ASGO: Adaptive Structured Gradient Optimization

Kang An'; Yuxing Liu?; Rui Pan?, Yi Ren?, Shigian Ma!, Donald Goldfarb*, Tong Zhang?

Rice University 2University of Illinois Urbana-Champaign
3Meta Platforms, Inc. *Columbia University

{kang.an,shiqian.ma}@rice.edu, {yuxing6,ruip4,tozhang}@illinois.edu, yiren94@meta.com, goldfarb@columbia.edu

Abstract

Training deep neural networks is a structured optimization problem, because the
parameters are naturally represented by matrices and tensors rather than by vectors.
Under this structural representation, it has been widely observed that gradients
are low-rank and Hessians are approximately block diagonal. These structured
properties are crucial for designing efficient optimization algorithms, but are not
utilized by many current popular optimizers like Adam. In this paper, we present
a novel optimization algorithm ASGO that capitalizes on these properties by em-
ploying a preconditioner that is adaptively updated using structured gradients. By a
fine-grained theoretical analysis, ASGO is proven to achieve superior convergence
rates compared to existing structured gradient methods. Based on this convergence
theory, we further demonstrate that ASGO can benefit from low-rank gradients
and block diagonal Hessians. We also discuss practical modifications of ASGO
and empirically verify ASGO’s effectiveness on language model tasks. Code is
available at https://github.com/infinity-stars/ASGO.

1 Introduction

Numerical optimization algorithms, especially those that can efficiently train large foundation mod-
els [Devlin et al., 2018, Brown et al., 2020, Touvron et al., 2023a,b, Ouyang et al., 2022], play an
important role in the modern machine learning field. Among them, adaptive gradient methods like
AdaGrad [Duchi et al., 2011] and Adam [Kingma and Ba, 2014] are popular choices, gaining huge
success in training state-of-the-art models in many tasks. These algorithms typically apply a diagonal
matrix preconditioner to the gradient g; to update the deep neural network (DNN) parameters wy;

Wep1 = Wy — ntAt_lgt, where w; € R, gt € R? and A, € R¥™*%isa diagonal matrix.

This coordinate-wise step size design has been theoretically verified to be effective as it can exploit the
sparsity of the gradient vectors g; [Duchi et al., 2011]. Also, when the Hessian is well-approximated
by a diagonal matrix whose diagonal entries have very different scales, adaptive gradient methods
have been proven to be beneficial [Liu et al., 2024, Jiang et al., 2024a, Xie et al., 2024]. While
these results seem to be convincing, common DNNs do not necessarily have sparse gradients or
Hessians that are well-approximated by ill-conditioned diagonal matrices. Instead, if we take the
matrix structure of gradients in DNNSs into account, it has been widely observed that these structured
gradients are usually low-rank [Zhao et al., 2021, Yang et al., 2023, Cosson et al., 2023], and the
Hessians are well-approximated by block diagonal matrices [Collobert, 2004, Zhang et al., 2024a,b].
Since adaptive gradient methods like Adam, treat the parameters as vectors and ignore the matrix
structure of gradients, they are generally unable to exploit these structured properties. This leads us
to ask the following question: How can we effectively use the matrix structure of gradients to exploit
their low-rank and block diagonal properties?

*Equal Contribution. Ordering for the first two authors is determined by a coin flip.
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One possible answer is provided by Shampoo [Gupta et al., 2018]:

1 _1
Wirs =Wy — L, *GyR, 1, where Wy, Gy € R™*™ and L; € R™*™, R, € R™™" are full matrices.
The main motivation for such a design is that if we apply vectorization to the update, the Shampoo
1 1

preconditioner is a single matrix that is the Kronecker product of L, * and R, *, which approximates
the full-matrix preconditioner for AdaGrad [Duchi et al., 2011]. However, the theoretical convergence
of Shampoo is worse than that for AdaGrad or even SGD when the dimension is large. Also, Shampoo
needs more memory and much heavier computation than adaptive gradient methods because it requires
two preconditioners, making it less suitable for training large-scale DNNs.

In this paper, we provide an answer to the aforementioned question by proposing ASGO (Adaptive
Structured Gradient Optimization), which significantly improves the convergence guarantees of
Shampoo while requiring less memory and computation. In light of the analysis that demonstrates
the benefits of adaptive gradient methods [Duchi et al., 2011, Liu et al., 2024, Jiang et al., 2024a, Xie
et al., 2020], we use appropriate assumptions to enable a more fine-grained convergence analysis,
that yields superior convergence results and an explanation of how ASGO can benefit from the
low-rank and block diagonal properties of a given problem. We also discuss the connection between
ASGO and Muon [Jordan et al., 2024], a structured gradient method based upon the steepest descent
algorithm with respect to the spectral norm, to conjecture a relation between ASGO and Muon
analogous to the relation between AdaGrad and SignSGD [Bernstein et al., 2018, Kunstner et al.,
2023]. Furthermore, we develop an efficient design for query-key attention parameters in transformer
models and examine its empirical performance on pretraining transformer model tasks. Our main
contributions are summarized as follows.

» We propose the structured gradient based algorithm ASGO, theoretically analyze its convergence,
and show that it converges faster than full-matrix AdaGrad and Shampoo.

* We further demonstrate that ASGO can effectively exploit the low-rankness of gradients as well as
the approximate block diagonal property of Hessians that is typically observed in training DNNS,
indicating good theoretical properties under realistic settings.

* We develop a practical implementation of ASGO that is efficient while enhancing ASGO’s effec-
tiveness. We further empirically validate the effectiveness and efficiency of this implementation on
language model tasks, demonstrating the algorithm’s great potential in real applications.

2 Related Work

Adaptive Gradient Methods. Adaptive gradient methods that use diagonal preconditioners to
speedup convergence are extremely popular for solving many real-world optimization problems. To
the best of our knowledge, the first method of this kind for machine learning, AdaGrad [Duchi et al.,
2011, Streeter and McMahan, 2010], was developed based on rigorous theory that showed the benefits
of using this kind of preconditioner. Adam [Kingma and Ba, 2014, Loshchilov and Hutter, 2017]
modified AdaGrad and has become the default choice for training large foundation models. In theory,
it has been proven that adaptive gradient methods can benefit from sparse gradients and approximately
ill-conditioned Hessians [Duchi et al., 2011, Liu et al., 2024, Jiang et al., 2024a, Xie et al., 2024]. It is
worth noting that the original AdaGrad paper [Duchi et al., 2011] also proposed a version of AdaGrad
that uses a full-matrix preconditioner instead of the diagonal one, which is believed to perform even
better. However, this full-matrix AdaGrad method suffers from large memory costs for storing the
preconditioner, while having no better convergence guarantee compared to diagonal AdaGrad and
SGD under the assumption of objective function convexity as described in Section 4 below.

Optimization with Matrix Structure. In the standard optimization literature (i.e., excluding areas
such as conic optimization), it is common to consider variables as vectors. However, recently,
optimization methods for machine learning that consider variables as matrices have been rapidly
gaining attention. Adafactor [Shazeer and Stern, 2018], LAMB [You et al., 2019], and Adam-
mini [Zhang et al., 2024b] consider the matrix or layer structure to help reduce the memory cost of
Adam and enable more efficient training. Shampoo [Gupta et al., 2018] and KFAC [Martens and
Grosse, 2015] are two pioneering works that approximate, respectively, the full-matrix preconditioner
of AdaGrad and the true Fisher matrix (FM), using Kronecker products of smaller matrices, making
the memory cost more affordable. Unfortunately, the analysis in [Gupta et al., 2018] shows that



the rate of convergence for Shampoo is no better than that for the full-matrix AdaGrad. We note
that there is another method, TNT [Ren and Goldfarb, 2021] that is very closely related to Shampoo.
TNT was developed as a natural gradient method, approximating the true FM by the covariance of
block-wise sampling-based gradients assuming that they are Tensor-Normally distributed. The main
difference between TNT and Shampoo, is that TNT uses true FMs and inverses of their Kronecker
factors, whereas Shampoo uses empirical FMs and the -1/4 power of their factors. More discussion
on related recent and concurrent work is presented in Appendix A.

3  Our ASGO Algorithm

3.1 Notation and problem setting

Throughout this paper, we use capital letters such as W to represent matrices and [WW]; ; to denote
the (4, j)-th entry of . For an arbitrary matrix W € R™*", we denote

* [[W]|,, as the spectral norm of a matrix W, i.e., its largest singular value;

* ||W]|, as the trace norm of a matrix W, i.e., the summation of its singular values, which is
well-known as the dual norm of the spectral norm;

* ||W||p as the Frobenius norm of W, which also equals tr (W W), where tr (-) is the trace;

o |[W]l, £ tr (WTLW), where L € R™*™ is a real symmetric positive definite matrix.

For symmetric square matrices, A, B € R™*™ A < B denotes that B — A is positive semidefinite
and A < B denotes that B — A is positive definite. > and = are defined accordingly. We study the
following stochastic optimization problem:

pin V) £ Ee [f(W,€)], M

where we only have access to a stochastic gradient oracle V f(W; ) at W.

3.2 ASGO (Algorithm 1)

We propose ASGO (Adaptive Structured Gradient Optimization) in Algorithm 1, which is an
algorithm with a single-side preconditioner. Compared to full-matrix AdaGrad, ASGO preserves
and utilizes the matrix structure of W; and G, avoiding the huge memory cost for storing its
preconditioner. ASGO’s preconditioner consists of a single matrix compared to the two matrices used
by Shampoo, leading to the following main update rule:

_1
Wi = Wy — 0V, 2G4, where Wy € R™*™ and V, € R™*"™ is a full matrix.

ASGO only needs to store one preconditioner matrix and compute its matrix square root and inverse
on each iteration, versus two matrices for Shampoo. On the other hand, ASGQO’s preconditioner
may not be as good an approximation to the full-matrix AdaGrad preconditioner or the empirical
Fisher matrix [Gupta et al., 2018, Morwani et al., 2024] as Shampoo’s. However, as we shall see in
the following sections, this design can exploit the low-rankness of gradients and the block diagonal
nature of Hessians to achieve better convergence rates.

4 Nonsmooth Theory

Although DNNs are generally nonconvex globally, convexity may apply locally in some regions.
Thus, convex analysis can be helpful for understanding the behavior of DNN training algorithms.

Assumption 1 (Convexity). f(-) is convex and W, is one of its minimizers.

Theorem 1 (Nonsmooth convergence). Under Assumption 1, for Algorithm I with n, =1 = Dy, it
holds that

1 T—1 1 T-1 3 eD?2
i - L) < =E T - Dop 4+ —2
0 ; [FW] = F(W) < (Z; G@) DT
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Algorithm 1 ASGO (Adaptive Structured Gradient Optimization)

1: Input: Wy € R™*™ schedule {n;} batch size M € N, and the number of iterations 7T,
€ > 0, (¢ should be small, similar to the ¢ for Adam or AdaGrad.)
2: Initialize V_; = 0 € Rm>™
3: fort =0to1T — 1do
4:  Sample mini-batch B, with |5, = M uniformly
Gy = ﬁ ZEEBt va(thf)
Vi=Vioi + GtG;r

5
6
1
7. A=V 4 €l
8
9:

Wit =W, — A7 Gy
end for

Corollary 2. If we also assume an upper bound for each stochastic sub-gradient such that
E [GtG;r] = Q?, where ) € R™ ™ is a positive definite matrix, Theorem 1 also implies

HQ”*D0p+ 6D12?>
VT DopT

Remark 1. Note that we treat D, as a constant here, but it may increase as the iteration number
T increases. This can be addressed, for example, by invoking a projection onto a bounded convex
set YV with respect to the norm ||-||  in each iteration, as in AdaGrad [Duchi et al., 2011]. Dq
would then be bounded by the spectral norm of VW. However, since this projection is rarely used in
training DNNs, we follow Gupta et al. [2018] and omit it in Algorithm 1. We refer interested readers
to Appendix H for a discussion of how one can incorporate the projection operation and obtain Dy,
and Dy independent of T. More importantly, this theoretical bound depends on the trace norm of
gradients and the spectral norm of weights, showing that the algorithm can make use of the low-rank
property of gradients.

1 T—1
T LBl fov) < 0
t=0

One can easily check that this convergence rate for convex nonsmooth problems is O(1/+/T'), the
same as SGD [Zinkevich, 2003] (see below) and AdaGrad [Duchi et al., 2011].

Comparison with SGD. The convergence rate for SGD under the assumptions of Corollary 2 is:

SGD: L Tz_l E[f(W,)] — f(W,) <O <DF ”QF>
TS - vT )

where D and || Q|| are the Frobenius norm upper bounds for the weights and gradients, respectively.

By comparing this bound with Corollary 2, we have

* Qg < IQll, < TG ||Q||p, Where 7¢ is the rank of Q. Thus when the G; are low-rank, or have
very imbalanced singular values, ||Q||, can be close to ||Q||x;

* Dp/\/rp < Dop < Dy, where rp = max rank of(W; — W,.). Thus, when the W; — W, are
relatively high-rank or have lots of singular values of a similar scale, D, can be much smaller
than Dg.

Therefore, ASGO should work well when G are low-rank and W; — W, are relatively high-rank.

Intuition about ASGO in practice. We argue that GG, is low-rank and W, — W, is often relatively
high-rank in many practical tasks, revealing the potential of ASGO in applications. As we have
discussed in Section 2, gradients are commonly low-rank in DNNSs, as verified by Zhao et al. [2021],
Yang et al. [2023], Cosson et al. [2023]. Meanwhile, given the huge success of LoRA [Hu et al.,
2022] in fine-tuning foundation models, which employs low-rank total updates of W, there may
seem to be a conflict to assume that WW; — W, has a high rank. However, it has been observed that
Wy — W, should be relatively high-rank to obtain a better result, at least in pretraining and some
complex fine-tuning tasks for large foundation models [Lialin et al., 2023, Jiang et al., 2024b, Huang
et al., 2025]. Further exploration of the connection between the rank of weight updates and the
performance of algorithms is an interesting topic for future research.



Comparison with Full-Matrix AdaGrad and Shampoo. Shampoo and the full-matrix AdaGrad
achieve the following convergence rates under the same settings as Theorem 1.

T-1

> G2

t=0

Full-Matrix AdaGrad: O | D Z Z

T-1 i T-1 i
Shampoo: O | \/rDg - tr (Z GtG;r> (Z G:Gt>

t=0 t=0
We can check that Theorem 1 indicates a convergence speed that is at least Dg /Do, times faster than
full-matrix AdaGrad and /7¢ Dy / Doy, times faster than Shampoo; (see Appendix E for proofs). This
also provides theoretical evidence that single-side preconditioning may be better at exploiting low-
rankness of gradients, yielding a faster convergence speed compared to Shampoo-like preconditioning.
Remark 2. Proofs of all of the results in this section are given in Appendix E. We keep the matrix
structure of Wy and G, throughout our analysis, in contrast to standard analyses of the convergence
of AdaGrad and Shampoo, which are based on vectorizations of Wy and Gy. This is important for
proving that ASGO can exploit the structured properties. We note that for simplicity in Algorithm
1 above, the preconditioner operates on left-side of Gy. However, in a practical implementation of
ASGO, using the right-sided preconditioner is preferable unless the number of columns of Gy is much
greater than the number of rows. See the discussion toward the end of Section 5 and in Section 7.1.2
and Algorithm 2 in Appendix B.

5 Smooth Theory

It is also important to study the performance of Algorithm I in smooth settings, as many real training
tasks have been widely observed to be smooth, at least locally. Also, only in smooth settings can we
properly describe the importance of batch size.
Assumption 2 (Smoothness). f is 1-smooth with respect to ||-|
positive definite matrix and for any X € R™*",

X7 2 tr (XTLX).

1» where L € R™*™ is a symmetric

If X = [21,...2,)], where each z; € R™, and we vectorize X, i.e., x = vec(X) = (27,... 2T
and form the block diagonal matrix L =diag[L,...,L], we obtain that tr (X' LX) =
Z?:l x] Lr; = xTLx. This means that Assumption 2 is equivalent to the existence Of a sym-
metric matrix L € R™*™ [ = 0 such that for any w € R™", —L =< V2§, gw , where
fo(w) = fF(W), W = [wy,...,w,] € R™*" and w = vec(W) = [w], ..., wl ]Rm" Hence
it is closely related to the block-wise diagonal structure of the Hessian as observed by many re-
searchers with each block corresponding to a column of W; (see Figure 3 in Appendix A). Also note
that Assumption 2 implies the standard smoothness assumption with respect to the Frobenius norm
by [V fu(W)ll,, < |IL[|op- This block-wise diagonal smoothness is an extension of the standard
smoothness, which is related to but different from the diagonal anisotropic smoothness employed for
analyzing sign-based and adaptive gradient methods [Bernstein et al., 2018, Liu et al., 2024].

Assumption 3 (Variance). Let Ny = Vf(Wy;€) — V(W) € R™*" be the stochastic gradient
noise. We assume that E[Ny] = 0 and there exists a symmetric positive definite matrix V such that

E [N:N, ] = V2

s

One can check that Assumption 3 implies the standard variance bound E[||Nt|| | < ||VH§ The
assumption shares some similarity with the coordinate-wise variance bounds in Bernstein et al. [2018],
Crawshaw et al. [2022], Liu et al. [2024], in the sense that it allows a more fine-grained analysis.
This matrix-form variance upper bound may better describe the real case since it takes the structure
of the noise into account, which is relevant to matrix rank and other structural properties.

Theorem 3 (Smooth Convergence). Under Assumptions 1, 2 and 3, for Algorithm 1 withn, =n =
D, and a batch size of M, it holds that

Z E W (W ) 4D2p ||L|| + 2\/§D0P ||V||* ZGD%
T ) T VMT DopT’




where Dop £ maxo<t<T-—1 ||Wt — W*H and DF S maxo<t<T-1 ||Wt — W*HF

op’
As discussed in Section 4, D,;, and Dy can be bounded if we add a projection step in the update.
The convergence rate specified in Theorem 3 is similar to the rate in Corollary 2 if the batch size
M is small, when the O(1/v/ MT') term dominates the rate, and thus shares the same properties as
we discussed in Section 4. This means that ASGO can benefit if the stochastic gradient noise V'
is generally low-rank. Furthermore, when the batch size M is large so that the O(||L]|, /T") term
contributes significantly to the bound, Theorem 3 implies more, which we now discuss.

Comparison with SGD. The convergence rate of SGD [Garrigos and Gower, 2023] is:
2
Df |l , Dy ||V||F> |

T vVMT

where Dy is defined in Theorem 3. Since the comparison between the O(1/v/ MT) term is generally
consistent with the discussion in Section 4, we further compare the O(1/T) term here to provide
some more intuition. Specifically, we have

T-1
SGD: 7 SO ELf(W)] ~ [(W.) < O (
t=0

* ILllop < 1L, < 7o Lll,ps where 7 is the rank of L. Thus when L is low-rank, or has very

imbalanced singular values, ||L||, can be close to || L[,

* Dp/\/tp < Do, < Dp, where rp = max rank of (W; — W,.). Thus when W; — W, are of
relatively high-rank or have lots of singular values of a similar scale, D}, can be much smaller
than Dp.

Therefore, we can see that in general, ASGO should work well when the Hessian can be well
approximated by a block diagonal matrix with a low-rank L for each block and W, — W, are of
relatively high-rank. Note that Hessians have been found to be low-rank in DNNSs, especially after
some steps of training [Sagun et al., 2016, 2017, Wu et al., 2020].

Block diagonal structure of DNNs. It has been widely observed that the Hessian of MLPs and other
DNNS, are approximately block-wise diagonal [Collobert, 2004, Zhang et al., 2024a,b, Bahamou
et al., 2022], as shown in Figure 2 in Appendix A. This block-wise diagonal structure naturally arises
from the structure of MLPs, where all the parameters associated with a particular neuron (i.e., all
elements of a row of W) are more closely related and whose corresponding sub-block of the Hessian
matrix is denser and has elements that are larger in absolute value than a set of parameters that do not
share such an association. Intuitively, the elements of the rows of W seem to be more likely to be
closely related than those of the columns of WW. Based on Theorem 3, our algorithm should perform
well in this block Hessian setting, showing great potential in real applications.

Intuition on single-side preconditioners. Since ASGO only uses a single-side preconditioner, it is
important to determine on which side they should be applied. As demonstrated in Figure 2, a block
in the Hessian commonly corresponds to all input weights into a neuron in the next layer, i.e., as a
row of the weight matrix W. Therefore, based on the block-wise smoothness convergence results,

we should put the preconditioner A; on the right-hand side of G, i.e., computing A; = th/ * where
V; = Vi1 + G/} Gy € R™ ™, In this way, we can better exploit the superior adaptability of block
diagonal Hessians with correct block partitions (each row of W as a block). One may also refer to
Algorithm 2 for more details of our implementation. We also provide empirical results that show that
right-sided outperforms left-sided preconditioning in Section 7.1.2.

Remark 3. The proof of Theorem 3 is given in Appendix F. The analysis is similar in its general
outline to the smooth analysis for AdaGrad [Levy et al., 2018, Liu et al., 2024], but it is more complex
because of the involvement of matrix operations in ASGO.

6 Further Discussions on ASGO

Connection with Muon. Muon [Jordan et al., 2024] can be interpreted as a standard steepest
descent algorithm utilizing the spectral norm [Bernstein and Newhouse, 2024b] with momentum. If
we ignore the incorporated momentum, Muon computes

. 1
W;y1 = argmin {(Gt, W — W) + o W — Wt||c2)p} ) )
WeRmxn ’I]t



preserving the matrix structure of the problem and naturally exploiting the structural properties
because of the involvement of spectral norm in the steepest descent framework. This aligns with
ASGO’s exploitation of the structured properties of the gradient. Moreover, if we ignore the mo-
mentum in both the gradient and the preconditioner, we can see that ASGO is equivalent to Muon.”
Interestingly, this equivalence between ASGO and Muon in both theoretical basis and algorithm
design is analogous to that between diagonal AdaGrad and SignSGD [Bernstein et al., 2018, Kun-
stner et al., 2023]. In this sense, we may interpret ASGO and Muon as AdaGrad and SignSGD
for structured gradients, respectively. Note that Shampoo also admits such a relation with Muon in
algorithmic design. However, as discussed in Section 4, Shampoo has a worse convergence rate and
thus fails to benefit from the structured properties as does ASGO. To some extent, this means that
ASGO may be a more appropriate approach than Shampoo as such an analog to diagonal AdaGrad.

From this intuition, we may also conjecture what the nonconvex convergence rate of ASGO is based
on what it is for Muon. Hence, we prove in Appendix G that this rate for Muon is:

1L, (f (Wo) — f*))

7 3)

win 19002 <0 (

0<t<T—1

where we assume that f* = inf f(W) > —oo. Since diagonal AdaGrad and SignSGD have the
same convergence rate in nonconvex settings up to logarithmic factors [Bernstein et al., 2018, Sun
etal., 2023, Liu et al., 2024], we expect that ASGO has a nonconvex convergence rate comparable
to (3) obtained by Muon up to logarithmic factors. It is an interesting future topic to prove this
conjecture and further explore the nonconvex behavior of ASGO theoretically. Also, we note that
as an intuitively smoother version of Muon, ASGO has good convergence properties in nonsmooth
settings as shown in Section 4, where Muon, like SignSGD [Bernstein et al., 2018], may fail to
converge [Karimireddy et al., 2019].

Remark 4. In smooth settings, nonconvex convergence analysis of Muon has been presented in Li
and Hong [2025]. These convergence results are established under a more general setting, involving
gradient noise and momentum following the analysis in Cutkosky and Mehta [2020]. However; if we
only look at the deterministic case, their result is worse than (3) because of the explicit dependence
on the dimension n. The key here is that the standard smoothness condition with respect to the
Frobenius norm is not a good fit for analyzing structured gradient algorithms like Muon or ASGO.
Using Assumption 2, we obtain better convergence results for Muon in (3).

Practical Implementations of ASGO. We also provide Algorithm 2, a practical implementation of
ASGO, together with a memory-efficient diagonal variant of ASGO, named DASGO in Algorithm 4.
DASGO is basically a light-weight optimizer with the preconditioner A; of ASGO being diagonalized,
which is efficient in both memory and computations. To make ASGO effective and efficient in
practice, a critical aspect is the efficient computation of the preconditioner’s inverse square root,

V[l/ ?. Standard methods such as Singular Value Decomposition (SVD) are prohibitively expensive
for large-scale applications. To ensure our optimizer is practical, we adopt the Newton-Schultz (NS)
iterative method as summarized in Algorithm 3, which substantially reduces the wall-clock time per
step. The applicability of this approach stems from the deep connection between the matrix inverse
square root and the matrix sign function. As established in Thm 5.2 [Higham, 2008b], computing
A~1/2 is equivalent to extracting a sub-block from the matrix sign function of an augmented matrix:

: 0 Al _ 0 A2
msign I 0 = 412 0 .

This equivalence implies that the computational complexity of our inverse square root step is on the
same order as the matrix operation in the Muon optimizer. It is worth noting, however, that the NS
iteration in ASGO is applied to this 2 x 2 block matrix, leading to a slightly heavier per-iteration cost
compared to Muon. Finally, we highlight that our framework is modular. Recent advances [Amsel
et al., 2025, Grishina et al., 2025] compute the matrix sign function more efficiently than classical
Newton-Schultz, for instance, by optimizing the iteration’s hyperparameters. This modularity allows
such methods to be readily incorporated. In our empirical implementation, we validated this by
experimenting with both the classical Newton-Schultz and PolarExpress [Amsel et al., 2025] methods.
Please refer to Appendix B for more details of other modifications in our practical implementation.

2A proof of this equivalence can be found in Appendix G.



7 Empirical Results

We empirically evaluated the effectiveness of ASGO (Algorithm 2) and DASGO (Algorithm 4) on
pretraining and finetuning tasks for Large Language models (LLMs). We compared our methods
against the established optimizers, AdamW [Kingma and Ba, 2014, Loshchilov and Hutter, 2017],
Shampoo [Gupta et al., 2018], and Muon [Jordan et al., 2024]. Several important implementational
details should be noted for fair comparison. First, since Muon is designed to operate exclusively
on matrix parameters, we followed Jordan et al. [2024] and applied AdamW update rules to all
1D parameters within the Muon optimizer to ensure that it can handle the complete model. All
experiments were conducted using NVIDIA V100s SMX2 and NVIDIA GH200 GPUs. Specifically,
for the larger-scale pretraining of GPT2, we utilized a configuration of four GH200 GPUs, while
other experiments were performed on a single V100 GPU.

7.1 Pretraining GPT2

To further evaluate the efficacy of ASGO and DASGO, we extended our investigation to larger-scale
pretraining tasks. We adopted the configuration of the GPT2 model as described by [Karpathy, 2022],
comprised of 12 Transformer blocks, each with a hidden dimension of 768. All 1D parameters
like bias and layer normaliztion and the embedding layer were trained by AdamW. There are 12
projection layers with dimensions 768 x2304 in the Transformer blocks. For each of these layers alone,
Shampoo needs to store two preconditioner matrices of size 768 x 768 and size 2304 x230. In contrast,
ASGO requires storing only one preconditioner matrix of size 768 x768. This substantial difference
highlights ASGO’s advantages in memory requirements compared with Shampoo. We trained the
model for 2400 steps using a batch size of 64, 4 H100 GPUs, a sequence length of 512, and 8 gradient
accumulation steps. This setup corresponds to a total token budget of: 512 x 64 x 4 x 8 x 2400 ~ 2.5
Billion tokens. This budget represents approximately 20 tokens per parameter as suggested by the
Chinchilla scaling laws [Hoffmann et al., 2022]. We used both the PolarExpress (PE) and Newton-
Schultz (NS) algorithms to compute the inverse square root of V; in ASGO. The parameters that we
used in these algorithms can be found in Section C. To ensure a fair comparison, we carefully tuned
the learning rates and (32 values (where applicable) for all optimizers. (Tuning details are provided in
Section C.) Furthermore, we employed a learning rate schedule consisting of 240 linear warm-up
steps followed by a cosine decay, which is a common practice for training LLMs. Figure | and Table
1 present a comparison of the training and validation loss achieved by ASGO and DASGO against
Shampoo, Muon and AdamW.

Table 1: Pretraining GPT2 Train loss and Validation Loss

Optimizer Training Loss Validation Loss
AdamW 3.442 3.455
Muon 3.332 3.342
Shampoo 3.405 3417
DASGO (Ours) 3.497 3.509
ASGO-NewtonSchultz (Ours) 3.335 3.347
ASGO-PolarExpress (Ours) 3.332 3.342

We now present the performance evaluation of ASGO against several baselines on the
GPT-2 pretraining task.  The final training and validation losses after 2400 steps are
summarized in Table [, and the full training loss dynamics are depicted in Figure 1.
Although the results obtamed using ASGO-PE and " =
ASGO-NS are similar, ASGO-PE performs slightly better . - o
than ASGO-NS. These results clearly demonstrate that )
ASGO achieves state-of-the-art performance, matching
the strongest baseline while significantly outperforming
AdamW and Shampoo. Focusing on the final validation
loss in Table 1, ASGO-PolarExpress achieves a validation
loss of 3.342. This result is on par with the Muon opti-
mizer (3.342). More importantly, ASGO’s performance is
substantially better than both the standard AdamW (3.455)
and Shampoo (3.417).

Step

Figure 1: Pretraining GPT-2 Train Loss.



The training curves in Figure | provide deeper insights into the training dynamics. ASGO and Muon
exhibit nearly identical training trajectories; both converge faster than AdamW. In contrast, while
Shampoo displays loss spikes during the training process. This phenomenon suggests potential
numerical instability even with preconditioner update frequency 1, a behavior not observed in ASGO.

These findings strongly support the efficacy of ASGO. It not only matches the final performance and
rapid convergence of the highly-tuned Muon optimizer but also remedies the training instabilities
observed in Shampoo.

However, DASGO (3.509) underperformed AdamW, Muon, Shampoo and ASGO in the GPT2
pretraining task. This performance gap was also observed in the pretraining of the smaller NanoGPT
model. A primary reason for the difference between DASGO and ASGO likely stems from its
diagonal preconditioning. By only retaining and using only the diagonal elements of the GGT,
DASGO essentially disregards the inter-dependencies between different parameter gradients from
neurons within a layer, moving away from a true matrix-based adaptive approach towards a per-
parameter scaling akin to vector-based methods. This highlights the value of preserving non-diagonal
elements in the preconditioner matrices, particularly for capturing parameter interactions in attention-
based architectures. Nevertheless, DASGO’s significantly reduced memory footprint makes it a
compelling option for resource-limited settings where computational efficiency is paramount.

7.1.1 Wall time comparison for pretraining GPT2

We now compare the Wall-Clock Times (WCTs) per training step for AdamW, Muon and ASGO,
using the exact experimental setup from the GPT-2 pretraining task (Section 7.1).

Table 2: Wall-clock time per training step, difference compared with AdamW update.

Optimizer Single Train Step WCT Time Difference
AdamW 5.451 sec 0 sec
Muon 5.519 sec 0.068 sec
ASGO (Ours) 5.947 sec 0.468 sec

For this analysis, we used 10 iterations of the NS algorithm for ASGO instead of 5 iterations used
for Muon’s update, which are the settings required to achieve the optimal convergence performance
reported previously. The measured WCT for a single training step (including forward, backward,
gradient accumulation passes, and optimizer steps) is shown in Table 2. Although computing the
inverse square root of V4, in ASGQO’s optimizer step is more expensive than in AdamW, the forward
and backward passes remain the dominant computational bottleneck. As shown in Table 2, a full
training step with ASGO costs only 0.468 seconds more than the AdamW update. This overhead
(8.6% increase over AdamW) is acceptable, and consequently, the total end-to-end training time is
only marginally affected.

These tables show that although AdamW is computationally cheapest at the optimizer level, the total
training times for all three methods are very similar. This demonstrates that the total training time
may not be a main concern for ASGO. Note that ASGO achieves the smallest training loss while
AdamW achieves the largest loss.

7.1.2 Ablation Study on the preconditioning side:

In Section 5, we theoretically motivated our choice of applying the single-sided preconditioner to the
right side of the gradient (or its momentum), based on block-wise smoothness convergence results.
To empirically validate this crucial design choice, we conducted an ablation study comparing the
performance of ASGO with left-sided versus right-sided preconditioning. The experimental setup is
identical to that used for the GPT-2 pretraining in Section 7.1. As presented in Table 3, the results
demonstrate that right-sided preconditioning consistently and significantly outperforms its left-sided
counterpart across all tested learning rates ({5e — 4, le — 3,5e — 3, 1le — 2}).

This finding empirically confirms our theoretical intuition and highlights the clearly asymmetric
impact of the preconditioning side. This observed asymmetry also suggests a potential limitation
of Shampoo-like double-sided preconditioners. Beyond their higher memory and computational
costs, their symmetric approximation (derived from a Kronecker product) may fail to capture the



true underlying structured curvature. This could lead to misplacing the preconditioning effect on the
less critical side, resulting in less effective preconditioning. We hypothesize that this structural mis-
approximation could be a contributing factor to the sub-optimal performance and training instabilities
(e.g., the loss spike in Figure 1) observed in Shampoo.

Table 3: Performance comparison between precondition side

Learning Rate Validation Loss of left side  Validation Loss of right side

Se-4 3.582 3.569
le-3 3.468 3.447
Se-3 3.378 3.434
le-2 3.412 3.386

7.2 Finetuning GPT2-Large on WikiText-2

To further assess the performance of our proposed optimizers, we conducted fine-tuning experiments
on the GPT2-Large(774M) model [Radford et al., 2019] using the WikiText-2 dataset. We explored
two distinct fine-tuning objectives:

* First, we fine-tuned GPT2-Large using the standard Causal Language Modeling (CLM) loss, which
is the conventional approach for autoregressive language models.

» Second, we also fine-tuned the same GPT2-Large model on WikiText-2 but employed the Fill-in-
the-Middle (FIM) training objective, following the setting in [Bavarian et al., 2022]. The FIM
objective modifies the training process to enable the model to learn to infill text by rearranging
document spans.

To account for statistical variability, we conducted five experimental runs with different random
seeds under the same hyperparameter settings. Table 4 presents the average perplexity results after
fine-tuning for 2 epochs. For both objectives, we employed a cosine decay learning rate scheduler.
Hyperparameter search details and 95% confidence intervals are provided in Table 8 in Appendix C3.
Under the CLM objective, ASGO (13.88 . ] ]
perplexity) and DASGO (13.84 perplexity) Table 4: Finetuning GPT2-Large Perplexity
achieved lower perplexity than both Muon | AdamW Muon ASGO DASGO
(13.91 perplexity) and AdamW (14.01 perplex-

ity). This suggests that both ASGO and its IEIII\I/}/I i;‘gé igg; 1222 gig
memory-efficient variant, DASGO, can be ef- : : : :
fective for traditional LLM fine-tuning. When the model was fine-tuned using the FIM objective, we
observed a similar trend, with ASGO (15.66 perplexity) and DASGO (15.45 perplexity) outperform-
ing both Muon (15.93 perplexity) and AdamW (17.46 perplexity). Across both fine-tuning scenarios,
ASGO and DASGO demonstrated competitive or superior performance compared to these baseline
optimizers.

8 Conclusions

In this paper, we proposed a novel algorithm ASGO, which achieves significantly better convergence
rates compared to full-matrix AdaGrad and Shampoo. Based on the theory, we demonstrated that
ASGO can benefit from low-rank gradients and block-wise diagonal Hessians, which are widely
observed structural properties of DNNs. We further proposed some practical modifications to ASGO,
and verified its effectiveness empirically. Currently, ASGO still has two major limitations: 1) compu-
tationally intensive compared to Adam because of the matrix operation; 2) it is not straightforward to
extend the algorithm to apply to tensors. We plan to look into these issues in future work.

10



Acknowledgment

Shigian Ma was partially supported by ONR grant N00014-24-1-2705, NSF grants CCF-2311275 and
ECCS-2326591. This work was also partially supported by NSF grant No. 2416897 and ONR grant
No. N000142512318, and used both the DeltaAl advanced computing and data resource, supported
by NSF(award OAC 2320345) and the State of Illinois, and the Delta advanced computing and data
resource, supported by NSF (award OAC 2005572) and the State of Illinois.

References

Noah Amsel, David Persson, Christopher Musco, and Robert M Gower. The polar express: Optimal
matrix sign methods and their application to the muon algorithm. arXiv preprint arXiv:2505.16932,
2025.

Tsuyoshi Ando, Chi-Kwong Li, and Roy Mathias. Geometric means. Linear algebra and its
applications, 385:305-334, 2004.

Achraf Bahamou, Donald Goldfarb, and Yi Ren. A mini-block fisher method for deep neural networks,
2022. URL https://arxiv.org/abs/2202.04124.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
Tworek, and Mark Chen. Efficient training of language models to fill in the middle, 2022. URL
https://arxiv.org/abs/2207.14255.

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal
of Machine Learning Research, 13(10):281-305, 2012. URL http://jmlr.org/papers/v1i3/
bergstral2a.html.

Jeremy Bernstein and Laker Newhouse. Modular duality in deep learning. arXiv preprint
arXiv:2410.21265, 2024a.

Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology. arXiv preprint
arXiv:2409.20325, 2024b.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd:
Compressed optimisation for non-convex problems. In International Conference on Machine
Learning, pages 560-569. PMLR, 2018.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates, Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8acl142f64a-Paper. pdf.

Dami Choi, Christopher J Shallue, Zachary Nado, Jaechoon Lee, Chris J Maddison, and George E
Dahl. On empirical comparisons of optimizers for deep learning. arXiv preprint arXiv:1910.05446,
2019.

Ronan Collobert. Large scale machine learning. Technical report, Université de Paris VI, 2004.

Romain Cosson, Ali Jadbabaie, Anuran Makur, Amirhossein Reisizadeh, and Devavrat Shah. Low-
rank gradient descent. IEEE Open Journal of Control Systems, 2:380-395, 2023.

Michael Crawshaw, Mingrui Liu, Francesco Orabona, Wei Zhang, and Zhenxun Zhuang. Robustness
to unbounded smoothness of generalized signsgd. Advances in neural information processing
systems, 35:9955-9968, 2022.

Ashok Cutkosky and Harsh Mehta. Momentum improves normalized sgd. In International conference
on machine learning, pages 2260-2268. PMLR, 2020.

11


https://arxiv.org/abs/2202.04124
https://arxiv.org/abs/2207.14255
http://jmlr.org/papers/v13/bergstra12a.html
http://jmlr.org/papers/v13/bergstra12a.html
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Runa Eschenhagen, Aaron Defazio, Tsung-Hsien Lee, Richard E. Turner, and Hao-Jun Michael Shi.
Purifying shampoo: Investigating shampoo’s heuristics by decomposing its preconditioner, 2025.
URL https://arxiv.org/abs/2506.03595.

Vladimir Feinberg, Xinyi Chen, Y Jennifer Sun, Rohan Anil, and Elad Hazan. Sketchy: Memory-
efficient adaptive regularization with frequent directions. Advances in Neural Information Process-
ing Systems, 36:75911-75924, 2023.

Guillaume Garrigos and Robert M Gower. Handbook of convergence theorems for (stochastic)
gradient methods. arXiv preprint arXiv:2301.11235, 2023.

Ekaterina Grishina, Matvey Smirnov, and Maxim Rakhuba. Accelerating newton-schulz iteration for
orthogonalization via chebyshev-type polynomials. arXiv preprint arXiv:2506.10935, 2025.

Vineet Gupta, Tomer Koren, and Yoram Singer. A unified approach to adaptive regularization in
online and stochastic optimization. arXiv preprint arXiv:1706.06569, 2017.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor optimiza-
tion. In International Conference on Machine Learning, pages 1842—-1850. PMLR, 2018.

Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace. arXiv
preprint arXiv:1812.04754, 2018.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69:169—192, 2007.

Nicholas J. Higham. Functions of Matrices: Theory and Computation. Society for Industrial and
Applied Mathematics, United States, 2008a. ISBN 9780898717778. ISBN 978-0-898716-46-7.

Nicholas J. Higham. Functions of Matrices: Theory and Computation. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2008b. ISBN 978-0-898716-46-7. doi:
10.1137/1.9780898717778.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Qiushi Huang, Tom Ko, Zhan Zhuang, Lilian Tang, and Yu Zhang. Hira: Parameter-efficient hadamard
high-rank adaptation for large language models. In The Thirteenth International Conference on
Learning Representations, 2025.

Ruichen Jiang, Devyani Maladkar, and Aryan Mokhtari. Convergence analysis of adaptive gradient
methods under refined smoothness and noise assumptions. arXiv preprint arXiv:2406.04592,
2024a.

Ting Jiang, Shaohan Huang, Shengyue Luo, Zihan Zhang, Haizhen Huang, Furu Wei, Weiwei Deng,
Feng Sun, Qi Zhang, Deqing Wang, et al. Mora: High-rank updating for parameter-efficient
fine-tuning. arXiv preprint arXiv:2405.12130, 2024b.

Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes signsgd and other gradient compression schemes. In International Conference on Machine
Learning, pages 3252-3261. PMLR, 2019.

12


https://arxiv.org/abs/2506.03595
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/

Andrej Karpathy. NanoGPT. https://github.com/karpathy/nanoGPT, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not the
main factor behind the gap between sgd and adam on transformers, but sign descent might be.
arXiv preprint arXiv:2304.13960, 2023.

Tim Large, Yang Liu, Minyoung Huh, Hyojin Bahng, Phillip Isola, and Jeremy Bernstein. Scalable
optimization in the modular norm. arXiv preprint arXiv:2405.14813, 2024.

Kfir Y Levy, Alp Yurtsever, and Volkan Cevher. Online adaptive methods, universality and accelera-
tion. Advances in neural information processing systems, 31, 2018.

Jiaxiang Li and Mingyi Hong. A note on the convergence of muon and further. arXiv preprint
arXiv:2502.02900, 2025.

Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira, and Anna Rumshisky. Relora: High-rank
training through low-rank updates. arXiv preprint arXiv:2307.05695, 2023.

Wu Lin, Felix Dangel, Runa Eschenhagen, Juhan Bae, Richard E. Turner, and Alireza Makhzani.
Can we remove the square-root in adaptive gradient methods? a second-order perspective, 2024.
URL https://arxiv.org/abs/2402.03496.

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin, Weixin
Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. arXiv preprint arXiv:2502.16982,
2025a.

Liming Liu, Zhenghao Xu, Zixuan Zhang, Hao Kang, Zichong Li, Chen Liang, Weizhu Chen, and
Tuo Zhao. Cosmos: A hybrid adaptive optimizer for memory-efficient training of llms. arXiv
preprint arXiv:2502.17410, 2025b.

Yuxing Liu, Rui Pan, and Tong Zhang. Adagrad under anisotropic smoothness. arXiv preprint
arXiv:2406.15244, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Karl Lowner. Uber monotone matrixfunktionen. Mathematische Zeitschrift, 38(1):177-216, 1934.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pages 2408-2417. PMLR, 2015.

Depen Morwani, Itai Shapira, Nikhil Vyas, Eran Malach, Sham Kakade, and Lucas Janson. A new
perspective on shampoo’s preconditioner. arXiv preprint arXiv:2406.17748, 2024.

Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

Son Nguyen, Bo Liu, Lizhang Chen, and Qiang Liu. Improving adaptive moment optimization via
preconditioner diagonalization. arXiv preprint arXiv:2502.07488, 2025.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:

27730-27744, 2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Yi Ren and Donald Goldfarb. Tensor normal training for deep learning models, 2021. URL
https://arxiv.org/abs/2106.02925.

Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Singularity
and beyond. arXiv preprint arXiv:1611.07476, 2016.

13


https://github.com/karpathy/nanoGPT
https://arxiv.org/abs/2402.03496
https://arxiv.org/abs/2106.02925

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin, and Leon Bottou. Empirical analysis of the
hessian of over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pages 4596-4604. PMLR, 2018.

Hao-Jun Michael Shi, Tsung-Hsien Lee, Shintaro Iwasaki, Jose Gallego-Posada, Zhijing Li, Kaushik
Rangadurai, Dheevatsa Mudigere, and Michael Rabbat. A distributed data-parallel pytorch im-
plementation of the distributed shampoo optimizer for training neural networks at-scale. arXiv
preprint arXiv:2309.06497, 2023.

Matthew Streeter and H Brendan McMahan. Less regret via online conditioning. arXiv preprint
arXiv:1002.4862, 2010.

Tao Sun, Qingsong Wang, Dongsheng Li, and Bao Wang. Momentum ensures convergence of
signsgd under weaker assumptions. In International Conference on Machine Learning, pages
33077-33099. PMLR, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson,
and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. arXiv preprint
arXiv:2409.11321, 2024.

Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles, Dimitris Papailiopoulos, and Stephen
Wright. Atomo: Communication-efficient learning via atomic sparsification. Advances in neural
information processing systems, 31, 2018.

Yikai Wu, Xingyu Zhu, Chenwei Wu, Annie Wang, and Rong Ge. Dissecting hessian: Understanding
common structure of hessian in neural networks. arXiv preprint arXiv:2010.04261, 2020.

Shuo Xie, Mohamad Amin Mohamadi, and Zhiyuan Li. Adam exploits £.-geometry of loss landscape
via coordinate-wise adaptivity. arXiv preprint arXiv:2410.08198, 2024.

Shuo Xie, Tianhao Wang, Sashank Reddi, Sanjiv Kumar, and Zhiyuan Li. Structured preconditioners
in adaptive optimization: A unified analysis. arXiv preprint arXiv:2503.10537, 2025.

Yuege Xie, Xiaoxia Wu, and Rachel Ward. Linear convergence of adaptive stochastic gradient
descent. In International conference on artificial intelligence and statistics, pages 1475-1485.
PMLR, 2020.

Greg Yang, James B Simon, and Jeremy Bernstein. A spectral condition for feature learning. arXiv
preprint arXiv:2310.17813, 2023.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why trans-
formers need adam: A hessian perspective. arXiv preprint arXiv:2402.16788, 2024a.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Diederik P Kingma, Yinyu Ye,
Zhi-Quan Luo, and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. arXiv preprint
arXiv:2406.16793, 2024b.

Jiawei Zhao, Florian Schifer, and Anima Anandkumar. Zero initialization: Initializing neural
networks with only zeros and ones. arXiv preprint arXiv:2110.12661, 2021.

14



Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th international conference on machine learning (icml-03), pages 928-936,
2003.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
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introduction part.
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e The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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much the results can be expected to generalize to other settings.
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are not attained by the paper.
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Justification: We discuss the limitations of the proposed algorithm in the conclusion section.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
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a complete (and correct) proof?

Answer: [Yes]
Justification: We provide proofs and assumptions for all the theorems.
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* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
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* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We clearly clarify all details including experiment setting and hyperparameter
tuning method in Appendix Section C which make the experiments reproducible.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We plan to make the code publicly available in a GitHub repository upon
publication. All datasets used are publicly available and cited, with setup details in Appendix
C.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training and test details, including model setting, hyperparameter selection,
and optimizer configurations, are specified in Appendix C.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: To account for statistical variability, we set the fixed random seed or report
mean training performance among difference random seeds to verify our proposed algorithm
performance.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We report the computer resources we use in Section 7.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
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10.

11.

12.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper proposes a foundational optimization algorithm aimed at improving
the training efficiency and effectiveness of deep neural networks. This work does not
introduce direct applications or systems with immediate societal consequences beyond the
general implications of advancing ML research.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

¢ The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper proposes a foundational optimization algorithm aimed at improving
the training efficiency and effectiveness of deep neural networks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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13.

14.

Answer: [Yes]

Justification: All existing assets, such as datasets, baseline model architectures, and opti-
mizers are properly credited via citations in the paper. Key open-source projects utilized
include Karpathy’s NanoGPT (Karpathy [2022], MIT License) and the specific version of
Muon code we adapted from github.com/KellerJordan/Muon (Jordan et al. [2024], MIT
License). For finetuning GPT-2 (Radford et al. [2019]), we utilized example scripts from
the Hugging Face Transformers library (which is Apache 2.0 licensed). The datasets are
standard benchmarks with established public licenses, and we have respected their terms of
use.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: An anonymized version of our code and experimental scripts is provided in the
supplementary material. This includes initial documentation (e.g., a README with setup
instructions and guidance for running key experiments), which will be further detailed for
the full public release.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Core method development in this research does not involve LLMs as any
important, original, or non-standard components. We only used an LLM for assistance
with writing, editing, or formatting purposes, and this usage does not impact the core
methodology, scientific rigor, or originality of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Related Work

Optimization with Matrix Structure. Much recent work has focused on improving full-matrix
AdaGrad and Shampoo. Feinberg et al. [2023] uses a sketching-based approach to approximate
the full-matrix AdaGrad preconditioner with lower memory cost. Morwani et al. [2024] provides
theoretical intuition and empirical evidence to claim that Shampoo should use the —1/2 power
in its preconditioners to better approximate the Empirical Fisher (EF) matrix. Vyas et al. [2024]
demonstrates that Shampoo is like doing Adafactor in the eigenspace of gradients and proposes
a novel algorithm, SOAP, that performs Adam in this eigenspace. SOAP is observed to achieve
better performance than Adam and Shampoo, but suffers from a high computation load per iteration.
Galore [Zhao et al., 2024] shares a similar algorithmic design with SOAP with extra focus on lowering
memory costs. Muon [Jordan et al., 2024] follows this line of work, using a steepest descent (in the
spectral norm) framework, which it shows to be scalable and effective in training large foundation
models [Liu et al., 2025a]. Large et al. [2024], Bernstein and Newhouse [2024a] propose the modular
approach that has also been applied to improve Muon. More recently, Nguyen et al. [2025] proposes
AdaDiag, which may be viewed as SOAP doing SVD without gradient accumulation. Liu et al.
[2025b] proposes COSMOS, a combination of SOAP and Muon, that trades off between performance
and computational efficiency.

Rank of Gradients and Weight Updates. It has been widely observed that gradients are naturally
low-rank in DNNSs, even when a large batch size is employed [Gur-Ari et al., 2018, Zhao et al., 2021,
Yang et al., 2023, Cosson et al., 2023]. This property has been widely utilized for computation and
memory efficiency in training [Wang et al., 2018, Cosson et al., 2023, Zhao et al., 2024]. On the other
hand, the rank of the total weight update AW = Wy — Wy, depends a lot on the training method.
If we use LoRA [Hu et al., 2022], AW is determined to be low-rank. However, in pretraining or
even many complex fine-tuning tasks, LoRA’s performance is much worse than methods that produce
high-rank weight updates like full-parameter training, which is conjectured to be due to the weight
update rank [Lialin et al., 2023, Jiang et al., 2024b, Huang et al., 2025].
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(a) Hessian of Query (4 heads) (b) Hessian of Key (4 heads) (c) Hessian of Value (4 heads)

Figure 2: This figure is from Zhang et al. [2024b]. It depicts the Hessian of different parameter
blocks in a small Transformer at the 1% training step. The near-block-diagonal structure maintains
throughout training. But different parameter blocks have different numbers of small dense matrices,
where Query and Key correspond to the number of heads.

Block-wise Diagonal Hessian. It has been observed that the Hessian of a neural network tends to
be block-wise diagonal with each block corresponding to a neuron both in experiments and theory
for small MLPs [Collobert, 2004]. Zhang et al. [2024a,b] recently numerically verified this property
in small transformers, and as illustrated in Figure 3, further empirically showed that transformers
may exhibit heterogeneity between blocks, while CNNs may not.

Concurrent Work. When we were finishing writing this paper, we noticed that the paper [Xie
et al., 2025], which had just appeared on arXiv, proposes and studies an algorithm, referred to as
One-Sided Shampoo, that is identical to ASGO. Although the theoretical techniques and convergence
results proved in [Xie et al., 2025] and here are very similar in general, there are still some notable
differences between the two works. First, the motivations are different. In Xie et al. [2025], the
authors develop their method from the unified preconditioning method framework AdaptReg [Gupta
et al., 2017] and mainly highlight its superior convergence results compared to Shampoo and full-
matrix AdaGrad. In our paper, we focus more on theoretically discussing how ASGO can utilize the
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(a) VGG16 (b) ViT-base (c) GPT2

Figure 3: This figure is from Zhang et al. [2024a,b], calculating the Jensen-Shannon (JS) distance
between two eigenvalue densities of all possible block pairs at initialization. It shows that JS distance
of blockwise spectra in CNN(s is significantly smaller than that in Transformers.

structured properties of optimization problems including low-rank gradients and block-wise diagonal
Hessians, to highlight the potential of ASGO as a practical algorithm for training deep learning
models. Second, our empirical results provide evidence that ASGO can perform well in practical
tasks, whereas Xie et al. [2025] focuses on convex settings and examines One-Sided Shampoo only
on linear regression. Moreover, our implementation includes specialized designs for Transformer
architectures (particularly query/key) to improve performance on deep learning training tasks. As a
direct byproduct of our main algorithm, we also developed a lightweight diagonal version named
DASGO to trade off memory consumption and performance. Third, Xie et al. [2025] focuses primarily
on developing a general proof framework applicable to multiple optimizers including One-Sided
Shampoo, whereas our work specifically examines the theoretical and practical benefits of ASGO. To
conclude, both works contribute to a better understanding of ASGO/One-Sided Shampoo.

B More Discussions on ASGO

A practical implementation of ASGO. We present a practical implementation of ASGO in
Algorithm 2, with the input W as a module in the network. Our implementation incorporates several
common modifications to enhance computational efficiency and stability.

Algorithm 2 A Practical Implementation of ASGO (for a layer W* € R™*™ such that m > n)

1: Input: Wy € R™*" Ir schedule {7, }, momentums (31, 82 € [0,1), batchsize M € N, e € R (e
should be small, similar to the ¢ for Adam.)

2: Initialize M_1 =0 € R™*™", V_1 =0 R™*™ pIfm < n,thenweset V_; =0 c R"*™
3: fort=0toT — 1do

4:  Sample mini-batch B; with |B;| = M uniformly

5: Gt = ﬁ degt VWf(Wtag)

6:  M;=p1M; 1+ (1—51)Gy

7. V= BaVic1 + (1= B2)G{ Gy pIfm <n, Vi = BaVig + (1 — B2)GiGY

8: A" = ggrtInverseNewtonSchulz(V;) > Run Alg. 3 to compute V; square root inverse
9 Wi =Wy—mn 70'1%;{1? DIfm <n, Wi =W, —n 702‘@\\,’/ HFAU/
10: end for

(i) Exponential moving averages are used to update the preconditioner and incorporate momentum,
following established practice, which results in Adam’s improvements across various tasks over
AdaGrad.

(i1) As demonstrated in Section 6, we use an efficient numerical algorithm (Algorithm 3) to compute
the matrix square root for ASGO, which is mathematically equivalent to applying the Newton-Schulz

iteration to the 2 x 2 block matrix [? 61 . The parameters a, b, ¢ can be chosen in ways like Jordan

et al. [2024], Amsel et al. [2025], Grishina et al. [2025]. In each of the Newton-Schulz iteration, we
perform 4 matrix multiplications, while the Muon Newton-Schulz iteration requires 3.
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Algorithm 3 SqrtInverseNewtonSchulz

1: Input: X € R™*", parameters a, b, ¢ (can be chosen in ways like Jordan et al. [2024], Amsel
et al. [2025], Grishina et al. [2025]), step number K, €
Obtain normalized input Y < %, with ax = || X | + €
Initialize identity matrix Z « I,, € R™*"
for k =1to K do
A« ZY
B < bA + cA?
Y<+~aY+YB
Z <+ aZ + BZ
end for

return —Z

Vax

SYRIAIN AR D

—_

S 1 - L N
> Return the approximation of X ~2, and /ax Y is an approximation of X 2

(iii) We adaptively select the preconditioning side. Instead of fixing the preconditioner to one side,
we dynamically choose to precondition on the side corresponding to the smaller dimension of the
gradient matrix G in R™*". Specifically, if m < n, the preconditioner is formed from G;G} and
applied from the left; otherwise (if m > n), it is formed from G} G and applied from the right.
Based on the intuition interpreted in Section 5, we also apply the preconditioner from the right when
m = n.

(iv) We incorporate a similar update alignment to ASGO, as presented in line 9 of Algorithm 2.
Specifically, we normalize the update of ASGO for each matrix weight W by the root mean square
norm (RMS norm) and multiplies 0.2 to match the RMS norm of Adam update, as suggested by Liu
et al. [2025a]. In this way, the training becomes more stable and easier to tune.

Special Design for Transformers. Furthermore, we introduce a specialized adaptation of ASGO
for query and key matrices in attention layers. Recent work by Zhang et al. [2024b] has demonstrated
that the Hessian structure of query and key layers differs significantly from conventional MLP layers.
As illustrated in Figure 2, the number of dense blocks corresponds to the number of attention heads
rather than output neurons. This observation aligns with the forward computation of multi-head
attention, where attention scores are computed independently across different subspaces, suggesting
that query and key parameters could be optimized in a head-wise manner. To leverage this insight,
we reshape query and key parameters from matrices in R"*"¢ to three-dimensional tensors R"*"*4,
and apply our optimization algorithm independently to each head’s subspace. This restructuring
reduces both memory consumption and computational complexity by decreasing the matrix size
from O(h?d?) into O(hd?). For instance, in NanoGPT [Karpathy, 2022], this adjustment reduces the
preconditioning size of a single query/key parameter from approximately 10° elements into 10°. The
empirical performance of this modification is evaluated in NanoGPT pretrain task in Section C.1.

A Diagonal Variant of ASGO. Drawing inspiration from Duchi et al. [2011] , we also implement
a variant of ASGO using diagonal matrices, which we denote as DASGO, presented in Algorithm 4.
DASGO can be viewed as a lightweight version of ASGO, which eliminates the need to compute
the inverse square root of full matrices, and reduces memory requirements to a level comparable
with Adam-mini [Zhang et al., 2024b]. It also makes the choice of which side of M, to precondition
unimportant in terms of computational effort, in contrast to ASGO. For DASGO, we choose to
apply the diagonal preconditioner on the right side, aligning with the neuron architecture in DNNss.
However, since DASGO only employs a diagonal preconditioner, it fails to recover the superior
theoretical properties of ASGO under block-wise diagonal Hessian settings . We further empirically
examine this tradeoff in Section 7.

C Details of Empirical Experiments

C.1 Pretraining NanoGPT
As an initial experiment, we compared the performance of ASGO, DASGO, Muon, Shampoo, and

AdamW for training NanoGPT, which consists of 6 Transformer layers, 6 attention heads, and an
embedding dimension of 384, on the Shakespeare character-level dataset with a sequence length of
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Algorithm 4 Implementation of DASGO (Diagonal Adaptive Structured Gradient Optimization)
I: Input: Wy € R™*" e € R, Ir schedule {7;}, momentums S;, 82 € [0,1), and batch size
M eN
2: Initialize M_; =0 € R™*" v_1 =0€ R"
3: fort =0to7T — 1 do
4:  Sample mini-batch B, with |58, = M uniformly
5 Gy = ﬁ dez;t Vw f(W; )
6: My =M1+ (1—-p51)Ge
70 v = Bovi—1 + (1 — B2) diag(G{ Gy)
8.
9:

© Wit = Wy — M, diag(ve + )72
end for

256 tokens. For all algorithms, we trained the model for 20 epochs, where each epoch contained
128 steps, using a batch size 128 and the OneCycle learning rate (Ir) schedule. In contrast to our
experiments on GPT2, where we trained 1D and Embedding layer parameters as done in AdamW, we
trained all the parameters independently in ASGO.

Before discussing hyperparameter (HP) tuning, we note that recent research [Shi et al., 2023, Morwani
etal., 2024, Lin et al., 2024] has suggested treating the inverse order (IO) in Shampoo’s preconditioner
as a tunable HP rather than using the standard value of —1/4. Notably, Morwani et al. [2024]
demonstrated that Shampoo with IO= —1/2 provides a superior approximation of the full-matrix
AdaGrad optimizer. Consequently, we treated the IO as a Shampoo HP in our pretraining experiments.
Additionally, Shampoo’s performance is highly dependent on the initialization of its preconditioner
matrices, as this is crucial for accurately approximating the Empirical Fisher Information Matrix
[Morwani et al., 2024]. To address this initialization sensitivity, we implemented a preconditioner
warmup phase specifically for Shampoo. Following the methodology in Ren and Goldfarb [2021], we
dedicated the first epoch exclusively to accumulating statistics for the preconditioner matrices without
updating model parameters. This approach yields a more robust estimation of the preconditioner,
which significantly improves the stability of Shampoo during subsequent training iterations. Figure 4
depicts the training loss and validation loss for training NanoGPT with Shampoo, DASGO, Muon,
ASGO and Adam-W.

Examining both test and training loss curves, ASGO consistently outperforms Shampoo despite
requiring only half the memory consumption and computational effort, which highlights ASGO’s
practical advantages for training language models. Furthermore, ASGO and Muon achieve the lowest
final training and test losses, outperforming all other methods. This consistent performance between
ASGO and Muon aligns well with our discussions in Section 6. Moreover, The lightweight DASGO
optimizer achieves competitive results against AdamW in both training and test loss metrics. DASGO
demonstrates particularly strong performance during the initial training phase (first 200 training steps,
which is about the first two epochs), but eventually exhibits a performance gap with ASGO. We
discuss this performance gap in Section 7.1.

Hyperparameter Tuning For consistency across all optimization methods, we employ the OneCy-
cleLR learning rate schedule, which has been shown to provide stable convergence properties in deep
learning tasks. To ensure optimal performance for each optimizer, we conducted a comprehensive
HP search using random search [Bergstra and Bengio, 2012, Choi et al., 2019] within the following
predefined ranges: initial Ir: [107°,1071]; 81: [0.7,0.99]; Ba: [0.7,0.99]; and selected the warmup
factor from the set [0.1,0.15, 0.2, 0.25,0.3]. For the optimizers Shampoo and ASGO, we selected
the update frequency 7 from the set [5, 10, 15] and for Shampoo, we selected its IO as either —% or
— %. HPs were selected based on validation loss after 20 epochs of training. For each optimizer, we
performed a random search for 16 hours to find the optimal HP combination. These best HP choices
for training NanoGPT are given in Table 5.

Ablation Study: Impact of Special Query/Key Design In Appendix B, we highlighted the compu-
tational benefits of specialized processing for Query and Key matrices in Transformer architectures.
To validate these theoretical advantages empirically, we conducted an ablation study comparing
the performance and training stability of ASGO and Muon on pretraining NanoGPT, both with
and without the specialized Query-Key processing. We maintained the optimal HP configuration
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Figure 4: Train Loss and Test Loss on the NanoGPT and Shakespeare Character Dataset

Table 5: Hyperparameter selection for NanoGPT experiment

Optimizer learning rate 531 Bo warmup factor update frequency inverse order
Muon 0.00349 0.9881 N/A 0.3 N/A N/A
AdamW 0.00450 0.9332  0.9528 0.2 N/A N/A
DASGO 0.060 0.9584 0.9435 0.2 N/A N/A
Shampoo 0.00593 0.9402  0.9760 0.3 15 -1
ASGO 0.01470 0.9541 0.8487 0.3 15 N/A

established in Table 5 for all parameters except the learning rate. For each algorithm variant (with and
without specialized processing), we randomly sampled learning rates from a log-uniform distribution
ranging from 107> to 10~!. Each configuration was trained for 5 epochs on the NanoGPT model,
after which we recorded the validation loss. This approach allowed us to evaluate both performance
and robustness to learning rate selection. Figure 5 presents the distribution of validation losses after 5
epochs for both algorithms. The violin plots® reveal several key insights: (1) For ASGO (Figure 5a),
the benefits of specialized Query-Key processing are substantial. The specialized implementation
demonstrates a narrower, lower distribution of validation losses (centered around 2.5), indicating
greater stability across different learning rates. In contrast, the vanilla implementation shows a
long-tailed distribution extending beyond loss values of 6.0, with several outliers representing training
instability at certain learning rates. (2) For Muon (Figure 5b), both implementations demonstrate
nearly identical performance distributions, with their median validation losses and distribution shapes
showing minimal differences. However, the specialized implementation achieves this comparable
performance while reducing memory requirements and computational complexity. This represents a
clear efficiency advantage — the specialized Query-Key processing effectively provides computational
savings with no performance penalty.

4$.

ASGO with special Design ASGO Muon with special Design Muon
(a) ASGO (b) Muon
Figure 5: Distribution of validation losses after 5 epochs with varying learning rates.
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3Violin plot outlines depict empirical probability density; i.e., the width of the shaded area represents the
proportion of the data located there. Box plots within a violin plot display the median and inter-quartile range.
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C.2 Pretraining GPT2

Experimental Setup: The model configuration consists of 12 Transformer layers, 12 attention
heads, and an embedding dimension of 768. The total number of training steps was 2400, with a batch
size per GPU of 64. The model was trained using Distributed Data Parallel (DDP) on 4 NVIDIA
GH200 GPUs, employing gradient accumulation over 8 steps. To ensure a fair comparison across all
optimization algorithms, a consistent learning rate schedule was utilized: a linear warmup for the first
200 steps, followed by a cosine annealing decay to a final learning rate of 1 x 10~ for the remainder
of the training process. Training was conducted on the OpenWebText dataset with a sequence length
of 512 tokens. For Shampoo optimizer, we used the Adam update grafting mentioned in [Shi et al.,
2023, Eschenhagen et al., 2025]. For Muon, we used the Adam update RMS norm alignment in
[Liu et al., 2025a]. We ran both the Newton-Schultz and the PolarExpress algorithms for 10 steps to
compute the inverse square root of V; in the ASGO optimizer using the following parameters:

* Newton-Schultz: (a,b,c) = (2,—1.5,0.5)

* PolarExpress:
coeffs_list = [
(8.28721201814563, -23.595886519098837, 17.300387312530933),
(4.107059111542203, -2.9478499167379106, 0.5448431082926601),
(3.9486908534822946 , -2.908902115962949, 0.5518191394370137),
(3.3184196573706015 , -2.488488024314874, 0.51004894012372),
(2.300652019954817, -1.6689039845747493, 0.4188073119525673),
(1.891301407787398, -1.2679958271945868, 0.37680408948524835),
(1.8750014808534479 , -1.2500016453999487, 0.3750001645474248),
(1.875, -1.25, 0.375),
(1.875, -1.25, 0.375),
(1.875,-1.25, 0.375)]

Hyperparameter Tuning: To ensure optimal performance for each optimizer, we conducted a
hyperparameter search using grid search. The search space for learning rate (Ir) and 2nd momentum
B2 (where applicable for the optimizer) included the following values:

* Learning rate (Ir): [1x1075,1x107%,5x107%, 1x1073,5x1073,1x1072,5x1072,0.1]
* [35: [0.7,0.8,0.9,0.95,0.99]

Optimal hyperparameters were selected based on the validation loss achieved after 1000 training
steps. The best hyperparameter choices for pretraining GPT-2 are presented in Table 6.

Table 6: Optimal hyperparameter selection for pretraining GPT-2.

Optimizer Learning Rate [; B2 Weight Decay Damping ¢ Update Freq. (7)

Muon 0.01 09 N/A 0.1 N/A N/A
AdamW 0.005 09 0.99 0.1 1x1078 N/A
Shampoo 0.005 0.9 099 0.1 1x1071° 1
DASGO 0.01 09 09 0.1 1x1078 N/A
ASGO 0.01 09 08 0.1 1x1071° 1

C.3 Finetune GPT2-Large

Experimental Setup: We fine-tuned the GPT-2 Large model on the WikiText-2 dataset. We utilized
the GPT-2 Large model, which comprises approximately 774 million parameters. This model is a
transformer-based language model pretrained on English text using a Causal Language Modeling
(CLM) objective, initially developed by OpenAl and was accessed via the Hugging Face Hub. The
fine-tuning was performed on the WikiText-2 dataset, a standard benchmark for evaluating language
model performance. The dataset was loaded directly using standard library functions. We investigated
two distinct fine-tuning objectives:

* Causal Language Modeling (CLM): The conventional autoregressive language modeling task.
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Figure 6: Pretraining Performance on GPT2

* Fill-in-the-Middle (FIM): Adopting the methodology from Bavarian et al. (2022). This objective
trains the model to infill masked text spans within a document.

All models were fine-tuned for a total of 2 epochs. For the learning rate, we employed a cosine
annealing decay schedule over the course of these 2 epochs, with the learning rate decaying to O
by the end of training. No warmup phase was used for the fine-tuning learning rate schedule. The
fine-tuning process used a batch size of 16 and a sequence length of 128 tokens. For each optimizer
evaluated (AdamW, Muon, ASGO, and DASGO), all hyperparameters, with the exception of the
learning rate, were maintained at the same values used in our GPT-2 pretraining experiments (as
detailed in Table 6).

Hyperparameter Tuning: For the fine-tuning experiments on WikiText-2, our hyperparameter
tuning focused exclusively on identifying the optimal learning rate for each optimizer under both
the CLM and FIM objectives. We performed a grid search over a predefined set of learning rate
candidates: [1x 10765 x 1075, 1 x 107%,5 x 1074, 1 x 1073, 5 x 10~?]. The optimal learning rate
for each optimizer and fine-tuning objective combination was determined by selecting the learning
rate that yielded the lowest validation perplexity on the WikiText-2 validation set after the full 2
epochs of fine-tuning. Table 7 shows the optimal learning rate.

Table 7: Optimal Learning rate from Finetuning GPT2-Large
| AdamW Muon ASGO DASGO

CLM | 5x107° 5x107%* 1x107% 1x103
FIM | 1x107* 5x107% 1x1073 1x10°3

Table 8 presents the average perplexity results obtained after fine-tuning the GPT2-Large (774M)
model for 2 epochs on the WikiText-2 dataset. The + indicates the 95% confidence intervals of the
mean perplexity value over these 5 runs, starting from different random seeds.

Table 8: Finetuning GPT2-Large Perplexity

\ AdamW Muon ASGO DASGO

CLM | 14.010 £0.016 13912+ 0.003 13.879 £0.010 13.841 +=0.019
FIM | 17.458 £2.254 15933 £0.102 15.661 £0.097 15.451 +0.072

Damping parameter ¢ sensitivity study: In this section, we discuss the practical differences
between ASGO and Muon. Theoretically, as discussed in Section 6, ASGO can be viewed as an
adaptive extension of Muon. Specifically, ASGO’s update rule degenerates to that of Muon in the
absence of momentum and adaptive scaling (i.e., when 81 = 0 and 8 = 0).
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Moreover, if we modify the formulas for V; and Wy in ASGO (Algorithm 2) to:
if m < nthenV; = BoVi_q + (1 — Ba) My M,
else V; = BoVio1 + (1 — B2) M, M,
if m < nthen W1 = W, — 0, (V, + eI) ™2 M,
else Wypy = Wy — e My(V; + el) 2

“

and set B3 = 0 ASGO becomes identical to Muon, even with momentum. However, in practical train-
ing implementations, a subtle yet crucial difference exists between ASGO and Muon. This distinction
arises because ASGO applies an additional preconditioner with e damping to the momentum term, a
step not present in the standard Muon update.

To precisely study these differences, we set up an experiment using the Muon optimizer as the
background optimizer to train a GPT2-model on the NanoGPT dataset for 1000 steps. At each step,
we computed and compared the Muon and ASGO update directions AW in the embedding, query,
key, value, and MLP layers. Specifically, we computed:

+ Standard Muon Update Direction (SVD-based): AWM = ), V[, where Uy and
Vs are the left and right singular vectors obtained from the first-order momentum M.

* Modified ASGO Update Direction (SVD-based, ¢ = 0): AW, = Vt_%Mt, where

V, 2 is computed via standard Singular Value Decomposition (SVD).

* Modified ASGO Update Direction (SVD-based, ¢ = 10~%): AW o = (V; +

10~81)~2 M,, where (V; + 10~81)~ 2 is computed via standard SVD.
* Modified ASGO Update Direction (Coupled Newton, € = 108): AWASSC = = (V; +

10~81)~2 M, where (V; + 10781)~ 2 is computed using the Coupled Newton algorithm
for 50 iteration steps. Higham [2008a], Shi et al. [2023]

» Modified ASGO Update Direction (Newton-Schulz, ¢ = 10~%): AWI@SS’S&O,B =(V; +

10781)~2 M,, where (V; + 10-81)2 is computed using the Newton-Schulz algorithm for
50 iteration steps.4 Higham [2008a], Bernstein and Newhouse [2024b], Jordan et al. [2024]

We then computed the cosine similarity” between each of the four modified ASGO update directions
and the standard Muon update direction A", and plotted these similarities in Figure 7.

Unlike AdamW, ASGO exhibits sensitivity to the choice of the e damping parameter. As depicted
in Figure 7(a), when no damping term is used (¢ = 0), ASGO’s update direction, though exhibiting
some instability, largely reconstructs Muon’s update direction, with cosine similarities generally
exceeding 0.8, particularly for the MLP and Embedding layers, as training progresses. However, the
introduction of a small damping hyperparameter (¢ = 10~®) significantly alters these similarities.
Figure 7(b) shows that even with precise SVD computation, the similarities for layers like Value and
Key only reach approximately 0.7 gradually. This suggests that the small e value can introduce and
accumulate errors during training, potentially leading to a degradation in optimizer performance, a
behavior not typically observed in other common adaptive methods like AdamW. This phenomenon
highlights the critical importance of small singular values in the preconditioning process, as applying
a damping term can disproportionately affect them, thereby altering the matrix multiplication and
amplifying errors. To circumvent this sensitivity, we opted to use an e value of 0 in our large-scale
GPT?2 pretraining experiments described in Section 7.1. In this setting, we directly compute the SVD
of the preconditioning matrix and its inverse square root. The results presented in Figure 6 indeed
demonstrate that ASGO achieves performance highly similar to Muon.

In Figure 7(c) and (d), we explore the use of more computationally efficient methods, Coupled Newton

_1
(CN) and Newton-Schulz (NS), respectively, to approximately compute V, ?* as alternatives to SVD.
The results show that, aside from some numerical stability issues observed in the Embedding layer for

“The Newton-Schulz algorithm is derived from Algorithm 6.35 on Page 153 in Higham [2008a]. We utilized
the quintic version with parameters (a, b, ¢) = (2, —1.5,0.5) as described in Jordan et al. [2024].

T
>CosineSimilarity (A, B) = %
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Figure 7: Comparison of Cosine Similarities (CSs) between the Muon update direction (AWSDQ,‘S“) and
various modified ASGO update directions in different layers (MLP, Value, Key, Query, Embedding)
during 1000 steps of GPT2 pretraining. Subfigures (a) and (b) plot CSs for SVD-based ASGO
update directions with € = 0 and € = 108, respectively. Subfigure (c) and (d) plot CSs for Coupled
Newton-based and Newton-Schulz-based, respectively, ASGO update directions with € = 105,

both CN and NS at certain steps—which is reasonable given that the sparse nature of embedding layers
often requiring larger damping parameters—the cosine similarities for the remaining parameters
are highly comparable to those obtained with SVD. This demonstrates the feasibility of employing
efficient matrix algorithms to replace SVD, thereby enhancing ASGO’s computational efficiency.
This direction represents one of our promising avenues for future research.

D Auxiliary Lemmas for the Proof

Lemma 1 (Trace properties). For arbitrary matrices A € R™*", B € R™*™ XY € R™*™, we
have the following basic properties for the trace:

Lotr(X)=tr(X");

2. tr (AB) = tr (BA);

3. if X is symmetric positive semidefinite, tr (X) = || X||, > 0;
4. if X,Y = 0and X is symmetric, tr (XY) > 0.

The following lemma notes the operator monotonicity of the power functions, which is a classic
result [Lowner, 1934, Ando et al., 2004, Gupta et al., 2018].

Lemma 2. The function f : © — x® with o € [0, 1] is operator-monotone, i.e. if0 < A < B, it
holds that A < B“.

Lemma 3. For symmetric positive definite matrices X,Y € R™*™ it holds that
tr (X + 7)) <o (xbvh).
Proof. 1t holds that

tr ((X +Y)%) —tr ((X +Y)3(X +Y))
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1

—tr ((X + Y)*EX) +tr ((X + Y)*%Y)

>tr (X%) +tr (Y%) ,

where the last inequality is based on Lemma 2 such that (X + Y)% > X2 and the fact that
A=1 < B7lif A = B for symmetric positive definite matrices A, B. Further based on Lemma 1,
we can finish the proof. O

Lemma 4. For a symmetric positive semidefinite matrix X € R™*™, it holds that
m
w(xt) = VI

Proof. The inequality is equivalent to that

m

D V) <DV XD

i=1 i=1

where \;(X) denotes the i-th largest eigenvalue of X (the same as singular values for real symmetric
positive semidefinite matrices). Firstly, we have the fact that the eigenvalues {\; (X))}, majorize
the diagonal entries {[X]; ;}",, i.e. forall 1 <[ < m,

l

Z/\ ZX“, and Z)\ i [X)is
i=1

—

1
Also, we know g : {x;}7, — > &2 is a Schur-concave operator. Then we obtain the equality
based on the Schur-Horn theorem, which implies that for a Schur-concave operator g, if sequence

{@i}iZ, majorizes {y; }iZ,, then g({z:}i2,) < g({wi}iZy)- 0
Lemma 5. |||, is a norm, i.e., it satisfies the basic properties of norms. Its dual norm is |||, _1.
Proof. Denote X = [z1,...,7,] € R™*", where each z; € R1*™. Then we have
T [L
X1 I T
XTLX ZI La;= |- .

In L L,

which is a norm for the space R”*" whose dual norm is [|-|| , .. This concludes the proof. O

Lemma 6. Assume a non-negative sequence {x;}7_, and a positive sequence {s;}}_, with S =
n .
> i1 Sj, it holds that

&)
The inequality holds as an equality if and only if foralli =1,--- ;nandj=1,--- ,n,
Ti _ i
S; o S5 '
Proof. A proof can be found in Lemma G.5 of the ICLR version of Liu et al. [2024]. O
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E Proof of Nonsmooth Convergence of ASGO

Proof of Theorem 1. Denote AW, £ W, — W, where W, is an optimum of Problem (1). From the
algorithm update, we have

AW, A AWy = AW, MAW, — e (G AW, + AW, Gy) + iG] A Gy
Then, by taking trace of the above equality and rearranging, we can obtain that
2netr (G AW,) = tr (AW, A AW, — AW, A AW, ) + nftr (G AT GY)
By convexity, we know
E [tr (G AW:)] = E[(VF(Wh), AWR)] = E[f(W3)] — F(W.).

Then combining these and taking summation over ¢ and taking 7; = 7, we have

23" EL(W)] - F(W.)
t=0

T-1

>t (GIA'Gy)

t=0

1

T
1
<;E l tr (AW, Ny AW, — AW, A AW ) | 4+ nE

~+

1
—_FE l tr (AW, Ay AW, — AW," A1 AW)
n t=0

N
- o

- %tr (AW, A_1AW,) — %E [tr (AW A1 AWT)]

T-1
+nE tr (G:Atht)l
t=0
1 = T-1
<t (AW A AWY) + =B | > tr (AW, (A — A1) AWS) | + 0B | Dt (GjAtlct)] ,
t=0 t=0
(6)
where we note A_; = el,,,. Thus the first term on the RHS of (6) can be bounded by € as
1 € eD?
i (AW, A AW,) = : 1AW, |7 < nF. )

We then deal with the second and third terms separately. For the second term, we have
T-1 T-1
Z tr (AW, (A — Ay1)AW;) = Z tr (AW, AW, (A — A1)
t=0

D> (AW AW, Ay — Ay q)
(

Il
i
- O

~
Il

<D AW AW A = Al
0
1

~
- O

~
Il

!

[AW2, tr (A — A1) < D2 tr (Ar—y — tr (A_y)).
0
3

Note that the first and last equalities are based on the properties of the trace, (see Lemma 1). The
first inequality is based on the duality of the [|-[|,, and ||-|, norms. The third equality relies on the

t

positive semidefiniteness of A; — A;_; for all ¢ based on Lemma 2, since A? — A2 | = G,G,/ = 0.
For the third term of (6), we have
tr (G A Gy) =tr (GG A]Y) = tr (A7 — A7_)AY)
=t (((Ar — Ap—1) - 280 — (Ap — Ae1)? + Apmi Ay — ANy ) AT
=2tr (A — Ay—q) — tr ((At — At_l)QAt_l) + tr ((At—lAt — AtAt_l)At_l)
<2tr (Ay — Ay—q),

C))
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where the last inequality follows from the fact that

tr (A — Ap_y)2A7Y) tr([(At Ae)A ] [(At At_l)A;ﬂT> >0
and
tr (Ae—1Ay — ANy 1)A]Y) =t (A1) — tr (AgA—1 A7) =0

which are based on the positive definiteness of A; and the properties of the trace (Lemma 1). Therefore,
by substituting (7), (8), and (9) into (6), we have

T—1
2y E[f(Wh)] — f(W.)
=0

1 1
< tr (AW A1 AW,) + E]E +nE

T-1
> tr (AW, (A — A1) AW
t=0

T—1
Z tr (G;FAt_th)
t=0

D2 D2
_e + (Up + 277) E[tr (Ap—1 — A_1)]

Ui
T—1 3
D2 — DQ
= P+ 2| E [tr ZGtG: + &F
Ui =0 Ui
Taking = D,,, completes the proof. O

Based on Theorem | and Lemma 8, we can also prove Corollary 2.

Proof of Corollary 2. Based on the results in Theorem 1, if we additionally have
E[G.G]] 2@

then using Lemma 8, we can obtain that

1

T-1 2
Q! <Z GthT>

t=0

=

T—1 % 10) [ T—1
E (Z GthT) <E| |lIQl,tr (Z @GI)
t=0 t=0

*

T—1
=E || 1€, tr ( GthTQ‘1>

t=0

IN

IQlI, Ztr [G:GT] Q1)

T-1
<\ QI Y Rl = VT Q).
t=0

where the first equality is based on Lemma 1 and the second inequality is based on the fact that
g(x) = y/z is concave for > 0. This concludes the proof. O

We also provide the following proof for the comparison between Theorem 1 and the convergence
rates of Shampoo and full-matrix AdaGrad.

Proof of Comparison with Shampoo and full-matrix AdaGrad. We list the convergence rates here.

Full-Matrix AdaGrad: O
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NG

T-1
Shampoo: O | \/rgDp - tr (Z GthT>
t=0

(NI

T-1
ASGO: O [ D, - tr (ZG@)
t=0

The last inequality for ASGO is based on Lemma 4. We first compare ASGO and full-matrix
AdaGrad:

T-1 3
tr (Z GthT>
t=0

where the first inequality is based on Lemma 4 and the second inequality is simply a fact that for any
vector z, we have ||z||, > ||«[|;. Thus we prove that the proven convergence rate of ASGO is at least
Dy /D,y times faster than full-matrix AdaGrad.

Then we compare ASGO and Shampoo. We have

T—1 3 T—1 i /r—1 i
tr (Z GtGZ> :<<Z GtGI> ,(Z GthT> >
t=0 t=0 t=

T—1 I
<tr <Z leXel )
t=0

Bl

N
7N
T N
UL

2

o~

)

+H
~__—

N

op

1
4

Bl

T—1
Py
t=0

T-1
=tr (Z eiel )
t=0

where the inequality is based on the fact that [|-[| ., and [|-||,, are dual norms. Then we have

op

Al

1 1
1 1

T-1
paNeen
t=0

op
1

T—1 T—1
< (z GGT ||Op) _ (Z ||G:Gt||0p)
t=0 t=0

T-1 i T-1
< <tr (Z GtTGt)) <tr (Z GZGt> ,
t=0 t=0

where the first inequality is based on that ||-|| ., is a norm and the second inequality is based on the
fact that tr (X') > [|X[|,, for symmetric positive semidefinite X, and the third inequality is based on

the fact that (tr (X))3 < tr (X i) because if we denote o; as the j-th singular value of X, we have

T % T
1
)N =Y 0] < ol
j=1 j=1

Thus we can conclude that
T—1 3 T-1 T—1 I
tr <Z GthT> <tr (Z GthT> tr (Z GtTGt>
t=0 t=0 t=0

Therefore, the proven rate of ASGO is at least \/7¢ Dy /Do), times faster than Shampoo. O

ENE
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F Proof of Smooth Convergence of ASGO

The starting point of the smooth analysis is Theorem 1. For notation simplicity, we denote N; £
— Vf(W;) and V f; & V f(W;) in this section.
Lemma 7 (Separate Gradient and Noise). Under the same settings as Theorem 1, it holds that

E[f(W) — f(W.)] <Dop QTX:_lvafT ? +D°pE QTZ:_lNNT 2 N D2
t =" t t T - tdiVy DopT.

L * *

~

—1

}ﬂ‘;_n
~
Il
(=)

Proof. Based on Theorem 1, we have

T-1 T-1 3
1 D 6D2
— V) E - ] <=2R T
= S EIF(W) — fV.)] <20 ( Gtat) o,
t=0 ]| \t=0 .
M| /71
Dop €D%
<——FK 2V 2NN,
< (t—O LV 42N, ) DopT

1
T—1 T—1 2
D D eD?
<P 2§ A PR QE:NNT Ly
- T ( t=0 fivis i T t=0 o " DOPT

Here the first inequality comes directly from Theorem 1. The second inequality is based on the fact
that for all A, B € R™*" we have

2AAT +2BBT — (A+ B)(A+B)" =AA" + BBT —~A"B-B"A
=(A-B)(A-B)" »o.

The last inequality is based on Lemma 3. O

The following lemma is a key technical lemma for proving the smooth convergence results, which is
a generalization to the matrix case of Lemma 6.

RmXﬂL

Lemma 8 (An upper bound on ||-||,). For a symmetric positive definite matrix A € and

matrix G € R™*"™ it holds that

161, < \/IAlL tr (GTA-1G). (10)

Proof. We first consider the case A = diag[\1, ..., \] is a diagonal matrix. We have

161, =u ((GGT) ) i,/ GG,

Jj=1

m m T
< Z Aj Z 7[6‘(1 : b
j=1 J

j=1

=\/IAll, tr (GGTA-1) = /|A], tr (GTA-1G),
where the first inequality is based on Lemma 4 and the second inequality is based on Lemma 6.

Then we prove that this holds for general symmetric positive definite matrix A. Let the singular value

decomposition be A = USU . Denote G = U G. Since & € R™*™ is a diagonal matrix, it holds
that

el =|é. < ¢ ]t (GTE1E) = /Al (GTUSUTE)

=/IAlL tr (GTA-1G),

which concludes the proof. O

35



We also use the following lemma to indicate the reduction of variance by batch size M.
Lemma 9 (Variance reduction by batch size). Under Assumption 3, we have

1
E [N:N,] =< AR
where we denote N; = Gy — N f(W;) for Algorithm 1.
Proof. For notation simplicity, we denote N (Wy; &) 2 V f(Wy; &) — V f(W;) and thus

Ny = %ZN(W&E)-

¢eB
Then it holds that
-
1
E NN/ ] =32 D ONWEE) || D N(WisQ)
£eB ceB
1
=2z 2 D EINWs N(W Q)]
¢eBceB
1
=1 2 E[NWs N (W 6)T]
¢eB
1 2 Lo
PR vIE
gen
where the last equality is based on that V f (W; £) are mutually independent and E[N (W;;£)] =0
and the last inequality is based on Assumption 3. O

Then based on these lemmas, we can prove the smooth results.

Proof of Theorem 3. We separately deal with the bias and variance terms, which refer to the first
two terms on the RHS of Lemma 7. For the bias part, by plugging in the smoothness matrix L into
Lemma 8, we can obtain

T-1 H (10) [ T-1 3 T—1 3
E (Zwtw?) <E | |ILl, tr (Zv,ﬁvﬁ) L1 (Zv,ﬁvﬂ)

t=0 t=0 t=0

*

T-1
=E | | ILI, tr (Z AYA Ll)

L t=0
T-1 T—1
<\ 121 S E[IVA ] <\ 121 3 20000) - rwa)),
t=0 t=0

where the equalities are based on Lemma 1 and the second inequality is based on the fact that g(x) =
Vx is concave for x > 0. The last inequality is based on the properties of smoothness [Nesterov
etal., 2018] and the fact that ||-|| , -, is the dual norm of ||-|| , .

Then, for the variance part, let us first assume M = 1 for simplicity, then we have

T-1 % (10) I T-1 % T-1 %
E (Z NtNtT> <E| |[[V],tr (Z NtNtT> V-t (Z NtNtT>
t=0 t=0

t=0

*

T-1
=E |||V, tr (Z NtNtTV—1>

t=0
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T—1
V1Lt (B [NNT] V1)
t=0

T-1
VI WV =VT VL,
t=0

where the equality is based on Lemma 1. and the second inequality is based on the fact that
g(x) = y/x is concave for z > 0. Then plugging these in Lemma 7, we have

r 1
T-1 2

t=0 =

L * *

| V2D |V, , 26D}
VI Dol

T—1
S22 LN, D DB (We) — f(W)]
t=0

Thus if we denote x = \/ T ZZ:Ol E[f(W:) — f(W.)], we can write the inequality as

J:ngm—i—c,

where

b— 2Dop L1, = \/§D0p V1, + GDI%
VT VT DopT

Then as x > 0, we can solve this simple quadratic inequality to obtain that

1 2
2’ < 5 (b+ \/b2+4c) < 2%+ 2

T-1 2
1 4D2 || L|| 22D, |V 2e D2
= — E E[f(W) — f(W,)] < —2—* b Tk Ly
T port [f( t) f( )] —= T + \/T DopT
which concludes the proof for M = 1. Then, based on Lemma 9 to incorporate batch size M > 1,
we finish the proof. O

G Proof of Section 6

Muon [Jordan et al., 2024] is essentially the following algorithm:
By = puBi_1 + Gy
Uy, St, V; = Compact SVD(B;) (11)
Wipr =Wy = neUpV,'

where Gy is the gradient obtained at W; and U; € R™*" V, € R"**"™ are the matrices of the r; left
and right singular vectors corresponding to the non-zero singular values of B; that are the diagonal
components of the diagonal matrix S; € R"™*"t with r; being the rank of B;. Note that U;S; VtT
is referred to as the "compact" or "Reduced" SVD of B;. Muon implements this algorithm using
Newton-Schulz matrix iterations to approximately compute U;V," instead of directly employing
SVD to improve computational efficiency. The relationship between (11), with B; = G, and (2)
is interpreted in Bernstein and Newhouse [2024b] (see Story II). In the following discussion, we
refer Muon as the one described in (11). We first show that ASGO and Muon, without gradient
accumulation and momentum, are equivalent.

Proposition 1. If in ASGO (Algorithm 2 version) we set 31 = o = 0,e = 0, and 7 = 1, and in
Muon (11) we set u = 0, ASGO is equivalent to Muon.

Proof. Let UtStVtT be the compact SVD of G. For ASGO, the update is
Wipr =W — (GGl ) 726,
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=W — nt(UtStS:UtT)_%UtStVt
=W, —nUi(S7) 20 U8V,
=W, — U S; ' S V"

=Wy — UV,

Clearly, this is the same as Muon. O

We now prove a nonconvex convergence result for Muon in the deterministic case with 1 = 0.

Theorem 4 (Nonconvex convergence of Muon). We consider Muon presented in (11) with p = 0. In
the deterministic case, i.e. no gradient noise, if we assume that there exists a lower bound f* such

that f(W) > f* for all W and Assumption 2, by taking n; = n = W, it holds that

T—
L. (f(Wo) = f*))
S A e

Proof. Since we assume the deterministic setting, we have G; = V f(W}). Also, since we assume
p = 0, we have Uy, V; are the left and right singular vectors of G such that G; = U;S;V,". Then
based on the smoothness assumption, it holds that

FWigr) <fWe) + (VW) Wigr — W) + %tr (Wi — We) ' L(Wig — W)
= FW) = mitr (GTUVT) + e (OT) L0T)
= —npetr (ViSU, UV, ) + mz o tr (VU LUV,")
=f(We) = metr (VeS: V") + n2ttr (UtTLUthTVt)

(S

2
_ — pytr V,fvt) + %tr (LU

<F(We) = ne (|Gl + 2 ||L||

where the last inequality is because of the fact that UU T < I and Lemma 1. Then by summing up
over t and rearrangement, we can obtain that

T-1

ST lIGe < f(Wo) - Z "L
t=0

Then we take 1; = 7 to obtain that

-— FWo) = f*
< s L )
T}jnw W)l e 1 L

Setting n = % finishes the proof. O

H Incorporating Projection in ASGO

To achieve fully theoretically rigorous convergence bounds for ASGO, i.e., with D, and Dy strict
constants as 7" increases, one well-established way is to incorporate a projection operation in the
Algorithm [Hazan et al., 2007, Duchi et al;, 2011]. Consider a closed convex set YW C R™*" with an
optimum W, inside and diameters Dop, Dr such that for any Wy, Wy € W, it holds that

Wy — W and [[W1 = Wa|s < Dr.

Op—
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For Algorithm 1, we desire to search solution inside »V and change the update step line 8 to

Zt+] = Wt — ntA;th and Wt+1 = HAWt (Zt+1) y

where the anisotropic projection operator H}(‘i : R™>*™ — W, as also incorporated in Hazan et al.

[2007], Duchi et al. [2011], is defined as

Y (X) £ argmin || X — YHit
) Yew

for any X € R™*", which enjoys the non-expansiveness of a projection operator:

[AW i1 — Wi}, = tr (AW, AlAW 1) < tr (AZL M AZy) = |AZea |}, (12)

with AW, 14 £ Wiv1 — Wy and AZ 4 e Ziy1 — W, since W, € W. Substituting this non-
expansiveness property in the proof of nonsmooth convergence, or more specifically, in (6), we can

obtain that

T—-1
2N E[F(W)] - f(W.)
t=0

=
M 1=
rr—1

12)1
ey
m 1=
rr—1
=3
M 1i=0
T-1

+nE

t=0

g%tr (AW, A1 AW,) + g

tr (G A;'Gy)

<-E tr (AW, M AW, — AZ N AZy )
tr (AWtTAtAWt - AWt—-I;-lAtAWt-‘rl)

tr (AWtTAtAWt - AWtTAt_lAWt>

Dt (AW, (A — A1) AW)

+ nE

T-1
Z tr (G:At_th)
t=0

T-1
+0E | Yt (GIA'GY)
t=0

4 %tr (AW A AT,) — %]E [tr (AW A AT)]

T-1

>t (GIA'GY)

t=0

+nE

)

which yields exactly the same result as (6). Since the rest of the proofs of both nonsmooth and smooth
theory are based on (6), we can achieve the same convergence results as Theorems 1 and 3, while

we have the upper bound on maxo<¢<r—1 [|[We — Wil|,, < Dop and maxo<i<7—1 |Wi — Wiy <
Dy, where the diameters Dop and Dp depend on the geometry of the convex set V¥ and remain

constants when 7T increases.
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