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Abstract— Electroretinogram (ERG) signals show 

distinctive patterns in neurodevelopmental disorders including 

autism spectrum disorder (ASD) and attention 

deficit/hyperactivity disorder (ADHD). Traditional ERG 

analysis relies primarily on time-domain features, limiting the 

capture of complex nonlinear relationships. We propose ERG-

Graph, a novel graph signal processing approach that 

transforms ERG signals into graph networks to extract 

topological features for improved classification. Using 5,838 

ERG recordings from 278 subjects across four groups (Control, 

ADHD, ASD, ASD+ADHD), we applied quantization and k-

nearest neighbor graph construction to create ERG-graphs and 

extracted 25 graph-level features including centrality measures, 

spectral properties, and connectivity metrics. Seven machine 

learning algorithms were evaluated with leave-one-subject-out 

cross-validation, achieving balanced accuracies of 0.77 for 

ADHD vs. Control and 0.76 for ASD vs. Control using Random 

Forest, outperforming traditional ERG features. ERG-Graph 

demonstrates superior performance in multi-class scenarios and 

captures subtle topological patterns associated with 

neurodevelopmental conditions, offering a promising 

advancement in automated ERG-based diagnosis.  
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I. INTRODUCTION 

Neurodevelopmental disorders significantly impact global 
populations, with autism spectrum disorder (ASD) affecting 
approximately 2.8% of children and attention 
deficit/hyperactivity disorder (ADHD) affecting 6-7% of 
children worldwide [1]. Traditional diagnostic approaches 
rely heavily on behavioral assessments, which can be 
subjective and time-consuming. The electroretinogram 
(ERG), a direct measure of retinal electrical activity, has 
emerged as a promising biomarker for neurodevelopmental 
conditions due to the retina's role as a "window to the brain" 
[2]. However, current ERG analysis methods primarily focus 
on conventional time-domain features such as amplitude and 
timing parameters, which may not capture the complex 
nonlinear relationships and subtle patterns that could 
distinguish between different neurodevelopmental conditions. 
This limitation in feature extraction restricts the diagnostic 
potential of ERG-based approaches for automated 
classification of neurodevelopmental disorders. 

Previous ERG studies in neurodevelopmental disorders 
have primarily focused on time-domain features such as a-
wave and b-wave amplitudes and timing parameters [3], [4]. 
While these approaches have shown promise, they may not 
capture the complex nonlinear relationships inherent in ERG 
signals that could distinguish between different 
neurodevelopmental conditions. Recent advances in machine 
learning and spectral analysis have improved classification 
accuracy, with studies achieving balanced accuracies up to 
0.87 for ASD and 0.84 for ADHD using traditional feature 
extraction methods [5]. 

Graph signal processing (GSP) has emerged as a powerful 
framework for analyzing complex, nonlinear data by 
representing signals as networks where nodes represent signal 
values and edges capture relationships between them [6]. The 
EDA-Graph method, recently developed for emotion 
recognition from electrodermal activity, demonstrated 
superior performance by capturing topological patterns that 
traditional methods missed, achieving F1-scores up to 0.68 
compared to 0.56 with conventional features [7]. 

We propose ERG-Graph, the first application of graph 
signal processing to ERG data analysis. ERG signals exhibit 
complex nonlinear dynamics that traditional time-domain 
analysis may not fully capture. Our approach transforms time-
series ERG signals into graph networks where nodes represent 
signal values and edges encode relationships between them, 
enabling extraction of topological features that capture 
complex patterns associated with different 
neurodevelopmental conditions. 

II. METHODOLOGY 

A. Dataset and Participants 

ERG recordings were obtained from 278 subjects across 
four diagnostic groups: Control (n=137), ADHD (n=43), ASD 
(n=77), and ASD+ADHD (n=21). The dataset consisted of 
5,838 ERG signals with 235 time points each, recorded using 
standardized protocols with flash strengths of 113 and 446 
Td.s on both eyes. All recordings were performed using 
RETeval handheld ERG devices following International 
Society for Clinical Electrophysiology of Vision guidelines. 



B. Traditional Time-Domain ERG Analysis 

Following established ERG analysis protocols [5], 
traditional features were extracted to serve as baseline 
comparison methods. The conventional ERG analysis focused 
on characteristic waveform components including Time-
Domain Parameters, Statistical Features, Frequency-
Domain Analysis, Oscillatory Potentials. 

C. ERG-Graph Construction 

We implemented a five-step process to construct ERG-
graphs: 

1) Step 1: Signal Quantization. Continuous ERG signals 

were discretized using quantization step Q = 0.05 µV, selected 

through systematic optimization across values from 0.001 to 

0.99 µV. The quantization process was defined as: 

 

𝑥𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑 = 𝑄 ∙ 𝑟𝑜𝑢𝑛𝑑 (
𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑄
) (1) 

where 𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  represents the continuous ERG signal 

amplitude values (in µV), 𝑄 is the quantization step size (set 
to 0.05 µV), and 𝑥𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑒𝑑  is the resulting discretized signal. 

The round function maps continuous values to the nearest 
quantization level. 

2) Step 2: Node Definition. Unique quantized values 

within each ERG segment formed the graph nodes, capturing 

discrete signal dynamics while reducing computational 

complexity. 

𝑁 = 𝑣1, 𝑣2, … , 𝑣𝑛  (2) 

where 𝑁 represents the set of nodes, 𝑣𝑖 vi denotes the 𝑖-th 
unique quantized value, and 𝑛 is the total number of unique 
values in the signal segment. Each node captures a discrete 
amplitude level present in the ERG recording. 

3) Step 3: Distance Calculation. Euclidean distances were 

computed between all node pairs: 

𝐷𝑖𝑗 = √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2𝑀

𝑘=1  (3) 

where 𝐷𝑖𝑗  is the Euclidean distance between nodes 𝑖 and 𝑗, 

𝑥𝑖𝑘  and 𝑥𝑗𝑘  represent the 𝑘 -th dimension of nodes 𝑖  and 𝑗 

respectively, and 𝑀  is the signal dimensionality (M=1 for 

univariate ERG signals). The distance matrix 𝐷  of size 

𝑛 × 𝑛 stores all pairwise distances. 

4) Step 4: Each node was connected to its kk k nearest 

neighbors to form the graph structure: 

𝐸 = {(𝑣𝑖 , 𝑣𝑗 , 𝑤𝑖𝑗): 𝑣𝑗 ∈ 𝑘 − 𝑁𝑁(𝑣𝑖)} (4) 

where 𝐸  represents the edge set, 𝑣𝑖  and 𝑣𝑗  are source and 

target nodes, 𝑤𝑖𝑗  is the edge weight, and k-NN(𝑣𝑖) denotes 

the k nearest neighbors of node 𝑣𝑖 (k=8). Edge weights were 

defined as: 

𝑤𝑖𝑗 =
1

𝐷𝑖𝑗
  (5) 

where 𝑤𝑖𝑗  is inversely proportional to the distance 𝐷𝑖𝑗 , 

ensuring that closer nodes have stronger connections. 

5) Step 5: Adjacency Matrix. The final graph 

representation was encoded in an adjacency matrix: 

𝐴𝑖𝑗 = 𝑤𝑖𝑗𝑖𝑓(𝑣𝑖 , 𝑣𝑗 , 𝑤𝑖𝑗) ∈ 𝐸; 0𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (6) 

where 𝐴  is the 𝑛 × 𝑛  adjacency matrix, and 𝐴𝑖𝑗 represents 

the connection weight between nodes 𝑖 and 𝑗. 

This process is similar to the graph signal processing pipeline 

that was used to analyze electrodermal activity signals for 

emotion recognition presented in a previous study [7]. 

D. Feature Extraction 

We extracted 25 graph-level features capturing topological 

properties: 

• Centrality Measures: Degree, closeness, 

betweenness, harmonic, and load centrality (mean, 

std, max) 

• Graph Structure: Number of nodes, edges, 

density, clustering coefficient, transitivity 

• Connectivity: Diameter, radius, strongly/weakly 

connected components 

• Spectral Properties: Spectral radius, spectral gap 

• Network Topology: Number of cliques 
For comparison, traditional ERG features were extracted 

including a-wave and b-wave amplitudes, timing parameters, 
and statistical measures (mean, standard deviation, skewness, 
kurtosis). 

E. Machine Learning Classification 

We performed multiple classification scenarios to evaluate 
the discriminative power of ERG-Graph features: (1) binary 
classifications comparing each neurodevelopmental disorder 
group against controls (Control vs. ADHD, Control vs. ASD, 
Control vs. ASD+ADHD), (2) binary comparisons between 
disorder groups (ADHD vs. ASD, ADHD vs. ASD+ADHD, 
ASD vs. ASD+ADHD), (3) three-class classification (Control 
vs. ASD vs. ADHD), and (4) four-class classification 
including all groups (Control vs. ASD vs. ADHD vs. 
ASD+ADHD). 

Seven machine learning algorithms were evaluated: 
Random Forest (RF), Gradient Boosting (GBC), Support 
Vector Machine (SVM), K-Nearest Neighbors (KNN), 
Gaussian Naive Bayes (GNB), Decision Tree (DT), and 
Multi-Layer Perceptron (MLP). Hyperparameter optimization 
was performed using 3-fold cross-validation with SMOTE 
balancing. Final evaluation used leave-one-subject-out cross-
validation to ensure generalizability across individuals. 

Performance was assessed using balanced accuracy (BA), 
F1-score, and AUC-ROC metrics for both binary 
classifications (Control vs. disorder) and multi-class 
scenarios. 

III. RESULTS 

Fig. 1 illustrates the ERG-Graph methodology pipeline 
from raw signal to graph construction. The process transforms 
traditional ERG waveforms with characteristic a-wave, b-
wave, and oscillatory potential components (Fig. 1a) into 
graph network representations (Fig. 1c). While conventional 
analysis extracts time-domain, statistical, and frequency-
domain features (Fig. 1b), ERG-Graph converts the signal into 
a network where nodes represent quantized signal values and 
edges encode topological relationships, enabling extraction of 
connectivity patterns that complement traditional methods.  

Identify applicable funding agency here. If none, delete this text box. 



A. Graph Construction Optimization 

Systematic evaluation across quantization values from 
0.001 to 0.99 µV identified Q = 0.05 µV as optimal for 
classification performance. 

B. Binary Classification Performance 

TABLE I.  BINARY CLASSIFICATION PERFORMANCE 

COMPARISON 

Comparison Method Algorithm 
Balanced 

Accuracy 
F1-Score AUC 

Control vs 

ADHD 

ERG-

Graph 
RF 0.773 0.773 0.81 

Traditional SVM 0.842 0.831 0.86 

Control vs 

ASD 

ERG-

Graph 
RF 0.763 0.763 0.83 

Traditional RF 0.759 0.761 0.78 

C. Multi-Class Classification Results 

TABLE II.  MULTI-CLASS CLASSIFICATION PERFORMANCE 

Comparison Method Algorithm 
Balanced 

Accuracy 
F1-Score 

3-class 

(Control 

ASD ADHD) 

ERG-Graph KNN 0.704 0.660 

Traditional SVM 0.648 0.620 

4-class (All 

groups) 

ERG-Graph RF 0.529 0.526 

Traditional RF 0.491 0.477 

D. Statistical Analysis of Features 

Kruskal-Wallis tests identified significant differences (p < 
0.05) between all pairwise diagnostic group comparisons 
(Control vs. ADHD, Control vs. ASD, Control vs. 

ASD+ADHD, ADHD vs. ASD, ADHD vs. ASD+ADHD, and 
ASD vs. ASD+ADHD) for ERG-Graph features. 

For Control vs. ADHD classification, ERG-Graph 
achieved balanced accuracy of 0.773 using Random Forest, 
compared to 0.842 for traditional methods using AdaBoost. 
Control vs. ASD classification showed BA of 0.763 using 
SVM for ERG-Graph versus 0.759 for traditional XGB 
methods. Control vs. ASD+ADHD comparisons 
demonstrated ERG-Graph BA of 0.497 compared to 
traditional methods achieving 0.500. 

When distinguishing between Control, ASD, and ADHD 
simultaneously, ERG-Graph using KNN achieved balanced 
accuracy of 0.704 and F1-score of 0.660 with 41 features, 
outperforming traditional SVM methods that achieved 0.648 
BA and 0.620 F1-score with 36 features. 

The most challenging scenario, including all diagnostic 
groups (Control, ASD, ADHD, ASD+ADHD), showed ERG-
Graph Random Forest achieving BA of 0.529 and F1-score of 
0.526 using 34 features, compared to traditional Random 
Forest methods achieving 0.491 BA and 0.477 F1-score 
requiring 204 features. 

The systematic improvement in multi-class scenarios 
demonstrates ERG-Graph's superior ability to capture 
discriminative topological patterns across multiple 
neurodevelopmental conditions simultaneously. 

TABLE III.  TOP DISCRIMINATIVE ERG-GRAPH FEATURES 

Feature p-value Effect Size (η²) 

Total Load Centrality < 0.001 0.45 

Total Harmonic Centrality < 0.001 0.42 

Graph Number of Cliques < 0.001 0.38 

Diameter < 0.001 0.36 

Radius < 0.001 0.35 

E. Performance Across Recording Conditions 

TABLE IV.  CONDITION-SPECIFIC PERFORMANCE (BALANCED 

ACCURACY) 

Condition ERG-Graph Traditional Algorithm 

All Data 0.501 0.343 RF 

Left Eye 0.510 0.342 RF 

Right Eye 0.490 0.328 RF 

Flash 446 Td.s 0.556 0.384 RF 

Flash 500 Td.s 0.543 0.371 RF 

Male Only (ASD vs 

Control) 
0.870 0.870 

AdaB 

Female Only (ADHD 

vs Control) 
0.840 0.840 

RF 

F. Feature Efficiency Analysis 

TABLE V.  FEATURE REQUIREMENTS FOR OPTIMAL 

PERFORMANCE 

Classification Task 
ERG-Graph 

Features 

Traditional 

Features 

Reduction (%) 

Binary (Control vs 

ASD) 
35 136 

74.3% 

Binary (Control vs 

ADHD) 
34 204 

83.3% 

3-class 41 204 79.9% 

4-class 34 204 83.3% 

 

 
Fig 1. (a) ERG signal with labeled components, (b) traditional 
feature extraction methods, and (c) graph transformation 
process converting time-series data into network 
representation for topological feature extraction. 

 

 
 

 

 

 

 

 

 



All reported performance metrics were obtained using 
leave-one-subject-out cross-validation across 278 subjects. 
Standard deviations for BA ranged from ±0.045 to ±0.121 
across different classification tasks. 

IV. DISCUSSION 

Our ERG-Graph approach demonstrated competitive 
performance compared to the spectral analysis methods 
reported by Constable et al. [5]. The traditional approach 
achieved balanced accuracies up to 0.87 for ASD vs. Control 
and 0.84 for ADHD vs. Control classification [5]. While these 
results slightly exceeded our ERG-Graph performance (BA: 
0.763 for ASD, 0.773 for ADHD), ERG-Graph achieved 
comparable results with 83% fewer features (35 vs. 204), 
offering greater computational efficiency and reduced 
overfitting risk. The most significant advantage emerged in 
multi-class scenarios: 3-class classification achieved BA: 
0.704 versus 0.648 (8.7% improvement), and 4-class 
classification achieved BA: 0.529 versus 0.491 (7.7% 
improvement), demonstrating superior performance when 
distinguishing multiple neurodevelopmental conditions 
simultaneously [6], [8]. 

The superior multi-class performance can be attributed to 
ERG-Graph's ability to capture topological relationships 
within ERG signals [7], [11]. While traditional variable-
frequency complex demodulation (VFCDM) and discrete 
wavelet transform (DWT) features excel at detecting 
amplitude and frequency variations [5], graph centrality 
measures reveal connectivity patterns that complement 
traditional analysis. The Total Load Centrality and Total 
Harmonic Centrality measures appear particularly effective 
for capturing information flow characteristics across multiple 
diagnostic groups, with high discriminative power (η² = 0.45 
and 0.42 respectively) supporting systematic differences in 
signal organization across diagnostic groups. 

The substantial feature reduction represents a key clinical 
advantage, addressing practical implementation challenges by 
reducing computational complexity and enabling real-time 
analysis in clinical settings [5]. This efficiency addresses the 
critical clinical need for distinguishing between multiple 
neurodevelopmental conditions, particularly important given 
high ASD-ADHD comorbidity rates and overlapping 
presentations. The 7-8% multi-class improvement could 
translate to meaningful diagnostic advantages for differential 
diagnosis. 

While ERG-Graph shows promise for multi-class 
classification, the slightly lower binary classification 
performance suggests areas for refinement [5]. Future 
research should explore hybrid approaches combining 
amplitude-frequency sensitivity with topological insights [6], 
[10]. , integration of graph neural networks, and alternative 
graph construction methods such as visibility graphs or 
correlation-based networks. Extension to dark-adapted 
recordings, longitudinal studies, and multi-site validation 
would strengthen generalizability [16]. 

V. CONCLUSION 

The ERG-Graph methodology represents a conceptual 
advancement by introducing topological analysis to ERG-
based neurodevelopmental assessment. While not universally 

superior to traditional methods, it provides valuable 
complementary information for complex clinical scenarios 
and establishes a foundation for combining graph signal 
processing with physiological biomarkers. The approach 
could potentially extend to other electrophysiological signals, 
creating a comprehensive graph-based toolkit for 
neurodevelopmental assessment. 
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