+ Pr

(
O`+1 = x`+1, τ < `

)
(12)

For the first term (τ ≥ `+ 1), we have

Pr
(
O`+1 = x`+1, τ ≥ `+ 1

)
= Pr

(
X`+1 = x`+1

)
· Pr

(
τ ≥ `+ 1 | X`+1 = x`+1

)
=Ms(x

`+1 | c) · p`+1(x
`+1)

=Ms(x
` | c) ·min{p`(x`)Mb(x`+1 | c, x`),Ms(x`+1 | c, x`)}. (13)

For the second term (τ = `), we have

Pr
(
O`+1 = x`+1, τ = `

)
= Pr

(
X` = x`

)
· Pr

(
τ = ` | X` = x`

)
· Pr

(
O`+1 = x`+1 | O` = x`, τ = `

)
= Pr

(
X` = x`

)
· Pr

(
τ = ` | X` = x`

)
· pblockres (x`+1 | c, x`)

Note that,

Pr
(
τ = ` | X` = x`

)
= Pr

(
τ ≥ ` | X` = x`

)
−
∑
x

Ms(x | c, x`) · Pr
(
τ ≥ `+ 1 | c, X`+1 = x`, x

)
= p`(x

`)−
∑
x

Ms(x | c, x`) · p`+1(x
`, x)

= p`(x
`)−

∑
x

min{p`(x`)Mb(x | c, x`),Ms(x | c, x`)}

=
∑
x

max{p`(x`)Mb(x | c, x`)−Ms(x | c, x`), 0}.

And hence by the definition of pblockres (x`+1 | c, x`) in Equation (4), we have

Pr
(
O`+1 = x`+1, τ = `

)
=Ms(x

` | c) ·max{p`(x`)Mb(x`+1 | c, x`)−Ms(x`+1 | c, x`), 0}. (14)

For the third term (τ < `), by induction, and the generation process of Oγ+1, we have

Pr
(
O`+1 = x`+1, τ < `

)
= Pr

(
O` = x`, τ < `

)
· Pr

(
O`+1 = x`+1 | O` = x`, τ < `

)
=
(
Pr
(
O` = x`

)
− Pr

(
O` = x`, τ ≥ `

))
· Mb(x`+1 | c, x`)

=
(
Mb(x

` | c)−Ms(x
` | c)p`(x`)

)
· Mb(x`+1 | c, x`) (15)

Plugging Equations (13) to (15) into Equation (12), we get ∀x`+1 ∈ X `+1,

Pr
(
O`+1 = x`+1

)
=Mb(x

`+1 | c),

completing the induction step and hence the proof of Equation (8) and Theorem 1.

B.2 PROOF OF THEOREM 2

We first state the following lemma, which when combined with Lemma 3, shows that in one iteration,
among all valid draft verification algorithms, block verification accepts each subsequence with the
highest probability.

16

Published as a conference paper at ICLR 2025

Lemma 4. For draft verification algorithms that satisfy the constraints in Lemma 2, we have ∀i ≤ γ,
and xi ∈ X i,

Pr
(
τ ≥ i | Xi = xi

)
≤ pi(xi).

We defer the proof of the lemma to Appendix B.4 and first prove Theorem 2 based on the lemma.

We start by breaking down the expected number of decoded tokens EVERIFY[N(i)] into the distribu-
tion of N(i) on different sample paths. Let O∗ = O1, O2, . . . , be the complete output sequence
from speculative decoding. We set all tokens after E.O.S to be E.O.S as well. Then we have

EVERIFY[N(i)] =

∞∑
`=1

Pr
VERIFY

(N(i) ≥ `) =
∑

x∗∈X∗

∞∑
`=1

Pr
VERIFY

(O∗ = x∗, N(i) ≥ `)

Hence it would be enough to prove the following.
Lemma 5. For all draft verification algorithms that satisfy the constraints in Lemma 2, we have ∀c,
and output x∗ ∈ X ∗

Pr
VERIFY

(O = x∗, N(i) ≥ ` | c) ≤ Pr
BLOCKVERIFY

(O = x∗, N(i) ≥ ` | c) (16)

We prove the lemma by induction on the number of iterations i. We first prove the following lemma
for all verification algorithms.
Lemma 6. For all ` ≤ γ,

Pr
VERIFY

(O∗ = x∗, τ ≥ ` | c) = Pr
VERIFY

(
O` = x`, τ ≥ ` | c

)
· M∗b

(
x`+1:∗ | c, x`

)
.

Proof. When PrVERIFY

(
O` = x`, τ ≥ ` | c

)
= 0, the bound is trivial since both sides are 0. Other-

wise we have

Pr
VERIFY

(O∗ = x∗, τ ≥ ` | c)

= Pr
VERIFY

(
O`+1:∗ = x`+1:∗, O` = x`, τ ≥ ` | c

)
= Pr

VERIFY

(
O` = x`, τ ≥ ` | c

)
· Pr

VERIFY

(
O`+1:∗ = x`+1:∗ | O` = x`, τ ≥ `, c

)
It would be enough to show that

Pr
VERIFY

(
O`+1:∗ = x`+1:∗ | O` = x`, τ ≥ `, c

)
=M∗b

(
x`+1:∗ | c, x`

)
. (17)

Note that

M∗b
(
x`+1:∗ | c, x`

)
= Pr

VERIFY

(
O`+1:∗ = x`+1:∗ | O` = x`, c

)
= Pr

VERIFY

(
O`+1:∗ = x`+1:∗, τ ≥ ` | O` = x`, c

)
+ Pr

VERIFY

(
O`+1:∗ = x`+1:∗, τ < ` | O` = x`, c

)
= Pr

VERIFY

(
τ ≥ ` | O` = x`, c

)
Pr

VERIFY

(
O`+1:∗ = x`+1:∗ | O` = x`, τ ≥ `, c

)
+ Pr

VERIFY

(
τ < ` | O` = x`, c

)
Pr

VERIFY

(
O`+1:∗ = x`+1:∗ | O` = x`, τ < `, c

)
(18)

When PrVERIFY

(
τ < ` | O` = x`, c

)
= 0, we have PrVERIFY

(
τ ≥ ` | O` = x`, c

)
= 1, and hence

Pr
VERIFY

(
O`+1:∗ = x`+1:∗ | O` = x`, τ ≥ `, c

)
=M∗b

(
x`+1:∗ | c, x`

)
.

When PrVERIFY

(
τ < ` | O` = x`, c

)
> 0, since VERIFY is a valid verification algorithm (Defini-

tion 1), we have tokens starting from location `+ 1 is valid draw fromMb(· | c, x`), i.e.,

Pr
VERIFY

(
O`+1:∗ = x`+1:∗ | O` = x`, τ < `, c

)
=M∗b

(
x`+1:∗ | c, x`

)
.

Plugging this into Equation (18) completes the proof.

17

Published as a conference paper at ICLR 2025

When i = 1, we have that N(1) = τ +1, where τ is the number of accepted tokens. Hence we have

Pr
VERIFY

(O∗ = x∗, N(1) ≥ ` | c)

= Pr
VERIFY

(O∗ = x∗, τ ≥ `− 1 | c)

= Pr
VERIFY

(
O`−1 = x`−1, τ ≥ `− 1 | c

)
· M∗b

(
x`:∗ | c, x`−1

)
/ Lemma 6

=Ms(x
`−1 | c)M∗b(x`:∗ | c, x`−1) Pr

VERIFY

(
τ ≥ `− 1 | X`−1 = x`−1, c

)
,

where the last equality is because PrVERIFY

(
O`−1 = x`−1, τ ≥ `− 1 | c

)
is the probability of the

event that O`−1 = x`−1 is contained in the accepted tokens, which happens under the joint of two
events: (1) The first ` − 1 tokens in the draft block from the small model X`−1 = x`−1. This
probability isMs(x

`−1 | c); (2) Conditioned on X`−1 = x`−1, at least ` − 1 tokens are accepted,
this is PrVERIFY

(
τ ≥ `− 1 | X`−1 = x`−1, c

)
, and hence

Pr
VERIFY

(
O`−1 = x`−1, τ ≥ `− 1 | c

)
=Ms(x

`−1 | c) · Pr
VERIFY

(
τ ≥ `− 1 | X`−1 = x`−1, c

)
.

Similarly, we have

Pr
BLOCKVERIFY

(O∗ = x∗, N(1) ≥ ` | c)

=Ms(x
`−1 | c)M∗b(x`:∗ | c, x`−1) Pr

BLOCKVERIFY

(
τ ≥ `− 1 | X`−1 = x`−1, c

)
.

Note that Lemmas 3 and 4 imply that for all verification algorithm, we have

Pr
VERIFY

(
τ ≥ `− 1 | X`−1 = x`−1, c

)
≤ Pr

BLOCKVERIFY

(
τ ≥ `− 1 | X`−1 = x`−1, c

)
.

Combining these, we have

Pr
VERIFY

(O∗ = x∗, N(1) ≥ ` | c) ≤ Pr
BLOCKVERIFY

(O∗ = x∗, N(1) ≥ ` | c). (19)

Suppose the lemma holds for all iterations up to i, for the (i+1)th iteration, let τi+1 be the number
of tokens accepted in the (i+ 1)th iteration, we have

Pr
VERIFY

(O∗ = x∗, N(i+ 1) ≥ ` | c)

=
∑
`′<`

Pr
VERIFY

(O∗ = x∗, N(i) = `′, N(i+ 1) ≥ ` | c)

=
∑
`′<`

Pr
VERIFY

(O∗ = x∗, N(i) = `′ | c) Pr
VERIFY

(τi+1 ≥ `− `′ − 1 | c, O∗ = x∗,N(i) = `′)

= Pr
VERIFY

(O∗ = x∗ | c)
∑
`′<`

Pr
VERIFY

(N(i) = `′ | O∗ = x∗, c)

· Pr
VERIFY

(τi+1 ≥ `− `′ − 1 | c, O∗ = x∗, N(i) = `′)

=Mb(x
∗ | c)

∑
`′<`

Pr
VERIFY

(N(i) = `′ | O∗ = x∗, c) Pr
VERIFY

(τi+1 ≥ `− `′ − 1 | c, O∗ = x∗, N(i) = `′)

(20)

Let ηVERIFY be a random variable distributed according to PrVERIFY (N(i) = `′ | O∗ = x∗, c), and

fVERIFY(η) = Pr
VERIFY

(τi+1 ≥ `− η − 1 | c, O∗ = x∗, N(i) = η).

Plugging these into Equation (20), we have

Pr
VERIFY

(O∗ = x∗, N(i+ 1) ≥ ` | c) =Mb(x
∗ | c)EηVERIFY

[fVERIFY(ηVERIFY)]

Note that let cη = c, xη , we have

fVERIFY(η) = Pr
VERIFY

(τi+1 ≥ `− η − 1 | c, O∗ = x∗, N(i) = η)

= Pr
VERIFY

(
τ ≥ `− η − 1 | cη, O∗ = xη+1:∗) (21)

18

Published as a conference paper at ICLR 2025

where Equation (21) is due to the iterative structure of speculative decoding and after generating
Oη = xη in the first i iterations (N(i) = η), the next iteration is the same as generating from scratch
with context cη = c, xη . Similarly, we have

fBLOCKVERIFY(η) = Pr
BLOCKVERIFY

(
τ ≥ `− η − 1 | cη, O∗ = xη+1:∗).

Note that ∀c, x∗ ∈ X ∗, and i, we have

Pr
BLOCKVERIFY

(τ ≥ i | c, O∗ = x∗) =
PrBLOCKVERIFY (O

∗ = x∗, τ ≥ i | c)
PrBLOCKVERIFY (O∗ = x∗ | c)

=
PrBLOCKVERIFY (O

∗ = x∗, τ ≥ i | c)
M∗b(x∗ | c)

≥ PrVERIFY (O
∗ = x∗, τ ≥ i | c)

M∗b(x∗ | c)
(22)

= Pr
VERIFY

(τ ≥ i | c, O∗ = x∗), (23)

where Equation (22) is due to Equation (19) and that N(1) = τ + 1. Equation (23) implies that
fBLOCKVERIFY(η) ≥ fVERIFY(η), and hence we have

Pr
VERIFY

(O∗ = x∗, N(i+ 1) ≥ ` | c) =Mb(x
∗ | c)EηVERIFY

[fVERIFY(η)]

≤Mb(x
∗ | c)EηVERIFY

[fBLOCKVERIFY(η)] .

Note that PrBLOCKVERIFY (O
∗ = x∗, N(i+ 1) ≥ ` | c) = Mb(x

∗ | c)EηBLOCKVERIFY
[fBLOCKVERIFY(η)].

It would be enough to prove that

EηVERIFY
[fBLOCKVERIFY(η)] ≤ EηBLOCKVERIFY

[fBLOCKVERIFY(η)] . (24)

Next we prove Equation (24) using the lemma below.

Lemma 7 (Quirk and Saposnik (1962)). Let f : R→ R be an increasing function and X1 stochas-
tically dominates X2, meaning ∀x, we have Pr (X1 ≥ x) ≥ Pr (X2 ≥ x), then we have

E[f(X1)] ≥ E[f(X2)].

By the induction hypothesis, we have ηBLOCKVERIFY stochastically dominates (Quirk and Saposnik,
1962) ηVERIFY for any valid verification algorithm. It remains to show that fBLOCKVERIFY(η) is an
increasing function. By definition, since 0 ≤ τ ≤ γ, when η < `− γ − 1, fBLOCKVERIFY(η) = 0 and
when η > ` − 1, fBLOCKVERIFY(η) = 1. When ` − γ − 1 ≤ η ≤ ` − 2, by definition and Lemma 3,
fBLOCKVERIFY(η) = p`−η−1(x

η+1:`−1 | c, xη). To see that p`−η−1(xη+1:`−1 | c, xη) is an increasing
function of η , for η′ = η + 1, we can obtain p`−η′−1(xη

′+1:`−1 | c, xη′) by following the same
recursion steps as in Equation (9) but replacing p1(xη+1:`−1 | c, xη) with p0(xη+2:`−1 | c, xη+1) =
1, and hence only increasing the values.

This proves that fBLOCKVERIFY is increasing and hence Equation (24) holds. This implies that the
induction step holds due to Lemma 7, completing proof of Theorem 2.

B.3 PROOF OF LEMMA 3

Note that in Line 4 of Algorithm 2, pi = pi(X
i). We prove the statement by backward induction.

When i = γ, we have by definition of hblockγ in Figure 2, ∀xγ ∈ X γ ,

Pr (τ ≥ γ | Xγ = xγ) = hblockγ = pγ(x
γ).

19

Published as a conference paper at ICLR 2025

Suppose the statement holds for i ≥ `. When i = `− 1, we have

Pr
(
τ ≥ `− 1 | X`−1 = x`−1

)
=
∑
x`∈X

Ms(x` | c, x`−1) · Pr
(
τ ≥ `− 1 | X` = x`

)
=
∑
x`∈X

Ms(x` | c, x`−1) ·
(
Pr
(
τ ≥ ` | X` = x`

)
+ Pr

(
τ = `− 1 | X` = x`

))
=
∑
x`∈X

Ms(x` | c, x`−1) ·
(
Pr
(
τ ≥ ` | X` = x`

)
+ Pr

(
τ < ` | X` = x`

)
· hblock`−1

)
(25)

=
∑
x`∈X

Ms(x` | c, x`−1) ·
(
p`(x

`) + (1− p`(x`)) · hblock`−1
)
,

=
∑
x`∈X

Ms(x` | c, x`−1) · p`(x`) + hblock`−1 ·
∑
x`∈X

Ms(x` | c, x`−1) · (1− p`(x`))

=
∑
x`∈X

Ms(x` | c, x`−1) · p`(x`) + hblock`−1 · (1−
∑
x`∈X

Ms(x` | c, x`−1)p`(x`)). (26)

Equation (25) above holds since τ = `−1 happens under the joint event of τ < ` and η`−1 < hblock`−1 .
Note that in the definition of hblock`−1 (Equation (5)),∑

x

max{p`−1(x`−1)Mb(x | c, x`−1)−Ms(x | c, x`−1), 0}

=
∑
x

(
p`−1(x

`−1)Mb(x | c, x`−1)−min{p`−1(x`−1)Mb(x | c, x`−1),Ms(x | c, x`−1)}
)

= p`−1(x
`−1)−

∑
x

min{p`−1(x`−1)Mb(x | c, x`−1),Ms(x | c, x`−1)}

Plugging this into Equation (5),

hblock`−1 =
p`−1(x

`−1)−
∑
xmin{p`−1(x`−1)Mb(x | c, x`−1),Ms(x | c, x`−1)}

1−
∑
xmin{p`−1(x`−1)Mb(x | c, x`−1),Ms(x | c, x`−1)}

. (27)

Moreover, we have by the definition of p`(x`),∑
x`∈X

Ms(x` | c, x`−1) · p`(x`) =
∑
x`∈X

min{p`−1(x`−1)Mb(x` | c, x`−1),Ms(x` | c, x`−1)}

=
∑
x∈X

min{p`−1(x`−1)Mb(x | c, x`−1),Ms(x | c, x`−1)}.

(28)

Plugging Equation (28) and Equation (27) into Equation (26), we get

Pr
(
τ ≥ `− 1 | X`−1 = x`−1

)
= p`−1(x

`−1),

as desired. The lemma hence follows by induction.

B.4 PROOF OF LEMMA 4

Recall that we use Oγ+1 to denote the sequence (Xτ , Y, Zγ−τ) in Equation (7). Without loss of
generality, we only consider o` such that Pr

(
O` = o`

)
> 0 and Pr

(
X` = o`

)
> 0 since otherwise

Pr
(
τ ≥ i | Xi = xi

)
is either zero or ill-defined. We break the proof into the two cases below.

If ∀i < `, it satisfies that pi−1(xi−1)Mb(xi | c, xi−1) ≤ Ms(xi | c, xi−1), then we have in the
recursive formula of pi’s in Algorithm 2, we always have

pi(x
i) = pi−1(x

i−1)
Mb(xi | c, xi−1)
Ms(xi | c, xi−1)

,

20

Published as a conference paper at ICLR 2025

and hence

p`−1(x
`−1) =

Mb(x
`−1 | c)

Ms(x`−1 | c)
,

And for x`, we have

p`(x
`) = min{Mb(x

` | c)
Ms(x` | c)

, 1}.

Note that

Pr
(
O` = x`, τ ≥ `

)
= Pr

(
X` = x`

)
Pr
(
τ ≥ ` | X` = x`

)
=Ms(x

` | c) Pr
(
τ ≥ ` | X` = x`

)
Moreover, we have

Pr
(
O` = x`, τ ≥ `

)
≤ Pr

(
O` = x`

)
=Mb(x

` | c),
and

Pr
(
O` = x`, τ ≥ `

)
= Pr

(
X` = x`

)
Pr
(
τ ≥ ` | X` = x`

)
≤ Pr

(
X` = x`

)
=Ms(x

` | c).
Hence

Pr
(
τ ≥ ` | X` = x`

)
=

Pr
(
O` = x`, τ ≥ `

)
Ms(x` | c)

≤ min{Mb(x
` | c)

Ms(x` | c)
, 1} = p`(x

`).

In the other case, there must exist some i such that pi−1(xi−1)Mb(xi | c, xi−1) > Ms(xi |
c, xi−1), then we have

pi(x
i) = min{pi−1(x

i−1)Mb(xi | c, xi−1)
Ms(xi | c, xi−1)

, 1} = 1.

WLOG, let i be the largest such index. In this case, we have ∀i < j < `, pj−1(x
j−1)Mb(xj |

c, xj−1) ≤Ms(xj | c, xj−1), and hence

p`(x
`) = pi(x

i)
M`−i

b (xi+1:` | c, xi)
M`−i

s (xi+1:` | c, xi)
=
M`−i

b (xi+1:` | c, xi)
M`−i

s (xi+1:` | c, xi)
.

Moreover, by definition, we have

pi−1(x
i−1) ≤ pi−2(xi−2)

Mb(xi−1 | c, xi−2)
Ms(xi−1 | c, xi−2)

≤ . . . ≤
Mi−1

b (xi−1 | c)
Mi−1

s (xi−1 | c)
,

and hence when pi−1(xi−1)Mb(xi | c, xi−1) >Ms(xi | c, xi−1),

Mb(x
i | c)

Ms(xi | c)
=
Mi−1

b (xi−1 | c)
Mi−1

s (xi−1 | c)
· Mb(xi | c, xi−1)
Ms(xi | c, xi−1)

≥ pi−1(xi−1) ·
Mb(xi | c, xi−1)
Ms(xi | c, xi−1)

> 1.

Hence

Pr
(
Oi = xi, τ ≥ i

)
= Pr

(
Xi = xi

)
Pr
(
τ ≥ i | Xi = xi

)
≤Ms(x

i | c) <Mb(x
i | c),

and

Pr
(
Oi = xi, τ < i

)
= Pr

(
Oi = xi

)
− Pr

(
Oi = xi, τ ≥ i

)
=Mb(x

i | c)−Ms(x
i | c) > 0.

Note that when Oi = xi, τ < i, by constraints in Equation (7), we have

Pr
(
Oi+1:` = xi+1:` | Oi = xi, τ < i

)
=M`−i

b (xi+1:` | c, xi).
This implies

Pr
(
O` = x`

)
= Pr

(
Oi = xi, τ < i

)
· Pr

(
Oi+1:` = xi+1:` | Oi = xi, τ < i

)
+ Pr

(
Oi = xi, τ ≥ i

)
Pr
(
Oi+1:` = xi+1:` | Oi = xi, τ ≥ i

)
= Pr

(
Oi = xi, τ < i

)
· M`−i

b (xi+1:` | c, xi)
+ Pr

(
Oi = xi, τ ≥ i

)
Pr
(
Oi+1:` = xi+1:` | Oi = xi, τ ≥ i

)
21

Published as a conference paper at ICLR 2025

Moreover, we have
Pr
(
O` = x`

)
=Mb(x

i)M`−i
b (xi+1:` | c, xi)

Combining both, we get

1 =
Pr
(
O` = x`

)
Mb(xi)M`−i

b (xi+1:` | c, xi)

= Pr
(
τ < i | Oi = xi

)
+ Pr

(
τ ≥ i | Oi = xi

)Pr (Oi+1:` = xi+1:` | Oi = xi, τ ≥ i
)

M`−i
b (xi+1:` | c, xi)

,

= 1− Pr
(
τ ≥ i | Oi = xi

)(Pr
(
Oi+1:` = xi+1:` | Oi = xi, τ ≥ i

)
M`−i

b (xi+1:` | c, xi)
− 1

)
,

and this implies that (note by assumption Pr
(
τ ≥ i | Oi = xi

)
6= 0),

Pr
(
Oi+1:` = xi+1:` | Oi = xi, τ ≥ i

)
=M`−i

b (xi+1:` | c, xi). (29)

Hence

Pr
(
O` = x`, τ ≥ `

)
≤ Pr

(
O` = x`, τ ≥ i

)
= Pr

(
Oi = xi, τ ≥ i

)
Pr
(
Oi+1:` = xi+1:` | Oi = xi, τ ≥ i

)
≤Ms(x

i | c)pi(xi)M`−i
b (xi+1:` | c, xi)

=Ms(x
i | c)M`−i

b (xi+1:` | c, xi).

If Pr
(
τ ≥ ` | X` = x`

)
> p`(x

`), we have

Pr
(
O` = x`, τ ≥ `

)
= Pr

(
X` = x`

)
Pr
(
τ ≥ ` | X` = x`

)
>Ms(x

` | c)p`(x`)

=Ms(x
` | c)

M`−i
b (xi+1:` | c, xi)

M`−i
s (xi+1:` | c, xi)

=Ms(x
i | c)M`−i

b (xi+1:` | c, xi),

which leads to a contradiction. This completes the proof.

C GREEDY BLOCK VERIFICATION

In this section, we show that it is possible to accept more tokens than block verification (Algorithm 2)
in one iteration with a modification to the speculative decoding framework in Algorithm 3 that
allows the decoding logic to depend on the previous accept/reject decisions. However, as shown in
Table 4, the resulting algorithm, greedy block verification, doesn’t improve over block verification.
We include the description and analysis of the algorithm as a theoretical result. The claims in the
main paper holds independent of the results in this section.

We start by introducing the algorithm (Algorithm 4) and then discuss the necessary modifications to
maintain the identity distribution guarantee.

The above greedy block verification algorithm has a similar procedure as block verification (Algo-
rithm 2) with differences in the setting of of acceptance probabilities and residual distributions, as
highlighted.

Similar to Algorithm 2, Algorithm 4 maintains a list of probabilities p̃i’s, which satisfies that
min{1, p̃i} is the probability that the subblock Xi is accepted. hi’s are chosen to achieve the above
acceptance guarantee, and pgreedyres ’s are chosen to maintain the identical distribution guarantee.

Note that compared to pi in block verification, the recursive definition of p̃i doesn’t have a minimum
over one term, hence it is always an upper bound on pi’s. This leads to a higher acceptance prob-
ability for every subblock in greedy block verification (Theorem 3). However, Algorithm 4 cannot
be used directly in the iterative implementation of speculative decoding in Algorithm 3. To see this,
consider the simple example in Section 2. Greedy block verification will perform the following:

22

Published as a conference paper at ICLR 2025

Algorithm 4 Greedy block verification
Input: Draft blockXγ ; small model distributions ∀i < γ,Ms(· | c, Xi); target model distributions
∀i ≤ γ,Mb(· | c, Xi).

1: Sample η1, . . . , ηγ ∼ U(0, 1).
2: Set τ = 0, p0 = 1.
3: for i = 1, . . . , γ − 1 do

4: Set p̃i = p̃i−1
Mb(Xi|c,Xi−1)
Ms(Xi|c,Xi−1) .

5: Set hi =
∑
xmax{p̃iMb(x|c,Xi)−Ms(x|c,Xi), 0}∑
xmax{Ms(x|c,Xi)−p̃iMb(x|c,Xi), 0}

6: if ηi ≤ hi then
7: Set τ = i.
8: else
9: continue.

10: end if
11: end for
12: p̃γ = p̃γ−1

Mb(Xγ |c,Xγ−1)
Ms(Xγ |c,Xγ−1)

13: if ηγ < p̃γ then
14: Set τ = γ, and sample Y fromMb(· | c, Xγ).
15: else
16: Sample Y from pgreedyres (· | c, Xτ) as below:

pgreedyres (x | c, Xi) =
max{ p̃i · Mb(x | c, Xi)−Ms(x | c, Xi), 0}∑

x′∈X max{ p̃i · Mb(x′ | c, Xi)−Ms(x′ | c, Xi), 0}
. (30)

17: end if
18: Return Xτ , Y .

Accept X1X2 = AB, BA, BB with probability one, and sample an extra token fromMb(·). Accept
X1X2 = AA with probability 1/4 and sample an extra token from Mb(·). When X1X2 = AA
is rejected, accept no tokens and sample a correction token Y = B. Note that in this case, if the
algorithm uses Y as the context for the next iteration and sample based onMb, the next token will
be A with probability 1/3. This makes the total probability of generating BA as the first two tokens

Ms(BA) Pr (Accept BA) +Ms(AA) Pr (Reject AA and Y = B)Mb(A) = 2/9 · 1 + 4/9 · 3/4 · 1/3
= 1/3,

which is higher thanMb(BA) = 2/9. This violates the identical distribution guarantee. Below we
introduce a distribution modification algorithm, which can be used with Algorithm 4 to maintain the
identical distribution guarantee.

It can be shown that if Xτ , Y are returned in Algorithm 4, and the next τ − γ − 1 tokens are
sampled according toMnew from Algorithm 5, the identical distribution guarantee is maintained.
In particular, we have the following lemma:

Lemma 8. Let Xγ ∼Mγ
s (· | c) be the draft tokens and Xτ , Y be the output from Algorithm 4. Let

Mnew be the modified distribution based on Algorithm 5, and Zγ−τ−1 ∼ Mγ−τ−1
new (· | c, Xτ , Y).

Then we have

Xτ , Y, Zγ−τ−1 ∼Mγ
b (· | c).

The proof is presented in Appendix C.3. The above leads to the following speculative decoding
algorithm with greedy block verification, presented in Algorithm 6. Note that Lemma 8 implies that
it maintains the identical distribution guarantee.

23

Published as a conference paper at ICLR 2025

Algorithm 5 Distribution modification
Input: Small model Ms; target model Mb; draft length γ; generated tokens from Algorithm 4

Xτ , Y .
1: LetM′b be such that ∀i ≤ γ − τ − 1, and xi ∈ X i,Mnew(xi | c, Xτ , Y, xi−1) =

max{Mb(c, X
τ , Y, xi)−Ms(c, X

τ , Y, xi), 0}∑
x′∈X max{Mb(c, Xτ , Y, xi−1, x′)−Ms(c, Xτ , Y, xi−1, x′), 0}

, (31)

{Modify the distribution at rejected locations.}
and ∀i > γ − τ − 1, and xi ∈ X i,

Mnew(xi | c, Xτ , Y, xi−1) =Mb(xi | c, Xτ , Y, xi−1)

{Keep the distributions for future locations unchanged.}
2: ReturnMnew.

Algorithm 6 Speculative decoding with greedy block verification
Input: Prefix c, large modelMb, draft modelMs. Draft length γ..

1: while E.O.S /∈ (Xτ , Y) do
2: Sample X1, . . . , Xγ ∼Ms(· | c) using autoregressive sampling, keep the conditional

probabilities at each stepMs(· | c, Xi) for i = 0, . . . , γ − 1. {Obtain draft block.}
3: Call the large modelMb and compute conditional probabilitiesMb(· | c, Xi)6

for i = 0, 1, . . . , γ in parallel. {Parallel scoring.}
4: Get the accepted tokens with draft verification {Draft verification and correction.}

Xτ , Y = VERIFY(Xγ , {Ms(· | c, Xi)}γ−1i=0 , {Mb(· | c, Xi)}γi=0).

5: c← c, Xτ , Y. {Add decoded tokens to the prefix.}
6: Mb ← DISTRIBUTIONMODIFY(Mb,Ms, γ,X

τ , Y) {Modify target distribution.}
7: end while

C.1 COMPARISON TO BLOCK VERIFICATION.

In one draft iteration, with the same pair of draft and target distributions, greedy block verification
is always better.

Theorem 3 (Informal). In one draft iteration with the same models Ms,Mb and draft length γ,
greedy block verification decodes at least as many tokens as block verification.

The theorem is proved in Appendix C.3. However, due to the distribution modification step, the
target distribution might change after the first iteration, which might affect the expected number of
accepted tokens. For example, in the Bernoulli example considered in Section 2, when the draft
block X1X2 = AA and they are rejected by greedy block verification. It can be shown that the
modified distribution will be a point mass on token B. And in future iterations, if the algorithm still
uses Ms as the draft model, there is lower chance that the draft tokens will be accepted. Hence,
theoretically it is unclear whether one approach dominates the other.

Empirical comparison. We conduct the same set of experiments in Section 6 on greedy block
verification to compare the two approaches empirically. We list the block efficiency comparison
when PALM-2-XXS is used as the drafter and γ = 8 in Table 4. As we can see, while greedy block
verification still consistently improves over token verification, the improvement is less significant
compared to block verification. The trend is the same for wall clock numbers as well as in other
parameter settings. Hence we recommend using block verification instead of the greedy version.

6In cases whereMb is not the original large transformer model. Mb can be obtained by evaluating using
the original large model, and then perform the modification in Equation (31).

24

Published as a conference paper at ICLR 2025

Table 4: Block efficiency comparison between among token verification, block verification, and
greedy block verification with γ = 8. Each statistic is computed using 1000 test prompts from
different datasets on various tasks (each run is an average with 3 different random seeds).

Dataset Token Verification Block verification Greedy block verification

LM1B 3.21 3.49 3.30
GPT Prompt 3.41 3.76 3.51

WebQA 3.44 3.70 3.52
PIQA 3.40 3.68 3.49

ShareGPT 3.34 3.62 3.44
XSum 3.49 3.76 3.59

GSM8K 3.81 4.15 3.96
WMT-DeEn 3.19 3.41 3.26

C.2 PROOF OF LEMMA 8

In the proof, we ignore the context c and the proof will generalize to arbitrary c. We start by
introducing two useful quantities.

premain(x
i):=

∑
x

max{Mb(x
i, x)−Ms(x

i, x), 0}, (32)

prej(x
i):=

∑
x

max{Ms(x
i, x)−Mb(x

i, x), 0}. (33)

Note that pi in Algorithm 4 depends on the draft block xi, and by the recursive definition of p̃i’s, we
have p̃i =

Mb(x
i)

Ms(xi)
. Hence we have

hi =

∑
xmax{p̃iMb(x | c, Xi)−Ms(x | c, Xi), 0}∑
xmax{Ms(x | c, Xi)− p̃iMb(x | c, Xi), 0}

=
premain(x

i)

prej(xi)
.

Moreover, the expression for p̃i also implies that pgreedyres (· | c, Xτ) =Mnew(· | c, Xτ) (defined in
Equation (30) and Equation (31) resepectively).

We now prove the following lemma about the acceptance length τ in Algorithm 4.
Lemma 9. For all ` ∈ [1, γ], and x` ∈ X `,

Pr
(
X` = x`, τ ≥ `

)
= min{Mb(x

`),Ms(x
`)}.

Proof. We prove this by induction in the backward direction. When ` = γ, Step 12-14 in Algo-
rithm 4 accepts Xγ with probability

Pr (τ = γ | Xγ = xγ) = min{1, p̃γ} = min

{
1,
Mb(x

γ)

Ms(xγ)

}
,

and hence

Pr (Xγ = xγ , τ ≥ γ) = Pr (Xγ = xγ) Pr (τ = γ | Xγ = xγ) = min {Ms(x
γ),Mb(x

γ)} .

Suppose the equation holds for ` ≥ `0, for ` = `0 − 1, we have

Pr
(
X`0−1 = x`0−1, τ ≥ `0 − 1

)
= Pr

(
X`0−1 = x`0−1, τ ≥ `0

)
+ Pr

(
X`0−1 = x`0−1, τ = `0 − 1

)
.

Next we consider the two terms separately. For the first term, due to the induction assumption, we
have

Pr
(
X`0−1 = x`0−1, τ ≥ `0

)
=
∑
x∈X

min{Mb(x
`0−1, x),Ms(x

`0−1, x)}

25

Published as a conference paper at ICLR 2025

For the second term, we have

Pr
(
X`0−1 = x`0−1, τ = `0 − 1

)
= Pr

(
X`0−1 = x`0−1, τ ≤ `0 − 1

)
· Pr

(
X`0−1 is accepted.

)
(34)

= Pr
(
X`0−1 = x`0−1, τ ≤ `0 − 1

)
· Pr (η`0−1 ≤ h`0−1)

=
(
Pr
(
X`0−1 = x`0−1

)
− Pr

(
X`0−1 = x`0−1, τ ≥ `0

))
·min

{
1,
premain(x

`0−1)

prej(x`0−1)

}
=
∑
x∈X

(
Ms(x

`0−1, x)−min{Mb(x
`0−1, x),Ms(x

`0−1, x)}
)
·min

{
1,
premain(x

`0−1)

prej(x`0−1)

}
(35)

= prej(x
`0−1) ·min

{
1,
premain(x

`0−1)

prej(x`0−1)

}
(36)

= min
{
premain(x

`0−1), prej(x
`0−1)

}
.

In the above derivation, Equation (34) is due to that Algorithm 4 is outputing the longest accepted
subblock. Equation (35) is due to the induction hypothesis. Equation (36) is due to the definition of
prej in Equation (33).

Combining the two terms, we have

Pr
(
X`0−1 = x`0−1, τ ≥ `0 − 1

)
= Pr

(
X`0−1 = x`0−1, τ ≥ `0

)
+ Pr

(
X`0−1 = x`0−1, τ = `0 − 1

)
=
∑
x∈X

min{Mb(x
`0−1, x),Ms(x

`0−1, x)}+min
{
premain(x

`0−1), prej(x
`0−1)

}
= min{

∑
x∈X

min{Mb(x
`0−1, x),Ms(x

`0−1, x)}+ premain(x
`0−1),∑

x∈X
min{Mb(x

`0−1, x),Ms(x
`0−1, x)}+ prej(x

`0−1)}

= min

{∑
x∈X
Mb(x

`0−1, x),
∑
x∈X
Ms(x

`0−1, x)

}
(37)

= min
{
Mb(x

`0−1),Ms(x
`0−1)

}
,

which is the desired quantity in the lemma. This concludes the proof. Here Equation (37) is due to
the definition of premain and prej in Equation (32) and Equation (33).

Next we proceed to prove Lemma 8. Let Oγ = (Xτ , Y, Zγ−τ−1). It would be enough to show that
for all i ≤ γ and xi ∈ X i,

Pr
(
Oi = xi

)
=Mb(x

i).

We prove this via induction. Note that the corollary holds for i = 0, which is the trivial case and
both sides are equal to 1. Suppose the claim holds for i ≤ i0. This means ∀xi0 ∈ X i0 , we have

Pr
(
Oi0 = xi0

)
=Mb(x

i0).

When i = i0 + 1, by the algorithm, we have that either τ ≥ i0 + 1, where Oi0+1 is an accepted
token, or τ ≤ io, where Oi0+1 is sampled according toMnew(· | Oi0) (or pgreedyres (· | Oi0), which

26

Published as a conference paper at ICLR 2025

is the same asMnew(· | Oi0)). By Lemma 9, we have

Pr
(
Oi0+1 = xi0+1

)
= Pr

(
Oi0+1 = xi0+1, τ ≥ i0 + 1

)
+ Pr

(
Oi0+1 = xi0+1, τ ≤ i0

)
= Pr

(
Xi0+1 = xi0+1, τ ≥ i0 + 1

)
+ Pr

(
Oi0 = xi0 , τ ≤ i0

)
· Mnew(xi0+1 | xi0)

= Pr
(
Xi0+1 = xi0+1, τ ≥ i0 + 1

)
+
(
Pr
(
Oi0 = xi0

)
− Pr

(
Oi0 = xi0 , τ ≥ i0 + 1

))
· Mnew(xi0+1 | xi0))

= min{Mb(x
i0+1),Ms(x

i0+1)}

+

(
Mb(x

i0)−
∑
x

min{Mb(x
i0 , x),Ms(x

i0 , x)}

)
· Mnew(xi0+1 | xi0))

(38)

= min{Mb(x
i0+1),Ms(x

i0+1)}+
∑
x

max{Mb(x
i0 , x)−Ms(x

i0 , x), 0} ·Mnew(xi0+1 | xi0))

= min{Mb(x
i0+1),Ms(x

i0+1)}+max{Mb(x
i0 , xi0+1)−Ms(x

i0 , xi0+1), 0} (39)

=Mb(x
i0+1).

Here Equation (38) follows by the induction hypothesis, and Equation (39) follows by the definition
ofMnew in Equation (31). By induction, this concludes the proof.

C.3 PROOF OF THEOREM 3

To prove Theorem 3, we first observe the following: For Algorithm 4, let τ be the number of
accepted tokens, due to Lemma 9, we have

EXγ∼Mγ
s
[τ] =

γ∑
`=1

Pr (τ ≥ `) =
γ∑
`=1

∑
x`∈X `

Pr
(
X` = x`, τ ≥ `

)
=

γ∑
`=1

∑
x`∈X `

min{Ms(x
`),Mb(x

`)}.

Next we show that the above expected acceptance length is optimal for a family of draft verification
algorithms that performs a coupling between sample blocks from the draft and target distributions.
For all xγ , yγ ∈ X γ , let the maximum common prefix length be defined as

β(xγ , yγ):=max
`≤γ
{∀i ≤ `, xi = yi}.

Formally, let π be a joint distribution over X γ × X γ , then Algorithm 4 solves the following opti-
mization problem.

max
π

EXγ ,yγ∼π [β(Xγ , yγ)] , (40)

subject to constraints ∑
yγ

π(xγ , yγ) =Ms(x
γ), ∀xγ ∈ X γ , (41)

∑
xγ

π(xγ , yγ) =Mb(y
γ), ∀yγ ∈ X γ . (42)

In this above formulation, the marginal distributions satisfy Xγ ∼ Mγ
s and Y γ ∼ Mγ

b . And
the maximum common prefix length refers to the number of accepted tokens in one iteration of
speculative decoding. Note that the optimization problem can be viewed as an optimal transport
problem (Villani et al., 2009) between distributionsMγ

s (·) andMγ
b (·) with the cost function being

(γ−β(Xγ , Y γ). The next lemma establishes the optimality of Algorithm 4 in solving this problem.

27

Published as a conference paper at ICLR 2025

Lemma 10. The solution to Equation (40) is upper bounded by
γ∑
τ=1

∑
xτ∈X τ

min{Ms(x
`),Mb(x

`)}

Proof of Lemma 10: For all π that satisfies Equations (41) and (42) and Xγ , Y γ ∼ π, we have

EXγ ,Y γ [β(Xγ , Y γ)]
(a)
=
∑
`≤γ

PrXγ ,Y γ (β(Xγ , Y γ) ≥ `)

=
∑
`≤γ

∑
x`

PrXγ ,Y γ
(
X` = Y ` = x`, β(Xγ , Y γ) ≥ `

)
≤
∑
`≤γ

∑
x`

PrXγ ,Y γ
(
X` = Y ` = x`

)
(b)

≤
∑
`≤γ

∑
x`

min
{

Pr
(
X` = x`

)
,Pr
(
Y ` = x`

)}
=
∑
`≤γ

∑
x`

min{M`
s(x

`),M`
b(x

`)}.

Here (a) follows from the fact that for a positive integer random variable E[X] =
∑
i Pr(X ≥ i);

(b) follows from the fact that the joint probability is upper bounded by the minimum of the marginals.

Then Theorem 3 holds by noticing that block verification Algorithm 2 is also an instance of the
coupling by setting Xγ to be the draft tokens and Y γ = (Xτ , Y ′, Zγ−τ−1) where (Xτ , Y ′) are the
outputs from Algorithm 2 and Zγ−τ−1 ∼Mb(· | c, Xτ , Y) (Lemma 2).

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 COMPARISON TO SPECULATIVE DECODING WITH MULTIPLE DRAFTS.

Recent works (Sun et al., 2023; Miao et al., 2023) have extended speculative decoding to the case
with multiple draft blocks to improve block efficiency. However, these methods also increase the
required computation from the large model to verify the drafts. In high-throughput LLM serving
systems, query batching (Kwon et al., 2023) is a common technique where multiple prefixes are
decoded at the same time. In these cases, the inference will be less memory bound and there will
not be enough extra parallel compute to evaluate the increased number of drafts without decreasing
latency.

We empirically compare block verification and SpecTr (Sun et al., 2023), SpecInfer (Miao et al.,
2023) with query batching. We set the batch size B = 8 and use PALM-2-XXS as the draft model.
In Table 5, we list the wall clock speedup and block efficiency for γ = 8. The number of draft
blocks for SpecTr and SpecInfer are taken to be 2, which is the one that achieves the lowest latency
over {2, 4, 8} when B = 8, γ = 8.

We observe that while SpecTr and SpecInfer can achieve higher block efficiencies, due to the in-
creased computation to evaluate more candidates, our method achieves better speedup than SpecTr
and SpecInfer, demonstrating the advantage of our method in the common practical setting with
query batching.

D.2 DETAILED RESULTS WITH OTHER PARAMETER SETTINGS

In this section, we present experimental results for the same set of experiments described in Sec-
tion 6 with different block lengths (γ = 4, 6, 8) and different drafters (PALM-2-XXS and PALM-2-
XXXS):

• Table 6. Drafter: PALM-2-XXS, γ = 4.
• Table 7. Drafter: PALM-2-XXS, γ = 6.

28

Published as a conference paper at ICLR 2025

Table 5: γ = 8, B = 8. Speedup comparison between token verification (TOKENV) and block
verification (BLOCKV) with PALM-2-XXS as the draft model on various datasets and tasks.

Dataset Wall clock time over baseline Block efficiency

TOKENV BLOCKV SpecTr SpecInfer TOKENV BLOCKV SpecTr SpecInfer

GPT Prompt 1.300 1.381 1.290 1.263 3.394 3.715 3.898 3.833
WebQA 1.302 1.368 1.279 1.274 3.451 3.7 3.933 3.894

ShareGPT 1.267 1.333 1.244 1.236 3.366 3.63 3.824 3.78
GSM8K 1.353 1.445 1.344 1.319 3.856 4.179 4.356 4.277
XSum 1.328 1.403 1.300 1.285 3.487 3.768 3.949 3.897
PIQA 1.305 1.377 1.270 1.280 3.401 3.685 3.846 3.82
LM1B 1.274 1.344 1.253 1.245 3.218 3.494 3.669 3.629

WMT-DeEn 1.222 1.293 1.204 1.194 3.165 3.422 3.603 3.56

• Table 8. Drafter: PALM-2-XXXS, γ = 4.
• Table 9. Drafter: PALM-2-XXXS, γ = 6.
• Table 10. Drafter: PALM-2-XXXS, γ = 8.

Table 6: Speedup comparison between token verification (TOKENV) and block verification
(BLOCKV) with γ = 4 and PALM-2-XXS being the draft model. Each statistic is computed using
1000 test prompts from different datasets on various tasks (each run is an average with 3 different
random seeds). Numbers after ± represent standard deviation.

Dataset Block efficiency Wall clock time speedup over baseline

TOKENV BLOCKV Improve. ↑ % TOKENV BLOCKV Improve. ↑ %

LM1B 2.78± 0.01 2.88± 0.01 3.48± 0.24 2.36± 0.00 2.42± 0.01 2.51± 0.22
GPT Prompt 2.88± 0.01 3.00± 0.00 4.33± 0.25 2.43± 0.01 2.51± 0.00 3.43± 0.24

WebQA 2.91± 0.01 2.99± 0.01 2.83± 0.65 2.45± 0.01 2.50± 0.01 1.94± 0.61
PIQA 2.89± 0.00 2.99± 0.01 3.48± 0.21 2.44± 0.00 2.50± 0.01 2.66± 0.20

ShareGPT 2.85± 0.01 2.95± 0.00 3.48± 0.19 2.41± 0.01 2.47± 0.00 2.63± 0.17
XSum 2.94± 0.01 3.03± 0.01 3.24± 0.51 2.48± 0.01 2.54± 0.01 2.35± 0.48

GSM8K 3.12± 0.01 3.21± 0.02 3.06± 0.95 2.62± 0.01 2.68± 0.02 2.19± 0.89
WMT-DeEn 2.75± 0.01 2.83± 0.01 2.99± 0.09 2.33± 0.01 2.38± 0.01 2.18± 0.09

Average 2.89 2.99 3.36 2.44 2.50 2.49

Table 7: Speedup comparison between token verification (TOKENV) and block verification
(BLOCKV) with γ = 6 and PALM-2-XXS being the draft model. Each statistic is computed using
1000 test prompts from different datasets on various tasks (each run is an average with 3 different
random seeds). Numbers after ± represent standard deviation.

Dataset Block efficiency Wall clock time speedup over baseline

TOKENV BLOCKV Improve. ↑ % TOKENV BLOCKV Improve. ↑ %

LM1B 3.08± 0.01 3.27± 0.01 6.42± 0.07 2.32± 0.01 2.43± 0.01 5.00± 0.06
GPT Prompt 3.22± 0.01 3.44± 0.02 6.55± 0.83 2.42± 0.00 2.54± 0.02 5.06± 0.77

WebQA 3.26± 0.01 3.44± 0.01 5.60± 0.22 2.45± 0.01 2.55± 0.01 4.24± 0.21
PIQA 3.22± 0.02 3.43± 0.02 6.36± 0.78 2.42± 0.01 2.54± 0.01 4.92± 0.72

ShareGPT 3.18± 0.02 3.37± 0.01 6.13± 0.53 2.39± 0.02 2.50± 0.01 4.74± 0.49
XSum 3.29± 0.01 3.48± 0.01 5.91± 0.82 2.47± 0.01 2.58± 0.01 4.47± 0.77

GSM8K 3.56± 0.01 3.80± 0.03 6.86± 0.60 2.66± 0.01 2.80± 0.02 5.38± 0.56
WMT-DeEn 3.04± 0.01 3.19± 0.01 4.92± 0.29 2.29± 0.01 2.37± 0.01 3.57± 0.27

Average 3.23 3.43 6.10 2.43 2.54 4.67

29

Published as a conference paper at ICLR 2025

Table 8: Speedup comparison between token verification (TOKENV) and block verification
(BLOCKV) with γ = 4 and PALM-2-XXXS being the draft model. Each statistic is computed
using 1000 test prompts from different datasets on various tasks (each run is an average with 3
different random seeds). Numbers after ± represent standard deviation.

Dataset Block efficiency Wall clock time speedup over baseline

TOKENV BLOCKV Improve. ↑ % TOKENV BLOCKV Improve. ↑ %

LM1B 2.24± 0.00 2.33± 0.01 4.23± 0.44 2.25± 0.00 2.34± 0.01 3.89± 0.41
GPT Prompt 2.41± 0.02 2.48± 0.01 2.96± 1.00 2.42± 0.02 2.48± 0.01 2.72± 0.94

WebQA 2.38± 0.01 2.45± 0.01 2.87± 0.13 2.39± 0.01 2.45± 0.01 2.63± 0.12
PIQA 2.36± 0.01 2.43± 0.01 3.22± 0.37 2.37± 0.01 2.44± 0.01 2.97± 0.35

ShareGPT 2.34± 0.00 2.42± 0.01 3.49± 0.12 2.35± 0.00 2.42± 0.01 3.16± 0.12
XSum 2.38± 0.01 2.45± 0.01 2.91± 0.63 2.39± 0.01 2.45± 0.01 2.68± 0.60

GSM8K 2.51± 0.01 2.58± 0.02 2.99± 0.47 2.51± 0.01 2.58± 0.02 2.74± 0.44
WMT-DeEn 2.22± 0.00 2.28± 0.00 2.59± 0.09 2.24± 0.00 2.29± 0.00 2.37± 0.08

Average 2.35 2.43 3.16 2.36 2.43 2.89

Table 9: Speedup comparison between token verification (TOKENV) and block verification
(BLOCKV) with γ = 6 and PALM-2-XXXS being the draft model. Each statistic is computed
using 1000 test prompts from different datasets on various tasks (each run is an average with 3
different random seeds). Numbers after ± represent standard deviation.

Dataset Block efficiency Wall clock time speedup over baseline

TOKENV BLOCKV Improve. ↑ % TOKENV BLOCKV Improve. ↑ %

LM1B 2.36± 0.01 2.48± 0.00 4.93± 0.46 2.27± 0.01 2.37± 0.00 4.55± 0.43
GPT Prompt 2.58± 0.04 2.72± 0.02 5.57± 1.29 2.46± 0.03 2.59± 0.01 5.10± 1.22

WebQA 2.54± 0.00 2.68± 0.02 5.46± 0.50 2.43± 0.00 2.55± 0.01 5.02± 0.47
PIQA 2.50± 0.00 2.62± 0.01 5.06± 0.39 2.39± 0.00 2.50± 0.01 4.66± 0.37

ShareGPT 2.47± 0.01 2.60± 0.01 5.10± 0.49 2.37± 0.01 2.48± 0.01 4.69± 0.46
XSum 2.54± 0.01 2.67± 0.01 4.83± 0.47 2.43± 0.01 2.54± 0.01 4.45± 0.44

GSM8K 2.71± 0.03 2.83± 0.00 4.27± 0.89 2.58± 0.02 2.69± 0.00 3.92± 0.84
WMT-DeEn 2.31± 0.01 2.43± 0.02 5.38± 0.57 2.21± 0.00 2.32± 0.01 4.99± 0.54

Average 2.50 2.63 5.07 2.39 2.50 4.67

Table 10: Speedup comparison between token verification (TOKENV) and block verification
(BLOCKV) with γ = 8 and PALM-2-XXXS being the draft model. Each statistic is computed
using 1000 test prompts from different datasets on various tasks (each run is an average with 3
different random seeds). Numbers after ± represent standard deviation.

Dataset Block efficiency Wall clock time speedup over baseline

TOKENV BLOCKV Improve. ↑ % TOKENV BLOCKV Improve. ↑ %

LM1B 2.40± 0.01 2.55± 0.01 6.19± 0.43 2.13± 0.01 2.25± 0.01 5.28± 0.40
GPT Prompt 2.66± 0.01 2.82± 0.02 6.28± 1.01 2.35± 0.01 2.47± 0.02 5.37± 0.95

WebQA 2.61± 0.01 2.78± 0.00 6.27± 0.49 2.31± 0.01 2.43± 0.00 5.39± 0.46
PIQA 2.57± 0.01 2.76± 0.01 7.48± 0.51 2.27± 0.01 2.42± 0.01 6.51± 0.47

ShareGPT 2.54± 0.01 2.71± 0.01 6.63± 0.72 2.25± 0.01 2.38± 0.01 5.68± 0.68
XSum 2.60± 0.01 2.77± 0.00 6.46± 0.49 2.30± 0.01 2.43± 0.00 5.53± 0.46

GSM8K 2.82± 0.02 2.98± 0.03 5.48± 1.18 2.49± 0.01 2.60± 0.03 4.62± 1.11
WMT-DeEn 2.37± 0.00 2.49± 0.01 5.33± 0.46 2.10± 0.00 2.20± 0.01 4.53± 0.43

Average 2.57 2.73 6.27 2.28 2.40 5.36

30

	Introduction
	A Motivating Example
	Block Verification
	Theoretical Guarantees
	Experiment Setup
	Results
	Experimental results on PALM-2 models
	 Experimental results on Spec-Bench with Vicuna models

	Related work
	Discussion
	Python Implementation
	Formal Proofs
	Proof of thm:distributionmatch
	Proof of thm:optimaldecodedlength
	Proof of lem:acceptprob
	Proof of lem:acceptprobupper

	Greedy Block Verification
	Comparison to block verification.
	Proof of lem:greedyblockidentical
	Proof of thm:greedyoneiter

	Additional Experimental Results
	Comparison to speculative decoding with multiple drafts.
	Detailed results with other parameter settings

