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ABSTRACT

Survival analysis plays a critical role in modeling time-to-event outcomes across
various domains. Although recent advances have focused on improving predic-
tive accuracy and concordance, fine-grained calibration remains comparatively
underexplored. In this paper, we propose a survival modeling framework based
on the Individually Calibrated Asymmetric Laplace Distribution (ICALD), which
unifies parametric and nonparametric approaches based on the ALD. We begin by
revisiting the probabilistic foundation of the widely used pinball loss in quantile
regression and its reparameterization as the asymmetry form of the ALD. This
reparameterization enables a principled shift to parametric modeling while preserv-
ing the flexibility of nonparametric methods. Furthermore, we show theoretically
that ICALD, with the quantile regression loss is probably approximately individ-
ually calibrated. Then we design an extended ICALD framework that supports
both pre-calibration and post-calibration strategies. Extensive experiments on 14
synthetic and 7 real-world datasets demonstrate that our method achieves competi-
tive performance in terms of predictive accuracy, concordance, and calibration,
while outperforming 12 existing baselines including recent pre-calibration and
post-calibration methods.

1 INTRODUCTION

Survival analysis, modeling the distribution of time-to-event outcomes, has gained popularity in
recent years (Lanczky & Gy®6rffyl 2021; [Emmerson & Brown, 2021). Survival models can be broadly
categorized into parametric, semi-parametric and nonparametric approaches, depending on the
strength of the distributional assumptions they make about the underlying time-to-event distribution.
Parametric models make strong assumptions by specifying a particular probability distribution for
event times, such as the exponential (Feigl & Zelenl [1965)), Weibull (Scholz & Works|, [1996)), log-
normal (Royston, [2001), asymmetric Laplace (Kotz et al., 2012)), or their mixtures (Nagpal et al.,
2021). In contrast, semi-parametric model, such as the Cox proportional hazards (CPH) model
(Coxl [1972), relax these assumptions by modeling the hazard multiplicatively without specifying the
baseline hazard. Nonparametric models, such as Gradient Boosting Machines (GBM) (Dembek et al.|
2014) and Random Survival Forests (RSF) (Ishwaran et al.} 2008)), do not rely on predefined forms
for the survival distribution or the hazard function, and instead estimate survival quantities directly
from the data. Alternatively, neural networks have significantly advanced survival modeling in both
(semi-)parametric and nonparametric paradigms. For example, the parametric LogNorm-MLE model
(Hoseini et al., 2017) improves parameter estimation for survival distributions under the log-normal
assumption (Royston, [2001). The semi-parametric DeepSurv model (Katzman et al.,[2018) leverages
neural networks to capture complex nonlinear covariate effects while preserving the multiplicative
structure of Cox models (Cox, 1972). Nonparametric models such as DeepHit (Lee et al., [2018)
and CQRNN (Pearce et al., [2022) utilize neural architectures to directly estimate individualized
survival distributions, offering greater expressiveness and scalability than non-neural models like
GBM (Dembek et al., 2014) and RSF (Ishwaran et al., [2008)).

To assess the performance of survival models, evaluation metrics are typically grouped into three
major categories: predictive accuracy (Graf et al., |[1999), concordance (Harrell et al., |1982; [Uno
et al., 2011), and calibration (Haider et al., [2020). Predictive accuracy measures how well the
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estimated survival probabilities or times align with the observed outcomes, and is particularly useful
in scenarios where precise event time estimates are critical, such as predicting patient prognosis,
forecasting treatment duration, or scheduling follow-up assessments. Concordance assesses the
model’s ability to correctly rank individuals by risk, making it valuable for pairwise comparisons,
such as prioritizing patients for treatment. Calibration reflects the reliability of the predicted survival
probabilities, i.e., if predicted risks are consistent with empirical observations. More specifically,
calibration can be further assessed at the average, group, or individual level (Gneiting et al.,[2007).
Individual calibration (Villanil 2009) is important for high-stakes decisions at the patient level, such
as eligibility for high-risk interventions, while average and group calibration (Naeini et al., [2015)
are more relevant for population-level decisions, such as allocating clinical resources or designing
screening strategies.

While most recent works (Katzman et al., 2018; [Lee et al.l 2018} |Pearce et al., [2022)) primarily
focus on predictive accuracy, concordance, and coarse-grained notions of calibration, our objective
is to conduct a more comprehensive evaluation of model performance, with particular emphasis
on fine-grained calibration (Gneiting et al.,|2007}; [Villani, |2009; Naeini et al., 2015). In addition,
we propose the Individually Calibrated Asymmetric Laplace Distribution (ICALD) model, which
significantly improves the calibration performance. Our contributions are summarized below.

* We propose the ICALD model that synthesizes the complementary advantages of parametric
and nonparametric ALD-based approaches. Our model not only enhances calibration and
mitigates issues associated with distribution mismatch in parametric ALD approach (Sheng
& Henao, 2025), but also effectively addresses the issues of discretization and quantile
crossing commonly encountered in nonparametric methods (Pearce et al.| 2022)).

Specifically, ICALD admits two theoretically equivalent loss functions, each of which is
provably capable of rendering the model Probably Approximately Individually Calibrated
(PAIC;Zhao et al.|[2020). More importantly, the model supports both pre-calibration and
post-calibration with either loss, providing a unified and flexible framework where the
calibration strategy and loss function can be independently selected based on the specific
application requirements.

* We comprehensively evaluate our method on 14 synthetic and 7 real-world datasets using
7 performance metrics that span predictive accuracy, concordance and calibration. Our
method is compared against 9 strong baselines covering a wide spectrum of survival models,
including both (semi-)parametric and nonparametric approaches, as well as both neural
and non-neural architectures. Furthermore, we compare with 1 pre-calibration method
(X-CAL;|Goldstein et al.[2020) and 2 post-calibration methods (CSD; Q1 et al.|2024a and
CiPOT; Q1 et al.|2024b) that target average calibration of survival distributions. Overall,
our method consistently outperforms these baselines, achieving superior performance in
terms of predictive, concordance and calibration.

2 BACKGROUND

We use capital letters X, Y, @ to denote random variables, lowercase letters y, g to denote fixed
values, bold lowercase letters x to denote vectors, and X, ), Q to denote the sets of all possible
values they can take.

Survival Data A survival dataset D is composed of a set of triplets { (X, Yn, Jn) }5;, each contain-
ing covariates x,, € R<, an observed time yn € Ry, and an event indicator §,, € {0, 1}. Moreover,
the observed time is defined as the minimum between the true event time e,, and the censoring time c,,,
i.e., y, = min(ey,, ¢, ), and the event indicator is defined as §,, = I(e,, < ¢, ), denoting whether the
event was observed (6,, = 1) or censored (§,, = 0). In this work, we adopt the common assumption
that the event and censoring distributions are conditionally independent given the covariates, i.e.,
e L ¢ | x. Moreover, although we focus on right-censored data; less common types of censoring
(e.g., left and interval) can also be readily accommodated (Klein & Moeschberger, [2006).

Asymmetric Laplace Distribution The Asymmetric Laplace Distribution (ALD) (Kotz et al., 2012)
has two common parameterizations. In its quantile form, let the random variable Y ~ AL(6, 0, q),
where 6 € R is the location (distribution mode), o > 0 is the scale, and ¢ € (0, 1) is the target
quantile. This form is quite useful in quantile regression (Koenker & Bassett Jr,[1978)), and has the
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following probability density function (PDF):
q(1—q) exp (%(9_9))a y=>0,

7 e (Fiy—0), y<o.

Alternatively, in its asymmetry form, the ALD is reparameterized as AL(f, 0, k), where k > 0

denotes the asymmetry parameter, and the latter is related to ¢ through ¢ = 15:% Its PDF is:

fy:0,0.q) = (1)

V2 ok |exp @(9—1/)), y >0,
o 14+ A% | exp ﬁ(y—e))’ y < 9.

oK

fly;0,0,k) = )

Quantile Value and Percentage Given a random variable Y with its conditional cumulative distribu-
tion function (CDF) Fy (y|x), the quantile value y, corresponding to a quantile percentage q € [0, 1]
is defined as (Garthwaite et al., [2002):

Yg = F;l(q|x) =inf{y € R: Fy (y|x) > ¢}, 3)

where y, represents the threshold below which a proportion g of observations y € ) lie. The quantile
percentage ¢ indicates the probability mass accumulated up to y,, i.e., the fraction of the distribution
that falls below this threshold.

Average Calibration A CDF predictive model Fg(y|x) parameterized by ® is said to be perfectly
averagely calibrated, if its predicted distribution aligns with the empirical distribution of the target
population (represented by a test set). Formally, the model should satisfy (Gneiting et al.,[2007):

Pr(y < Fyl(qlx)|x € X)=q or Pr(Fe(ylx)<qxeX)=gq, Vqel0,1],VyeY. 4

Group Calibration A CDF predictive model Fg(y|x) parameterized by ® is said to be perfectly
group calibrated with respect to a collection S = {S;}E_| C X predefined subsets if, for every
group Sk, the predicted distribution is consistent with the empirical outcome distribution within that
group. Formally, the model should satisfy (Gneiting et al.| |2007):

Pr(y < Fy'(q|x)[x € Sk) = q or Pr(Fa(y|x) < qlx € S;) =q, Vg€ [0,1], Yy e Y,Vk € S. (5)

Individual Calibration A CDF predictive model parameterized by @ is said to be perfectly individu-
ally calibrated if its predicted conditional cumulative distribution function Fiy (Y |x) satisfies, for any
given input x € X, the following condition (Gneiting et al., 2007):

Pr(Y < Fy'(glx) | X =x) =qor Pr(Fe(Y|x) < q|X =x)=¢q, Vg€ [0,1], VY € V. (6)

Definition 1 (Probably Approximately Individually Calibrated (PAIC) (Zhao et al.,[2020)). A model
with predictive CDF Fg(Y'|x) is said to be (€,0)-PAIC if forallx € X, Y € ), and q € [0, 1], the
following holds:

1 1
Pr [/ |Pr[Y < Fy'(qx)] — g dq<e} or Pr {/ [Pr[Fp(Yx) <qgl—gqldg<e| >1-—4.
0 0

We slightly extended the original definition for PAIC introduced by Zhao et al.|(2020) to also allow
an equivalent expression based on the inverse CDF function. Definition [1|is connected to earlier
notions of calibration for regression models, including those in|Gneiting et al.|(2007) and |Kuleshov
et al| (2018), which formalize approximate individual calibration consistent with Eq.(6).

Note that Fg(y|x) represents the model that directly outputs the conditional CDF value aty € ).
However, popular models such as CQRNN (Pearce et al.| |2022) based on Eq.@ produce g, =
Fy 1 (g|x) for specific values of g, and DeepHit (Lee et al., 2018)) produces Fip(y|x), but assuming
that it is piecewise constant. In contrast, parametric models such as the accelerated failure time
model (AFT) (Wei, |1992) return distributional parameters which then can be used to obtain Fg (y|x)
for y € Y. Specifically, a parametric model for Fg(y|x) based on the ALD (Sheng & Henao, 2025)
in Eq.(2) is denoted here as {6, o, k} = ma ().
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3 SURVIVAL MODELING WITH THE ICALD

3.1 PARAMETRIC AND NONPARAMETRIC ALD APPROACHES

Quantile regression methods, such as CQRNN (Pearce et al.,[2022), utilize the widely adopted pinball
(or check) loss (Koenker & Bassett Jr,|1978)) to estimate conditional quantiles of the response variable.
The pinball loss for a target value y and a predicted quantile value §, = Fy ' (g|x) = ma 4(x), from
a model for ¢ is defined as:

Loinvan (y; ©,q) = (y — ma,q(x))(q — I[mae q(x) > y]), Q)
which optimizes a weighted absolute deviation objective that asymmetrically penalizes the under-
and over-estimation of y. This formulation yields a predictive function that statistically separates the
g-th and (1 — ¢)-th quantiles in a consistent manner. Moreover, the loss for CQRNN accounting for
censoring leveraging the Portnoy estimator (Portnoy, | 2003)) is defined as:

£qu(y; D, q) = Z ‘Cpinball(y; P, Q) + Z wnﬁpinball(?ﬁ D, Q) + (1 - wn)ﬁpinball(y*§ D, Q)a (8)
n€Do ne€Dc

where Dg and D¢ are the subsets of the dataset D = Do U D, corresponding to observed (6 = 1),
censored (§ = 0) instances, y* is a pseudo target set to be sufficiently larger than all observed values
of y in the dataset, w,, € (0, 1) is a weight that balances the contribution of the censored and imputed
targets and the loss is optimized for a model mg 4(x) defined for a specific value of g. In fact, the
pinball loss in Eq.(7) can be interpreted as the negative log-likelihood of the quantile form of the ALD,
parameterized as AL (6 = §q,0 = 1, ¢), up to an additive constant (see LemmalI]in Appendix
for technical details). This connection provides a probabilistic interpretation of quantile regression
and forms the basis for likelihood-based extensions. Building on this foundation, it is possible to
extend the nonparametric quantile regression into a parametric modeling framework by adopting an
alternative parameterization of the asymmetry form of the ALD, which explicitly models the location,
scale, and asymmetry parameters of AL(0, 0, k) (Sheng & Henao, 2025). This reformulation enables
the transition from pointwise quantile estimation to full conditional distribution estimation, offering a
relatively more flexible modeling framework beyond fixed quantile levels. Formally, the loss of the
parametric model can be summarized as follows:

Lawn(y;®) == > 10g far(yn; ma(x)) = D 108 Sarn(yn; ma(x)), ©)
n€Do n€Dc

where {6,0,k} = me(-) is a parametric model that maps covariates to the parameters of the
ALD, and farp(+) and Sarp(-) denote the PDF and survival function (1 — Farp(+)) of AL(8, 0, k),
respectively (see Lemma 2]in Appendix [A.2]for technical details).

It should be noted that both the nonparametric and parametric ALD-based modeling approaches in
Eq. (8) and Eq. (9), respectively, come with their own limitations. Nonparametric approaches are
inherently restrictive, as each model (or head) can only capture a single quantile value y, specified by
the quantile percentage g. This form of discretization, observed in many other methods, can cause
approximation errors when quantile grids are sparse. Although increasing the number of quantiles
reduces this error, it requires training multiple models, leading to a fragmented formulation that
behaves as a collection of independent ALD models. While this increases the density of estimated
quantiles, it also introduces substantial computational overhead and fails to capture global coherence
across quantile levels, which in turn gives rise to the crossing quantiles issue where higher quantile
estimates may fall below lower ones, violating y,, > ¥4, for all g; > ¢ (Bondell et al.,|2010). A
case study illustrating this behavior can be found in Appendix [C.4}

Alternatively, parametric approaches based on the ALD offer greater flexibility in computing various
distributional summaries, such as mean, median, mode and quantiles, which result from having
closed-form expressions for farp(-) and Sarp(+). It is also computationally efficient and maintains
smoothness throughout the estimated distribution, thereby avoiding issues like discretization and
crossing quantiles that commonly arise in nonparametric approaches. However, relying on a single
ALD to model the entire conditional distribution is also restrictive. Although parametric ALD
models typically perform well for central quantiles, their approximation error tends to increase at the
distribution tails, leading to degraded performance for extreme-quantile estimation. More critically,
distribution mismatch can occur in some cases, where the estimated ALD distribution significantly
deviates from the ground truth, often manifesting as consistent over- or under-estimation in regions
of ). A case study illustrating this behavior can be found in Appendix
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3.2 SURVIVAL MODELING WITH THE INDIVIDUALLY CALIBRATED ALD (ICALD)

Given the strengths and limitations of both non- (7 - xrorav ]

parametric and parametric ALD-based survival = ReLUJ& (voew }o[ 0]
models, combining them within a unified frame- — g

work seems like a natural and effective strategy. ESRT) (ke Rav] (reme o]
Specifically, we begin by adopting a parametric Residual C T e N

ALD-based survival model as the backbone, which  Fjgyre 1: Architecture of the proposed ICALD sur-
ensures global continuity and smoothness through-  vival model. Here, & denotes the concatenation oper-
out the estimated distribution. Then, we include an  ation, and FC refers to a fully connected layer.
adapter module in the backbone which takes ¢ as

input to produce refined ALD parameters through

{0,0,k} = ma(x,q). The resulting model illustrated in Fig. |1|is optimized using the negative
log-likelihood loss in Eq.(9) and the quantile regression loss (with censoring) in Eq.(8) for a specific
value of q used both as input to the model and the quantile regression loss as follows:

Latpscqr(y; ©) = Lawp(y; @) + ALcgr(y; D, q), (10)
where ) is a hyperparameter that balances the contributions of the two losses (see Appendix [C.4]for
ablation studies). In practice, to encourage individualized quantile calibration, we sample a quantile
percentage at random from ¢ ~ U(0, 1) for each instance x during training, which in turn is used to
refine the prediction of model mg (x, ¢) to minimize Lcg (y; ®, ¢) in Eq. for a specific value of
q, while also maximizing the likelihood of y over the full ALD distribution implied by the model
{97 a, K‘} = Mo (Xa Q) using LaLp (y7 CI))

Conceptually, this model can be seen as a continuous mixture of ALDs specified as
[ dq p(q) farp(y; ma(x,q)), for p(¢) = U(0,1), in which the backbone captures the general
shape of the conditional distribution, while the adapter module drives local adjustments to improve
the calibration of the model. Note that marginalizing over ¢ does not yield an ALD distribution and
that, in practice, we approximate this mixture at test time by averaging predictions over a finite set of
2,000 samples drawn from p(q) = U(0, 1). During training, we iterate for up to 2000 epochs with
early stopping, which is necessary to prevent overfitting, particularly on datasets with high variance
or limited sample size (see Appendix [C.4). The properties of the continuous mixture of ALDs are
discussed in Appendix[A.3] Moreover, the theoretical foundation supporting the individual calibration
ability of the proposed ICALD model is discussed below.

3.3 THE ICALD MODEL Is PAIC

By Definition |1} a quantile regression model j, = Fy ' (q|x) = mg 4(x) trained to minimize the
loss Lcgr(y; @, ) in Eq.(8), is in principle (e, §)-PAIC, provided it satisfies the individual calibration
condition for each outcome y € ) and its corresponding covariate x € X. However, as also noted
in Definition [T} verifying this condition empirically is challenging provided that for each (input) x,
the model produces predictions g, for a fixes set of ¢g. This limitation makes it difficult to flexibly
estimate the probability Pr [y <Fy ! (q|x)] across all quantile percentages ¢ € [0, 1]. To overcome
this issue, we instead consider evaluating the modified probability Pr [y < Fg 1(q|x, q)} , where
the model mq (%, q) trained via Eq. takes as inpits both the input x and quantile percentage
g ~ U(0,1). This change allows us to assess calibration across quantile percentages using each
observed y with mg (X, ¢), under the assumption that it is monotonic in g. Note that any continuous
but non-monotonic function can be transformed into a monotonic one by sorting its outputs over
quantile levels (see Appendix [A.5]|for more details on monotonicity). This idea draws inspiration
from the reparameterization trick introduced by |[Kingma et al.|(2013). Under this construction, we
extend the notion of PAIC to the monotonic setting, resulting in the following definition.

Definition 2 (Monotonic Probably Approximately Individually Calibrated (MPAIC) (Zhao et al.,
2020)). A predictive CDF model Fo(Y|X, q) is said to be (€,6)-MPAIC if forall X € X, Y € )),
and q € [0, 1], the following holds:

Pr [fol Pr[Y < Fy'(q|X,q)] —q| dg < e] or Pr [fol [Pr[Fe(Y[X,q) <ql—qldg<el >1-0.

Thus, by Definition , we can conclude that the ICALD model mq (X, q), trained with the loss
Larp+cgr(y; @) in Eq.(10), is (e, §)-MPAIC. Moreover, with Theorem (I|below (proof is provided in
Appendix [A.4), this further implies that the ICALD model is also PAIC.
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Theorem 1 (MPAIC is a sufficient (but not necessary) condition for PAIC (Zhao et al.,[2020)). Ifa
predictive CDF model Fg is (¢, )-MPAIC, then for any €' > ¢, it is also (e’, §l=c ) -PAIC.

e —e

In addition to using the quantile regression Lapp+cqr to improve the individual calibration, we note
that an equivalent alternative is to use a calibration loss Lc,, defined directly over the predicted
cumulative distribution. Specifically, this calibration loss measures the discrepancy between the
predicted cumulative probability Fg (y|x, ¢) and the target quantile percentage g, and is defined as:

Lea(y; ®,9) = |Fo(ylx,q) —ql. (11)
This loss enforces the calibration condition that, for a given input x, the predicted CDF of true event
time distribution aligns with the queried quantile percentage g, which is essentially equivalent to
the MPAIC loss in|Zhao et al.|(2020). Importantly, Ly is evaluated over the joint distribution of all
(x,y, Q) pairs, where y is treated as a realization of the latent true event time random variable. Thus,
whether an observation is censored or uncensored does not affect the validity of the assessment, since
the modeling target remains the conditional distribution of true event time.

In the end, L¢q satisfies the first condition in Definition [2} while Lca enforces the second condition,
making them equivalent under the assumption of me (X, ¢). Hence, the overall training objective for
the ICALD model in Eq.(I0) can alternatively be formulated as:

Larpsca(y; ©,q9) = Larp(y; ma (X, q)) + Aca(y; , q). (12)
Furthermore, by Definition 2| and Theorem |1, we can conclude that the ICALD model me (X, q),
trained with the loss Larpscal, is (€, 9)-MPAIC and also (e’, 0 Elf_e )—PAIC.

€

3.4 PRE-CALIBRATION AND POST-CALIBRATION

A potential issue of asynchronous convergence may arise in pre-calibration models trained with
Eq.(I0) or Eq.(T2). This happens when the log-likelihood and calibration losses converge at different
speeds, which although not observed in most datasets, it is an issue in heavier-tailed ones. To address
this, we introduce a warm-up calibration strategy (see Appendix [C.4), where training initially focuses
solely on the negative log-likelihood loss before incorporating the calibration loss at a later stage.
Alternatively, post-calibration offers an even simpler and more effective approach for handling with
this issue. As discussed above, the theoretical guarantees of calibration arise from the properties of
the quantile regression loss Lcg (or calibration loss Lcy) itself. This enables post-calibration to
be applied as a lightweight post-processing step, without retraining or modifications to the original
model architecture. By decoupling the additional loss (i.e., Lcqr o Lcar) from the training dynamics,
post-calibration also avoids noisy or conflicting gradient signals during early training stages, leading
to more stable and reliable calibration.

Referring back to the pre-calibration model architecture (denoted as m%®) illustrated in Fig. |1} we
can infer that the parameters of the Individually Calibrated Asymmetric Laplace distribution (ICALD)
are conditioned on both the input x and the quantile percentage ¢ ~ U(0, 1). Therefore, we can
utilize a simple adapter module (denoted as m5>™), like in the top part of Fig. , that takes x and q as
input and outputs the post-calibration adjustment factors iy € R for the ALD parameters estimated
by the base model (denoted as m2%°). Effectively, the pre-calibration model can be decomposed into
a post-calibration model and a base model with the quantile regression loss or calibration loss as:
Post

ma®(x,q) = {07, 05, w3} = mG™ (x,q) © mg™ (x) =7 © {04, 04, Kg}, (13)

where © denotes element-wise multiplication, and 67, o7, k7 are the [CALD parameters produced by
the pre-calibration model. In practice, since both the quantile regression loss and the calibration loss
are Monte Carlo approximations of their respective theoretical expectations, it is crucial to sample
as many quantile percentages ¢ ~ U(0,1) as possible during training. As shown in Theorem
(with proof provided in Appendix [A.4), increasing the number of quantile samples improves the

approximation quality and enhances the model’s individual calibration performance.
Theorem 2 (Concentration (Zhao et al.,2020)). Let Fg be any (¢, )-mPAIC predictive CDF model,

and let {(x;,y:)}", Py, {g:}, e U(0,1). Then, with probability at least 1 — ~y, we have:
1 — —log~y
= > I(|Fe(yilxi,qi) —qi| > €) <0 .
=D T Fa(yilxiai) —ail > €) <o +4/—

i=1
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Table 1: Performance comparison of our pre-calibrated ICALD across 21 datasets, showing the number of
cases where it performs significantly better, worse, or equal, respectively. The last two rows report total counts
and proportions across all 56 pairwise comparisons.

Metric ‘ Ly pica V8- Larp ‘ LyEpica V8- Legr ‘ [:E\YEDK‘qr vs. LaLp ‘ Li‘lﬁlﬂ(‘qr vs. Legr ‘ Ly pica VS- E/F:ED+C(11' ‘ Ly psca VS L¥eaL
Average Calibration 8 0 13 5 0 16 4 4 13 2 3 16 13 0 8 7 0 14
Group Calibration 8 0 13 11 0 10 7 2 12 3 0 18 14 0 7 9 0 12
Individual Calibration 6 0 8 7 1 6 4 6 4 4 5 5 9 0 5 9 3 2
Total 22 0 34 23 1 32 15 12 29 9 8 39 36 0 20 25 3 28
Proportion (%) 393 00 60.7 | 41.1 1.8 57.1|268 214 518 | 16.1 143 69.6 | 643 0.0 35.7 446 54 500

To this end, we apply several practical strategies to improve both pre-calibration and post-calibration
models. Deepening the calibration anchor: We first concatenate the quantile percentage g at each
network layer to ensure its influence propagates deeply through the architecture. Then we increase the
number of training epochs to allow the model more opportunity to align predictions with the target
quantiles. Widening the calibration anchor: Rather than using a scalar ¢ as in [Zhao et al.| (2020),
we empirically found that expanding it into a small vector (e.g., 4-dimensional when npiggen = 32)
enables richer interactions with learned features and improves the expressiveness of the quantile-
conditioned outputs (see Appendix [C.4). In general, both pre-calibration and post-calibration can be
implemented with either La1 p+cqr OF Larp+cal, Offering a unified and flexible framework where the
calibration strategy and loss function can be independently selected based on the use case.

4 EXPERIMENTS

Datasets We evaluate our methods on a broad suite of datasets introduced by [Pearce et al.[(2022]).
These include two types: synthetic event data with synthetic censoring and real event data with real
censoring. For synthetic datasets, inputs x are sampled uniformly from 2/(0, 2)?, where d is the
number of features, with event times e and censoring times ¢ generated from distinct, parameterized
distributions to simulate diverse scenarios. For real-world datasets, we consider survival datasets
from domains such as healthcare and oncology. Full descriptions for all datasets can be found in
Appendix We follow standard practice by running each experiment with 5 random train/test
splits. The source code to reproduce the experiments can be found in the Supplementary Material.

Metrics We evaluate each model using three categories of metrics: Predictive Accuracy, Concordance,
and Calibration. For predictive accuracy, we report the Mean Absolute Error (MAE) and the
Integrated Brier Score (IBS) (Graf et al., [1999), which quantify the accuracy of survival time
predictions over time. For concordance, we use Harrell’s C-Index (Harrell et al., |1982) and Uno’s
C-Index (Uno et al., [2011) to evaluate the model’s ability to correctly rank survival times while
accounting for censored observations. For calibration, we assess the reliability of survival probability
estimates using Expected Calibration Error (ECE) (Naeini et al., 2015) for both average and group
calibration, and the average Wasserstein Distance (Villani, 2009) between predicted and empirical
survival distributions to evaluate individual calibration. Details can be found in Appendix

Baselines We compare the proposed method against 12 baselines: ALD (Sheng & Henaol [2025), Log-
Norm (Hoseini et al.,[2017)), DSM (Nagpal et al.,[2021) (log normal and Weibull), DeepSurv (Katzman
et al.|[2018), CQRNN (Pearce et al.| [2022), DeepHit (Lee et al.,[2018)), GBM (Dembek et al., 2014),
and RSF (Ishwaran et al., 2008)), covering a broad spectrum of survival models, including (semi-
)parametric and nonparametric approaches, as well as both neural and non-neural architectures.
Furthermore, we compare to 1 pre-calibration method X-CAL (Goldstein et al.,[2020) and 2 recent
post-calibration methods, CSD (Qi et al., [2024a)) and CiPOT (Qi et al., 2024b). These baselines
represent diverse modeling strategies and provide a comprehensive and principled benchmark for
evaluation. A complementary discussion of Related Work is provided in Appendix[A.6] while detailed
descriptions and implementation notes for each baseline are presented in Appendix

Pre-Calibration Comparison We first evaluate the impact of the proposed calibration strategy
in the pre-calibration setting. Table |1 evaluates the impact of our proposed calibration strategies
across three calibration dimensions: average, group, and individual calibration. When assessing the
statistical significance of the different metrics (i.e., Tables El, @ and E]) we use a Student’s ¢ test with
p < 0.05 considered significant after correction for false discovery rate using Benjamini-Hochberg
(Benjamini & Hochberg,|1995). We observe that both ICALD methods (i.e., L3,y and L3, cq)



Under review as a conference paper at ICLR 2026

Table 2: Performance comparison of £8%, ., against three post-calibrated ALD baselines (i.e., ﬁi‘f,‘y,cqr,
L85, csp» and LR, cipor) as well as its pre-calibrated counterpart Lhgp,cy, across 21 datasets. Each triplet

reports the number of datasets where £33, . performs significantly better, worse, or the same, respectively,
for each calibration metric. The final two rows show total counts and proportions across 56 pairwise comparisons.

Metric ‘ LEEbsca V5- [:Z(I)j[l)+qu ‘ LEEbeca 8- LIbicsp ‘ LEEbrca 8- LRI bcior ‘ LETbrca ¥5- LR psca
Average Calibration 16 1 4 14 5 2 11 3 7 1 1 19
Group Calibration 16 1 4 14 6 1 13 0 8 6 2 13
Individual Calibration 11 0 3 12 0 2 7 0 7 1 1 12
2 5 31 3 4 44

22 8
143 7.1 78.6

714 19.6 8.9 ‘55.4 54 39.3

Total 43
Proportion (%) 76.8 3.6 19.6

11 ‘ 40 11

consistently outperform the single ALD baselines (i.e., LaLp and L¢g) and E*;{FC AL in the majority of

cases. Among these, LR, ., demonstrates a clear advantage over LR +cqr (04.3% wins vs. 0%

losses), confirming the effectiveness of the calibration loss L, as a principled and consistent training
objective. As discussed in Section both ICALD models trained with £5¢;,, ., and £8¢, +Cqr Are

(€,0)-MPAIC and therefore also (e’ ,04=< )-PAIC. Although both are expected to improve calibration,

their empirical effectiveness depends on the performance of the additional loss function (i.e., L¢, and
Lcqr). The superior performance of Lca over L, is likely due to issues of the latter when handling
censored data effectively. We provide a detailed discussion and analysis of this issue in Appendix[C.4]

Flg E] further illustrates the individ- Norm linear: Individual Calibration Cases

ual calibration results by highlighting Best improvement (ID: 325) Worst improvement (1D: 228)
the best and worst improvement cases ST e T T /""
of L. . compared to Larp on the o [ o B £

Norm Linear dataset. Full com- wencor| A 7 \deal coF /
parison for the pre-calibration results ’ /
across all datasets are provided in Ap- o
pendix [C.1] As discussed in Section[3.1]
both the original objectives Larp and
Lcqr exhibit limited performance due 00
to their inherent limitations. In con- ° e e
trast, both L3, and L7, ¢, signif-
icantly improve calibration performance

Figure 2: Illustration of the best (Left) and worst (Right)
individual calibration improvement cases (L., vs.

in most cases, as seen in Fig. Q] (Left). . . i .
These improvements lead the estimated Larp) achieved by hybrid ALD-based survival models.

CDFs to better align with the ideal CDFs, which is the essence of individual calibration. Notably,
the performance of L5y, and LR, +cqr 18 comparable in this example, further suggesting that
when their loss formulations (i.e., Eq.(I0) and Eq.(I2)) behave similarly, their calibration outcomes
are expected to be similar as well. This is theoretically consistent with the shared MPAIC property.
However, there are cases where calibration yields only marginal benefits or even slight degradation,
like in Fig. 2] (Right), possibly due to the inherent variability across individual samples.

Post-Calibration Comparison We then evaluate the impact of the proposed calibration strategy in
the post-calibration setting. Table [2| summarizes the comparison between the post-calibrated ICALD
model Eg‘}j‘) .oy and three strong post-calibration baselines: Cg‘f_s]‘) Car Ei‘}j‘) +csp» and Lg‘f_s]‘) CiPOT"
We also include a comparison with the original pre-calibrated LX), -, to assess the relative benefit
of applying calibration as a post-processing step. Full post-calibration results across all datasets are
provided in Appendix Results clearly show that £59% | outperforms all other post-calibration
baselines in most cases (i.e., better: 76.8% over L5 +cqr 11.4% over LS csps and 55.4% over

LR cipor)s especially compared to the two recent novel post-calibration strategies CSD (Qi et al.,
2024a) and CiPOT (Qi et al., 2024b). Furthermore, although £53%, - shows only slightly better
performance than its pre-calibrated counterpart, this marginal gain may be attributed to the issue of
asynchronous convergence in pre-calibration discussed in Section [3.4] In summary, post-calibration
results reaffirm the robustness of the hybrid ALD model, particularly when using Lcy).

General Comparison We also evaluate and compare our post-calibrated ICALD model L85, .

against 9 baseline methods across 7 evaluation metrics on 21 datasets. Complete results for all
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Table 3: General comparison of £83%, ., with nine baselines across 21 datasets. Each group of three columns

reports the number of datasets where our method performs significantly better, worse, or the same, respectively.
The final two rows summarize total counts and proportions across 140 pairwise comparisons.

Metric ALD CQRNN LogNorm DeepSurv DSM (Weibull) | DSM (LogNorm) DeepHit Gl

MAE 5 7 11 3 12 6 13 6 2 12
IBS
Harrell’s C-Index
Uno’s C-Index
Average Calibration
Group Calibration
Individual Calibration

Total
Proportion (%)

=
=
2]
4

3
o——ocoMa
b

3 3 9
3 1 17 16 12
8 10 1 10 18
0 11 13
57 53 19 68 103 11 26 100
379 136 486|736 79 186
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datasets are provided in Appendix Table |3| shows that our method consistently delivers strong
performance, achieving gains over all baselines in a substantial subset of comparisons.

ICALD vs. ALD & CQRNN: Our method achieves significant gains in individual calibration (9 wins
vs. 0 losses against ALD, and 6 wins vs. 0 losses against CQRNN), and also improves average and
group calibration on over half of the datasets. This indicates that simply relying on quantile regression
Lcqr or maximum likelihood L1 p may lead to under-calibration, and that the proposed calibration

strategy via £59% | encourages individual-level alignment with ground-truth distributions.

ICALD vs. (Semi-)Parametric & Mixture Models: Our model consistently improves both calibration
and accuracy metrics. Specifically, L85, -, outperforms the semi-parametric model DeepSurv in
metrics such as IBS (21 wins vs. 0 losses), average calibration (15 vs. 2), and group calibration (14
vs. 2). Moreover, compared to the parametric mixture DSM (Weibull) model, our method leads in
73.6% of all comparisons (103 out of 140), especially excelling in MAE, concordance, and all forms
of calibration. This highlights that ICALD provides better generalization than fixed-form parametric
assumptions or mixture modeling approaches.

ICALD vs. Nonparametric Models: Our model demonstrates superior calibration, especially in
group and individual calibration. For example, we win 14 out of 21 datasets against DeepHit in
group calibration and all 13 datasets in individual calibration. Similar trends are observed for GBM
(12/1/8 for group calibration) and RSF (15/1/5), confirming that our model delivers better calibrated
estimates, despite the strong expressiveness of ensemble or neural nonparametric baselines.

5 CONCLUSION

In this paper, we introduced a novel survival modeling framework ICALD that unifies the strengths
of parametric and nonparametric ALD approaches. By supporting two theoretically equivalent
loss functions (i.e., LaLp+cal and Larp+cgr) With formal guarantees for Probably Approximately
Individually Calibrated (PAIC) learning, ICALD offers a flexible and principled framework for
improving calibration in both pre- and post-calibration settings. Through extensive experiments on
21 benchmark datasets, we demonstrate that ICALD consistently outperforms a wide range of strong
baselines, including both traditional and neural survival models, as well as recent pre-calibration
and post-calibration techniques. These results highlight the effectiveness and generalizability of our
approach in achieving accurate, concordant, and calibrated survival predictions.

Limitations While increasing the number of quantile percentage samples improves the Monte
Carlo approximation and calibration quality (Theorem [2), it also prolongs training and may lead
to overfitting, particularly on heavily skewed datasets (e.g., LogNorm). Although we apply early
stopping to maintain a proper trade-off between calibration and generalization, more principled
solutions remain to be explored. In addition, for the joint loss formulations £8¢},, . and £ +Car?
we observe the synchronous convergence issue in some cases. To mitigate this, we adopt a warm-
up calibration strategy that delays the introduction of the additional loss (i.e., Lca and Lggr) to
encourage alignment between optimization objectives. However, this approach does not fully resolve
the convergence mismatch during training. Although both La1p+ca and Larp.cqyr are theoretically
grounded in improving individual calibration (Theorem [I)), the latter appears more sensitive to
censoring. Its reliance on the Portnoy estimator may limit its ability to capture reliable calibration
signals under censored conditions (see Appendix @ In contrast, L1 psca Offers a more robust and
stable calibration objective for censored survival data. Thus, improving the performance of Larp+cqr
in the presence of censoring remains an open challenge for future work.
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A ANALYTICAL RESULTS

This section presents the theoretical foundations and formal guarantees of the proposed ICALD mod-
els and their calibration properties. In Appendix we show that the widely used pinball loss can
be interpreted as a special case of the negative log-likelihood of the Asymmetric Laplace Distribution
(ALD), providing a probabilistic justification for quantile-based objectives. Appendix [A.2]derives
the full loss formulation for parametric ALD model in the presence of censoring. Appendix
discusses the properties of continuous mixtures of ALDs. Appendix [A.4] establishes formal cal-
ibration guarantees (Theorem 1) for the ICALD models, demonstrating that training with either
Larp+ca (Equation or Larp+cgr (Equation yields models that satisfy (e, §)-MPAIC and,

consequently, (e’ - ) PAIC. In addition, Appendix includes Theorem 2, which provides

€' —€
a high-probability generalization bound showing that increasing the number of sampled quantile
levels improves the Monte Carlo approximation and strengthens empirical individual calibration.
Appendix [A.5]provides an extended discussion of the monotonicity constraints, clarifying why mono-
tonicity is required, when it can or cannot be ignored, and how to address nonmonotonic predictions
using monotone rearrangement. Also, a discussion of Related Work is provided in Appendix[A.6]

A.1 PINBALL LOSS AS A SPECIAL CASE OF THE ALD LIKELIHOOD

Lemma 1. The pinball loss is equivalent to the negative log-likelihood of the Asymmetric Laplace
Distribution (ALD) in its quantile parameterization AL(8 = §q,0 = 1,q), up to an additive constant.

Proof. Let a random variable Y ~ AL(0, 0, q), where 6 € R is the location (the ¢-th quantile, i.e.,
Yq)» 0 > 0 is the scale, and ¢ € (0, 1) is the target quantile. Then, the probability density function
(PDF) of the ALD in its quantile form is given by:

(14)

Fi0,0,q) = =9 {eXp(g(Gy))v y >0,

7 lexp(Sy—0), y<b.

The negative log-likelihood becomes:

] f( 9 ) ] < o )+ g(y_a), 9297 (15)
— 10 30,0, =10 1 N
bt =l =g ) * \icag . g <o

On the other hand, the pinball loss used in quantile regression is defined as:

q(y — ¥q), Y > Gq,
Lpinbatt (V3 Tq) = (¥ — Tg)(q — 1[gg > y]) = { fI~ ' (16)
A=) (Fg —vy), y<q

Now, if we let o = 1 and 6 = g, be the predicted quantile value. Then, we can conclude:

—log f(y;7q: 1,9) = Loimvan(y; Jq) — log (¢(1 — q)) . (17

This shows that the pinball loss is proportional to the negative log-likelihood of the ALD, up to an
additive constant. This connection provides a probabilistic interpretation of quantile regression and
justifies likelihood-based parameteric modeling extensions using the ALD. O

A.2 LoSss FUNCTION FOR THE PARAMETRIC ALD MODEL

Lemma 2. Let Y ~ AL(0,0, k), where AL denotes the Asymmetric Laplace Distribution with
location parameter 0 € R, scale parameter o > 0, and asymmetry parameter x. > 0. Suppose a
parametric model mg (x) = {0, 0, K} maps input covariates x to the corresponding ALD parameters.
Then, the total loss function over both observed Do and censored data D¢ is given by:

13
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Lap(y;®) == > 108 farn(yn;ma(xn)) = Y 108 Sarp(yn; ma (xn)), (18)
n€Do n€Dc

where farp and Sapp = 1 — Farp denote the probability density function (PDF) and survival function
of the ALD, respectively.

Proof. The PDF and CDF are explicitly defined as:

3 >
Jawp(y;0,0,K) = £ L ( (19)

o 14 k2 (
exp

°\S

N
<

AN

>

1*1+%6Xp( Y2 (y — 9)), y>0,
Fap(y;0,0,k) = , v (20)
e (-20-y),  y<o.

Accordingly, the negative log-likelihood for observed samples (6 = 1) is:

— Y 1og faLp (yn; ma (Xn)) @1

n€Do

Kn V2 Kn(Yn = On)y  Yn = O,
= Z log o,, — log PR =9

n€Do n E(en - yn)a Yn < 9n>

For censored samples (6 = 0), the loss is derived from the survival function:

=) 1og SaLp (Yni ma(xn)) (22)
n€Dc
log(‘%% + 1) + gﬂn(yn - 0%)7 Yn > Op,

n€Dc log(fei + 1) - 10g [1 + ”ii (1 — €Xp (_ U;/En (an - yn)>)} y Yn < en

These formulations enable efficient optimization of ALD-based models for both observed and
censored survival data, by leveraging the closed-form expressions of the ALD’s PDF and CDFE. [

A.3 THE PROPERTIES OF THE MIXTURE OF ALD

GivenY ~ AL(0,0,r), Ymix = [ p(r) farp (y; ma(x,7))dr where r ~ U(0,1), and me(x,7) =
{0,, 0, Kk} are the ALD parameters predicted by the model for each quantile percentage r. Here, to
avoid confusion with the quantile value §, = Fy- (g | x), we use r instead of ¢ to denote the random
quantile percentage. We have:

o 1 o2 /1
EY] =04+ — (- — Y= = + &2 2
[Y] f( m) Var[Y] 5 H2+I€>, (23)
E[Ysti] = Ergso.)[E[Y]] = J;) (0 P2 ( n)) dr~ LN [91 I (i )} (24)
By the law of total variance, we have:
Var[Yamix] = Erre(0,1)[Var[Y;]] + Var, [E[Y,]], (25)
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where the within-component variance is:

Lo2 (1 L\ L NJe2 (1,
Eruo,n[Var[Y;]] = L2 2 + k) dr= N Z S\ TR (26)
and the between-component variance is:

N
V&I‘r r Z YM]X] ) (27)

Similar to the computation of the mixture mean E[Y}], we can estimate the quantiles of the mixture
ALD model by averaging quantile values y, sampled over r ~ ¢/(0, 1) from the predicted parameters
{0, 0+, K, }. Formally, the mixture quantile g, is estimated as:

0+flog{ K22q}, iqu(O, H’f;],
Yq = ) (28)
G—ﬁlog[(l—&—ﬁ)(l—q)}, ifqe(ljiT,l).

N
g = Ernts(0.1) W] * Z (29)

A.4 THEORETICAL FOUNDATIONS OF INDIVIDUAL CALIBRATION

In this section, we will show the ICALD model {0,0,k} = ma(x,q), trained with the loss L1 pscal
or LALD+Cqrs 18 (€, 8)-MPAIC and also (e 0- )—PAIC Now, we begin by recalling the definitions

of PAIC and MPAIC provided in Definition 1| and Definition 2] These definitions are slight extensions
of the original formulation in|Zhao et al.|(2020), incorporating an equivalent expression based on
the inverse CDF. Note that these extended definitions allow us to generalize the original proof in
Zhao et al|(2020), which establishes that training a model with the calibration loss L1 p+car yields
PAIC and MPAIC guarantees. In our case, we show that the same guarantees hold when the model is
trained with the equivalent quantile-based loss Larp+cqr-

Definition 1 (Probably Approximately Individually Calibrated (PAIC;|Zhao et al.|2020)). A predictive
CDF model Fg (Y |x) is said to be (€,0)-PAIC if forallx € X, Y € Y, and q € |0, 1], the following
holds:

Py [/ [Pr Y < Fy(gho)] — g dg < } or Pr [/ [Pr[Fa(Y[x) < g — dq<e} >1-4

Definition 2 (Monotonic Probably Approximately Individually Calibrated (MPAIC; |Zhao et al.
2020)). A predictive CDF model Fy (Y |x, q) is said to be (¢,5)-MPAIC if forallx € X, Y € Y, and
q € [0, 1], the following holds:

Pr {fol ‘Pr [Y < ]*—’<I:1(q|x7 q)} — q‘ dg < e} or Pr [fol |Pr[Fo(Y|x,q) < q] —q| dg < e} >1-34.

Then, we will show the proof for Theorem I}

Theorem 1 (MPAIC is a sufficient (but not necessary) condition for PAIC (Zhao et al.,[2020)). If a
predictive CDF model Fg is (€,)-MPAIC, then for any €' > ¢, it is also (e’, d- :,ji)-PAIC

Proof. LetY ~ Fy|x and Q ~ U(0, 1) be an independent random variable. Define the expected
calibration error (ECE) using the 1-Wasserstein distance as:

1
ECE(Fp) = | |Pr[Fe(Y|X) <q] —q| dg = dw, (Fp,(v|x), Fu) (30)
0
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where F, (yv|x) denotes the true CDF of the predicted cumulative probabilities, and Fy denotes the
CDF of U(0, 1). Intuitively, dy, (IF Fo(Y|X) ]FU) try to integrate the difference between the curve
g +— Pr[Fs(Y|X) < ¢] and the curve ¢ — ¢. Then, we can define the calibration error as:

err(x,y) = dw, (Fry(yx,0):Fu) s err(x) = dw, (Fr,vix,0): Fu) - (31

Case 1: Monotonic mapping in g. If F3(y|x, ) increases monotonically in @), then we have:

1
err(x,y) = /0 |Fo(ylx,q) — ¢l dg = Equ0,1) [|[Fa(ylx, Q) — Q] . (32)

Let Z = Fg(y|x,Q), where Q ~ U(0, 1). Then the CDF of Z is given by:
Fz(z) =Pr(Z < z) = Pr(Fo(ylz,Q) < z). (33)

Now, if Fs(y|z, ¢) is a monotonically nondecreasing continuous function of ¢, then the mapping
q — Fg(y|z, q) is measure-preserving. This implies that:

Fz(z) = Pr(Q < Fy '(ylz, 2)), (34)
and hence,
F,'(q) = Fa(ylz,q), Vgel0,1]. (35)
Let Fyy denote the CDF of the uniform distribution 2/ (0, 1), that is,
Fy(u) = Pr(U <u)=u, so Fy'(g)=gq, VYgel01]. (36)

According to the property for the 1-Wasserstein distance (Villani et al.,|2008) between two distribu-
tions p and v on the real line, if ]F;1 and IF; ! are their respective quantile functions (i.e., the inverse
function of CDF), then:

1
dw, (p,v) = /O [F () —F, ' (g)] da. (37)

Applying this identity to Z and (), we can obtain:

1
duw, (2, Fy) = / Fo(yle, q) — | da, (38)
0

which is exactly Eq. (32).

Case 2: General case without monotonicity. In general, even if monotonicity doesn’t hold, the
following inequality still applies:

err(x,y) < Eqruo) [ Fa(ylx, Q) — Q. (39)

It is derived from the Kantorovich—Rubinstein duality for the 1-Wasserstein distance (Villani et al.|
2008)):

i) = sw ([vdn- [var) = sw BBl @
ll¥llup<1 I llip<1
where the supremum is taken over all 1-Lipschitz functions ¢ : R — R, i.e., functions that satisfy
(@) =) < |z —yl, Vz,yeR. 41
Applying this duality to Z and @, and choosing the 1-Lipschitz function ¥)(a) = a, we can obtain:
dw, (Fz,Fu) < [Eqeuo,1)[Z] — Eqru(o,1)[Q]l = [Egeuio,1[Z — Q] 42)

Finally, applying Jensen’s inequality (|E[A]| < E[|A[] over @ ~ U(0, 1)) yields:
dw, (Fz,Fu) < [Egruon|Z — Q|
< Eqgruon!|Z = Qll = Eqruon[|Fa(ylz, Q) — Q]

Importantly, inequality holds even if F3(y|x, ) is not monotonic. This is because the dual
form of the 1-Wasserstein distance does not require any structural assumptions on the mapping from
Qto Z = F(y|x, Q). Therefore, inequality remains a valid upper bound in the general case. On

(43)
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the role of inequality (39): Eq.(32) shows when inequality becomes tight (i.e. ¢ — Fag(y|z,q)
is monotonically increasing).

Inequality (#4) follows from the same reasoning as inequality (39), the application of Kan-
torovich—Rubinstein duality followed by Jensen’s inequality, with an additional expectation over
Y ~ F; Y| -

err(x) < Eypy ., @0, [Fa (Y%, Q) — Q. (44)

Contradiction argument. Now suppose, for contradiction, that Fy is not (¢/, §")-PAIC. That is, by
Definition[I] we have:
Prlerr(x) > €] > &', (45)

If we define the set:

Sy = {X € X, Eyry . g uo) [[Fa(Y]x, Q) — Q[ > 6/} ; (46)

and by the inequality li we can know that whenever err(x) > ¢ we have x € Sp, thus we can
conclude:

Pr[X € Sp] > §'. (47)

Then, for any € < €’ and x € Sp, by bounding the expectation, we have:
€ < By Fy . @0 [[Fa (Y%, Q) — Q] (48)
<e-Pr[Fe(Y]x, Q) - Q < € +Pr[[Fa(Y[x,Q) — Q| = €, (49)

where inequality (49) holds because the absolute deviation term |Fg (Y |x,Q) — Q| € [0, 1]. Now,
letting p = Pr[|Fo(Y|x,Q) — Q| > €], we can solve:

€ —e¢

e/Se(l—p)+p=>p21 (50)

pR— 6 !
Combining this with the bound over x € S, (i.e., inequality (7)) and applying the law of total
probability, we can obtain:

Pri|Fe(Y[x,Q) — Q| = € = Pr|[Fe(Y|x,Q) — Q| = e[x € S| Pr[x € S (51)

€ —¢

+Pr[|[Fe(Y|x,Q) — Q| > e|x ¢ S| Pr[x ¢ Sp] > - v

Violation of MPAIC. By Definition[2] (e, §)-MPAIC requires: Pr[|Fo (Y |z, Q) — Q| > €] < 4. Thus,
equation implies that Fip is not (e, 0" - il—::)-MPAIC.

Contrapositive and conclusion. We have shown:

/

Not (¢',8")-PAIC = Not (¢,6' - €=£)-MPAIC, Ve’ > e. (52)

Taking the contrapositive:

(¢,0)-MPAIC = (€/,6- 2=5)-PAIC, Ve >e. (53)

€' —e

In the end, we can conclude that if Fg is not (¢, §’)-PAIC, then for any € < €', it is not (e, & - 51’:6 )—

mPAIC, which is equivalent to the Theorem i.e., if Fg is (¢,0)-mPAIC, then for any €’ > ¢, it is
also (¢',5- 122 )-PAIC. 0

Then, we will show the proof for Theorem@

Theorem 2 (Concentration (Zhao et al., 2020)). Let Fg be any (€, §)-MPAIC predictive CDF model,
and let (X1,y1),- -y (Xn,Yn) e~ Fxy, and qi,...,qn E~ U(0, 1). Then, with probability at least
1 —~, we have:

—logy
on

1 n
EZ]I(\EP(ZM | Xi,qi) — qi|l =€) <0+

=1
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Proof. Define the sequence of Bernoulli random variables: b; = I(|F(y; | Xi,qi) — qi| > €) €
{0,1}. By the definition of (e, §)-MPAIC, we know that:

Pr(b; =1) <4 orequivalently E[b;] <. (54)

Now apply Hoeffding’s inequality for bounded i.i.d. Bernoulli variables b; € [0, 1]:
1« 2
Pr(= b, >0+ | <e 27, 55

Set the RHS to , we solve for €’:

, -1
e 2oy o = 2(;;37. (56)

Therefore, with probability at least 1 — , we have:

—log~
on

1 n
EZH(‘F‘P(% | Xi,qi) — qi|l =€) <0+

i=1

(57)

In summary, Theorem [2] reveals a key implication: increasing the number of quantile samples
improves the quality of the Monte Carlo approximation, thus enhancing the individual calibration
performance of the model. O

A.5 EXTENDED DISCUSSION ABOUT THE MONOTONICITY CONSTRAINTS.

We clarify the role of monotonicity in our framework by answering the following four key questions.

(1) Why is monotonicity needed? Monotonicity is required for the first equality in Eq.(32) to hold,
i.e., for err(x) and err(x, y) to attain their maximal value, because the mapping ¢ — Fg(y | X,q)
must be measure-preserving. Without monotonicity, this mapping may fail to be measure-preserving
(leading, for example, to crossing quantiles), so the equality can break down. However, it is worth
noting that inequality (39) and inequality (#4)) remain valid upper bounds (Full details can be found

in Appendix [A.4).

(2) When can we ignore monotonicity? During model training, we do not explicitly enforce
monotonicity. Inequality (39) and inequality (44) guarantee that the training loss always serves as a
valid upper bound on the true calibration error. For nonmonotone mappings, the actual calibration
error is even smaller than this bound. Thus, ignoring monotonicity during optimization does not
compromise the validity of the learning objective but instead leads to a conservative estimate.

(3) When can we not ignore monotonicity? It is important to ensure monotonicity when directly
evaluating individual calibration (as in Definition[T]and Definition [2)). This ensures that the calculated
calibration error accurately reflects the theoretical definition, enabling a fair model comparison.

(4) What is the solution for nonmonotonic? Any continuous but nonmonotonic function can be
transformed into a monotonic one by applying monotone rearrangement. In practice, we draw a
finite number of quantile samples q1, ..., qx ~ U(0,1), compute f; = Fs(y | X, ¢;), and sort these
values into a nondecreasing sequence f1, ..., fx, which are then reassigned to ¢, ..., qx. This
transformation preserves the distributional meaning while ensuring monotonicity, enabling rigorous
evaluation of calibration.

A.6 RELATED WORK

Survival Models Classical survival models can be categorized in general into parametric, semi-
parametric, and nonparametric approaches, depending on the assumptions they make about the
underlying time-to-event distribution. Parametric models assume that event times follow a certain
probability distribution, such as exponential (Feigl & Zelen, [1965), Weibull (Scholz & Works),
1996), log normal (Royston, [2001)), Asymmetric Laplace (Kotz et al.l [2012), or their mixtures
(Nagpal et al., [2021). These methods typically characterize event times using the conditional
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probability density function f(¢|x) and the corresponding cumulative distribution function F'(¢|x).
Semi-parametric models, most notably the Cox proportional hazards model (Cox}|1972), decompose
the hazard function into a time-dependent baseline component and a covariate-dependent component,
i.e., h(t|x) = ho(t) exp(x' 3). The baseline hazard ho(t) is left unspecified and it is estimated
nonparametrically, while the covariate effects 5 are modeled parametrically. More recently, neural
extensions such as DeepSurv (Katzman et al.,|2018) have improved the scalability and expressiveness
of Cox models, particularly in high-dimensional settings. Nonparametric models avoid explicit
distributional assumptions, instead relying on data-driven estimators. Examples include Random
Survival Forests (RSF) (Ishwaran et al., |2008)), Gradient Boosting Machines (GBM) (Dembek et al.,
2014), discrete-time models using categorical likelihoods (e.g., DeepHit (Lee et al.} 2018))), quantile
regression (e.g., CQRNN (Pearce et al.,2022)), or generative modeling (Chapfuwa et al.| 2018)).

Calibration The notion of calibration has a long history in statistics, with early definitions of
average calibration (e.g., the Brier score) (Brier, |1950; Murphy, |1973; |Dawid, [1984). More recent
interest in recalibrating classifiers has surged, especially for deep neural networks (Guo et al., 2017
Lakshminarayanan et al.,[2017) Beyond average calibration, group calibration has been studied for
both predefined (Kleinberg et al.,|2017) and computationally defined groups (Kearns et al., 2018}
Hébert-Johnson et al.,|2018). In the context of survival analysis, recent post hoc calibration methods
(e.g., CSD (Qi et al., 2024a) and CiPOT (Qi1 et al., [2024b)) have been proposed to improve the
average calibration of predicted survival functions by applying conformal prediction techniques and
adjusting the estimated curves both in probability and in time. Individual calibration, which assesses
the accuracy of predicted risks at the level of each instance, has been explored in fairness-aware
learning (Sharifi-Malvajerdi et al.l 2019)), however, it remains both computationally and statistically
challenging. For example, (Foygel Barber et al.l |2021)) showed that achieving perfect individual
calibration with tight confidence intervals is subject to fundamental lower bounds. Moreover, recent
work (Zhao et al.l2020) aimed to approximate individual calibration using randomized forecasting,
and provided theoretical guarantees under certain assumptions on the model class and the data
distribution.

B EXPERIMENTAL DETAILS

This section provides additional information about the experimental setup. All experiments were
implemented using the PyTorch framework. Detailed descriptions of the datasets, evaluation metrics,
our method and baseline models, and implementation specifics are provided in Appendix

Appendix and Appendix respectively.

Hardware. All experiments were conducted on a MacBook Pro equipped with an Apple M3 Pro chip,
featuring 12 cores (6 performance and 6 efficiency cores) and 18 GB of memory. All computations
were performed on the CPU, as the models predominantly utilized fully connected neural network
architectures that did not require GPU acceleration.

B.1 DATASETS

Our datasets are designed following the settings outlined in |Pearce et al.| (2022). The first category
consists of synthetic event data with synthetic censoring. In these datasets, the input features x are
generated uniformly as x ~ U(0,2)”, where D denotes the number of features. The event time
e ~ p(e | x) and censoring time ¢ ~ p(c | x) are drawn from distinct parameterized distributions,
with the specific forms of these distributions varying across different dataset configurations. Table ]
summarizes the distributional details of the event and censoring mechanisms.

The other type of dataset comprises real event data with real censoring, sourced from various domains
and characterized by distinct features, sample sizes, and censoring proportions:

METABRIC (Molecular Taxonomy of Breast Cancer International Consortium): Contains
genomic and clinical data for breast cancer patients. Includes 9 features, 1523 training samples, and
381 testing samples, with a censoring proportion of 0.42. Retrieved from the DeepSurv Repository.

WHAS (Worcester Heart Attack Study): Focuses on predicting survival following acute myocardial
infarction. Includes 6 features, 1310 training samples, and 328 testing samples, with a censoring
proportion of 0.57. Retrieved from the DeepSurv Repository.
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Table 4: Summary of dataset statistics, including the number of features (Feats), training and test set
sizes, proportion of censored events (PropCens), and the distributions used for sampling event and
censoring times. The coefficient vector 3 is [0.8,0.6,0.4,0.5,—0.3,0.2,0.0, —0.7].

Dataset Feats Trainsize Testsize PropCens Variables for event time Variables for censoring time
Type 1: Synthetic event data with synthetic censoring
Norm linear 1 500 1000 0.20 N(2x + 10, (x + 1)?) N (4x + 10, (0.8x + 0.4)?)
Norm nonlinear 1 500 1000 0.24 N (xsin(2x) + 10, (0.5x + 0.5)%) N(2x +10,22)
Exponential 1 500 1000 0.30 Exp(2x + 4) Exp(—3x + 15)
Weibull 1 500 1000 0.22 Weibull(4x sin(2(x — 1)) + 10, 5) Weibull(—3x + 20,5)
LogNorm 1 500 1000 0.21 LogNorm(x — 1)?,x? U(0,10)
Norm uniform 1 500 1000 0.62 N (2x cos(2x) + 13, (x + 0.5)%) U(0,18)
Norm heavy 4 2000 1000 0.80 N(3x0 + x3 — x3 + 2sin(x2x3) + 6, (x + 0.5)%) U(0,12)
Norm med. 4 2000 1000 0.49 — U(0,12)
Norm light 4 2000 1000 0.25 — U(0,20)
Norm same 4 2000 1000 0.50 — Equal to target
LogNorm heavy 8 4000 1000 0.75 LogNorm(}~, B8ix;,1)/10 U(0,0.4)
LogNorm med. 8 4000 1000 0.52 — U(0,1.0)
LogNorm light 8 4000 1000 0.23 — U(0,3.5)
LogNorm same 8 4000 1000 0.50 — Equal to target
Type 2: Real event data with real censoring
METABRIC 9 1523 381 0.42 Real Real
WHAS 6 1310 328 0.57 Real Real
SUPPORT 14 7098 1775 0.32 Real Real
GBSG 7 1785 447 0.42 Real Real
TMBImmuno 3 1328 332 0.49 Real Real
BreastMSK 5 1467 367 0.77 Real Real
LGGBM 5 510 128 0.60 Real Real

SUPPORT (Study to Understand Prognoses Preferences Outcomes and Risks of Treatment):
Provides survival data for critically ill hospitalized patients. Includes 14 features, 7098 training sam-
ples, and 1775 testing samples, with a censoring proportion of 0.32. Covariates include demographic
information and basic diagnostic data. Retrieved from the DeepSurv Repository.

GBSG (German Breast Cancer Study Group): Tracks survival outcomes of breast cancer patients.
Includes 7 features, 1785 training samples, and 447 testing samples, with a censoring proportion of
0.42. Retrieved from the DeepSurv Repository.

TMBImmuno (Tumor Mutational Burden and Immunotherapy): Predicts survival time for
patients with various cancer types using clinical data. Includes 3 features, 1328 training samples, and
332 testing samples, with a censoring proportion of 0.49. Covariates include age, sex, and mutation
count. Retrieved from cBioPortal.

BreastMSK: Derived from the Memorial Sloan Kettering Cancer Center, this dataset focuses on
survival prediction for breast cancer patients using tumor-related information. Includes 5 features,
1467 training samples, and 367 testing samples, with a censoring proportion of 0.77. Retrieved from
cBioPortal.

LGGGBM: Integrates survival data from low-grade glioma (LGG) and glioblastoma multiforme
(GBM), often used for validating models in cancer genomics. Includes 5 features, 510 training
samples, and 128 testing samples, with a censoring proportion of 0.60. Retrieved from cBioPortall

B.2 METRICS

We evaluate each model using three categories of metrics: Predictive Accuracy, Concordance, and
Calibration. For predictive accuracy, we report the Mean Absolute Error (MAE) and the Integrated
Brier Score (IBS) (Graf et al., [1999), which quantify the accuracy of survival time predictions over
time. For concordance, we use Harrell’s C-Index (Harrell et al., [1982) and Uno’s C-Index (Uno
et al.| [2011)) to evaluate the model’s ability to correctly rank survival times while accounting for
censored observations. For calibration, we assess the reliability of survival probability estimates
using Expected Calibration Error (ECE) (Naeini et al., [2015) for both average and group calibration,
and the average Wasserstein Distance (Villani, [2009)) between predicted and empirical survival
distributions to evaluate individual calibration. These metrics provide a holistic evaluation framework
that effectively captures the predictive accuracy, discriminative ability, and calibration quality of
survival models.

Mean Absolute Error (MAE):
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N
1 -
MAE = Nglyi ~Gil, (58)

where y; is the ground-truth event time, y; 1s the model’s predicted survival time (e.g., the median
value of the estimated survival CDF, i.e., Fy (g = 0.5|x)), and N is the number of test samples.

Integrated Brier Score (IBS):

N _ 2T (s o
Z 1 F<I’t|X2)) H(ylgt,el—l)_’_Fq)(ﬂXl) (yz>t) 7 (59)

G(y:) G(t)

ta
IBS = ! / BS(t) dt, (60)

2— U

where Fy(t | x;) denotes the predicted cumulative distribution function (CDF) at time ¢, G(-) is the
Kaplan—-Meier estimator (Kaplan & Meier, [1958)) of the censoring distribution, and 100 time points
in the integration range [t1, t2] are evenly selected from the 0.1 to 0.9 quantiles of the training set’s
y-distribution.

Harrell’s C-Index:
S iy (i > ¢5) + 0.5 - T(s = 6;)] - Iy < y;)5

Cu = , (61)
" Ei;éj I(y: < y;)0;

where ¢; = S (yi | x5) =1— Fq)(yi | x;) is the model’s risk score. For implementation, we
utilize the concordance_index_censored function from the sksurv.met rics module, as
documented in the scikit-survival API.

Uno’s C-Index:
S Y Gly) 2 Ui > 65) +0.5-1(gi = 6,)] - 1yi < 41 < y7)0i
Zz 1 Zg 1 G(yl) (yl < y]ay’b < yT)(Sz

Cu = ;o (62)

where y, is the cutoff value for the survival time. For implementation, we use the
concordance_index_ipcw function from the sksurv.metrics module, as documented in
the scikit-survival API.

Average Calibration: To evaluate average calibration, we assess whether the model’s predicted
cumulative probabilities align with the ideal uniform distribution ¢/ (0, 1). Specifically, the Expected
Calibration Error (ECE) of a predictive CDF model F is defined as the 1-Wasserstein distance
between the empirical distribution of the predicted CDF values and the uniform distribution:

1
ECE(Fy) = / IPr[Fs(Y | X) < gl — aldg = dw, (Fry v, Fue) 63)
0

where Y ~ Fy |y, g ~ Uuo,1),F Fo(v|x) denotes the empirical CDF of the predicted cumulative
probabilities, and F7; denotes the ideal uniform CDF. In practice, we compute Fg (e; | x;) for each
test instance (x;, y;), where e; is the true event time. Note that e; is only observable in synthetic
datasets, where the true generative distribution is known.

Predicted CDF values Fy(e; | x;) are then sorted to form the empirical distribution, which is
compared to uniformly spaced quantile targets {q;}}_, ~ (0, 1). The calibration error is calculated
as:

N

1
ECE:NZ

=1

F@(ei | xi) — ]i[‘ : (64)
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For real-world datasets with censoring, we replace e; with the observed time y;, and compute ECE
only on uncensored samples (6; = 1), resulting in:

Nobs

>

obs i—1

ECE = Fa(yi | %) —

(65)

7
)
N, obs

where Ngps is the number of uncensored test samples.

Group Calibration: To evaluate group calibration, we partition the input space & into structured
subsets (i.e., S = {Sk}le C X)) using combinations of feature dimensions. Let the input x € R”.
We define (Z) feature pairs, and for each pair {z;, xj}, we form 4 subgroups based on median
thresholding:

* (1) ; > Median(z;) and z; > Median(x;

* (2) z; > Median(x;) and z; < Median(

* (3) z; < Median(x;) and z; > Median(

* (4) x; < Median(z;) and z; < Median(x;

T
T

)
)
)
)

This results in K = 4 x (g) groups in total. Within each group, we compute the ECE as in the
average case.

1
ECE, = / |Pr[Fo(Y | x € Sk) < ¢] — ¢l dg. (66)
0

Also, to ensure statistical stability, each group must contain between i - size and % - size of the full
dataset. We then define the group calibration error as the worst (i.e., largest) ECE across all valid
groups:

GroupECE = m€a§< ECE;. 67)

Individual Calibration: To evaluate individual calibration, we compare the predicted cumulative

distribution F(y | x) with the ground-truth CDF F*(y | x) for each individual test input. The
discrepancy between these two distributions is measured using the 1-Wasserstein distance:

B 1.2XYmax
dW1 (F¢7F*) = / Fq;.(t | Xi) — F*(t | Xi) dt, (68)
0

where Fg(- | x;) is the estimated CDF produced by the model and F*(- | x;) is the oracle CDF
(ground truth) corresponding to the same input. In practice, we approximate this integral using a
discrete grid of 1000 evenly spaced time points {t; }}2010 € [0,1.2 X Ymax|, Where ymax denotes the
maximum observed event time in the test set. Since ground truth distributions are only accessible for
synthetic datasets, individual calibration can only be evaluated in synthetic settings, where F™*(¢ | x;)

is analytically known for each test input.

B.3 ICALD AND BASELINES

To comprehensively assess the performance of the proposed method (ICALD), we compare it to 11
strong baseline models, summarized in Table[5] These baselines span a spectrum of survival modeling
paradigms, including parametric, semi-parametric, nonparametric, and post-calibration approaches:

Parametric models: ALD (Sheng & Henao, 2025)) and LogNorm (Royston, [2001)) assume fixed
parametric distributions for event times. DSM (Nagpal et al.| 2021 extends this to a mixture of
parametric families such as Weibull and LogNormal.
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Semi-parametric model: DeepSurv (Katzman et al.,[2018)) is a neural extension of the Cox propor-
tional hazards model (Fox & Weisberg, [2002)), allowing for non-linear feature representations while
maintaining proportional hazard assumptions.

Nonparametric models: CQRNN (Pearce et al.| [2022) directly estimates quantiles using the pinball
loss under censoring, while DeepHit (Lee et al., 2018) estimates the full discrete-time survival
function via log-likelihood and ranking losses. Tree-based ensemble models such as GBM (Dembek
et al.| 2014) and RSF (Ishwaran et al.| [2008) are also included, offering non-neural alternatives that
model complex interactions.

Pre-calibration methods: X-CAL (Goldstein et al.,2020) introduces an explicit calibration objective
for survival analysis by reformulating the distributional calibration (D-Calibration) metric (Haider
et al.,[2020) into a differentiable loss, allowing calibration to be optimized jointly with predictive
accuracy during model training.

Post-calibration methods: CSD (Qi et al.| 2024a) and CiPOT (Qi1 et al.,[2024b)) are representative
post-calibration strategies applied after model training to improve alignment between predicted and
true distributions.

All neural baselines were trained using either the same network architecture as our method or
the default architecture provided by their official repositories, under a consistent optimization
protocol to ensure fair comparison. Specifically, the implementations for CQRNN and Log-
Norm were adopted from the official CQRNN repository|', while DeepSurv and DeepHit were
adapted from the pycox.methods modul For the mixture-based baseline, we employed the
Deep Survival Machines (DSM) model from the auton-survival libraryﬂ implemented via
auton_survival.models.dsm.DeepSurvivalMachines. For ensemble-based baselines,
we used the official implementations from the sksurv library, namely RandomSurvivalForest
and GradientBoostingSurvivalAnalysis, both available in the ensemble modulfﬂ For
the pre-calibration baseline, we used the official implementation of X-CALE] which introduces an
explicit calibration loss for survival analysis. Finally, both the CSD and CiPOT post-calibration
methods were re-implemented based on their official repositoryﬂ

Table 5: Summary of baselines used for comparison.

Method Type Neural Description
ALD (Sheng & Henao![2025) Parametric v Assumes event times follow a Asymmetric Laplace distribution (Kotz et al.|2012}
LogNorm (Hoseini et al. {2017 Parametric v Assumes event times follow a LogNorm (Royston}2001} distribution
DSM (Nagpal et al.; 2021} Parametric (Mixture) v Mixture of parametric distributions (e.g., CogNorm (Royston/[2001}, Weibull (Scholz & Works|{1996})
DeepSurv (Katzman et al.][2018] Semi-parametric v Neural extension of Cox proportional hazards model (Fox & Weisberg|/2002]
CQRNN (Pearce et al.[|2022} Non-parametric v Neural censored quantile regression using the pinball Toss
DeepHit (Lee et al. 2018} Non-parametric v Predicts survival functions via log-likelihood and ranking losses
GBM (Dembek et al.| 2014} Non-parametric (Ensemble) X Generalized Boosted Model adapted for survival tasks
RSF (Ishwaran et al. 2008} Non-parametric (Ensemble) X Random Forests adapted for survival tasks
X-CAL {(Goldstein et al.12020) Pre-calibration v Post-calibration method applied when survival model training
CSD{Q1 et al.}[2024a) Post-calibration X Post-calibration method applied after survival model training
CiPOT (Qi et al.}|2024b) Post-calibration X Post-calibration method applied after survival model training

Hyperparameter default settings. All experiments were repeated across 10 random seeds to ensure
robust and reliable results. The hyperparameter settings were as follows:

Default Neural Network Architecture: Fully-connected network with two hidden layers,
each consisting of 100 hidden nodes, using ReLU activations.

Default Epochs: 200

* Default Batch Size: 128
Default Learning Rate: 0.01
* Dropout Rate: 0.1

* Optimizer: Adam

1https ://github.com/TeaPearce/Censored_Quantile_Regression_NN
https://github.com/havakv/pycox
3https://autonlab.org/auton-survival/models/dsm/index.html
‘nttps://scikit-survival.readthedocs.io/en/stable/api/ensemble.html
Shttps://github.com/rajesh-lab/X-CAL
®https://github.com/shi-ang/MakeSurvivalCalibratedAgain
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e Batch Norm: FALSE

ALD and ICALD (Trained with L5, cois L350 cqr Lo bacars 0 LRES, cqr)-

The model architecture for our method (pre-calibrated with EK‘ED +ca and LE“ED +Cqr) is illustrated

in Fig. (1} Similar to our pre-calibration method, we employ a residual connection between the
shared feature extractor and the first hidden layer to improve gradient flow and training stability for
the base ALD model. Each hidden layer consists of 32 neurons with ReLU activation. To enforce
positivity constraints on the ALD parameters, exponential activations are applied to the output heads
corresponding to 6, o, and «. To mitigate overfitting, we randomly hold out 20% of the training set
as a validation set and apply early stopping (default epochs for our method is set to 2000) based on
validation loss. The key distinction between our pre-calibration methods and the original ALD model
lies in an additional adapter module that incorporates the quantile level ¢ ~ 2/(0, 1) as an input. This
allows the model to learn quantile-conditioned ALD parameters {0}, o, 7 }, which are crucial for
both quantile regression and calibration losses (see Equation equation [I0]and Equation equation [I2)).

In the post-calibration setting (i.e., L35 ., and L5 +cqr)» We first obtain the ALD parameters

from a pre-trained base ALD model. Then, we apply a lightweight post-calibration network that
takes both the input x and quantile ¢ using £8P, ,;, and LR +cqr to output adjustment factors

~ € R3. This post-calibration module is implemented as a compact MLP with two hidden layers
of 16 units each and ReL.U activation. An exponential activation is then applied at the output to
ensure positivity of the adjustment factors. These adjustment factors modulate the base parameters
to produce calibrated outputs via an element-wise product (see Equation equation[I3). This design
allows the post-calibration module to correct for miscalibration while preserving the base model’s
learned structure.

Finally, for prediction, we sample 2000 quantile percentages ¢ ~ U/(0, 1) to construct a mixture of
ALD. Conceptually, this model can be interpreted as a continuous mixture over quantile-specific
ALD components, expressed as:

~ .1
fly|x) = /0 farp (¥; ma(x,q)) dg, (69)

where farp(-; mae(x,q)) is the ALD parameterized by the post-calibrated model at quantile g. This
formulation captures rich distributional information and enables fine-grained calibration by averaging
over a wide spectrum of quantile-conditioned predictions.

CQRNN. We followed the hyperparameter settings tuned in the original paper (Pearce et al., [2022),
where three random splits were used for validation (ensuring no overlap with the random seeds used
in the final test runs). The following settings were applied:

¢ Weight Decay: 0.0001

* Grid Size: 100

* Pseudo Value: y* = 1.2 X max; y;
* Dropout Rate: 0.333

The number of epochs and dropout usage were adjusted based on the dataset type:

¢ Synthetic Datasets:

— Norm linear, Norm non-linear, Exponential, Weibull, LogNorm, Norm uniform:
100 epochs with dropout disabled.

— Norm heavy, Norm medium, Norm light, Norm same: 20 epochs with dropout
disabled.

— LogNorm heavy, LogNorm medium, LogNorm light, LogNorm same: 10 epochs
with dropout disabled.

* Real-World Datasets:
— METABRIC: 20 epochs with dropout disabled.
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— WHAS: 100 epochs with dropout disabled.

— SUPPORT: 10 epochs with dropout disabled.

— GBSG: 20 epochs with dropout enabled.

— TMBImmuno: 50 epochs with dropout disabled.
— BreastMSK: 100 epochs with dropout disabled.
— LGGGBM: 50 epochs with dropout enabled.

LogNorm. The output dimensions of the default neural network architecture are 2, where the
two outputs represent the mean and standard deviation of a Log-Normal distribution. To ensure the
standard deviation prediction is always positive and differentiable, the output representing the standard
deviation is passed through a SoftPlus activation function. We followed the hyperparameter
settings tuned in the original paper (Pearce et al., 2022), with a dropout rate of 0.333. The number of
epochs and the usage of dropouts were adjusted according to the type of dataset as follows:

» Synthetic Datasets: The same settings as described above for CQRNN.
* Real-World Datasets:

— METABRIC: 10 epochs with dropout disabled.
— WHAS: 50 epochs with dropout disabled.

— SUPPORT: 20 epochs with dropout disabled.

— GBSG: 10 epochs with dropout enabled.

— TMBImmuno: 50 epochs with dropout disabled.
— BreastMSK: 50 epochs with dropout disabled.

— LGGGBM: 20 epochs with dropout enabled.

DeepSurv. We adhered to the official hyperparameter settings from the pycox .methods module
(GitHub Link). Each of the two hidden layers contains 32 hidden nodes. A validation set was created
by splitting 20% of the training set. Early stopping was used to terminate training when validation
performance stopped improving. Batch normalization was applied.

DeepHit. We adhered to the official hyperparameter settings from the pycox .methods module
(GitHub Link). Each of the two hidden layers contains 32 hidden nodes. A validation set was
created by splitting 20% of the training set. Early stopping was used to terminate training when
validation performance stopped improving. Batch normalization was applied, with additional settings:
num_durations =100, alpha =0.2, and sigma =0.1.

DSM. We adopted the Deep Survival Machines (DSM) model from the auton-survival libraryﬂ
implemented via auton_survival.models.dsm.DeepSurvivalMachines. The model
was configured with two hidden layers of 32 units each. For the LogNormal variant, the number
of mixture components was set to k = 10, as increasing k led to performance degradation. For the
Weibull variant, we followed the default configuration with £ = 100 to ensure sufficient capacity. The
model was trained using observed event times and indicators, and the final prediction was constructed
by evaluating the mixture distribution over a fixed 1000-point time grid to obtain the cumulative
distribution function (CDF).

GBM. We used the GradientBoostingSurvivalAnalysis implementation from the
sksurv.ensemble moduleﬂ The model was configured with n_estimators = 100,
learning_rate =0.01, and max_depth = 3.

RSF. For the Random Survival Forest, we used the RandomSurvivalForest class from
sksurv. ensembleﬂ We followed the standard configuration with n_estimators = 100.

https://autonlab.org/auton-survival/models/dsm/index.htm]
$https://scikit-survival.readthedocs.io/en/stable/api/ensemble.html
nttps://scikit-survival.readthedocs.io/en/stable/api/ensemble.html
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C ADDITIONAL RESULTS

This section presents additional results to provide a comprehensive evaluation. The full results for pre-
calibration, post-calibration, and general performance are provided in Appendix [C.1I] Appendix [C.2]
and Appendix [C.3] respectively. Case studies are provided in Appendix [C.4]

C.1 PRE-CALIBRATION RESULTS

Table [6] presents the full results for the pre-calibration setting. The best performance for each
dataset and metric is highlighted in bold. Fig. [3|illustrates the best and worst individual calibration
improvement cases with the pre-calibration setting, comparing L5, ., against Lo1p, achieved by

the hybrid ALD-based survival model across all synthetic datasets.

Table 6: Full results table on pre-calibration for all datasets, methods, and metrics. The values
represent the mean + 1 standard error for the test set over 5 runs.

Dataset \ Method | Average Calibration ~Group Calibration Individual Calibration
ALD (LaLp) 0.047 + 0.006 0.079 £ 0.012 0.044 £ 0.005
CQRNN (Lcgr) 0.035 + 0.006 0.054 + 0.005 0.018 + 0.002
Norm_linear £ 0.050 + 0.007 0.076 £ 0.010 0.043 + 0.003
l:i‘fmcqr 0.017 +0.003 0.036 + 0.009 0.018 + 0.002
LR cal 0.016 + 0.002 0.029 + 0.005 0.018 £ 0.002
ALD (Larp) 0.072 £ 0.010 0.119 £0.012 0.060 + 0.008
CQRNN (Lcgr) 0.034 £ 0.011 0.078 £ 0.011 0.029 £ 0.002
Norm_nonlinear £ 0.070 + 0.007 0.112 £ 0.009 0.056 + 0.005
Eirfmcm 0.034 + 0.003 0.045 + 0.006 0.018 £ 0.001
LR cal 0.023 + 0.004 0.035 + 0.004 0.012 + 0.001
ALD (LaLp) 0.095 + 0.009 0.159 +0.020 0.098 +0.020
CQRNN (Lcgr) 0.036 + 0.009 0.113 +0.029 0.054 £ 0.007
Norm uniform £ 0.078 £ 0.013 0.144 £ 0.022 0.085 +0.020
Li‘fmcm 0.102 + 0.004 0.141 + 0.009 0.092 + 0.004
LR ca 0.027 + 0.004 0.038 + 0.006 0.018 + 0.002
ALD (LaLp) 0.018 £0.011 0.030 £ 0.014 0.016 + 0.003
CQRNN (Lcgr) 0.030 + 0.008 0.051 £0.011 0.030 + 0.003
Exponential L8 0.017 £ 0.009 0.029 £ 0.011 0.013 £ 0.004
Lfffmcqr 0.034 + 0.007 0.041 +0.009 0.023 £ 0.006
LR cal 0.012 + 0.005 0.020 + 0.006 0.015 £ 0.003
ALD (LaLp) 0.048 + 0.009 0.067 £ 0.006 0.042 +0.003
CQRNN (Lcqr) 0.031 £ 0.004 0.086 + 0.021 0.040 £ 0.010
Weibull £ 0.045 +0.008 0.061 + 0.005 0.039 +0.003
£§'fD+qu 0.031 +0.007 0.039 + 0.008 0.027 £ 0.002
LR ca 0.019 + 0.005 0.032 + 0.002 0.020 + 0.002
ALD (LaLp) 0.020 + 0.006 0.031 £0.012 0.128 £ 0.006
CQRNN (Lcgr) 0.031 +0.013 0.050 £ 0.014 0.135 £ 0.008
LogNorm L8 0.020 + 0.003 0.030 £ 0.010 0.130 + 0.005
Li’fmcqr 0.052 + 0.005 0.058 + 0.006 0.140 £ 0.002
LR cal 0.015 + 0.003 0.021 + 0.002 0.131 £ 0.003
ALD (Larp) 0.062 + 0.009 0.113 £0.033 0.048 + 0.006
CQRNN (Lcgr) 0.071 £ 0.020 0.157 £0.023 0.032 + 0.003
Norm heavy £ 0.068 + 0.015 0.118 £0.032 0.046 + 0.003
Eirfmcm 0.132 +0.027 0.259 +0.033 0.110 £ 0.005
LR cal 0.063 £ 0.010 0.109 + 0.017 0.038 +0.003
ALD (LaLp) 0.054 +0.031 0.086 + 0.026 0.028 + 0.004
CQRNN (Lcgr) 0.050 +0.015 0.093 +0.013 0.019 + 0.001
Norm med. £ 0.044 + 0.012 0.079 £ 0.009 0.025 + 0.003
Lﬁ‘ﬁmcql. 0.085 + 0.003 0.111 +0.006 0.071 £ 0.004
LR ca 0.044 + 0.004 0.076 + 0.006 0.020 + 0.001
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Dataset Method | Average Calibration ~Group Calibration Individual Calibration
ALD (Larp) 0.077 £ 0.034 0.111 £0.027 0.027 + 0.005
CQRNN (Lcgr) 0.036 +0.018 0.083 + 0.006 0.015 + 0.002
Norm light £ 0.055 +0.013 0.097 + 0.003 0.023 + 0.002
Eﬁrfmcqr 0.048 + 0.004 0.068 + 0.007 0.037 + 0.002
LR cal 0.032 + 0.006 0.059 + 0.005 0.016 + 0.001
ALD (Larp) 0.065 +0.012 0.090 +0.017 0.044 + 0.008
CQRNN (Lcgr) 0.037 + 0.008 0.075 + 0.008 0.022 + 0.004
Norm same £ 0.062 + 0.008 0.088 +0.012 0.043 + 0.005
Eﬁrfmcqr 0.029 + 0.008 0.067 £ 0.014 0.026 + 0.003
LR cal 0.025 + 0.003 0.053 + 0.009 0.023 + 0.002
ALD (Larp) 0.037 +0.029 0.081 +0.043 0.038 + 0.008
CQRNN (Lcgr) 0.174 £ 0.008 0.294 +0.014 0.113 £ 0.011
LogNorm heavy £ 0.027 £ 0.013 0.070 £ 0.022 0.034 +0.002
i +Car 0.024 + 0.004 0.061 + 0.006 0.040 + 0.003
LR cal 0.025 + 0.005 0.072 + 0.009 0.039 + 0.005
ALD (Larp) 0.021 + 0.009 0.062 + 0.020 0.040 + 0.005
CQRNN (Lcgr) 0.079 £0.012 0.157 £0.018 0.071 + 0.007
LogNorm med. £ 0.019 +0.008 0.051 +0.010 0.034 + 0.002
Eﬁrfmcqr 0.035 +0.008 0.063 + 0.006 0.044 + 0.002
LB cal 0.018 + 0.006 0.050 + 0.001 0.035 +0.003
ALD (Larp) 0.021 +0.005 0.053 +0.007 0.027 + 0.002
CQRNN (Lcgr) 0.035 + 0.007 0.074 £ 0.012 0.030 + 0.002
LogNorm light £ 0.023 £ 0.011 0.056 +0.012 0.026 + 0.002
Eﬁrfmcqr 0.043 £ 0.012 0.073 £0.010 0.037 + 0.002
LR cal 0.017 + 0.003 0.050 + 0.009 0.025 + 0.001
ALD (Larp) 0.018 + 0.006 0.052 £ 0.012 0.012 +0.003
CQRNN (Lcgr) 0.029 + 0.008 0.068 + 0.004 0.014 £ 0.001
LogNorm same £ 0.030 +0.018 0.059 £ 0.019 0.012 +0.002
Eﬁrfmcqr 0.035 + 0.004 0.067 £ 0.007 0.011 +£0.004
LR cal 0.014 + 0.002 0.047 + 0.003 0.008 + 0.004
ALD (Larp) 0.136 +0.013 0.265 + 0.020
CQRNN (Lcgr) 0.165 + 0.001 0.270 £0.010
METABRIC £ 0.135 +0.007 0.265 +0.016
Eﬁrfmcqr 0.134 +0.020 0.230 £ 0.024
LR cal 0.100 + 0.016 0.222 + 0.018
ALD (Larp) 0.103 +0.030 0.290 + 0.020
CQRNN (Lcgr) 0.144 +0.021 0.348 + 0.021
WHAS £ 0.103 +0.030 0.288 +0.017
Eﬁrfmcqr 0.060 + 0.019 0.214 £0.019
LR cal 0.046 + 0.011 0.172 + 0.016
ALD (Larp) 0.263 + 0.008 0.307 £ 0.015
CQRNN (Lcgr) 0.174 + 0.005 0.218 £ 0.004
SUPPORT £ 0.257 £ 0.005 0.301 +0.011
Eﬁrfmcqr 0.175+0.016 0.214 £0.014
LR cal 0.164 + 0.015 0.205 + 0.014
ALD (LaLp) 0.201 +0.017 0.295 +0.029
CQRNN (Lcgr) 0.204 + 0.008 0.315+0.019
GBSG £ 0.202 +0.013 0.292 +0.028
Eﬁrfmcqr 0.208 + 0.020 0.301 £ 0.009
LR cal 0.161 + 0.009 0.272 + 0.018
ALD (Larp) 0.228 £ 0.010 0.275 £ 0.015
CQRNN (Lcgr) 0.229 £ 0.010 0.286 +0.016
TMBImmuno £ 0.229 +0.011 0.276 + 0.021
Eﬁrfmcqr 0.243 + 0.009 0.265 £ 0.013
LR ca 0.229 + 0.009 0.252 + 0.010
ALD (LaLp) 0.272 + 0.026 0.286 + 0.031
CQRNN (Lcgr) 0.289 + 0.004 0.310 £ 0.006
BreastMSK £ 0.276 £ 0.020 0.292 +0.024
Eﬁrfmcqr 0.267 £ 0.017 0.287 £0.011
LR cal 0.249 + 0.016 0.270 + 0.012
ALD (Larp) 0.173 + 0.050 0.348 £ 0.034
CQRNN (Lcgr) 0.180 + 0.024 0.372 £ 0.021
LGGGBM £ 0.165 + 0.046 0.334 + 0.033
i +Car 0.133 + 0.036 0.364 £ 0.032
LR cal 0.135 +0.023 0.360 + 0.061
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Exponential: Individual Calibration Cases
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Norm heavy: Individual Calibration Cases
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Norm same: Individual Calibration Cases
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LogNorm light: Individual Calibration Cases
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Figure 3: Illustration of the best and worst individual calibration improvement cases (LR, ¢ Vs.
Larp) achieved by the hybrid ALD-based survival model across all synthetic datasets.
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C.2 POST-CALIBRATION RESULTS

Table |/| presents the full results for the post-calibration setting. The best performance for each
dataset and metric is highlighted in bold. Fig. d]illustrates the best and worst individual calibration
improvement cases with the post-calibration setting, comparing L% . against L1 p, achieved by
the hybrid ALD-based survival model across all synthetic datasets.

Table 7: Full results table on post-calibration for all datasets, methods, and metrics. The values
represent the mean + 1 standard error for the test set over 5 runs.

Dataset | Method | Average Calibration Group Calibration Individual Calibration

LR cal 0.016 = 0.002 0.029 + 0.005 0.018 + 0.002

. LE o 0.020 + 0.002 0.038 + 0.006 0.020 + 0.002

Norm_linear ﬁi"fﬁmm 0.058 +0.011 0.072 +0.017 0.058 + 0.009

LR por 0.047 + 0.006 0.079 + 0.012 0.045 +0.005

LRSS 0.018 +0.003 0.027 % 0.003 0.017 + 0.001

Cimem 0.023 + 0.004 0.035 + 0.004 0.012 £ 0.001

_ LRSS e 0.035 + 0.004 0.047 +0.005 0.019 % 0.002

Norm_nonlinear L‘;f,g+m 0.104 + 0.006 0.138 £ 0.017 0.082 + 0.008

LR cipor 0.074 + 0.009 0.120 +0.011 0.061 +0.008

LR 0.021 £ 0.002 0.027 £ 0.003 0.012 £ 0.001

LR vcal 0.027 % 0.004 0.038 + 0.006 0.018 + 0.002

' cl?AL‘qur 0.105 + 0.003 0.145 + 0.005 0.099 + 0.003

Norm uniform | Rost 0.145 +0.039 0.176 +0.028 0.127 £0.018
ALD+CSD

ﬁimclpm 0.097 +0.008 0.160 + 0.020 0.099 + 0.020

LR 0.027 % 0.002 0.031 + 0.001 0.016 = 0.002

LR el 0.012 % 0.005 0.020 + 0.006 0.015 + 0.003

_ LRSS e 0.027 +0.008 0.038 + 0.006 0.020 + 0.005

Exponential Cimcsn 0.058 + 0.036 0.064 + 0.036 0.031 +0.020

LIS cipor 0.037 +£0.035 0.049 + 0.034 0.026 + 0.022

LR 0.012 % 0.005 0.019 = 0.006 0.011 = 0.004

LR ca 0.019 + 0.005 0.032 + 0.002 0.020 = 0.002

. f\L'qur 0.026 + 0.005 0.036 + 0.007 0.026 + 0.003

Weibull LR s 0.119 +0.029 0.153 +0.045 0.054 + 0.009

LB cipor 0.063 + 0.022 0.085 + 0.029 0.048 + 0.006

LR 0.021 + 0.004 0.030 £ 0.005 0.020 = 0.003

LR cal 0.015 +0.003 0.021 % 0.002 0.131 +0.003

LRSS e 0.048 + 0.005 0.053 + 0.005 0.138 + 0.004

LogNorm LRSS csp 0.070 +£0.015 0.081 +0.014 0.141 +0.008

LR ipor 0.021 +0.009 0.033 £0.013 0.127 % 0.007

LR 0.014 % 0.003 0.019 % 0.002 0.128 + 0.004

LR el 0.063 +0.010 0.109 + 0.017 0.038 + 0.003

L3S e 0.144 + 0.009 0.223 +0.023 0.111 +0.002

Norm heavy LR 0.155 + 0.047 0.217 + 0.030 0.144 £0.011

LIS cipor 0.063 + 0.010 0.134 + 0.036 0.048 + 0.006

Lo 0.033 = 0.006 0.067  0.003 0.030 = 0.002

LR vcal 0.044 % 0.004 0.076 + 0.006 0.020 + 0.001

e Car 0.081 % 0.004 0.107 + 0.008 0.072 +0.003

Norm med. LRost 0.148 +0.048 0.180 % 0.050 0.174 +£0.017
ALD+CSD

LR et 0.091 + 0.073 0.129 + 0.070 0.034 +0.012

LR 0.031 % 0.004 0.050 = 0.004 0.017 + 0.001

LR el 0.032 + 0.006 0.059 + 0.005 0.016 + 0.001

. LRSS e 0.048 + 0.003 0.067 + 0.004 0.037 + 0.001

Norm light LﬁLMSD 0.113 £ 0.020 0.133 £ 0.027 0.194 + 0.017

LI civor 0.074 +0.035 0.107 +£0.029 0.027 + 0.005

LR e 0.028 = 0.002 0.043 % 0.002 0.014 + 0.001

LR e 0.025 + 0.003 0.053 + 0.009 0.023 + 0.002

Lo cqr 0.027 +0.005 0.054 + 0.005 0.023 % 0.002

Norm same LIS csp 0.201 +0.027 0.231 +£0.023 0.055 +0.018

LIS cipor 0.065 + 0.012 0.096 + 0.012 0.044 + 0.008

LR 0.021 + 0.004 0.043 £ 0.003 0.017 £ 0.001
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Dataset Method Average Calibration Group Calibration Individual Calibration
p
Lhe cal 0.025 + 0.005 0.072 + 0.009 0.039 + 0.005
gL'Mqr 0.032 % 0.001 0.056  0.003 0.040 + 0.002
LogNorm heavy | phost 0.239 + 0.006 0.256 + 0.011 0.153 £ 0.015
cil%mclm 0.167 + 0.025 0.304 + 0.025 0.038 + 0.008
LR 0.020 = 0.003 0.058 + 0.008 0.041 +0.003
L ca 0.018 + 0.006 0.050 + 0.001 0.035  0.003
'Rmeqr 0.033 + 0.004 0.058 + 0.008 0.046 + 0.003
LogNorm med. | phost 0.080  0.005 0.090 % 0.006 0.073 £0.012
Lg%tmclm 0.060 + 0.015 0.141 +£0.019 0.040 + 0.005
LR cal 0.014 = 0.003 0.046 = 0.003 0.040 % 0.002
L ca 0.017  0.003 0.050 + 0.009 0.025 + 0.001
. LRSS cqr 0.043 + 0.004 0.072 + 0.007 0.035 + 0.001
LogNorm light | pgPost - 0.163 £ 0.020 0.169 £0.018 0.275 £0.035
LR ipor 0.021 % 0.007 0.060  0.010 0.027 + 0.002
LR cal 0.013 = 0.001 0.042 = 0.003 0.030  0.001
L ca 0.014 = 0.002 0.047 + 0.003 0.008 = 0.004
LI5S car 0.031 % 0.003 0.051 % 0.006 0.012  0.005
LogNorm same | phost - 0.291 + 0.009 0.309 £0.014 0.562 £ 0.075
LB cvor 0.017 + 0.006 0.039 + 0.010 0.012 + 0.003
LR el 0.014 = 0.002 0.042  0.003 0.008 + 0.002
ch Afpica 0.100 + 0.016 0.222 +0.018
LRSS cqr 0.145 + 0.012 0.257 +0.018
METABRIC | phos 0.095 + 0.006 0.105 + 0.006
LB cvor 0.108 + 0.009 0.229 + 0.047
Pos L Cal 0.120 + 0.015 0.242 + 0.008
L cal 0.046 = 0.011 0.172+0.016
LR cqr 0.096 + 0.017 0.287 + 0.014
WHAS LR en 0.064 + 0.008 0.138 £ 0.020
LB cvor 0.222 +0.020 0.387 + 0.011
LR 0.064 + 0.013 0.244 + 0.010
L cal 0.164 +0.015 0.205 + 0.014
L e 0.215 £ 0.005 0.251 £0.012
SUPPORT LR en 0.102 + 0.012 0.115 £ 0.012
c};{smm 0.139 +0.011 0.324 + 0.032
LR 0.240 % 0.003 0.283 + 0.007
LB cal 0.161 £ 0.009 0.272 £0.018
L5 car 0.217 + 0.008 0.304 +0.011
GBSG £§<§,5+CSD 0.089 + 0.002 0.104 + 0.021
EAme.pm 0.130 + 0.016 0.234 + 0.032
LR 0.185 + 0.003 0.274 + 0.009
L£he cal 0.229 + 0.009 0.252 +0.010
LR car 0.249 + 0.012 0.269 + 0.010
TMBImmuno | glest 0.150 = 0.012 0.184 + 0.021
LQLMWF 0.157  0.005 0.210+0.018
LR 0.214 +0.010 0.242 + 0.014
LR cal 0.249 + 0.016 0.270 + 0.012
LR cqr 0.270 + 0.014 0.287 + 0.016
BreastMSK EPimesn 0.212 + 0.012 0.225 £ 0.010
EAme.mr 0.325 + 0.009 0.433 +0.079
LIS 0.247 +0.011 0.272 +0.010
LR cal 0.135 + 0.023 0.360  0.061
LR cqr 0.152 +0.021 0.335 + 0.044
LGGGBM LR csp 0.351 +0.027 0.431 +0.022
LI ot 0.267 £ 0.021 0.415+0.011
LR 0.118  0.023 0.257  0.037
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Norm linear: Individual Calibration Cases

Worst improvement (ID: 930)

Best improvement (ID: 645)
107 P N | EEEe Y
-1 ) o
’,,,4" Lzﬁ%ﬁt—tqr 'c;f
v ’
- 4
0.8 - ;,”" 0.8 {{--- £}IF . csplrearrange) 'f;’
& . i
K4 -—- . cpor F.
K |deal CDF /
0.6 & 0.6 2
H
5 / i
(] I (]
0.4 i 0.4 1 :
] ——- pPost i
i ALD+Cal ;
I i J
_,f 'ng:{qr ,{,'
.2 " .2 1!
0-2 ,:;’ -=- £fiF . csplreamange) 0.2 Jri
7 . %
0 g, -—- % icpor ,’,’/
- [/ - #
0.0 4 e== T a2” Ideal CDF 0.0 4 FEX I L
T T T . T T T T T
0 5 10 15 20 0 5 10 15 20
Time Time
Norm nonlinear: Individual Calibration Cases
Best improvement (ID: 312) Worst improvement (ID: 503)
L0 - rhos. T i O —m £ GemEEE
Post f ,tr" pPost ff’
ALD+Cqr i ’; ALD+Cqr
y ’
0.8 {==- B9, csplreamrange) i 4 0.8 1{--- LR, cplrearrange)
y f y
-—- cfff:cpor ! -—- chff:cpor
Ideal CDF 1 Ideal CDF
0.6 4 0.6
[T || [T
a [ 8
v ',’:
0.4 ht 0.4
.fh
21
7K
s 0
0.2 7 0.2
ok
o
£
A
Pl N —
0.0 4 T Le 0.0 4 —_—rT _-——==
T T T T T T T T T T T
0.0 2.5 5.0 75 100 125 15.0 0.0 2.5 5.0 75 10.0 12.5 15.0
Time Time
Norm uniform: Individual Calibration Cases
Best improvement (ID: 795) Worst improvement (ID: 701)
Loq--- 3B ca /"}—-7 L0 1--- 418 ca P
. I . ’ Y -~
ii'if:t—qu N Li‘f%—(qr ; s /'
I i i t/,
0.8 H{==-- £, csplrearange) ,* l,’ 0.8 4{==- Ch{F. ceplrearrange) i ’,',,'
—— anst f' '] R LxPost ,’ i
ALD+CIPOT I 'f ALD+CIPOT I ;"J'
Ideal CDF N, Ideal CDF b
0.6 —f - 0.6
,
I Ed
w J s w
a / 4 =)
o ; rd 9]
’ ’
0.4 I ’ 0.4
1] i
l.' [ S
s
v
0.2 A 0.2
1’ Jf’
o
P o
” #7
0.0 +————m—mS e S e == 0.0
T T T T T T T T T T T T
00 25 50 75 100 125 150 175 00 25 50 7.5 100 125 150 175
Time Time

35




Under review as a conference paper at ICLR 2026

Exponential: Individual Calibration Cases
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Weibull: Individual Calibration Cases
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Norm heavy: Individual Calibration Cases
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Norm same: Individual Calibration Cases
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LogNorm light: Individual Calibration Cases
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Figure 4: Illustration of the best and worst individual calibration improvement cases (£
Larp) achieved by the hybrid ALD-based survival model across all synthetic datasets.
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C.3 OVERALL RESULTS

Table [8] summarizes the full results across 21 datasets, comparing our method with 9 baselines across
7 metrics. The best performance for each dataset and metric is highlighted in bold.

Table 8: Full results table for all datasets, methods, and metrics. The values represent the mean + 1
standard error for the test set over 5 runs.

Dataset \ Methods \ MAE IBS Harrell’s C-index Uno’s C-index Average Calibration Group Calibration Individual Calibration
ALD 0.692+0.124  0.285 +0.008 0.619 +0.026 0.619 +0.022 0.047 + 0.006 0.079 +0.012 0.044 +0.005
CQRNN 0.217 £0.070  0.268 + 0.007 0.656 +0.011 0.650 + 0.009 0.035 + 0.006 0.054 +0.005 0.018 +0.002
. LogNorm 0.251+0.082  0.713 £ 0.007 0.657 +0.009 0.651 +0.008 0.022 +0.007 0.040 +0.015 0.014 % 0.002
§ DeepSurv 0.248 £0.156  0.665 + 0.028 0.657 + 0.009 0.651 +0.008 0.019 +0.007 0.051 +0.022 0.016 + 0.006
= DSM(Weibull) 1.054 £0.034  0.322 £ 0.006 0.653 £ 0.010 0.647 £ 0.009 0.091 £ 0.009 0.188 £ 0.006 0.066 + 0.002
£ DSM(LogNorm) | 1.048 £0.031  0.323 £ 0.006 0.651 £ 0.009 0.646 £ 0.008 0.090 £ 0.012 0.203 £0.010 0.057 £ 0.003
£ DeepHit 1.666 £0.442  0.505 +0.022 0.616 £ 0.030 0.607 £ 0.031 0.189 £ 0.044 0.234 £ 0.061 0.151 £0.019
GBM 0.634+0.022  0.305 +0.007 0.636 +0.014 0.631£0.012 0.017 + 0.004 0.091 £0.011 0.030 £ 0.001
RSF 1.329+0.149  0.331 £0.007 0.581 +0.013 0.577 +0.012 0.036 +0.002 0.053 +0.006 0.102 +0.009
L‘;‘ﬂ)mm 0.632+0.122  0.275 £ 0.005 0.661 £ 0.009 0.653 £ 0.008 0.018 £ 0.003 0.027 £ 0.003 0.017 £0.001
ALD 0.607 £0.185  0.241 +0.013 0.606 + 0.030 0.575 +0.033 0.072 +0.010 0.119 +£0.012 0.060 + 0.008
CQRNN 0.432+0.039  0.253 +0.036 0.594 +0.012 0.560 +0.013 0.034 +0.011 0.078 +£0.011 0.029 +0.002
g LogNorm 0.228£0.049  0.564 +0.013 0.659 +0.016 0.643 +0.014 0.066 + 0.006 0.114 £ 0.016 0.027 +0.005
£ DeepSurv 0.174 £0.050  0.619 +0.013 0.669 +0.016 0.649 +0.015 0.023 +0.007 0.065 +0.012 0.022 +0.003
g DSM(Weibull) | 0.469 +0.025  0.236 +0.003 0.627 +0.022 0.605 +0.021 0.097 +0.002 0.132 +0.004 0.067 + 0.002
g DSM(LogNorm) | 0.497 £0.033  0.234 +£0.003 0.595 +0.021 0.563 +0.022 0.084 +0.011 0.125+0.013 0.055 +0.003
g DeepHit 1.027 £0.146  0.515 +0.042 0.610 £ 0.049 0.600 £ 0.041 0.150 £0.114 0.189 £0.127 0.067 £ 0.024
Z GBM 0.314+0.030  0.227 +0.003 0.655 £ 0.021 0.638 £0.019 0.026 £ 0.002 0.066 £ 0.006 0.027 £ 0.001
RSF 0.508 £0.051  0.243 +0.004 0.623 £0.015 0.605 £ 0.014 0.043 £ 0.003 0.052 £ 0.003 0.048 £ 0.003
LR e 0.794 £0.184  0.261 £0.012 0.679 £ 0.005 0.657 + 0.006 0.021 £ 0.002 0.027 + 0.003 0.012 % 0.001
ALD 2307 £0.664  0.049 +0.002 0.768 +0.019 0.693 +0.024 0.095 +0.009 0.159 +0.020 0.098 +0.020
CQRNN 0.690 +£0.228  0.154 +0.077 0.767 +0.022 0.680 +0.017 0.036 + 0.009 0.113 +0.029 0.054 +0.007
£ LogNorm 15.876 £3.013  0.387 +0.014 0.576 +0.175 0.574 +0.107 0.208 +0.003 0.234 +0.001 0.236 +0.013
8 DeepSurv 0.573+0.195  0.517 £0.012 0.784 £ 0.010 0.704 £ 0.014 0.059 +0.014 0.102+0.016 0.064 +0.003
El DSM(Weibull) 1.344£0.012  0.062 +0.002 0.764 £ 0.016 0.679 +0.018 0.074 +0.013 0.196 +0.012 0.106 + 0.002
= DSM(LogNorm) | 1.306+0.016  0.062 + 0.002 0.781+£0.013 0.692 +0.021 0.113 +0.021 0.201 +0.009 0.147 +£0.018
) DeepHit 1.353+0.506  0.368 + 0.057 0.756 +0.025 0.691 +0.025 0.253 +0.077 0.355+0.113 0.147 +0.040
2 GBM 1.106 £0.121  0.058 £ 0.003 0.746 £ 0.019 0.677 £0.012 0.032+£0.013 0.156 £0.013 0.071 £ 0.004
RSF 1.154 £0.086  0.056 = 0.002 0.657 £ 0.027 0.616 £ 0.021 0.058 £0.010 0.072 £0.012 0.078 £ 0.006
L ca 4.887+3.392  0.048 £ 0.003 0.773 £0.016 0.694 +0.011 0.027 + 0.002 0.031 + 0.001 0.016 + 0.002
ALD 0.534+0.153  0.292 + 0.004 0.564 + 0.005 0.563 + 0.005 0.018 +£0.011 0.030 +0.014 0.016 % 0.003
CQRNN 1.682+0.316  0.292 + 0.009 0.553 +0.012 0.555 +0.008 0.030 +0.008 0.051+0.011 0.030 + 0.003
— LogNorm 3.220+0.577  0.454 +0.005 0.516 +0.041 0.518 +0.040 0.040 +0.008 0.056 + 0.008 0.054 + 0.006
g DeepSurv 2.033£0.184  0.480+0.015 0.564 + 0.004 0.563 + 0.004 0.019 +0.008 0.037 +0.016 0.018 +0.006
§ DSM(Weibull) 1.915+0.237  0.293 +0.004 0.563 +0.003 0.562 + 0.004 0.016 + 0.006 0.062 +0.003 0.030 + 0.005
g DSM(LogNorm) | 2.370+0.235  0.295 + 0.004 0.556 + 0.004 0.554 +0.005 0.035 +0.008 0.062 +0.007 0.064 + 0.006
] DeepHit 1.190 £0.267  0.469 +0.011 0.528 +0.025 0.529 +0.023 0.085 +0.040 0.121 +0.034 0.070 + 0.040
GBM 2.139+£0.236  0.296 + 0.005 0.537 £0.012 0.537 £0.010 0.021 +0.005 0.045+0.011 0.025 +0.006
RSF 3.507+£0.292  0.345+0.014 0.516 £0.016 0.515+0.015 0.042 +0.010 0.057 +£0.015 0.137 +0.005
L ca 0.500 +0.106  0.292 + 0.007 0.548 +0.004 0.550 + 0.005 0.012 + 0.005 0.019 + 0.006 0.011 + 0.004
ALD 0.642+0.111  0.211 + 0.004 0.762 +0.010 0.758 +0.009 0.048 +0.009 0.067 +0.006 0.042 +0.003
CQRNN 0.878 £0.243  0.223 +0.007 0.752 +0.010 0.748 +0.005 0.031 +0.004 0.086 +0.021 0.040 +0.010
LogNorm 0.858+0.113  0.838 +0.023 0.773 +0.006 0.768 +0.007 0.043 +0.014 0.115 +0.022 0.044 +0.005
= DeepSurv 0.360 £0.077  0.969 +0.021 0.774 £ 0.005 0.769 + 0.006 0.018 + 0.009 0.029 +0.014 0.018 + 0.003
2 DSM(Weibull) | 2.647 +0.073  0.329 +0.010 0.745 +0.003 0.743 +0.003 0.044 +0.009 0.223 +0.012 0.127 +0.003
é—’ DSM(LogNorm) | 2.590+0.072  0.328 + 0.009 0.746 + 0.004 0.744 +0.003 0.043 +0.010 0.230 +0.018 0.129 +0.002
DeepHit 1.937+0.159  0.610 +0.033 0.770 + 0.005 0.764 + 0.005 0.098 +0.018 0.195 +0.030 0.123 +£0.015
GBM 1.430£0.108  0.252+0.007 0.767 + 0.006 0.762 + 0.007 0.039 +0.011 0.161 £ 0.016 0.063 +0.003
RSF 1.253£0.149  0.233+0.014 0.748 +£0.011 0.742+0.012 0.047 +£0.015 0.071 +0.021 0.074 +0.008
LR ca 0.928 £0.348  0.212+0.016 0.760 + 0.008 0.758 + 0.006 0.021 +0.004 0.030 + 0.004 0.020 + 0.003
ALD 0.277 £0.089  0.375+0.012 0.588 £ 0.020 0.584 £ 0.020 0.020 £ 0.006 0.031£0.012 0.128 £ 0.006
CQRNN 1.043 £0.087  0.386 +0.014 0.584 +0.007 0.579 £ 0.008 0.031£0.013 0.050 £0.014 0.135 £ 0.008
LogNorm 0.229 £0.037  0.647 +0.021 0.586 +0.018 0.583 +0.018 0.013 + 0.004 0.025 +0.007 0.113 +0.002
g DeepSurv 0.936+£0.049  0.657 +0.033 0.587 +0.020 0.584 +0.020 0.014 +0.003 0.030 +0.013 0.117 +0.006
2 DSM(Weibull) | 0.768 +0.075  0.386 +0.012 0.498 +0.013 0.498 +0.013 0.038 +0.011 0.044 +0.011 0.122 +0.009
el DSM(LogNorm) | 0.948 £0.081  0.392 +0.014 0.503 +0.007 0.503 + 0.006 0.021 +0.010 0.027 +0.010 0.110 + 0.010
i DeepHit 0.761 £0.174  0.566 + 0.027 0.529 +0.031 0.528 +0.030 0.098 +0.048 0.103 £ 0.048 0.117 £ 0.008
GBM 1.037£0.053  0.388+0.011 0.576 +0.020 0.573 +0.020 0.016 + 0.004 0.023 +0.004 0.127 +0.009
RSF 1.154 £0.072  0.440 +0.008 0.536 +0.018 0.535+0.017 0.040 + 0.006 0.047 +£0.011 0.154 +0.009
LR ca 0.249 £0.067  0.366 + 0.015 0.591 + 0.013 0.588 + 0.014 0.014 +0.003 0.019 £ 0.002 0.128 +0.004
ALD 0.788 £0.264  0.020 + 0.001 0.916 + 0.004 0.876 + 0.005 0.062 £ 0.009 0.113£0.033 0.048 £ 0.006
CQRNN 0.460 +0.045 0476 +0.012 0.916 + 0.010 0.868 £ 0.017 0.071 £ 0.020 0.157 £0.023 0.032 £ 0.003
o LogNorm 26.184 £3.030 0.411+0.007 0.788 £ 0.040 0.704 £ 0.044 0.235 £ 0.005 0.256 £ 0.009 0.261 £ 0.002
= DeepSurv 1.552£0.147  0.559 +0.009 0.746 + 0.035 0.619 +0.036 0.070 £ 0.021 0.185 +0.064 0.037 £0.003
2 DSM(Weibull) 1.887 £0.040  0.047 +£0.003 0.830 £0.011 0.766 £ 0.019 0.036 +0.009 0.240 +0.038 0.164 +0.004
g DSM(LogNorm) | 1.902+0.039  0.047 +0.003 0.786 + 0.034 0.718 +0.036 0.074 +0.009 0.238 +0.034 0.183 +0.004
> DeepHit 0.751+£0.093  0.493 +0.018 0.913 +0.007 0.865 +0.010 0.067 +0.011 0.218 +0.041 0.088 +0.010
GBM 1.619£0.022  0.042 +0.003 0.870 + 0.007 0.812+0.011 0.031 + 0.009 0.208 +0.032 0.143 +0.004
RSF 0.619+0.019  0.021 +0.001 0.908 +0.009 0.853 +0.016 0.072 +0.021 0.156 +0.063 0.070 + 0.003
LR ca 0.809 +0.101  0.026 + 0.004 0.892 +0.013 0.826 +0.024 0.033 +0.006 0.067 + 0.003 0.030 + 0.002
ALD 0.335+0.071  0.052 £ 0.005 0.888 £ 0.005 0.866 + 0.006 0.054 £ 0.031 0.086 + 0.026 0.028 + 0.004
CQRNN 0.357+£0.014  0.498 +0.020 0.884 £ 0.005 0.862 + 0.004 0.050 £0.015 0.093 £0.013 0.019 £ 0.001
. LogNorm 5524£1.179  0.421 £0.009 0.825 £0.028 0.792 £ 0.032 0.195 £ 0.002 0.212 £ 0.007 0.231 £ 0.007
3 DeepSurv 0.270+0.039  0.726 £0.011 0.892 £ 0.004 0.870 £ 0.004 0.029 £ 0.002 0.056 £ 0.005 0.018 £ 0.002
£ DSM(Weibull) 1.899 £0.040  0.118 £0.006 0.755 £ 0.017 0.727 £0.017 0.030 £ 0.003 0.235 £0.037 0.125 £ 0.005
£ DSM(LogNorm) | 1.893 +£0.030  0.119 +0.006 0.685 + 0.030 0.657 +0.028 0.038 +0.003 0.214 £ 0.041 0.136 + 0.005
2 DeepHit 0.928 £0.069  0.574 +0.016 0.883 + 0.006 0.861 +0.005 0.122 +0.024 0.256 +0.045 0.091 % 0.004
GBM 1.424 £0.037  0.097 +0.005 0.857 +0.001 0.834 +0.002 0.025 +0.004 0.210 +0.036 0.088 +0.003
RSF 0.433+0.020  0.052 +0.003 0.883 + 0.004 0.860 + 0.005 0.013 + 0.007 0.049 +0.014 0.035 +0.001
Eﬁ‘ﬁ)w“, 0.624 +£0.077  0.057 +0.005 0.876 £ 0.005 0.852 £ 0.005 0.030 £ 0.004 0.050 £ 0.004 0.017 +0.001
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Dataset \ Methods \ MAE IBS Harrell’s C-index Uno’s C-index Average Calibration Group Calibration Individual Calibration
ALD 0.374+0.092  0.103+0.011 0.880 + 0.003 0.872 +0.003 0.077 +0.034 0.111 +0.027 0.027 +0.005
CQRNN 0.300 +0.041  0.506 +0.015 0.878 + 0.006 0.870 + 0.006 0.036 +0.018 0.083 +0.006 0.015 +0.002
_ LogNorm 1.345+0.393  0.551+0.017 0.853+0.011 0.842+0.013 0.185 +0.002 0.208 + 0.009 0.166 +0.011
=3 DeepSurv 0.246 £0.009  0.944 +0.016 0.882 + 0.002 0.874 +0.002 0.026 + 0.004 0.056 +0.007 0.017 +0.001
= DSM(Weibull) | 1.904 £0.041 0.223 +0.012 0.726 +0.018 0.716 £0.018 0.029 +0.003 0.234 +0.038 0.124 +0.003
S DSM(LogNorm) | 1.906 +0.031 0.228 +0.013 0.649 +0.021 0.639 +0.020 0.034 +0.004 0.216 +0.039 0.128 +0.004
Z DeepHit 0.963 £0.056  0.681 +0.024 0.876 £ 0.003 0.867 +0.004 0.117 £0.033 0.251 £0.054 0.093 £0.010
GBM 1.318 £0.028  0.176 £ 0.009 0.847 £ 0.004 0.839 +0.003 0.030 £ 0.004 0.207 +£0.033 0.080 £ 0.002
RSF 0.382+0.013  0.099 + 0.005 0.874 +0.004 0.866 + 0.004 0.014 = 0.009 0.048 +0.017 0.024 +0.001
L 0.557 +£0.102  0.106 + 0.008 0.868 + 0.004 0.859 +0.004 0.028 +0.002 0.043 +0.002 0.014 % 0.001
ALD 0.452 +0.137  0.071 £ 0.003 0.884 +0.007 0.829 +0.020 0.065 +0.012 0.090 +0.017 0.044 +0.008
CQRNN 0.334+£0.044  0.374 +0.035 0.886 + 0.004 0.841 +0.007 0.037 +0.008 0.075 +0.008 0.022 +0.004
° LogNorm 0.296 +0.149  0.797 +£0.011 0.894 + 0.004 0.846 + 0.006 0.056 +0.043 0.091 +0.041 0.016 + 0.007
£ DeepSurv 0.255+0.044 0.782+0.014 0.887 +0.004 0.832 +0.028 0.027 +0.007 0.064 +0.013 0.016 +0.002
g DSM(Weibull) | 2.192+0.060 0.176 + 0.006 0.737 £0.016 0.687 +0.012 0.125 +0.005 0.312+0.030 0.154 +0.003
£ DSM(LogNorm) | 2.147 £0.064  0.177 £ 0.006 0.655+0.018 0.618 +0.015 0.120 + 0.006 0.301 +0.032 0.176 +0.004
2 DeepHit 1.274 £0.057  0.566 +0.032 0.882 +0.003 0.826 +0.021 0.095 +0.007 0.187 +0.046 0.088 +0.005
GBM 1.546 £0.077  0.141 £ 0.004 0.837 £ 0.009 0.795 £ 0.006 0.088 £ 0.005 0.277 £0.033 0.101 £ 0.004
RSF 0.471£0.024 0.076 + 0.003 0.874 £+ 0.004 0.821 £0.010 0.058 £0.012 0.100 £0.017 0.101 £ 0.001
L 0.538 £0.070  0.080 + 0.002 0.875 +0.006 0.827 +0.007 0.021 + 0.004 0.043 +0.003 0.017 +0.001
ALD 0.427 £0.383  0.096 + 0.005 0.775 £ 0.009 0.730 +0.019 0.037 +0.029 0.081 +0.043 0.038 + 0.008
CQRNN 0.738 £0.021  0.203 +0.032 0.766 + 0.007 0.722 +0.020 0.174 +0.008 0.294 +£0.014 0.113+0.011
E‘ LogNorm 0.597 +£0.042  0.399 +0.010 0.619 +0.044 0.578 +0.036 0.024 +0.013 0.149 +£0.021 0.132+0.001
o DeepSurv 0.835+0.015 0.457+0.018 0.470 +0.031 0.445 +0.028 0.179 +£0.019 0.291 +0.033 0.047 +£0.010
=] DSM(Weibull) | 0.678 £0.018  0.124 +0.006 0.697 +0.008 0.662 + 0.002 0.103 +0.007 0.187 +£0.015 0.156 +0.003
S DSM(LogNorm) | 0.655+0.015 0.126 + 0.006 0.690 + 0.064 0.649 +0.054 0.135 +0.009 0.211+0.016 0.159 +0.003
% DeepHit 0.721 £0.020  0.399 +£0.016 0.753 £0.015 0.708 +0.021 0.178 £0.011 0.323 +0.013 0.184 +0.015
S GBM 0.686 +0.016 0.119 +0.005 0.660 + 0.040 0.615 +0.032 0.145+0.011 0.200 +0.012 0.146 +0.002
RSF 0.690 £0.016  0.100 + 0.004 0.706 £ 0.014 0.661 +£0.016 0.195 £ 0.009 0.272 £0.015 0.072 £0.002
L 0.327 £0.108  0.098 + 0.005 0.762 +0.014 0.729 +0.009 0.020 + 0.003 0.058 + 0.008 0.041 +0.003
ALD 0.208 +£0.044  0.175 +0.004 0.746 £ 0.005 0.718 £ 0.006 0.021 £ 0.009 0.062 +0.020 0.040 + 0.005
CQRNN 0.560 +£0.035  0.206 + 0.008 0.744 £0.012 0.718 £0.013 0.079 £0.012 0.157 £0.018 0.071 £0.007
3 LogNorm 0.458 £0.028  0.459 +0.016 0.696 +0.013 0.671+0.015 0.025 +0.007 0.122+£0.014 0.109 + 0.006
£ DeepSurv 0.643+0.031  0.539+0.012 0.642 +0.012 0.601 +£0.014 0.070 +0.007 0.143 +£0.021 0.041 +0.005
g DSM(Weibull) | 0.638 +0.013  0.221 +0.006 0.668 + 0.006 0.645 +0.006 0.036 + 0.004 0.158 +0.015 0.173 +0.002
2 DSM(LogNorm) | 0.644 +0.013  0.223 +0.007 0.719 +0.004 0.694 +0.008 0.044 % 0.006 0.167 +£0.015 0.179 +0.003
£l DeepHit 0.602+0.022  0.423 +0.009 0.719 +0.020 0.695 +0.017 0.062 + 0.004 0.182+0.013 0.160 + 0.004
i GBM 0.629 £0.016  0.207 +0.007 0.708 +0.007 0.681 +0.008 0.046 + 0.009 0.133 +£0.008 0.145 £ 0.001
RSF 0.501+0.013  0.180 = 0.006 0.729 +0.004 0.700 + 0.003 0.082 % 0.006 0.135 +0.009 0.081 +0.003
L% e 0.257+0.022  0.173 £ 0.007 0.749 + 0.009 0.721 £ 0.010 0.014 + 0.003 0.046 + 0.003 0.040 + 0.002
ALD 0.143 +£0.026  0.306 + 0.012 0.726 £ 0.008 0.715 + 0.010 0.021 £ 0.005 0.053 +£0.007 0.027 +0.002
CQRNN 0.415+£0.056 0.334+0.010 0.720 £ 0.009 0.709 % 0.008 0.035 £ 0.007 0.074 £0.012 0.030 £ 0.002
= LogNorm 0.296 +£0.017  0.805 +0.026 0.712 £ 0.008 0.701 £0.010 0.017 £ 0.004 0.073 +0.009 0.047 +0.002
2 DeepSurv 0.401+0.011  0.837 +£0.022 0.713 +£0.009 0.698 +0.013 0.022 +0.005 0.058 +0.005 0.032 +0.003
g DSM(Weibull) | 0.623+0.012 0.385+0.010 0.644 +0.007 0.637 +0.008 0.031 +0.004 0.158 £0.017 0.108 + 0.000
2 DSM(LogNorm) | 0.644 +0.013  0.388 +0.009 0.697 +0.007 0.686 + 0.009 0.019 +0.007 0.159 +0.017 0.115 +0.001
B DeepHit 0.588+£0.017 0.657 +0.019 0.703 +0.008 0.692 + 0.009 0.019 +0.005 0.133+0.014 0.089 +0.002
= GBM 0.619+0.016  0.366 +0.008 0.691 +0.003 0.681 +0.005 0.017 +0.006 0.122+0.013 0.079 +0.001
RSF 0.443+0.018  0.317 +0.006 0.715 +0.006 0.704 +0.008 0.020 +0.003 0.054 +0.004 0.058 +0.002
LR ca 0.238+£0.015  0.310 +0.007 0.727 + 0.008 0.715 + 0.008 0.013 + 0.001 0.042 + 0.003 0.029 +0.001
ALD 0.156 +0.013  0.153 +0.004 0.744 +0.008 0.698 +0.007 0.018 % 0.006 0.052 +0.012 0.012 +0.003
CQRNN 0.386£0.044  0.170 £ 0.007 0.747 £ 0.009 0.705 +0.013 0.029 £ 0.008 0.068 + 0.004 0.014 £ 0.001
2 LogNorm 0.194£0.010 0.532+0.016 0.740 £ 0.007 0.696 £ 0.006 0.024 £0.010 0.057 £0.016 0.012 £ 0.003
g DeepSurv 0.372+0.021  0.512 +0.007 0.745 + 0.011 0.700 + 0.006 0.021 +0.003 0.050 + 0.004 0.014 +0.004
£ DSM(Weibull) | 0.601+0.032 0.215 +0.006 0.643 +0.011 0.614 +0.008 0.067 +0.007 0.204 +0.004 0.042 +0.010
2 DSM(LogNorm) | 0.612+0.033  0.215 + 0.006 0.692 +0.020 0.656 +0.013 0.062 + 0.005 0.203 +0.007 0.057 +£0.011
El DeepHit 0.611+0.112  0.371+0.013 0.617 +0.075 0.609 +0.051 0.033 +0.016 0.141 +0.025 0.056 +0.012
= GBM 0.580 +0.028  0.196 + 0.005 0.698 +0.011 0.661 + 0.009 0.030 + 0.004 0.150 +0.003 0.035 +0.006
RSF 0.399+0.015  0.166 + 0.006 0.727 +0.012 0.682 +0.009 0.050 % 0.006 0.083 +0.011 0.172 +0.009
LR 0.220 +£0.004  0.149 + 0.003 0.738 +0.007 0.701 +0.005 0.014 + 0.002 0.042 +0.003 0.008 + 0.002
ALD 1.520 +0.029  0.245 +0.010 0.636 +0.016 0.637 +0.027 0.136 +0.013 0.265 +0.020
CQRNN 1.030 +£0.044  0.242 +0.013 0.634 +0.018 0.625 +0.025 0.165 +0.001 0.270 +0.010
o) LogNorm 1.167 £0.030  0.597 £0.011 0.575 £0.017 0.549 +0.033 0.172 £ 0.022 0.283 £0.029
= DeepSurv 0.998 £0.014  0.536 +0.025 0.643 +0.008 0.640 +0.025 0.146 + 0.008 0.275 +£0.015
ﬁ DSM(Weibull) | 1.026 +0.037  0.268 + 0.005 0.611+0.016 0.602 +0.027 0.184 +0.012 0.278 +£0.026
= DSM(LogNorm) | 0.985+0.036 0.267 + 0.005 0.614 +0.016 0.583 +0.054 0.178 +£0.012 0.276 +0.025
E DeepHit 1.173£0.032  0.464 +0.007 0.558 +0.035 0.582 +0.032 0.155+0.011 0.250 +0.028
GBM 0.957 £0.021  0.252 +0.005 0.640 + 0.015 0.648 + 0.036 0.157 £0.010 0.274 £0.019
RSF 1.117£0.043  0.245 +0.007 0.621 +£0.014 0.623 +0.028 0.142 +0.012 0.249 +0.021
LR 1.521£0.127 02600017  0.615+0.019 0.588 £ 0.061 0.120 + 0.015 0.242 % 0.008
ALD 3.410+2.095 0.139 +0.008 0.816 +0.012 0.812+0.011 0.103 +0.030 0.290 + 0.020
CQRNN 0.891+0.052  0.151+0.013 0.833+0.013 0.826 +0.014 0.144 +0.021 0.348 +0.021
LogNorm 1723 +£0.146  0.624 +0.014 0.614 +0.034 0.585 +0.031 0.181 +0.024 0.264 +0.014
@ DeepSurv 0.880+£0.045 0.681 +£0.013 0.702 £ 0.013 0.634 +£0.032 0.101 £ 0.029 0.295 +£0.018
= DSM(Weibull) 1.654 £0.053  0.208 + 0.004 0.779 £0.011 0.787 £0.012 0.247 £0.011 0.281 +0.022
:; DSM(LogNorm) | 1.938 £0.068 0.212 £ 0.004 0.776 + 0.006 0.783 +£0.015 0.245 +0.010 0.279 £0.019
DeepHit 0.906 +0.060  0.592 +0.021 0.805 +0.016 0.805 +0.017 0.132+0.018 0.215 +0.032
GBM 1.111£0.075  0.166 + 0.004 0.811 +0.009 0.808 +0.012 0.187 +0.024 0.245 +0.030
RSF 0.609 +0.056  0.083 + 0.008 0.864 +0.014 0.896 + 0.016 0.064 +0.018 0.258 +0.026
52;:1‘%&1 1.639£0.579 0.133 £0.011 0.828 £0.017 0.816 +0.029 0.064 +0.013 0.244 £0.010
ALD 1.116 £0.040  0.353 +0.008 0.606 % 0.009 0.608 +0.010 0.263 +0.008 0.307 +£0.015
CQRNN 0.662+0.023  0.341 +0.009 0.609 +0.008 0.611 +0.008 0.174 +0.005 0.218 +0.004
LogNorm 1.214+0.073  0.766 +0.013 0.588 +0.009 0.587 +0.009 0.216 +0.010 0.261 +£0.012
g DeepSurv 0.501 +0.015  0.627 +0.007 0.598 +0.009 0.596 +0.011 0.133 + 0.005 0.180 +0.015
g DSM(Weibull) | 0.573 £0.007 0.373 +0.002 0.559 £0.010 0.563 £0.010 0.212 £ 0.003 0.248 +0.007
% DSM(LogNorm) | 0.506 +0.006 0.377 + 0.002 0.565 +0.008 0.566 + 0.008 0.205 + 0.004 0.243 +£0.007
71 DeepHit 0.557+0.035  0.533 +0.006 0.578 +0.008 0.584 +0.009 0.170 £ 0.011 0.210+£0.012
GBM 0.425 +0.006  0.358 +0.001 0.595 +0.007 0.599 + 0.009 0.148 +0.005 0.200 +0.010
RSF 0.675+0.026  0.338 + 0.005 0.616 + 0.007 0.615 + 0.009 0.139 +0.007 0.175 + 0.009
Li‘if,‘“m] 1.546 £0.195  0.405 + 0.004 0.586 £ 0.003 0.586 % 0.003 0.240 + 0.003 0.283 +0.007
ALD 1.766 £0.171  0.273 +0.011 0.673 +£0.013 0.666 +0.012 0.201 +0.017 0.295 +0.029
CQRNN 0.917 £0.050  0.277 +0.008 0.676 + 0.014 0.667 +0.012 0.204 +0.008 0.315+0.019
LogNorm 1.324+0.074  0.623 +0.018 0.638 +0.009 0.632 +0.009 0.258 +0.020 0.318 +0.028
o DeepSurv 0.708 +£0.033  0.565 +0.015 0.618 +0.019 0.610 +0.017 0.186 +0.015 0.271 +0.027
A DSM(Weibull) 1.086 £0.031  0.306 +0.010 0.637 +0.009 0.632 +0.009 0.233 +0.007 0.295 +0.007
8 DSM(LogNorm) | 1.000 +0.030 0.305 + 0.009 0.638 £ 0.022 0.630 £0.019 0.229 £ 0.007 0.296 + 0.009
DeepHit 0.795 +£0.035 0.498 +0.021 0.649 £ 0.015 0.644 +£0.014 0.165 £ 0.012 0.230 £0.010
GBM 0.852+0.035 0.287 +0.007 0.669 +0.012 0.662 +0.011 0.201+0.013 0.259+0.011
RSF 0.926 +0.069  0.283 +0.010 0.653 +0.013 0.643 £0.012 0.192+0.015 0.283 +0.027
LR e 1.821+0.138  0.301 +0.017 0.655 +0.009 0.646 +0.010 0.185 +0.003 0.274 £ 0.009
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Dataset \ Methods \ MAE IBS Harrell’s C-index Uno’s C-index Average Calibration Group Calibration Individual Calibration

ALD 1.523+0.070  0.239 +0.005 0.559 +0.020 0.551 £ 0.016 0.228 +0.010 0.275+0.015

CQRNN 0.965+0.026  0.246 +0.010 0.546 +0.013 0.546 +0.021 0.229 +0.010 0.286 +0.016

° LogNorm 1.747 £0.044  0.421 +0.007 0.554 +0.018 0.543 +0.027 0.241 +0.012 0.261 +0.026
El DeepSurv 0.915+0.023  0.390 +0.009 0.538 +0.021 0.527 +£0.013 0.196 + 0.010 0.250 +£0.010
E DSM(Weibull) | 1.016 £0.017  0.246 + 0.006 0.547 +0.016 0.537 +£0.018 0.233 +0.009 0.249 +0.020
= DSM(LogNorm) | 0.953 +0.017  0.245 +0.006 0.511 £0.029 0.521 £0.024 0.233 £ 0.009 0.251 £0.022
= DeepHit 1.148 £0.134  0.398 £ 0.003 0.558 +£0.022 0.551 £0.024 0.239 £0.013 0.264 +0.022
= GBM 0.878 £0.019  0.241 +0.007 0.573 £0.020 0.549 £0.013 0.219 £ 0.009 0.244 £ 0.020
RSF 1.656 +£0.043  0.268 + 0.009 0.539 +0.017 0.530 +0.020 0.215+0.010 0.254 +0.022

LR 1.611+0.364  0.225 +0.010 0.574 +0.010 0.546 + 0.009 0.214 +0.010 0.242 +0.014

ALD 2.494 +£0.234  0.085 +0.003 0.620 + 0.040 0.567 +0.052 0.272 +0.026 0.286 +0.031

CQRNN 1.571+0.130  0.150 +0.011 0.615 +0.055 0.567 +0.062 0.289 +0.004 0.310 +0.006

LogNorm 6.469 +£0.239  0.312+0.018 0.602 +0.038 0.551 +0.046 0.275+0.011 0.298 +0.018

M DeepSurv 1.627 £0.101  0.337 +0.018 0.618 +0.038 0.563 +0.058 0.275 +0.025 0.292 +0.031
= DSM(Weibull) | 1.615+0.071  0.097 +0.002 0.630 +0.036 0.550 +0.026 0.300 +0.012 0.324 +0.012
g DSM(LogNorm) | 1.580£0.078  0.095 + 0.001 0.631+0.018 0.538 +0.017 0.296 +0.014 0.321 +0.015
& DeepHit 1.517 £ 0.107 0.305+0.019 0.619 +0.036 0.542 +£0.049 0.267 £0.014 0.286 +£0.018
GBM 1.586 £0.052  0.092 +0.001 0.638 +0.036 0.571 £0.028 0.283 £0.017 0.303 £0.017

RSF 1.679 £0.159  0.087 +0.003 0.630 +0.033 0.561 +0.020 0.273 £ 0.024 0.306 + 0.027

L 2.381+0.186  0.084 + 0.006 0.623 +0.031 0.621 + 0.030 0.246 + 0.011 0.272 +£0.010

ALD 1.255+0.334  0.106 £ 0.011 0.786 + 0.020 0.728 +£0.034 0.173 +£0.050 0.348 £0.034

CQRNN 0.679+0.102  0.193+0.015 0.784 +0.020 0.752+0.021 0.180 +0.024 0.372+0.021

LogNorm 1.052+0.097  0.399 +0.012 0.785+0.017 0.727 +£0.045 0.180 + 0.040 0.293 +0.027

= DeepSurv 0.812+0.100 0.485 +0.024 0.722 +0.048 0.657 +0.049 0.187 +0.050 0.362 +0.037
@ DSM(Weibull) | 1.073£0.094 0.176 £0.014 0.768 + 0.026 0.727 +£0.035 0.242 +0.016 0.335 +0.009
8 DSM(LogNorm) | 0.989 +0.091 0.173 £0.013 0.585 +0.041 0.618 +0.057 0.245 +0.019 0.351 £0.016
=} DeepHit 1.917 £0.155  0.382 £ 0.026 0.772 +£0.027 0.726 +0.036 0.263 +0.024 0.317 +£0.033
GBM 0.639 +£0.078 0.141 £0.011 0.767 £ 0.010 0.731 £0.032 0.205 £ 0.025 0.302 £0.026

RSF 0912+£0.255 0.115+0.011 0.774 £ 0.022 0.728 +£0.023 0.190 £ 0.031 0.359 £ 0.069

L el 0.781+0.181  0.103 £ 0.017 0.781 +0.039 0.763 + 0.047 0.118 + 0.023 0.257 +£0.037

C.4 CASE STUDIES

Case Study I: Discretization, Crossing Quantiles, and Distribution Mismatch

Fig. P|illustrates a representative example comparing nonparametric and parametric ALD models.
In the nonparametric approach (based on the quantile form, i.e., AL(0,0,q)), only a fixed set of
quantile percentages {g; } X | are estimated independently. Due to this discretization, the cumulative
distribution function (CDF) appears as a piecewise curve, with substantial gaps between neighboring
quantiles. As shown in the figure, this leads to poor resolution in the distribution tail and visible
quantile crossing, where estimates at higher quantile levels fall below those at lower ones.

In contrast, the parametric ALD-based approach (based on the asymmetry form, i.e., AL(8, 0, k))
provides a continuous, smooth estimate of the conditional distribution. While this results in better
global coherence and eliminates quantile crossing, the model can suffer from distribution mismatch,
especially in the distribution tails. In this case, the ALD fit systematically underestimates the upper
tail, failing to capture the observed data spread. This illustrates the challenge of using a single ALD
to model highly skewed or heavy-tailed distributions.

Norm linear: Individual Calibration Cases (ID: 325)
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Figure 5: Illustration of limitations in nonparametric (left) and parametric (right) ALD approaches.
Left: Discretized and crossing quantiles issues from nonparametric modeling. Right: Distribution
mismatch issue in the parametric ALD-based model.
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Case Study II: Overfitting and Asynchronous Convergence

While Theorem 2]demonstrates that increasing the number of quantile samples improves the Monte
Carlo approximation and enhances individual calibration, this benefit must be carefully balanced in
practice. Sampling a larger number of quantile percentages typically necessitates longer training, but
prolonged training can lead to overfitting, particularly on datasets with limited size or high noise (e.g.,
LogNorm-based datasets).
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Figure 6: Training dynamics on the LogNorm_med dataset with 2000 training epochs. Overfitting is
evident in the increasing test negative log-likelihood (NLL) La1p and test loss curves, despite the
stability of CAL loss (Lcq), highlighting the risk of prolonged training under joint loss objectives.

As shown in Fig.[f] training for 2000 epochs results in degraded calibration performance due to such
overfitting effects. Specifically, while the training loss £37 | continues to decrease, both the test
loss Efff}? +cq and test negative log-likelihood (NLL) LR begin to increase steadily after a certain
point. This divergence indicates that the model starts to fit noise in the training data, thereby impairing
its generalization capability. These observations underscore the importance of incorporating early

stopping to maintain a proper trade-off between calibration quality and generalization performance.
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(a) Pre-calibration without warm-up calibration. (b) Pre-calibration with warm-up calibration.

Figure 7: Comparison of pre-calibration training dynamics on the LogNorm_med dataset, with and
without the proposed warm-up calibration strategy.

Fig. /| presents a case from the LogNorm_med dataset that illustrates the issue of asynchronous
convergence encountered during training with the pre-calibration objectives in Equation [T0] and
Equation[T2] This phenomenon typically arises in the early stages of training, when the model has
not yet learned a meaningful approximation of the underlying distribution. At this point, applying
the additional loss (i.e., Lca or Lcgr) too early may introduce noisy or conflicting gradient signals
that interfere with stable optimization. Specifically, the negative log-likelihood (NLL) loss La1p
encourages the model to fit the global structure of the distribution, while the calibration loss enforces
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local alignment at specific quantile levels. When the distributional parameters are still unstable,
such localized supervision may act more as noise than constructive guidance, ultimately impeding
convergence.

To address this, we adopt the proposed warm-up calibration strategy, wherein training initially focuses
solely on the NLL loss L p. The additional loss (i.e., Lca or Lcg) is then gradually incorporated
after a fixed number of epochs, allowing the model to first establish a stable approximation of
the distribution. As shown in Fig. [7(b), this strategy can stabilize training dynamics and improve
calibration consistency. Notably, the final test NLL is lower when using warm-up calibration strategy
compared to direct pre-calibration, demonstrating improved generalization and more effective
distribution fitting.

In contrast, the post-calibration ICALD models entirely bypass the issue of asynchronous convergence
by applying calibration as a post-processing step after the base model has been trained. This decoupled
approach yields a more stable and consistent calibration effect, free from the gradient conflicts
introduced by joint training losses. As shown in Table[2]and Table[7} post-calibration ICALD models
consistently achieve strong calibration performance across all metrics. These results underscore the
practical advantage of post-calibration in improving reliability, particularly on challenging datasets
like LogNorm, which are more susceptible to instability under joint-loss training schemes.

Case Study III: Calibration Performance with L3, o 8- Liinicqr

Although both £, . and L5 +cqr are theoretically grounded in improving individual calibration

(see Definition [I] Definition[2] and Theorem [I), their empirical performance differs markedly, likely
as a result of how they incorporate censored data and define their loss objectives (see Table[J).

Table 9: Pairwise comparison of calibration performance between LYy, . and L5 +Cqr Across 21
datasets. The two sub-columns reflect settings with and without censored data. Each group reports
the number of datasets where LX), ., performs better, worse, or the same. The final two rows
show total counts and proportions across 56 pairwise comparisons.

Metric \ Train with censored data \ Train without censored data
Average Calibration 13 0 8 1 1 19
Group Calibration 14 0 7 6 2 13
Individual Calibration 9 0 5 1 1 12
Total 36 0 4 44

20 8
Proportion (%) 643 0.0 35.7 ‘14.3 7.1 78.6

In the left half of Table[9] we compare the two methods under the standard setting where censored
data is retained during training, and the quantile regression loss is modified using the Portnoy
estimator (Portnoy, [2003), as defined in Equation equation Under this setting, E}Z{fD +cal €xhibits a
clear advantage: it outperforms L8 +cqr 10 64.3% of all comparisons and never underperforms.

To assess whether this performance gap stems from the presence of censoring or the estimator itself,
we repeat the comparison using the same datasets but exclude all censored samples during training
(right half of Table[9). In this censored-free scenario, the two methods perform comparably in 78.6%
of the cases, with only marginal advantages observed on either side. This indicates that, in the absence
of censoring, L . and L5 +cqr Dehave similarly in terms of calibration, and suggests that the

Portnoy-adjusted loss in L5, +cqr May introduce bias or instability when censoring is present.

In summary, these results highlight the sensitivity of £, +cqr to the censoring mechanism. Its
reliance on the Portnoy estimator may limit its effectiveness in capturing calibration signals under
censored conditions. In contrast, L5, ., appears to offer a more robust and stable calibration
objective when applied to censored survival data. Notably, a similar trend is observed as well in the
post-calibration setting.
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Case Study I'V: Sensitivity to the loss weight \ and warm-up length L

Setup. We study the sensitivity of ICALD (L8, to the calibration loss weight A €
{0.1,0.3,0.5,0.7,0.9} and the warm-up length L € {50, 100, 200, 400} (with the default L=200).
In Tables [I0]and [T} each cell reports the percentage of datasets for which the setting on the left
outperforms its comparator. Percentages are not statistically significant by Student’s t-test.

Table 10: Comparison across different A values (default A=0.1). Each column shows the percentage
of datasets where A=0.1 outperforms the comparator A € {0.3,0.5,0.7,0.9} for each metric (higher
is better for the comparison rate).

Metric 01vs03 0.1vs05 01vs0.7 0.1vs0.9
MAE 52.4% 61.9% 66.7% 57.1%
IBS 61.9% 81.0% 76.2% 66.7%
Harrell’s C-Index 76.2% 76.2% 76.2% 71.4%
Uno’s C-Index 71.4% 81.0% 76.2% 66.7%
Average Calibration 57.1% 57.1% 57.1% 47.6%
Group Calibration 42.9% 33.3% 47.6% 47.6%
Individual Calibration 50.0% 57.1% 57.1% 50.0%
Total 59.3% 64.3% 65.7% 58.6%

Table 11: Comparison across different warm-up lengths (default L=200). Each column shows the
percentage of datasets where L=200 outperforms the comparator L € {50, 100,400} for each metric
(higher is better for the comparison rate).

Metric 200 vs 50 200 vs 100 200 vs 400
MAE 57.1% 57.1% 57.1%
IBS 52.4% 52.4% 52.4%
Harrell’s C-Index 57.1% 57.1% 61.9%
Uno’s C-Index 52.4% 52.4% 57.1%
Average Calibration 66.7% 57.1% 66.7%
Group Calibration 66.7% 47.6% 66.7%
Individual Calibration 71.4% 57.1% 50.0%
Total 60.5% 54.4% 58.8%

From Tables [I0]and[T1] we can draw the following key observations:

1. Overall robustness. ICALD is generally robust to variations in both A and L. While differences
are not statistically significant, the average trends (over five runs per dataset) show mild variations.

2. Effect of \. As ) increases, calibration-oriented metrics tend to improve, suggesting stronger
distributional calibration at the cost of slight trade-offs in MAE, IBS, and C-indices.

3. Effect of warm-up length L. Changing L has limited impact on overall performance. Metrics
remain stable across L € {50,100, 200,400}, likely because the calibration loss continues
contributing during the post-calibration phase.

Case Study V: Impact of the ¢g-dimensionality in pre-calibration

Setup. To enhance the expressiveness of the calibration anchor, we explore different choices of the
¢-dimensionality in the pre-calibration model LY. ... Specifically, we consider d € {1,2,4,8}
and evaluate whether increasing the dimension of ¢ improves calibration performance. In Table[T2}
each cell reports the number of datasets where d = 4 is significantly better / worse / the same as its
comparator, with statistical significance assessed by Student’s ¢-test (p < 0.05, after FDR correction).

Table [12| shows that increasing the dimension of g (e.g., d = 2,4) generally leads to improved
calibration performance. More specifically,
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Table 12: Comparison under different ¢ dimensions in pre-calibration. Each cell shows the number
of datasets where d = 4 is significantly better / worse / the same as the comparison.

Metric d=4vsd=1 d=4vsd=2 d=4vsd=38
Average Calibration 1/0/20 0/0/21 2/0/19
Group Calibration 1/0/20 0/0/21 2/0/19
Individual Calibration 0/0/14 0/0/14 2/0/12
Total 2/0/54 0/0/56 6/0/50
Proportion (%) 36/0.0/964 0.0/0.0/100.0 10.7/0.0/89.3

1. For d = 4 vs. d = 1. The most significant improvements are observed on the SUPPORT dataset
(where the feature dimension is 14), suggesting that higher ¢g-dimensionality is particularly beneficial
when the input features are high-dimensional.

2. For d = 4 vs. d = 8. Significant improvements are found for the Exponential and LogNorm
datasets, both with = of dimension 1. This indicates that increasing g-dimensionality beyond a
certain point does not necessarily yield additional benefits and may even degrade performance in
lower-dimensional settings.

3. For d = 4 vs. d = 2. Although there are no statistically significant differences, the average metric
(mean over five runs) is slightly better for d = 4 across 21 datasets.

In summary, our results suggest that increasing the g-dimensionality to a moderate level (e.g.,
d = 2,4) generally improves calibration, especially for datasets with higher feature dimensionality.
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