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ABSTRACT

Model inversion attacks (MIAs) aim to reconstruct private training data by access-
ing public models, raising increasing concerns about privacy breaches. Black-box
MIA, where attackers can generate inputs and obtain the model’s outputs arbitrar-
ily, has gained more attention due to its closer alignment with real-world scenarios
and greater potential threats. Existing defenses primarily focus on white-box at-
tacks, with a lack of specialized defenses to address the latest black-box attacks.
To fill this technological gap, we propose a post-processing defense based on con-
ditional mutual information (CMI). We have theoretically proven that our CMI
framework serves as a special information bottleneck, making outputs less depen-
dent on inputs and more dependent on true labels. To further reduce the modifica-
tions to outputs, we introduce an adaptive rate-distortion framework and optimize
it with the water-filling method. Experimental results show that our approach out-
performs existing defenses, in terms of both MIA robustness and model utility,
across various attack algorithms, training datasets, and model architectures.

1 INTRODUCTION

Deep Neural Networks (DNNs) have witnessed remarkable advancements in recent years, driving
significant breakthroughs across multiple applications, including face recognition (He et al., 2016)
and personalized recommendations (Wu & Yan, 2017). Despite their efficacy, these powerful models
are vulnerable to malicious attacks, particularly in the realm of privacy. A paramount concern is the
Model Inversion Attack (MIA) (Fang et al., 2024), which exploits the output information of released
models to reconstruct sensitive input features. Even in the absence of direct access to the original
training data, the adversary still succeeds in recovering the private information. This capability
poses a substantial threat, as it enables malicious actors to potentially replicate private features of
confidential identities, thereby undermining both the privacy and security of the whole system.

According to the access ability to the target model, MIAs can be categorized into white-box and
black-box attacks. black-box MIAs can deploy an attack without any access to the parameters or
structure of target models, demonstrating more threats than white-box MIAs. However, most ex-
isting defenses against MIAs concentrate on the white-box attacks and apply various techniques to
enhance the inner robustness for target models, which tend to lose efficacy when transferred into the
black-box MIAs. Moreover, the black-box MIAs are hard to be mitigated through improvements on
the inner structure of target models as they never rely on the intermediate information available in
the white-box settings. In fact, the experiments in this paper have shown that existing defense meth-
ods can no longer withstand the latest and most powerful black-box attacks. Specialized black-box
defenses are necessary and urgently needed.

To fill this gap, we propose Stealthy Shield Defense (SSD), a black-box model inversion defense
method based on conditional mutual information (CMI). The CMI measures the dependence be-
tween the model’s input and output when the ground truth is given. Our approach involves modi-
fying the model’s output to reduce this dependence, effectively protecting against model inversion
attacks. We further show that minimizing CMI aligns with the information bottleneck principle,
highlighting its potential to balance data privacy and utility.
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(a) CMI=0.21 w/o Def. (b) CMI=0.14 with Def. (c) CMI=4.02 w/o Def. (d) CMI=1.96 with Def.

Figure 1: Visualize our defense effects via CMI. The detailed settings are in Sec 5.3.

Through empirical verification, we demonstrate that CMI has an intuitive geometric interpretation,
which enhance model robustnest against MIAs. Figure 1(a)1(b) shows the probability vectors pre-
dicted by target model on test samples, with different colors indicating different classes. CMI quan-
tifies the intra-class dispersion of these vectors, and a smaller CMI implies that they are more con-
centrated. With our defense, CMI is reduced to prevent attackers from obtaining more information
about the private data distribution. Figure 1(c)1(d) displays the ones on samples generated by at-
tackers. With our defense, these probability vectors are clustered into groups, misleading attackers’
judgment on the classes their samples belong to.

In summary, the contributions of this paper are:

• Based on a review of existing attacks and defenses, we point out that the dependence be-
tween inputs and outputs should be minimized at the class level to defend against MIA. To
achieve this, we introduce CMI into model inversion defense.

• We propose a post-processing algorithm to minimize CMI without retraining models. In
our algorithm, we introduce a temperature mechanism to calibrate the probabilities and
propose an adaptive rate-distortion mechanism to reduce the modifications to outputs. We
speed up our algorithm by water-filling as well.

• Our experiments demonstrate that our defense outperforms all competitors in terms of MIA
robustness and model utility, exhibiting good generalizability across various attack algo-
rithms, private training datasets, and target model architectures.

2 RELATED WORKS

2.1 MODEL INVERSION ATTACKS

Model inversion (MI) attacks are used to extracting training data from a trained model. Typically, MI
attacks are categorized into two scenarios: white-box and black-box attacks. In white-box scenarios,
attackers attackers have full access to the model’s parameters and outputs. However, in black-box
scenarios, the attackers can only observe the model’s outputs.

Zhang et al. (2020) first propose a generative model inversion attack (GMI) to effectly attack deep
neural networks (DNNs). The attackers train a GAN model to capture the similar structure of the
private data. In the attack process, the attackers search the latent space of the GAN generator and
minimize the classification loss to generate images that close to the private samples.

In this paper, we focus on the black-box scenarios. Recent black-box attacks show strong threaten
against models, leading to a huge risk of privacy leakage. BREP (Kahla et al., 2022) utilizes zero-
order optimization to urge the latent vector to gradually move away from the decision boundary.
Mirror (An et al., 2022) and C2F (Ye et al., 2023) explores gradient-free techniques. They execute
the optimization process with the genetic algorithm. LOKT (Nguyen et al., 2024) is the SOTA
black-box method. It transfers the black-box attacks into white-box. They train multiple surrogate
models and apply white-box attacks on them.
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2.2 MUTUAL INFORMATION IN DEEP LEARNING

Tishby et al. (2001) established the information bottleneck (IB) theory for deep learning (DL), ex-
plaining the forward propagation from the perspective of mutual information (MI). However, the
complex computation of MI restricts the application of IB. To overcome this, Alemi et al. (2017) pro-
posed a variational method for calculating the MI in DL, and Kolchinsky et al. (2017) improved their
method. Belghazi et al. (2018) proposed MINE to compute the MI in high-dimensional continuous
space, and Hu et al. (2024) proposed InfoNet to reduce the time overhead of MINE. Shwartz-Ziv &
Tishby (2017) pointed out that MI and IB may be the key to achieving explainable DL.

Yang et al. (2024) proposed a deep learning framework constrained by conditional mutual informa-
tion (CMI). They also use CMI for knowledge distillation (Ye et al., 2024) and federated learning
(Hamidi et al., 2024). We will point out in Proposition 1 that CMI is a special case of IB.

3 PRELIMINARY

3.1 NOTATIONS

Let f : X→ Y be a neural classifier, XXX ∈ X be an input to f , Y ∈ Y be its ground truth label,
Ŷ ∈ Y be the label predicted by f , and ZZZ ∈ Z be the intermediate feature in f . XXX,Y, Ŷ ,ZZZ are
random variables and let xxx, y, ŷ, zzz donate their values, resp. For brevity, let P(xxx) := P{XXX = xxx},
P(y) := P{Y = y}, P(xxx, ŷ|y) := P{XXX = xxx, Ŷ = ŷ|Y = y}, etc.

Let P(Y) be the set of probability vectors over Y. When xxx is input to f , let fff(xxx) ∈ P(Y) be the
output from the softmax layer, and fŷ(xxx) be its ŷ-th component. Note f(xxx) = argmax

ŷ∈Y
fŷ(xxx).

3.2 MODEL INVERSION ATTACKS

Model inversion attacks (MIAs) aim to reconstruct the private dataset by accessing the public model.
Formally, let Dtrain ⊆ X× Y be the training set for f . Dtrain is secret and attackers aim to construct
D̂train as close to Dtrain as possible. Based on their access to f , MIAs are categorized as:

Hard-label: Attackers can get f(xxx) ∈ Y for any xxx ∈ X.
Soft-label: Attackers can get fff(xxx) ∈ P(Y) for any xxx ∈ X.
White-box: Attackers can get the structure and weights of f , and thus the zzz ∈ Z w.r.t. any xxx ∈ X.

Hard-label and soft-label, collectively called black-box,1 are what we aim to defend against.

3.3 MUTUAL INFORMATION-BASED DEFENSE

Wang et al. (2021) proposed to defend against MIAs via mutual informations. Formally, the mutual
information between XXX and Ŷ is defined as

I(XXX; Ŷ ) :=
∑
xxx∈X

∑
ŷ∈Y

P(xxx, ŷ) log
P(xxx, ŷ)
P(xxx)P(ŷ)

. (1)

I(XXX; Ŷ ) quantifies the information of XXX carried by Ŷ . They reduced it to prevent attackers from
knowing the privateXXX by observing Ŷ . However, reducing it impairs the model’s utility. Especially,
I(XXX; Ŷ ) = 0 iff XXX and Ŷ are independent. In that case, f is immune to any attack but useless at all.

As an alternative, they introduced information bottlenecks (Tishby et al., 2001), which is defined as
I(XXX;ZZZ)− λ · I(Y ;ZZZ), (2)

where λ > 0. They used (2) as a regularizer to train f , minimizing I(XXX;ZZZ) to defend against MIAs
while maximizing I(Y ;ZZZ) to preserve the utility. They achieved a better trade-off by adjusting λ.

Peng et al. (2022) replaced the I in (2) with other dependence metrics, COCO (Gretton et al., 2005b)
and HSIC (Gretton et al., 2005a), to avoid the complex calculations of mutual informations.

1Some literature refer to hard-label as label-only, and soft-label as black-box.
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4 METHODOLOGY

4.1 CONDITIONAL MUTUAL INFORMATION-BASED DEFENSE

We aim to defend against black-box MIAs, so we still focus on Ŷ rather than ZZZ. Furthermore,
we have observed that all MIA algorithms target one fixed label during attacking. Formally, given
y ∈ Y, they aim to reconstruct Dy

train := {xxx ∈ X | (xxx, y) ∈ Dtrain}, constructing D̂y
train as close to

Dy
train as possible. Based on our observation, we propose to minimize the mutual information

I(XXX; Ŷ |Y = y) :=
∑
xxx∈X

∑
ŷ∈Y

P(xxx, ŷ|y) log P(xxx, ŷ|y)
P(xxx|y)P(ŷ|y)

. (3)

I(XXX; Ŷ |Y = y) quantifies the information of XXX carried by Ŷ when Y = y. We minimize it to
prevent attackers from knowing the private XXX|Y = y by observing Ŷ , where XXX|Y = y denotes the
input whose ground truth label is y.

Minimizing (3) on each y ∈ Y is equivalent to minimizing the conditional mutual information
(CMI), which is defined as

I(XXX; Ŷ |Y ) :=
∑
y∈Y

P(y)I(XXX; Ŷ |Y = y). (4)

Proposition 1. CMI is a special case of information bottlenecks, taking ZZZ = Ŷ and λ = 1, i.e.

I(XXX; Ŷ |Y ) = I(XXX; Ŷ )− I(Y ; Ŷ ). (5)

Our proof is provided in Appendix A. Our proposition shows that CMI inherits the benefits of
information bottlenecks—minimizing I(XXX; Ŷ ) to defend against MIAs while maximizing I(Y ; Ŷ )
to preserve the model’s utility.

The I(XXX;ZZZ) in (2) is challenging to calculate because the input space X and feature space Z are
both high-dimensional. Previous works can only estimate its bound by variational methods (Alemi
et al., 2017), and can not calculate its value directly. Fortunately, as a special case of information
bottlenecks, our CMI can be calculated and minimized directly, as described in the next section.

4.2 POST-PROCESSING ALGORITHM TO MINIMIZE CMI

Without retraining models, we propose to minimize CMI by post-processing. The CMI can be
calculated as follows:

I(XXX; Ŷ |Y ) =
∑
y∈Y

P(y)
∑
xxx∈X

∑
ŷ∈Y

P(xxx, ŷ|y) log P(xxx, ŷ|y)
P(xxx|y)P(ŷ|y)

(6)

=
∑
y∈Y

∑
xxx∈X

∑
ŷ∈Y

P(xxx)P(y|xxx)P(ŷ|y,xxx) log P(ŷ|xxx, y)
P(ŷ|y)

(7)

=
∑
xxx∈X

P(xxx)
∑
y∈Y

P(y|xxx)
∑
ŷ∈Y

P(ŷ|xxx) log P(ŷ|xxx)
P(ŷ|y)

, (8)

where (6) is by definitions (3-4), (7) is by conditional probability, and (8) is by the Markov chain of
Y →XXX → Ŷ .

Based on (8), minimizing I(XXX; Ŷ |Y ) is equivalent to minimizing
∑
y∈Y

P(y|xxx)
∑̂
y∈Y

P(ŷ|xxx) log P(ŷ|xxx)
P(ŷ|y)

for any xxx inputted to f . However, this objective function is too complex for convex optimizer
to minimize. For simplicity, we sample y ∈ Y with the probability of P(y|xxx) and minimize∑̂
y∈Y

P(ŷ|xxx) log P(ŷ|xxx)
P(ŷ|y) instead, which is equivalent to the original formula in terms of mathemati-

cal expectation.

4
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Let qqqy ∈ P(Y) and its ŷ-th component qyŷ := P(ŷ|y), consider fŷ(xxx) = P(ŷ|xxx), and then we have∑
ŷ∈Y

P(ŷ|xxx) log P(ŷ|xxx)
P(ŷ|y)

=
∑
ŷ∈Y

fŷ(xxx) log
fŷ(xxx)

qyŷ
= KL(fff(xxx)||qqqy), (9)

where KL is the Kullback-Leibler divergence, a binary strictly convex function.

We can get fff(xxx) from the softmax layer when xxx is inputted to f . To determine qqqy , we note that

qyŷ =
∑
xxx∈X

P(xxx, ŷ|y) =
∑
xxx∈X

P(xxx|y)P(ŷ|xxx, y) =
∑
xxx∈X

P(xxx|y)P(ŷ|xxx) =
∑
xxx∈X

P(xxx|y)fŷ(xxx)

= EXXX|Y=y[fŷ(XXX)], and thus qqqy = EXXX|Y=y[fff(XXX)].

(10)

Based on (10), we can estimate qqqy by private samples whose ground truth label is y. Specifically,
we can find a sample xxx′ that labeled y in the validation set, and let q̃qqy := fff(xxx′).

To determine the sampling probability P(y|xxx), a simple idea is to consider

P(y|xxx) = P(ŷ|xxx) = fŷ(xxx) for y = ŷ ∈ Y. (11)

But Guo et al. (2017) have demonstrated that (11) is inaccurate for modern neural networks. Inspired
by their work, we introduce temperature mechanism to calibrate it.

When xxx is inputted to f , we minimize CMI by modifying the prediction fff(xxx). Let ppp ∈ P(Y) be
the modified prediction, and our objective function is KL(ppp||qqqy) based on the above derivation. To
preserve the model’s utility, we constrain ∥ppp− fff(xxx)∥1 ≤ ε where ε > 0 is the distortion bound.

In rate-distortion theory (Shannon, 1959), minimizing mutual information under bounded distortion
constraint is for signal compression. If a signal has less information, it is easier to compress, and a
stricter distortion bound can be applied. Regarding fff(xxx) as a signal and ppp as the compressed signal,
we can use normalized entropy to quantify the information in fff(xxx), which is defined as

H̄(xxx) := − 1

log |Y|
∑
ŷ∈Y

fŷ(xxx) log fŷ(xxx). (12)

Smaller H̄(xxx) means less information in fff(xxx), and smaller modification it need. Thus we propose
the adaptive constraint ∥ppp − fff(xxx)∥1 ≤ ε · H̄(xxx) to further control the distortion. Note that the old
constraint ∥ppp− fff(xxx)∥1 ≤ ε still holds due to the property of 0 ≤ H̄(xxx) ≤ 1. This method is called
adaptive rate distortion.

Our defense is summarized as Algorithm 1:

Algorithm 1: Our post-processing to minimize CMI.
Input: Original prediction fff(xxx), target model f , validation set Dvalid, distortion bound ε,

temperature T .
Output: Modified prediction ppp.

y ← Sample in Y with the probability of softmax
(
fff(xxx)

T

)
Find one (xxx′, y) ∈ Dvalid and q̃qqy ← fff(xxx′)

Calculate H̄(xxx) by (12)
Solve the convex optimization problem and return the optimal solution ppp:

min KL(ppp||q̃qqy),
s.t. ∥ppp− fff(xxx)∥1 ≤ ε · H̄(xxx),

ppp ∈ P(Y).
(13)

Note that the q̃qqy can be calculated and stored in advance, making our algorithm not require f and
Dvalid.

5
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5 EXPERIMENT

5.1 EXPERIMENT SETTINGS

Datasets. Following previous researches of model inversion attacks, we use the FaceScrub (Ng &
Winkler, 2014) and CelebFaces Attributes (CelebA) (Liu et al., 2015) as private datasets. FaceScrub
consists of 530 identities. CelebA contains 10177 identities and we only take 1000 identities with
the most images (Kahla et al., 2022). To adapt to the classifiers, all images in the various datasets
are cropped and resized to 64× 64 pixels in our experiment.

Models. We train a variety of classifiers using the private datasets mentioned above, measuring
robust model performance under various conditions. For target models, we employ VGG-16 (Si-
monyan & Zisserman, 2014) and IR-152 (He et al., 2016), both of which are trained with different
defense methods. We select FaceNet (Cheng et al., 2017) as the evaluation model.

Model inversion attacks. In our experiments, we foucus on four state-of-the-art (SOTA) black-
box model inversion attacks, including BREP (Kahla et al., 2022), Mirror (An et al., 2022), C2F (Ye
et al., 2023) and LOKT (Nguyen et al., 2024).

Metrics. Following previous works (Struppek et al., 2024), we utilize multiple metrics to compre-
hensively evaluate the performance of our defense methods. To measure the model robustness and
utility of each method, we consider the following metrics:

• Attack Accuracy. The metric is used to imitate a human to determine whether recon-
structed images correspond to the target identity or not. Specifically, we employ an evalu-
ation model trained on the same dataset as the target model to re-classify the reconstructed
images. We then compute the top-1 and top-5 classification accuracies, denoted as Acc@1
and Acc@5, respectively.

• Feature Distance. The feature is extracted from the second-to-last layer of the model.
This distance metric measures the average l2 distance between the features of reconstructed
images and the nearest private images. Consistent with previous research, we use both the
evaluation model and a pre-trained FaceNet model Schroff et al. (2015) to generate the
features. The corresponding feature distances are denoted as σeval and σface. A lower
feature distance indicates a closer semantic similarity between the reconstructed images
and private samples.

• Test Accuracy. The top-1 classification accuracy on the private test set. This metric is used
to evaluate the utility of the target model with defense.

• Predictive Bias. This metric is used to quantify the modification to the predicted prob-
ability vectors by defense methods. For an identical input, we take the L1 norm of the
difference between the outputs with and without defense. Avg L1 is the average norm over
all private test samples, and Max L1 is the largest one. Lower values of both suggest that
the defense method causes less harm to the predicted probability vectors.

5.2 COMPARISON WITH PREVIOUS STATE-OF-THE-ART DEFENSES

In this section, we evaluate the robustness of our defense method by comparing it against an un-
defended model and prior state-of-the-art (SOTA) defense strategies, including MID (Wang et al.,
2021), BiDO (Peng et al., 2022), LS (Struppek et al., 2024) and TL (Ho et al., 2024). We adhere
to the official configurations for each defense method, and the corresponding hyperparameters are
detailed in Appendix B.

We evaluate the model’s robustness under various types of black-box model inversion attacks, in-
cluding both soft-label and hard-label attacks. We conduct experiments on different target models
and private datasets to demonstrate that our approach performs effectively across diverse scenarios.

For soft-label attacks, we compare our method with previous defense strategies under the Mirror
and C2F attacks. The attack results are listed in Table 1. We can observe that our method achieves
significant improvements over existing defense strategies, especially when the attack has a strong

6
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performace. Specifically, under the Mirror attack against IR-152 trained on the FaceScrub dataset,
our method reduces the attack accuracy from 52.3% to 19.4%, achieving a 3.6% greater reduction
compared to the previous SOTA method TL. For C2F attacks against VGG16 models trained on the
FaceScrub dataset, our method reduces the attack accuracy to approximately 1/9 of that without
defense, which is only a quarter of the accuracy achieved under the TL defense.

Table 1: Experiment results against soft-label attacks.
Model
Dataset Defense Mirror C2F

↓ Acc@1 ↓ Acc@5 ↑ δeval ↑ δface ↓ Acc@1 ↓ Acc@5 ↑ δeval ↑ δface

IR-152
CelebA

No Def. 10.0% 18.8% 2526 1.31 3.6% 8.0% 2521 1.36
MID 9.0% 17.6% 2448 1.23 0.2% 0.4% 2382 1.56
BiDO 4.8% 11.4% 2758 1.17 0.8% 3.8% 2598 1.31

LS 3.2% 7.8% 2602 1.33 1.4% 4.2% 2536 1.39
TL 6.6% 14.4% 2613 1.27 2.6% 7.0% 2528 1.37

Ours 1.2% 3.0% 2527 1.56 0% 0.3% 2377 1.67

IR-152
FaceScrub

No Def. 52.4% 74.6% 1893 0.79 27.0% 49.8% 1952 0.98
MID 43.6% 63.4% 2067 0.86 3.0% 9.6% 2754 1.44
BiDO 27.6% 53.0% 2132 0.99 14.2% 24.4% 2242 1.20

LS 33.4% 56.6% 2153 0.88 21.8% 46.8% 2022 1.02
TL 23.0% 47.2% 2155 0.95 6.8% 16.8% 2191 1.23

Ours 19.4% 28.2% 2415 1.31 2.0% 6.4% 2517 1.49

VGG-16
FaceScrub

No Def. 8.0% 15.0% 2577 0.78 23.8% 37.0% 2315 0.93
MID 6.4% 12.2% 2627 0.79 18.4% 31.8% 2239 0.93
BiDO 11.4% 21.0% 2530 0.79 10.6% 19.2% 2552 0.94

LS 10.2% 18.4% 2526 0.75 17.0% 29.2% 2424 0.95
TL 6.8% 12.0% 2624 0.88 10.4% 17.6% 2602 1.03

Ours 5.6% 10.6% 2665 0.80 8.8% 15.2% 2681 1.07

In hard-label scenarios with BREP and LOKT attacks. We provided a quantitive results in Table 2.
Note that LOKT is the SOTA black-box attack method. It demonstrates very high attack performance
across various kinds of settings. While previous defenses only showed limited defensive capabilities,
our approach almost completely defeats this attack. Especially in the attack against IR-152 with
FaceScrub dataset, without any defense, LOKT showed an attack accuracy of up to 82.9%. However,
our defense method reduce it to only 1.7%, making it almost impossible to launch a successful
attack. Moreover, our defense largely enhance the feature distance σface from 0.66 to 1.53, which
indicate that our defense method make the attack failed to capture the privacy characteristics.

Table 2: Experiment results against hard-label attacks.
Model
Dataset Defense BREP LOKT

↓ Acc@1 ↓ Acc@5 ↑ δeval ↑ δface ↓ Acc@1 ↓ Acc@5 ↑ δeval ↑ δface

IR-152
CelebA

No Def. 7.2% 24.4% 1654 0.95 51.6% 74.4% 1469 0.85
MID 12.6% 28.8% 1973 1.28 29.8% 51.0% 1713 1.04
BiDO 13.0% 30.6% 1670 1.03 48.4% 66.8% 1551 0.95

LS 15.6% 40.0% 1584 0.97 52.0% 73.6% 1489 0.88
TL 10.2% 27.2% 1643 1.05 56.4% 74.6% 1510 0.92

Ours 0.4% 1.6% 2362 1.61 0.2% 1.0% 2321 1.54

IR-152
FaceScrub

No Def. 32.8% 56.6% 2161 1.00 83.0% 93.2% 1488 0.66
MID 34.0% 51.0% 2178 1.06 54.0% 74.4% 1856 0.82
BiDO 24.2% 39.4% 2235 1.07 59.8% 77.6% 1694 0.77

LS 22.8% 45.8% 2384 1.07 60.0% 77.6% 1748 0.74
TL 14.2% 27.2% 2353 1.15 62.6% 78.2% 1682 0.73

Ours 3.4% 7.0% 2622 1.51 1.8% 4.4% 2694 1.53

VGG-16
FaceScrub

No Def. 33.6% 56.6% 2327 0.94 93.8% 98.0% 1359 0.57
MID 37.4% 58.2% 2249 0.90 82.4% 92.8% 1526 0.60
BiDO 30.4% 51.8% 2349 0.96 78.8% 87.4% 1567 0.63

LS 29.6% 49.0% 2402 0.94 78.2% 88.6% 1573 0.65
TL 29.0% 47.8% 2381 0.98 58.2% 74.0% 1771 0.71

Ours 9.8% 15.0% 2586 1.45 12.6% 21.4% 2370 1.18
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Figure 2: Visual comparison of reconstructed images using various black-box attack methods against
an IR-152 model trained on CelebA, evaluated under different defense strategies. The top row
displays the ground truth images of the target class from the private train dataset for reference.

Visualization results of the reconstructed images with different defense methods under different
black-box attacks are shown in Fig. 2. Compared to previous approaches, our defense strategy
produces reconstructed images that deviate more significantly from the private images, demonstrat-
ing its effectiveness in increasing the challenge for attackers to extract sensitive visual features and
thereby enhancing privacy protection.

Table 3: Evaluation results on model’s utility.

Defense IR-152 & CelebA IR-152 & FaceScrub VGG-16 & FaceScrub

↑Acc ↓Avg L1 ↓Max L1 ↑Acc ↓Avg L1 ↓Max L1 ↑Acc ↓Avg L1 ↓Max L1

No Def. 94.2% 0 0 98.6% 0 0 97.9% 0 0

MID 88.9% 0.44 1.93 96.5% 0.32 1.96 95.1% 0.36 1.78
BiDO 88.2% 0.37 1.96 94.0% 0.58 1.95 94.3% 0.27 1.90

LS 90.1% 0.37 1.99 94.9% 0.18 1.96 94.9% 0.19 1.88
TL 89.1% 0.35 1.84 95.3% 0.33 1.97 94.5% 0.15 1.96

Ours 90.3% 0.15 0.95 96.7% 0.06 0.94 96.3% 0.05 0.74

The evaluation results for the target model’s utility are presented in Table 3. The results indicate that
our defense holds the best utility, outperforming all competitors across different metrics, training
datasets and model structures. Thanks to our bounded distortion constraint, our Max L1 ≤ ε always
holds strictly, where the competitors’ are close to the maximum of 2. In particular, thanks to our
adaptive rate-distortion, our Avg L1 is only 1/5 to 1/2 of the competitors’.

5.3 SHAPING EFFECTS ON MODEL OUTPUT WITH OUR SSD DEFENSE METHOD

To see what modifications our Algorithm 1 makes to the outputs, we utilize t-SNE (van der Maaten
& Hinton, 2008) method to visualize the predicted probability vectors from the VGG-16 trained
on the FaceScrub dataset, and compute the Conditional Mutual Information (CMI) values by (Yang
et al., 2024).

Private test samples that are correctly classified are shown in Figure 1(a)-1(b), with different colors
indicating different labels. Without defense, these outputs are dispersed and their CMI is 0.21. With

8
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Figure 3: Ablation Study on temperature T and distortion bound ε.

our defense, these outputs are concentrated at their centers, and the CMI is reduced to 0.14. The
latter reduces the dependence between inputs and outputs, preventing attackers from obtaining more
information about the private data distribution. Meanwhile, we keep the labels of the outputs, which
has little impact on the model’s utility.

Figure 1(c)-1(d) shows the result on the samples generated by the attacker (selected from the initial
phase of Mirror (An et al., 2022)). Without defense, these samples are uniformly distributed because
the attacker does not know the training data distribution. With our defense, these samples are clus-
tered into |Y| = 530 groups (only 10 groups displayed for brevity). The CMI is reduced from 4.02
to 1.96 accordingly. Such grouping misleads the attacker’s judgment on the classes their samples
belong to, and makes it impossible for them to distinguish between private and non-private samples.

5.4 ABLATION STUDIES

In this section, we conduct ablation experiments to explore the effects of the temperature and distor-
tion bound in our defense. The target model is IR-152 trained on FaceScrub.

Figure 3 shows the experimental results on temperature, where the attack accuracy is measured on
BREP. It can be seen that as the temperature T rises, our MIA robustness becomes stronger. This
is because the y in Algorithm 1 is closer to uniform distribution, which makes it easier to return
misleading labels to hard-label attackers. However, high temperature impairs the model’s utility. In
particular, the “NO” in Figure 3 represents the case without temperature mechanism. In that case,
neither MIA robustness nor model’s utility is ideal, which demonstrates the necessity of introducing
a temperature mechanism.

For the distortion bound, the experiment results are displayed in Figure 3. The attack accuracy is
measured on Mirror. As the distortion bound goes up, our defense can make more alterations to the
output, resulting in better MIA robustness. It can be seen that relaxing the distortion bound mainly
affects the maximum distortion Max L1, while having almost no effect on the average distortion
Avg L1. Especially, without the adaptive mechanism, our Avg L1 would become as high as that of
other defenses. This demonstrates the necessity of introducing the adaptive mechanism.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 CONCLUSION

In contrast to prior works that predominantly address white-box model inversion attacks, our study
focuses specifically on defending against black-box attacks. We propose a novel defense strategy
based on conditional mutual information (CMI) that operates entirely in the post-processing stage,
eliminating the need for costly model retraining. By strategically modifying the model’s outputs,
our approach minimizes the dependency between inputs and outputs, thereby enhancing the model’s
resilience against inversion attacks. To further reduce output distortions, we incorporate an adaptive
rate-distortion framework, optimized using a water-filling technique. Experimental results validate
the effectiveness of our approach, achieving state-of-the-art performance in defending against black-
box attacks. We believe that our findings will help shift attention towards robust defense mechanisms
in black-box settings and inspire further research in this area.
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A PROOF OF PROPOSITION 1

Proof.

I(XXX; Ŷ |Y )

=
∑
y

P(y)
∑
xxx∈X

∑
ŷ∈Y

P(xxx, ŷ|y) log P(xxx, ŷ|y)
P(xxx|y)P(ŷ|y)

From definitions (3-4)

=
∑
xxx∈X

∑
ŷ∈Y

∑
y∈Y

P(xxx, ŷ, y) log
P(ŷ|xxx, y)
P(ŷ|y)

By conditional probability

=
∑
xxx∈X

∑
ŷ∈Y

∑
y∈Y

P(xxx, ŷ, y) log
P(ŷ|xxx)
P(ŷ|y)

By Markov chain: Y →XXX → Ŷ

=
∑
xxx∈X

∑
ŷ∈Y

∑
y∈Y

P(xxx, ŷ, y) log
P(xxx, ŷ)
P(xxx)

P(y)
P(y, ŷ)

By conditional probability

=
∑
xxx∈X

∑
ŷ∈Y

P(xxx, ŷ) log
P(xxx, ŷ)
P(xxx)P(ŷ)

−
∑
y∈Y

∑
ŷ∈Y

P(y, ŷ) log
P(y, ŷ)
P(y)P(ŷ)

Toward definition (1)

=I(XXX; Ŷ )− I(Y ; Ŷ ). Is special case of (2)

B SETTINGS FOR DEFENSES

Table 4: The parameter settings for all defenses.
Defense IR-152 & CelebA IR-152 & FaceScrub VGG-16 & FaceScrub

MID β = 0.005 β = 0.01 β = 0.02
BiDO λx = 0.001, λy = 0.01 λx = 0.01, λy = 0.1 λx = 0.002, λy = 0.02

LS α = −0.05 α = −0.1 α = −0.1
TL Freeze the first 50% of the layers.

Ours T = 0.03, ε = 1 T = 0.05, ε = 1 T = 0.3, ε = 1

C OUR WATER-FILLING ALGORITHM TO OPTIMIZE (13)

For brevity, we donate qqq := q̃qqy , fff := fff(xxx), and ε := ε · H̄(xxx). The problem (13) is restated as

min KL(ppp||qqq),
s.t. ∥ppp− fff∥1 ≤ ε,

ppp ∈ P(Y).
(14)

Note that Kullback-Leibler divergence is a metric. KL(ppp||qqq) ≥ 0 always holds and KL(ppp||qqq) = 0
iff ppp = qqq. Trivially, when ∥qqq − fff∥1 ≤ ε, the optimal solution is ppp = qqq.

When ∥qqq − fff∥1 > ε, the optimal ppp must be between fff and qqq due to the properties of KL, i.e.

Either fi ≤ pi ≤ qi or fi ≥ pi ≥ qi, for each i ∈ Y. (15)

Furthermore, due to fff,ppp ∈ P(Y), there must be∑
i∈Y:fi<qi

pi − fi =
∑

i∈Y:fi>qi

fi − pi =
ε

2
. (16)
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In the following we consider the case fi < qi (another is symmetric). Assuming that fi < qi iff
i ∈ {1, 2, . . . , n}, a semi-problem of (14) is

min
n∑

i=1

pi log
pi
qi
,

s.t.
n∑

i=1

pi − fi =
ε

2
,

pi ≥ fi, i = 1, 2, . . . , n.

(17)

Introducing Lagrange multipliers λλλ ∈ Rn
≥0 and v ∈ R, the KKT conditions are

(pi − fi)λi = 0, (18)

1 + log
pi
qi
− v − λi = 0, (19)

where i = 1, 2, . . . , n. Eliminating λi ≥ 0 yields

(pi − fi)

(
1 + log

pi
qi
− v

)
= 0, (20)

1 + log
pi
qi
≥ v. (21)

When v > 1 + log fi
qi

, (21) implies pi > fi, and (20) implies pi = qi exp(v − 1).

When v ≤ 1 + log fi
qi

, pi > fi implies
(
1 + log pi

qi
− v

)
> 0 that against (20), so pi = fi.

In summary, the optimal solution is

pi =

qi exp(v − 1) v > 1 + log
fi
qi

fi other
, i = 1, 2, . . . , n, (22)

where v is determined by the constraint
∑n

i=1 pi − fi =
ε
2 .

Let w := exp(v − 1) ∈ R>0 and (22) is simplified to

pi = max(fi, qiw), i = 1, 2, . . . , n. (23)

We propose Algorithm 2 to calculate (23) efficiently. Our algorithm is known as “water-filling”,
because w is like a rising water level and ε

2 is like the maximum volume of water. Its time complexity
is O(n log n) due to the sorting at the beginning.

Algorithm 2: Our water-filling on CPU.
Input: fi, qi for i = 1, 2, . . . , n, and ε.
Output: pi for i = 1, 2, . . . , n.
Reindex fi, qi so that f1

q1
≤ f2

q2
≤ . . . ≤ fn

qn

i← 1
fsum ← 0
qsum ← 0

while qsum
fi
qi
− fsum < ε

2 do
i← i+ 1
fsum ← fsum + fi
qsum ← qsum + qi

end

w ←
fsum + ε

2

qsum
Reindex fi, qi back to the original
return max(fi, qiw) for i = 1, 2, . . . , n

Algorithm 3: Our water-filling on GPU.
Input: fff,qqq which are PyTorch tensors, and ε.
Output: ppp which is a PyTorch tensor.
Reindex fff,qqq by torch.sort(fffqqq )

fff sum ← fff .cumsum()
qqqsum ← qqq.cumsum()
maskmaskmask ← qqqsum

fff
qqq − fff sum < ε

2

i←maskmaskmask.argmax()

w ←
fff sum[i] +

ε
2

qqqsum[i]
Reindex fff,qqq back to the original
return torch.max(fff, wqqq)
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To further speed up, we also propose Algorithm 3, a GPU-based water-filling. Specifically, we man-
age to eliminate the loop and branch in Algorithm 2, making it completely sequential and suitable for
GPUs. By utilizing the operators of PyTorch tensors, we fully leverage the parallelism capabilities
of GPUs.

D EXPERIMENTS ON COMPUTATIONAL COST

We quantitatively demonstrate the efficiency of our post-processing Algorithm 1 by experiments.
The target models, training sets, and defense settings are consistent with Table 4. We take a
batch with 512 test samples and let the model infer 100 times on it. We record the time cost by
torch.profiler, an official tool provided by PyTorch. We exclude the time for I/O (i.e. the time from
disk to memory, and from CPU to GPU), and only include the time for forward propagation on GPU.
Our experiment is conducted on one NVIDIA GeForce RTX 3090. The results are in Table 5.

Table 5: The time cost of our post-processing algorithm.
IR-152 & CelebA IR-152 & FaceScrub VGG-16 & FaceScrub

Time without defense 18.63 s 17.70 s 5.65 s
Time with our defense 19.22 s 18.16 s 6.07 s

Percent of increased time 3.1% 2.5% 7.4%

It can be seen that we only increase the time by 2.5% to 7.4%. The higher percent on VGG is due
to the shallower model structure. In absolute terms, modifying 512 predictions for 100 times only
needs 0.5 seconds. If we take the I/O time into account, the percents will be small enough to be
ignored.

We further investigate the relationship between |Y| and the time cost of our Algorithm 3. We gen-
erate sss ∈ R|Y| ∼ N(000, III) and let rrr ← softmax(10sss). It is observed that the rrr generated in this
way is close to the real probability distributions. We use these rrr to simulate the real fff(xxx) and qqqy ,
and let our GPU-based water-filling to find the optimal solution ppp. We take a batch with 256 pairs
(fff(xxx), qqqy) and solve in parallel. The time costs are shown in Table 6.

Table 6: The relationship between |Y| and the time cost of our GPU-based water-filling.

|Y| 101 102 103 104 105 106

Time 131 ms 132 ms 143 ms 163 ms 249 ms 1301 ms

It shows that even when |Y| reaches a million, solving 256 convex optimization problems only
takes 1.3 seconds. We believe that at this point, our post-processing will not be the performance
bottleneck, but the slow inferring and massive parameters of the target model will be.

E ESTIMATE qqqy VIA TRAINING SAMPLES

In our Algorithm 1, we estimate qqqy by finding one (xxx′, y) ∈ Dvalid and let q̃qqy := fff(xxx′). Actually,
based on the

qqqy = EXXX|Y=y[fff(XXX)] (24)

in (10), we can propose another estimate

q̃qqy := mean
(xxx,y)∈Dtrain

fff(xxx), (25)

which is the average prediction of the samples that labeled y in the training set.

We explore which estimation is better through experiments. All other settings are consistent with
Tables 1-4, where the target model is IR-152 and the private dataset is CelebA. The results on MIA
robustness are shown in Table 7, and the results on model’s utility are shown in Table 8.
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Table 7: The MIA robustness on different estimations of qqqy .

Estimate qqqy by Mirror BREP
↓ Acc@1 ↓ Acc@5 ↑ δeval ↑ δface ↓ Acc@1 ↓ Acc@5 ↑ δeval ↑ δface

Dvalid 1.2% 2.9% 2527 1.56 0.4% 1.6% 2362 1.61
Dtrain 1.2% 3.0% 2531 1.54 0.4% 1.6% 2355 1.62

Table 8: The model’s utility on different estimations of qqqy .
Estimate qqqy by ↑ Acc ↓ Avg L1 ↓Max L1

Dvalid 90.3% 0.15 0.95
Dtrain 90.0% 0.18 0.97

We find that there is almost no difference in MIA robustness between the two. Only in terms of
model’s utility, Dvalid is a little better than Dtrain. We believe the reason is that the estimation of
Dtrain is not accurate enough due to overfitting. However, the gap is very small, so we suggest that:
when no validation set available, the training set can be used to estimate qqqy by (25).

F EXPERIMENTS UNDER RLB ATTACK

We evaluate the all defenses’ MIA robustness against RLB (Han et al., 2023), a SOTA soft-label
attack method. All settings are consistent with Tables 1-4, where the target model is IR-152 and the
private dataset is CelebA. The first 10 classes of CelebA are attacked and each class reconstructed 5
images. The results are shown in Table 9.

Table 9: The MIA robustness of all defense under RLB attack.

↓ Acc@1 ↓ Acc@5 ↑ δeval ↑ δface
No Defense 32% 64% 2006 0.77

MID 30% 48% 2088 0.84
BiDO 16% 28% 2254 0.94

LS 12% 34% 2204 0.85
TL 22% 34% 2107 0.82

SSD (ours) 8% 12% 2480 1.26

It can be seen that our defense has the best MIA robustness against RLB. The models’ utility and
defenses’ settings are consistent with the Tables 3-4, which shows that we also preserve the best
model’s utility.

G EXPERIMENTS ON HIGH RESOLUTION

To adapt to high resolution, we choose Mirror as the attacker. The prior distribution is StyleGAN2
trained on FFHQ with a resolution of 1024×1024. The generated images are center-cropped to
800×800, resized to 224×224, and inputted to the target model. The target model is ResNet-152 and
the evaluation model is Inception-v3. The first 10 classes of FaceScrub are attacked and each class
reconstructed 5 images. The attack results are shown in Table 10 and the models’ utility are shown
in Table 11. Although models are more vulnerable on high resolution, our defense still achieves the
best MIA robustness, with a good utility.
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Table 10: The MIA robustness of all defenses under Mirror attack on high resolution.

↓ Acc@1 ↓ Acc@5 ↑ δeval ↑ δface
No Defense 70% 94% 195 0.84

MID 62% 90% 183 0.76
BiDO 66% 86% 194 0.90

LS 48% 82% 202 0.87
TL 58% 92% 191 0.80

SSD (ours) 42% 66% 211 1.13

Table 11: The target models’ utility and defenses’ settings on high resolution.

↑ Acc ↓ Avg L1 ↓Max L1 Settings

No Defense 98.5% 0 0 –

MID 96.7% 0.30 1.97 β = 0.005
BiDO 96.3% 0.09 1.99 λx = 0.15, λy = 1.5

LS 96.5% 0.11 1.99 α = −0.01
TL 96.7% 0.19 1.99 First 70% layers

SSD (ours) 96.9% 0.07 1.98 T = 1, ε = 20

H DISCUSSION ON ADAPTIVE ATTACKS

In this section we discuss adaptive attacks, where attackers are aware of our defense and take targeted
actions.

Firstly, we believe that launching adaptive attacks in black-box scenarios is unrealistic, because
attackers don’t know the target model, and naturally don’t know its defense strategy. If they were
to guess the defense strategy based on the model’s behavior, they would need to consume a large
number of queries.

Step back and consider, if attackers know our defense, their best strategy is:

1. Query the same xxx repeatedly and count the frequency of different outputs.
2. Estimate our sampling probability P(y|xxx) by the frequency they count.
3. Infer our true prediction P(ŷ|xxx) by the P(y|xxx) they estimate and the temperature T (assum-

ing they know).

If an online server detects such pattern of queries, it can block them. Step back and consider again,
we propose a memory-free and low-cost improvement to block such adaptive attacks:

Design a hash function h : X → N, where X is the input space and N is the set of integers. When
users/attackers query xxx, we take h(xxx) as the random seed for sampling, ensuring same-input-same-
output. However, attackers can add subtle perturbations to xxx, therefore our h needs to be robust. For
example, it can be

h(xxx) :=

m∑
i=1

⌊k · zi(xxx)⌋, (26)

where zzz(xxx) ∈ Rm is the penultimate layer feature in target model, and k is the sensitivity coefficient.
Note that zzz(xxx) are commonly used to evaluate the similarity between two images, i.e., the closer the
two zzz(xxx) are, the more similar the two xxx look. The larger k is, the more numerically sensitive h is,
and the more random our defense is.

How to evaluate and improve h is a new and interesting topic, worth studying deeply in the future.
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