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ABSTRACT

Algorithm design is an art that heavily requires intuition and expertise of the hu-
man designers as well as insights into the problems under consideration. In partic-
ular, the design of greedy-selection rules, the core of greedy algorithms, is usually
a great challenge to designer: it is relatively easy to understand a greedy algo-
rithm while it is always difficult to find out an effective greedy-selection rule. In
the study, we present an approach, called AIA, to learn algorithm design with the
aid of neural networks. We consider the minimum weighted set cover problem
(WSCP), one of the NP-hard problems, as an representative example. Initially, we
formulate a given WSCP as an 0-1 integer linear program (ILP): each variable xi

has two options, i.e., xi = 0, which denotes abandon of the set si, and xi = 1,
which denotes selection of si. Each option of a variable leads to a sub-problem
with respect to the original ILP problem. Next, we design a generic search frame-
work to find the optimal solution to the ILP problem. At each search step, the value
of a variable is determined with the aid of neural networks. The key of our neural
network is the loss function: the original ILP problem and the sub-problems gen-
erated by assigning a variable xi should satisfy the Bellman-Ford equation, which
enables us to set the dissatisfication of Bellman-Ford equation as loss function of
our neural network. The neural network is used as greedy-selection rule. Experi-
mental results on representative instances suggest that using the NN-based greedy
selection rule, we can successfully find the optimal solutions. More importantly,
the NN-based greedy-selection rule outperform the outstanding Chavatal greedy
algorithm, which was designed by human expert. The basic idea of our approach
can be readily extended without significant modification to design greedy algo-
rithm for other NP-hard problems.

1 INTRODUCTION

NP-complete problems, the hardest ones in the NP class, can be validated in polynomial time, but
no polynomial-time algorithm has yet been found to solve these problems. A great variety of prac-
tical problems can be formulated as NP-complete problems, such as strategic planning, production
planning, facility location problems, as well as a variety of scheduling and routing problems. Thus,
despite the hardness of these problems, designing efficient solving algorithms for NP-complete prob-
lems is highly desired.

The weighted set cover problem (WSCP) is a classical NP-complete problem, which aims to find
a subset of columns that cover all the rows of a 0-1 matrix at minimal cost (Karp, 1972). The
algorithms to solve WSCP, say branch-and-bound and branch-and-cut, can only handle instances
with limited size. Therefore, considerable efforts have been devoted to design heuristics and meta-
heuristics that can find optimal or near optimal solutions to large-scale WSCP problems within
a reasonable time. The latest works on meta-heuristic approaches for the WSCP include genetic
algorithms, ant colony optimization, simulated annealing, tabu Search.

With the breakthrough of deep learning (DL) in solving practical problems, many researchers try to
use DL to solve combinatorial optimization problems. Training a neural network end-to-end with
supervised learning to solve theoretically complex combinatorial optimization problems is a diffi-
cult problem. On the one hand, traditional algorithms and mathematical methods have a relatively
complex theoretical foundation while the neural network as a black box lacks theoretical foundation.
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On the other hand, many practical problems have their specific data characteristics while DL models
usually require a large amount of labeled data under the distribution and constructing labeled data
needs to know the optimal solution of the original problem, so it is very difficult to build a large-scale
dataset like ImageNet(Russakovsky et al., 2015).

Thus, we are not directly solving this problem end-to-end like other fields. In the study, we present
an approach, called AIA, to learn algorithm design with the aid of neural networks. The specific
goal of this paper is to use machine learning to find greedy rules for solving WSCP and then design
an efficient and practical algorithm for WSCP.

Our main contributions of this work are as follows:

1. We propose an idea to solve the problem, where the neural network learns greedy strategies
to assist researchers in designing algorithms instead of using deep learning to solve the
problem end-to-end.

2. We propose the NNVal algorithm, which uses a simple neural network to score recursive
sub-problems that are used to guide a multi-step decision-making process, and a special
novel loss function is designed to train the neural network.

3. We propose the NNGreedy algorithm for WSCP. The experimental results on multiple
datasets show that compared with greedy algorithms designed based on human experience,
such as the Chvatal algorithm, the NNGreedy algorithm can obtain better solution.

2 RELATED WORKS AND BACKGROUND

There exist two traditional approaches to solve combinatorial optimization problems: exact algo-
rithms and approximate/heuristic algorithms. Exact algorithms are guaranteed to find optimal so-
lutions, but they become intractable when the problem scales up. Approximate algorithms trade
optimality for computational efficiency. They are problem-specific, often designed by iteratively
applying a simple man-crafted rule, known as heuristic. Their complexity is polynomial and their
quality depends on an approximate ratio that characterizes the worst/average-case error w.r.t the
optimal solution.

For NP-complete or even NP-hard constraint programming problems, the exact algorithm usually
adopts the divide-and-conquer approach, dividing the solution process into multiple parts, and grad-
ually eliminate poor choices until the optimal solution is found. These methods are essentially
exhaustive search and their time complexity are exponential.

The cores of the divide-and-conquer strategy is how to decompose it into sub-problems and which
sub-problem to choose to solve first. Taking the Traveling Salesman Problem (TSP) as an example,
the solution software Concorde(Applegate et al., 2002) adopts the branch-and-bound combined with
cut plane method. For more general mixed integer linear programming problems, the mainstream
solvers, for example, Gurobi(Bixby, 2007), CPLEX(Cplex, 2009), XPRESS(Laundy et al., 2009),
SCIP(Gamrath et al., 2016), etc., also use branch and bound combined with cutting plane and column
generation technology.

When searching for the optimal solution, heuristic rules play an important role. Taking mixed inte-
ger programming as an example, in the branch-and-bound process, selecting an appropriate branch
variable requires heuristic rules, and each time a sub-problem is re-selected also requires heuris-
tic rules. Choosing appropriate branching variables and subproblems can significantly reduce the
search space. In addition, to obtain a good feasible solution as soon as possible to speed up pruning,
the algorithm performs a simple and fast primitive heuristic strategy on each subproblem. A good
original heuristic can find better feasible solutions faster.

Heuristic rules depend on the specific problem and solution process. In other words, different heuris-
tic rules and different parameters have different effects on different data and at different stages of
solution. Therefore, data-driven machine learning technique is a potential heuristic rule design
method.

In the last decade, DL has significantly improved Computer Vision, Natural Language Processing
and Speech Recognition by replacing hand-crafted features with features learned from data(LeCun
et al., 2015). On the one hand, combinatorial optimization algorithms are often used as a com-
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plement to deep learning solutions. DETR(Carion et al., 2020) uses a bipartite graph matching
algorithm to replace the NMS post-processing in traditional object detection, which solves a pain
point in this field. DeepSORT(Wojke et al., 2017) uses the Hungarian algorithm to tell if an object in
current frame is the same as the one in previous frame, which is one of the most popular and general
object tracking algorithms.

On the other hand, more and more researchers have introduced neural network into Combinatorial
Optimization, called Neural Combinatorial Optimization(Garmendia et al., 2022), which attempts
to learn good heuristics for solving a set of problems using Neural Network models. The use of
machine learning techniques in NP-complete problem solving can be divided into two categories:
one is learning from expert knowledge, that is, supervised learning, and the other is learning from
experience, that is, reinforcement learning, which is briefly described as follows:

Supervised learning is relatively common and easy to implement. In the branch and bound frame-
work of Mixed Integer Programming Solver, there are more than 10 heuristic rules for the selection
of branch variables. The Strong Branch strategy is recognized as the branch variable selection strat-
egy that minimizes the size of the branch search tree (Achterberg et al., 2005). It selects the variable
branch that minimizes the lower bound of the new sub-problem after the branch every time. The
cost is that for each branch, the lower bound of the new subproblem must be calculated. This step
introduces a lot of calculations, and absolutely most calculations cannot be reused in subsequent
solutions. This makes the strong branching strategy lag behind in solving time compared to other
rules. In order to overcome the shortcoming of the strong branch strategy, Marcos Alvarez(Alvarez
et al., 2014) used a special kind of decision tree to learn the branch variable selection strategy of
Strong Branch. Khalil(Khalil et al., 2016) proposes an instance-specific learning framework. For
each problem, the choice of strong branching strategy is recorded on several sub-problems at the be-
ginning, and the features of each variable and each step are extracted at the same time. They train an
SVMrank and use the learned model on the following sub-problems. Gasse uses a Graph Convolu-
tional Neural Network(Gasse et al., 2019) to extract deeper information on variables and constraints
before each branch to learn the choice of strong branching strategies. He(He et al., 2014) designed
a machine learning algorithm,in which among all open subproblems, the subproblem whose sub-
tree contains the optimal solution will be selected. Chaitanya’s work(Joshi et al., 2019) uses a deep
graph network by supervision to predict the probabilities of an edge to be in the TSP tour, which
is more sample efficient compared to reinforcement learning, whose feasible tour is generated by
beam search.

Reinforcement learning techniques are mostly used in solving algorithms for specific NP-hard
problems. Taking the TSP problem as an example, Vinyals(Vinyals et al., 2015) proposed a pointer
network, and introduced a pointer in the decoder RNN, which solves the problem of variable size
output dictionaries using the mechanism of neural attention. This model solves the problem that
the output scale strictly depends on the input scale during training. Bello(Bello et al., 2016) uses
a similar model structure, sets the current total distance as a reward, and uses reinforcement learn-
ing to train the network, which solves parts of problems that supervised learning is difficult to deal
with, such as non-unique standard answers. Kool and Welling(Kool et al., 2018) replaced the Re-
current Neural Network (RNN) with a Graph Neural Network (GNN) to process the input. All
three above use reinforcement learning to train end-to-end models. Astounding results from Trans-
former(Vaswani et al., 2017) models on NLP and CV tasks(Khan et al., 2021) have intrigued the
researcher to study their application to TSP. Xavier and Thomas(Bresson & Laurent, 2021) propose
to adapt the Transformer architecture to the combinatorial TSP. Training is done by reinforcement
learning, hence without TSP training solutions, and decoding uses beam search. As for the learning
of specific heuristic rules, Khalil uses the graph neural network (Khalil et al., 2017) to encode graph
information to make choices.

In general, reinforcement learning methods are more widely used in solving combinatorial optimiza-
tion problems, which don’t require too much prior knowledge, while supervised learning methods
are more efficient in sampling and training. All in all, the use of machine learning to assist the solu-
tion of combinatorial optimization problems is a very promising research trend. The main question
is whether DL can learn better heuristics from data, i.e. replacing human-designed heuristics.
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3 STATE-TRANSITION EQUATION

The WSCP is the problem of covering the rows of an m-row, n-column, 0-1 matrix A with a subset
of the columns at minimum cost. Problem 1 is a matrix form of WSCP.

min z = cTx

s.t.

{
Ax ≥ b

xj = 0 or 1 (j = 1, 2, · · · , n).
(1)

We define a state sk = [A, b, c; k] (k = 0, 1, ..., n). k=0 represents the original programming
problem and k >0 means that the variables x1, x2, ..., xk have already been fixed. We define the
problem as a multistep decision-making process, determining whether a variable xk is 0 or 1 at each
step. If x1=1 at the first step, A with m rows and n columns turns to be A′, which has m rows and
n − 1 columns and b turns to be b − α1(αj is the j-th column of A). We redefine the problem as
follows,

min z = cTx

s.t.


Ax ≥ b

x1, x2, ..., xk are fixed

xk+1, xk+2, ..., xn = 0 or 1

(2)

We define f(sk) as the optimal solution of the subprogram 2 under the state sk.Therefore state-
transition equation can be obtained,

f(sk+1) = min
xk+1=0 or 1

f(sk), k = 0, ..., n− 1 (3)

4 METHOD

We use a neural network to score each sub-problem and guide multi-step decision-making according
to equation 3 instead of predicting the solution to the sub-problem. We call this algorithm NNVal.1

4.1 PROBLEM REFORMULATION

Supposing the optimal solution of the sub-problem 2 is f(A, b, c), jwe have the following state-
transition equation at state sk,

f(A′, b′, c′) = min (f (A′′, b′, c′′) , ck+1 + f (A′′, b′ − αk+1, c
′′)) (4)

A′ = A′
m×(n−k) = (αk+1, αk+2, ..., αn)

A′′ = A′′
m×(n−k−1) = (αk+2, αk+3, ..., αn)

b′ = b
′

m = b− (x∗
1α1 + ...+ x∗

kαk)

c′ = c′n−k = (ck+1; ck+2; ...; cn)

c′′ = c′′n−k−1 = (ck+2; ck+3; ...; cn)

where, x∗
k is the variable determined at state sk−1 and αk represents the k-th column of A. We

define f(A, b, c) = +∞ when Ax ≥ b has no feasible solution.

Thus, given the function f , it is easy to get:

xk+1 =

{
0 f(A′′, b′, c′′) ≤ ck+1 + f(A′′, b′ − αk+1, c

′′)

1 f(A′′, b′, c′′) > ck+1 + f(A′′, b′ − αk+1, c
′′)

(5)

1Appendix B provide the training process including flowchat and pseudocode
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4.2 NNVAL ALGORITHM

A simple idea is to fit f with a neural network, but it may not be feasible. On the one hand, it is
due to the difficulty of obtaining labeled data, and on the other hand, due to the characteristics of
the neural network itself, the input changes little, but the output may change greatly, so it is difficult
to accurately predict the target. We decide to make full use of the state-transition equation. Our
model gθ does not directly learn the optimized values of the sub-problems, but learns the recursive
relationship between the original problem and the sub-problems.

For preserving all information of the problem and simplifying the training procedure, we use a
simple two-layer fully-connected neural network to learn the recursive relationship. The model gθ
input is the same as the input of f , whose input layer has m× n+m+ n nodes, corresponding to
A, b and c of the original Problem 1. As for sub-problem input, αk and ck corresponding to fixed
variables xk are set to 0. The output layer of the network has 1 node. 1 hidden layer is in the middle,
which has m+ n nodes. The whole model is shown in Figure 1.

Figure 1: Neural Network for NNVal

4.3 LOSS FUNCTION

We define the state transition loss function for one-step decision-making just as follows,

L(P ; θ) = Lsquare + Laux (6)

In dynamic programming, the recurrence relation is as follow,

Objval(P ) = min{Objval(SP0),Objval(SP1)} (7)

where P is the original problem and SP is sub-problem of P . We hope our model can also learn
the recursive relationship, so we define Lsquare as follows,

Lsquare = (gθ(P )−min {gθ(SP0), gθ(SP1)})2 (8)

We want the output of the original problem to be as close as possible to the output of the correct sub-
problem. However, this is not enough, because sometimes there are situations where sub-problems
are not feasible. Thus, we add the auxiliary item Laux as follow,

Laux = ReLU (gθ(feasible SP)− gθ(infeasible SP)) (9)
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where ReLU(x) = max(x, 0). We know Laux is equal to 0 when the model output of feasible sub-
problem is less than the infeasible, and if infeasible sub-problem is selected, this item will generate
a positive penalty. All in all, Lsquare is mainly used to make model learn the recursive relationship,
and Laux is used to control the case where the sub-problem is not feasible.2

4.4 IMPROVEMENT

The algorithm discussed before relies on external library functions to judge the feasibility of the sub-
problem, so it is suitable for any 0-1 ILP. This section attempts to mine the nature of the weighted set
coverage problem itself, which is more controllable and flexible. In order to facilitate the distinction,
we call the algorithm discussed before as NNVal V1, and the algorithm to be discussed next is called
NNVal V2.

In NNVal V2, we still use a two-layer fully-connected neural network just as V1. The difference
of model from V1 is that a ReLU layer is added. The structure of the neural network is shown in
Figure 2, where b̃ = ReLU(b).

Figure 2: Neural network for improved version of NNVal

Let’s rethink the sub-problem corresponding to state sk = [A, b, c; k],

min ck+1xk+1 + ...+ cnxn + (c1x
∗
1 + ...+ ckx

∗
k)

s.t. αk+1xk+1 + ...+ αnxn ≥ b− (α1x
∗
1 + ...+ αkx

∗
k)

xk+1, xk+2, ..., xn = 0 or 1

(10)

where the constant term on the right side of the constraint inequality takes a integer value not ex-
ceeding 1. In fact, for such a 0-1 ILP, the value of b− (α1x

∗
1 + ...+αkx

∗
k) being 0 or less than 0 has

no effect on the solution, so we can use ReLU to reduce the complexity of training. The i-th row of
the inequality constraint can be written as,

ai,k+1xk+1 + ...+ ai,nxn ≥ bi,k+1 (11)

where bi,k+1 ∈ Z ∩ {x | x ≤ 1} is the i-th row element of b − (α1x
∗
1 + ... + αkx

∗
k), ai,j ∈ {0, 1}

is the i-th row element of αj and xj ∈ {0, 1}.
In fact, xk+1, ..., xn can be arbitrarily 0 or 1 if bi,k+1 ≤ 0. However if bi,k+1 = 1, then the
row constraint is possible to have further restrictions on xk+1, ..., xn being 0 or 1. In particular, if
bi,k+1 = 1, ai,l = 1 and ai,k+1 = ... = ai,l−1 = ai,l+1, ... = ai,n = 0, then the line constraint
becomes xl ≥ 1 and we get xl = 1.

2More interpretion is shown in appendix A
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Thus, before the state transition, check whether xk+1 need to be fixed to 1. If so directly specify
xk+1 = 1, otherwise make a state transition according to the result of the model gθ.

4.5 NNGREEDY ALGORITHM

Based on NNVal algorithm, we design greedy rule and greedy algorithm NNGreedy. The NNGreedy
algorithm makes decisions step by step from x1 to xn, and finally obtains a complete solution.
Without loss of generality, we record Pk as the original problem of the k-th step. SPk0 corresponds
to the sub-problem when xk = 0 and SPk1 corresponds to the sub-problem when xk = 1. The
greedy rule adopted by the NNGreedy algorithm is as follows,

Algorithm 1 NNGreedy algorithm greedy rule
1: if gθ(SPk0) < gθ(SPk1) then
2: xk = 0
3: else
4: xk = 1
5: end if

In a specific WSCP, for Si ∈ F ,∀i ∈ {1, 2, ..., n}, xi = 0 means not choosing Si and xi = 1 means
Si is selected. The pseudo-code of the NNGreedy algorithm can be expressed as follows,

Algorithm 2 NNGreedy greedy algorithm
1: for i = 1→ n do
2: Calculated xi according to the NNGreedy greedy rule
3: end for
4: Output x1, x2, ..., xn and

∑n
i=1 wixi

5 EXPERIMENTS

5.1 NNVAL EXPERIMENTS

This article uses PyTorch1.6. The CPU is an Intel Core i7-8700K, and the GPU is an NVIDIA
GeForce GTX 1080Ti. We randomly generate some weighted set coverage problems as dataset
according to the method of Balas & Ho (1980). We use the two scale as follow,

1. Small-scale ILP instance, full set |U | = 20, 20 subsets S1, S2, ..., S20, constraint matrix
density is 0.1, that is, the probability of the number 1 appearing in the constraint matrix.

2. Large-scale ILP instance, full set |U | = 50, 50 subsets S1, S2, ..., S50, constraint matrix
density is the same as small-scale instance.

The NNVal algorithm is mainly used to assist decision making at every step, and the sub-problems
at different stages have different scales. In order to prove the effectiveness of the algorithm, we
conduct experiments on problems of different scales. We choose sub-problem pairs (SP0, SP1) to
evaluate.

Table1 shows the estimation of the order between the sub-problems of NNVal pairs on small-scale
and big-scale instances, and their estimation accuracy is 95.4% and 86.5%.

5.2 NNGREEDY EXPERIMENTS

We compared the NNgreedy algorithm with the Chvatal’s greedy algorithm, which is designed
purely based on human experience, in terms of time and solution quality

On 100 small-scale instances, we compare the NNGreedy algorithm and the Chvatal greedy algo-
rithm from two perspectives:
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Table 1: The estimation relationship on sub-problem pairs in 2 scales

SCALE Obj(SP0)<Obj(SP1) Obj(SP0)>Obj(SP1) Acc

Big gθ(SP0)<gθ(SP1) 217 139 86.50%
gθ(SP0)>gθ(SP1) 128 1494

Small gθ(SP0)<gθ(SP1) 281 33 95.39%
gθ(SP0)>gθ(SP1) 28 982

Table 2: Comparison of solution quality on small scale instances

Instance Optimal Obj Chvatal Greedy NNGreedy
Objective Value Gap Objective Value Gap

I20 1 416 416 0 416 0
I20 2 621 676 8.86% 621 0
I20 3 494 598 21.05% 503 1.82%
I20 4 451 490 10.87% 451 0
I20 5 542 542 0 542 0
I20 6 520 553 6.35% 520 0
I20 7 570 678 18.95% 570 0
I20 8 602 702 16.61% 602 0
I20 9 529 549 3.78% 529 0
I20 10 427 427 0 432 1.17%

1. Comparison of the number of instances to obtain the optimal solution: NNGreedy obtains
the optimal solution on 87 instances, and the Chvatal greedy algorithm obtains the optimal
solution on 11 instances.

2. Comparison of solution Quality: On 87 instances, the solution obtained by NNGreedy
is better than the solution obtained by Chvatal greedy, and on 3 instances, the solution
obtained by NNGreedy is inferior to the Chvatal greedy algorithm.

Table 2 shows the specific solution quality comparison of the two greedy algorithms on 10 small-
scale instances. As shown in the table 2, the solution quality of NNGreedy algorithm is better than
that of the Chvatal greedy algorithm.

On 10 large-scale instances, we also compares the NNGreedy algorithm and the Chvatal greedy
algorithm from the perspectives of the number of instances to find the optimal solution and the
quality of the solution:

1. Comparison of the number of instances for obtaining the optimal solution: NNGreedy
obtains the optimal solution on one instance, and the Chvatal greedy algorithm does not
obtain the optimal solution on any instance.

2. Comparison of solution Quality: On 8 instances, the solution obtained by NNGreedy is
better than the solution obtained by the Chvatal greedy algorithm, and on 2 instances, the
solution obtained by NNGreedy is inferior to the Chvatal greedy algorithm.

Table 3 shows the specific solution quality comparison of the two greedy algorithms on 10 large-
scale instances. The experimental results show that the solution quality of the NNgreedy algorithm
is better than that of the Chvatal greedy algorithm.

Although the NNGreedy algorithm is slow to solve due to embedding training, it is acceptable, and
the iteration time of each round is about 0.01s to 0.1s
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Table 3: Comparison of solution quality on big scale instances

Instance Optimal Obj Chvatal Greedy NNGreedy
Objective Value Gap Objective Value Gap

I50 1 1559 1742 11.73% 1725 10.65%
I50 2 2206 2452 11.15% 2331 5.67%
I50 3 1221 1899 55.53% 1760 44.14%
I50 4 2548 3203 25.71% 3067 20.37%
I50 5 2315 2417 4.41% 2408 4.02%
I50 6 1965 2294 16.74% 2298 16.95%
I50 7 1933 2128 9.83% 2030 5.02%
I50 8 1975 2101 6.28% 2013 1.92%
I50 9 2105 2439 15.87% 2525 19.95%

I50 10 1630 1888 15.83% 1630 0

6 CONCLUSION AND DISCUSSIONS

Aiming at the WSCP, this paper proposes an optimal sub-problem estimation algorithm NNVal
and a solving algorithm NNGreeny. Experiments show that the NNVal algorithm and NNGreedy
algorithm based on deep learning can obtain better solutions than the Chvatal greedy algorithm based
on human experience. The basic idea of our approach can be readily extended without significant
modification to design greedy algorithm for other NP-hard problems.

Although NNGreedy is sufficient for neural network training to converge on the corresponding SCP,
there is still a certain time gap from commercial solvers. In addition, the hyperparameter setting of
the iterative algorithm is still an issue. For the WSCP of the same scale, under the same parameters,
the time for the training to converge to the output optimal solution is still not stable.

This paper is an attempt to use deep learning technology to assist algorithm design: the greedy
algorithm proposed in this paper does not rely on human experience to design greedy rules, but learns
greedy rules, which is an intelligent search algorithm and can help to overcome the inadequacy of
human experience. We believe that data-driven algorithm design will be a new hot topic.
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A LOSS FUNCTION FOR ILP

The neural network model is denoted as gθ where θ is the parameters of the neural network. We first
need gθ satisfy the state-transition equation as follows,

gθ(A
′, b′, c′) = min (gθ(A

′′, b′, c′′), ck+1 + gθ(A
′′, b′ − αk+1, c

′′)) (12)

We define the following variables:
LHS = gθ(sk) = gθ(A

′, b′, c′)

RHS1 = gθ(sk, xk+1 = 1) = ck+1 + gθ(A
′′, b′ − αk+1, c

′′)

RHS0 = gθ(sk, xk+1 = 0) = gθ(A
′′, b′, c′′)

(13)

We want gθ to satisfy the state-transition equation 14:

LHS =


min(RHS1,RHS0) xk+1 is free
RHS1 xk+1 = 0 is infeasible
RHS0 xk+1 = 1 is infeasible

(14)

There is an important fact that we have defined f(A, b, c) = +∞ when xi = 0 or 1 has no feasible
solution. This constraint should be taken into the loss function as well. Therefore, the loss function
(for one-step state-transition) can be designed as follows:

loss(θ) =


(LHS−min(RHS1,RHS0))2 xk+1 is free
(LHS− RHS1)2 + ReLU(RHS1− RHS0) xk+1 = 0 is infeasible
(LHS− RHS0)2 + ReLU(RHS0− RHS1) xk+1 = 1 is infeasible

(15)

The purpose of the ReLU item is to make the output of gθ large enough when the sub-problem is not
feasible. In fact, in one-step state transition, gθ can obtain the correct optimal solution as long as the
output value of gθ in the infeasible state is greater than the one in the feasible. When the training is
over, the optimal solution can be obtained according to the equation 16 in each step.

xk+1 =

{
0 gθ(A

′′, b′, c′′) ≤ ck+1 + gθ(A
′′, b′ − αk+1, c

′′)

1 gθ(A
′′, b′, c′′) > ck+1 + gθ(A

′′, b′ − αk+1, c
′′)

(16)

B TRAINING PROCESS

Figure 3: Training process used in NNVal V1
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In order to understand the training process of the algorithm, we provide the algorithm flowchart and
pseudocode in this section. For algorithm NNVal V1, the flowchart is Figure 3 and the pseudocode is
Algorithm 3 and for algorithm NNVal V2, the flowchart is Figure 4 and the pseudocode is Algorithm
4.

Algorithm 3 Training Algorithm for NNVal V1
1: Initialize gθ, data pool D, exploration rate ϵ, learning rate η and max iteration number T , t← 1
2: while t < T do
3: Trj, sol← GENERATETRAJECTORY(gθ,A, c)
4: Push Trj with weight cT · sol into data pool D
5: Generate a batch training data B by weighted sampling in D
6: Calculate L(θ) =

∑
B L(θ)

7: θ ← θ − η∇L(θ)
8: Evaluate gθ
9: end while

10: function GENERATETRAJECTORY(g,A, c)
11: m,n← A.shape, btmp ← {1, ..., 1}T
12: Initialize sol, Trj
13: for i = 1→ n do
14: αi ← the i-th column of A, ci ← the i-th number of c
15: A0 ← A, the i-th column of A← 0
16: J1 ← CHECKFEASIBLE(A, btmp − αi), J0 ← CHECKFEASIBLE(A, btmp)
17: R1 ← g(A, btmp − αi) + ci, R0 ← g(A, btmp)
18: According to J1, J0, R1, R0, calculate xi with exploration rate ϵ, update btmp, push xi

into sol, push (A0,A, btmp, αi, ci) into Trj
19: end for
20: return Trj, sol
21: end function
22: function CHECKFEASIBLE(A, b)
23: if Ax ≥ b is feasible then
24: return True
25: else
26: return False
27: end if
28: end function

Figure 4: Training process used in NNVal V2
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Algorithm 4 Training Algorithm for NNVal V2
1: Initialize gθ, data pool D, exploration rate ϵ, learning rate η and max iteration number T , t← 1
2: while t < T do
3: Trj, sol← GENERATETRAJECTORY(gθ,A, c)
4: Push Trj with weight cT · sol into data pool D
5: Generate a batch training data B by weighted sampling in D
6: Calculate L(θ) =

∑
B L(θ)

7: θ ← θ − η∇L(θ)
8: Evaluate gθ
9: end while

10: function GENERATETRAJECTORY(g,A, c)
11: m,n← A.shape, btmp ← {1, ..., 1}T , initialize sol, Trj
12: for i = 1→ n do
13: αi ← the i-th column of A, ci ← the i-th number of c, A0 ← A,
14: label, fix idxs← CHECKFIXING(A, btmp, i)
15: if label == True then
16: Push xi = 1 into sol, the i-th column of A← 0
17: Push (A0,A, btmp, αi, ci) into Trj, btmp ← btmp − αi

18: else
19: The i-th column of A← 0, push (A0,A, btmp, αi, ci) into Trj
20: R1 ← g(A, btmp − αi) + ci, R0 ← g(A, btmp)
21: According to R1, R0, calculate xi with exploration rate ϵ, update btmp, push xi into

sol
22: end if
23: end for
24: return Trj, sol
25: end function
26: function CHECKFIXING(A, b, idx)
27: m,n← A.shape, label← False, initialize fix idxs
28: for i = 1→ m and b[i] < 1 do
29: Calculate cnt, which is the number of 1 in A[i], pos means a position of 1
30: if cnt == 1 then
31: Push pos into fix idxs
32: end if
33: end for
34: if idx in fix idxs then
35: label← True
36: end if
37: return label, fix idxs
38: end function
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