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Abstract

Event-driven spiking neural networks (SNNs) are promising neural networks that
reduce the energy consumption of continuously growing AI models. Recently,
keeping pace with the development of transformers, transformer-based SNNs were
presented. Due to the incompatibility of self-attention with spikes, however, exist-
ing transformer-based SNNs limit themselves by either restructuring self-attention
architecture or conforming to non-spike computations. In this work, we propose
a novel transformer-to-SNN conversion method that outputs an end-to-end spike-
based transformer, named SpikedAttention. Our method directly converts the
well-trained transformer without modifying its attention architecture. For the vi-
sion task, the proposed method converts Swin Transformer into an SNN without
post-training or conversion-aware training, achieving state-of-the-art SNN accuracy
on ImageNet dataset, i.e., 80.0% with 28.7M parameters. Considering weight ac-
cumulation, neuron potential update, and on-chip data movement, SpikedAttention
reduces energy consumption by 42% compared to the baseline ANN, i.e., Swin-T.
Furthermore, for the first time, we demonstrate that SpikedAttention successfully
converts a BERT model to an SNN with only 0.3% accuracy loss on average con-
suming 58% less energy on GLUE benchmark. Our code is available at Github (
https://github.com/sangwoohwang/SpikedAttention ).

1 Introduction

Recently, many practical AI applications such as conversational question answering (1), intelligent
code completion (2), weather forecasting (3), and text-to-image generation (4) have rapidly evolved
with the advances in artificial neural networks (ANNs) based on transformer architecture. Transform-
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Figure 1: (a) Accuracy, energy consumption (refer to Appendix A.1), and parameter size of the
propsoed SpikedAttention and other spike-based SNNs on ImageNet classification (15). (b) The
structure of the proposed fully spike-based attention module (more details are in Section 4).

ers are powered by the self-attention mechanism, which extracts long-range dependencies between
input tokens, e.g., words (5), image patches (6), or both (7). However, deploying state-of-the-art
transformers requires a large amount of computations and a huge memory footprint. For instance,
generating a single token on a GPT3-175B model requires at least 350 GFLOPs (8).

In order to reduce the ever-growing computational overhead of transformers, there were some
efforts to improve their energy efficiency by utilizing spiking neural networks (SNNs). The major
strength of an SNN, which mimics a biological neuron, is that only weight accumulations (ACs)
are required when input spikes are encountered (event-driven), instead of power-hungry multiply-
accumulate (MAC) operations in ANNs. The energy consumption of a 32-bit MAC is 5× higher
than that of a 32-bit accumulation (9). To exploit the high energy efficiency of SNNs, many CNN
models based on SNNs (10; 11) have been proposed, and recently, SNN-based transformers have
emerged. Implementing an SNN-based transformer is done either by direct training via a surrogate
gradient (12; 13) or converting a well-trained transformer to an SNN (14).

When implementing the attention module in a spike-based transformer, there are two types of matrix
multiplication. One is associated with generating Q, K, and V where static weight matrices (WQ,
WK , and WV ) are used. In this case, when an input neuron fires, its associated weight value gets
accumulated to the output neuron’s potential. Another type is the multiplication between dynamically
generated matrices, e.g., Q ·KT . In previous works (12; 14), logical AND operations are performed
between two “rate-coded" spike trains, e.g., SQ(i,k) and SK(j,k), for each dot product. However, due
to the probabilistic nature of the rate coding, it requires a long timestep (T > 128) to maintain high
ANN-to-SNN conversion accuracy (14). Unfortunately, this translates to high energy consumption in
running SNNs (refer to MST in Fig. 1).

Another challenge with realizing spike-based transformers is the softmax operation. In the field
of ANN quantization, there have been many efforts to approximate softmax operations (16; 17).
I-BERT (16) approximates the exponential function with a second-order polynomial, successfully
converting it to an integer operation (i-exp), and FQ-ViT (17) combines i-exp with logarithmic
quantization. In SNN-based transformers, however, softmax has not been converted to a spike-based
operation due to the presence of exponential functions. Since SNNs have binary inputs and outputs,
previous approaches in ANN quantization cannot be directly applied.

Our Contribution: In this work, we present an end-to-end spike-based transformer, named SpikedAt-
tention, solving the abovementioned challenges to achieve state-of-the-art accuracy (0.6% accuracy
loss compared to ANN) among spike-based transformers (Fig. 1(a)). In addition, it consumes the
minimum energy, which is 42% lower than the original Swin Transformer (6), for image classification
task. Furthermore, for the first time, we demonstrate that a BERT model can be successfully converted
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Figure 2: The computation of attention in previous SNN-based transformers (a) with the softmax (14),
and (b) without the softmax operation (12). Both involve non-spike computations. Total timestep T
of each spike tensor is set to 1 for simplicity.

to an SNN, i.e., SpikedAttention, with negligible accuracy loss (0.3% on average) while consuming
58% less energy on GLUE benchmark. Note that the SpikedAttention does not require any additional
training since it is created by the direct transformer-to-SNN conversion method thanks to the proposed
fully spike-based attention module (Fig. 1(b)). The main contributions are summarized below:

• Fully spike-based transformer: SpikedAttention encodes external inputs and all interme-
diate features in spikes. Especially, each element in intermediate features is encoded as a
single spike for a given timestep T to minimize the energy consumption.

• Trace-driven matrix multiplication: To reduce the required timestep T in performing
multiplication between two dynamically generated matrices, we propose a trace-driven
matrix multiplication. Owing to the reduced timestep, we can reduce energy consumption.

• Exponent-free spike-based softmax: We present a winner-oriented spike shift that controls
the output spike timing to realize the spike-based softmax. This allows us to keep the vanilla
self-attention architecture of the original transformer to maintain high accuracy.

2 Related Work

Most SNN studies have focused on replacing CNNs to improve energy efficiency in vision tasks (10;
18). With the recent advent of transformers, there have been increasing efforts to convert transformers
into SNNs (14) or directly train spike-based transformers (12; 13; 19; 20). When realizing a spike-
based transformer, self-attention is the major hurdle in converting the transformer to a fully spike-
driven network. Here, “fully spike-driven" means that no real-valued multiplications or nonlinear
functions are involved in any operations. Fig. 2(a) illustrates the required operations in vanilla
self-attention (VSA) (5) but with Q, K, and V in the form of spikes (14).

In the original VSA module, real-valued multiplications (Q · KT and Attn · V ) and a softmax
operation (Attn = softmax(Q ·KT /

√
d)) are required. In MST (14), the authors encode Q, K, and

V as spike trains (denoted by SQ, SK , and SV in Fig. 2(a)). By doing so, the matrix multiplication
(Q ·KT ) simply becomes AND operations followed by floating-point accumulations. To convey
meaningful information (in the form of spikes) to the next layer, however, a long timestep T ≥ 128 is
required in (14). This is due to the fact that the simultaneous firing of spikes at both SQ and SKT

is rare. This problem gets worse for temporal coding or phase coding, which produces much fewer
spikes than the rate coding. Moreover, in MST, the complex softmax operations are done to compute
attention maps, which requires non-spike computations (i.e., expensive exponential functions).

To remove the burden of computing the softmax, some previous studies on direct training of SNNs for
transformers have restructured the attention module (12; 13). As shown in Fig. 2(b), Spikformer (12)
removes the softmax operation since ‘SQ · SKT ’ or ‘SKT · SV ’ only produces non-negative values.
There was another attempt to modify the attention module, such as replacing ‘SQ · SKT ’ with a
Hadamard product followed by the column summation to obtain a mask vector that masks out less
important channels in SV (13). Since these prior works restructure the network topology, they need
to train the model from scratch with surrogate gradients to improve the performance.
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3 Preliminaries

3.1 Neuron Model

There has been a long-standing effort in neuroscience to mathematically model biological neurons (21;
22). Neuron models with high biological plausibility are computationally expensive, while models
with low biological similarity are energy efficient. Due to a high volume of parameters and significant
computations involved in ANNs, energy efficiency has become more of a priority than biological
plausibility when replacing them with SNN counterparts. Therefore, the most energy efficient neuron
model, i.e., the leaky integrated-and-fire (LIF) model (23), is widely used. The LIF neuron model is
defined as

vj(t) = λvj(t− 1) +

Npre∑
i=1

wijSi(t),

Sj(t) = 1, vj(t) = vj(t)− Vθ when vj(t) ≥ Vθ,

(1)

where i or j is the index of a pre- or post-synaptic neuron, vj is the potential of the neuron j, and λ is
the leak factor of potential that causes the vj to gradually decay as the time t proceeds. The wij is the
synaptic weight between the neuron i and j converted from a pre-trained ANN or directly trained.
The Si(t) represents the binary spike (0 or 1) from the neuron i at time t. The Npre is the number of
pre-synaptic neurons. The pre-synaptic neurons that generate spikes activate the weight accumulation
on vj(t). When the vj(t) exceeds the threshold Vθ, the neuron j fires a spike (Sj(t) = 1) and its
potential resets to vj(t)− Vθ. Note that decreasing the potential by a threshold instead of resetting it
to zero is a common technique in ANN-to-SNN conversion methods (10; 24).

3.2 Spike Coding Schemes

To achieve higher SNN performance, it is essential to determine how real-valued inputs are encoded
into a sequence of spikes, known as ‘spike coding’. The spike coding is a scheme that determines
whether to generate a spike at time t when converting continuous values into a set of spikes. The
most widely used coding scheme is rate coding, which generates multiple spikes at each neuron via
Poisson sampling over pre-defined timestep T (10; 25). The rate coding generates more spikes as it
converts larger values into spikes. However, increasing the number of spikes and the timestep for
higher resolution leads to higher energy consumption due to more weight accumulations in Eq. (1).

Unlike the rate coding, which generates multiple spikes at each neuron, temporal coding generates a
single spike per neuron. In the temporal coding, each spike represents a different value at a different
spike time t for a given total timestep T . The spike at an earlier time represents a larger value. For
instance, an earlier spike can represent a linearly larger value as T−t

T (11; 26) or an exponentially
larger value as e

T−t
T (27). The temporal coding is energy efficient but requires a long timestep T to

increase the precision/resolution.

The alternative coding scheme, known as phase coding (28; 29), combines the characteristics of
the temporal coding and the rate coding. Like the temporal coding, the phase coding assigns each
timestep t a different value, i.e., B−t, where B is the base of the phase. As proven in Appendix B,
the phase coding can be realized by replacing the leak factor (λ) of the widely used LIF neuron
model in Eq. (1) with B, making the spike at one timestep earlier has the B× larger impact on
the potential increase. When B = 2, we call it a binary coding. Unlike the temporal coding, the
phase coding allows multiple spikes when encoding a value. For a fixed (total) timestep T , the phase
coding provides a higher resolution than other coding schemes. Recently proposed one-spike phase
coding maximizes the energy efficiency, where the sequence of spikes is approximated by the first
spike (30). Note that the neuron ceases to update its potential after the first spike being generated
because it is unnecessary to fire the following spikes at the cost of approximation error. In the
one-spike phase coding, Vθ is tuned to the midpoint between two consecutive phase-based weights,
i.e., ‘(B−t +B−t−1)/2’, to reduce the approximation error. The authors in (30) have proposed a
technique to reduce the approximation error by decreasing the base B of phase coding. However,
decreasing the base is only guaranteed to reduce the error when T is large enough. In SpikedAttention,
therefore, we use the one-spike phase coding by carefully selecting the proper base B and total
timestep T to balance well between the accuracy and the energy efficiency. The details on selecting
B and T are presented in Appendix E.
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Figure 3: The proposed trace-driven dot product in SpikedAttention. A global trace decays by its
base (B) at each timestep and the trace is transferred to each neuron’s local memory when its first
spike, from either SQ or SK , is observed. The v(QKT )(1,1) is the potential of the neuron (QKT )1,1.

4 Fully Spike-based Attention: SpikedAttention

The main goal of designing the SpikedAttention was to encode external inputs and all intermediate
features by binary spikes without altering the VSA structure at all. Prior work on spike-based
vision transformers (12; 13; 14) feed in floating-point inputs, i.e., 2D images, to the patch partition
module instead of binary spikes. Also, the nonlinear nature of softmax and the high sparsity in
SQ, SK , and SV make things more challenging in making fully spike-based transformers. In the
proposed SpikedAttention, all intermediate neurons fire a single spike using the one-spike phase
coding (B < 2). Only the external input allows multiple spikes with the binary coding, i.e., phase
coding with B = 2. Until now, previous transformer-to-SNN conversion methods (14) could not
achieve fully spike-based computations due to softmax operations, and they require a long timestep
due to extremely high sparsity after AND operations between two spike-based vectors. The direct
SNN training methods (12; 13) simplified the VSA structure by removing softmax, which degrades
the performance. Therefore, we present two novel techniques to (i) minimize the spike timestep by
performing trace-driven matrix multiplication and (ii) exponent-free spike-based softmax to realize
the transformer-to-SNN conversion method without any training.

4.1 Trace-driven Matrix Multiplication

We focus on developing an efficient spike-based computing scheme for the multiplication between
two dynamically generated spike-based matrices. We utilize a global trace that tracks the phase
at time t to consider the values associated with every spike. With the rate coding, probabilistic
multiplications are performed with logical AND between two spike trains. However, since we use
one-spike phase coding, each spike must carry its information to the next layer. Consider an example
of performing SQ · SKT . The output value at (i,j), denoted as (QKT )i,j , is computed by the dot
product which is

∑
k SQ(i,k)SK(j,k). Each spike train in SQ (or SK) consists of only one spike

which represents the value B−tQ(i,k) , where tQ(i,k) is the spike time of SQ(i,k) and B is the base.
Thus, the dot product output should become

∑
k B

−tQ(i,k) ·B−tK(j,k) .

As mentioned earlier, our work exploits the ‘spike trace model’ to record the value associated with
the spike that fires first among the neuron pair, e.g., SQ(i,k) and SK(j,k). In neuroscience research,
spike trace is a popular method to determine the correlation between connected neurons by relative
spike timing (31). Typically, the trace of a neuron ‘n’, i.e., xn(t), reflects the history of spikes during
timestep T . We simplify the trace model to globally track the value B−t at spike time t, which is

xg(t) = xg(t− 1)/B, (2)
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WOSS neuron increases its potential (VWOSSi
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(c) Potential at neuron j (non-winner) and its corresponding output spike at t = T + 2 (effectively,
t = 2) due to the global inhibition and the threshold shift.

where xg(t) is the global trace which is initialized to 1 at t = 0. With the one-spike neuron model,
when a neuron encounters the first spike at t, we store B−t in its local memory as its own trace xn(t),
which will be used later to compute the dot product. We intentionally leveraged the trace-driven
method since neuromorphic chips such as Loihi (32) already have the hardware module, e.g., trace
memory, for updating neuron traces for widely used STDP learning.

Fig. 3 illustrates the process of a dot product for computing (QKT )1,1 with spike traces. If SQ(1,1)

generates a spike earlier (t = 3) than SK(1,1), the trace value B−3 is stored in the local memory of
the neuron SQ(1,1). When the neuron SK(1,1) exceeds the threshold and generates the spike at t = 4,
the trace of SQ(1,1) (= B−3) propagates to update the potential of (QKT )1,1. Since the current phase
is B−4 at t = 4, propagation of B−3 at t = 4 (colored in red) is equivalent to ‘B−4 ×B−3’. There
might be a situation in which multiple neuron pairs observe the second spike simultaneously. For
instance, SQ(1,2)-SK(1,2) and SQ(1,3)-SK(1,3) pairs have the second spike at t = 3 (it may coincide
with the first spike like the SQ(1,3)-SK(1,3) pair). Thus, at t = 3, both pairs already have their stored
trace for one of two neurons (SQ or SK ) that fired the earlier spike in the pair. Then, pre-stored traces
from those pairs that share the second spike time will be accumulated together, i.e., (B−2 +B−3) in
this case (colored in blue). The accumulated traces are weighted by the phase of the current timestep,
i.e., B−3. By accumulating traces first, we can bound the number of multiplications to the timestep T
of the neuron model irrespective of the number of input neurons. Usually, an input spike tensor SQ or
SK lies in RN×D×T where N is the number of image patches (or token length), D is the embedding
dimension, and T is the total timestep. The accumulations happen across the dimension D, making
the proposed approach energy efficient when T ≪ D, which is the general case for transformers.

4.2 Winner-Oriented Spike Shift (WOSS) for Softmax

The main issue with the typical softmax operation is the presence of exponential functions. Our work
uses the normalized softmax similar to (33), which is expressed as follows:

σ(zi) =
exp(zi)∑N−1

j=0 exp(zj))
=

exp(zi)
exp(max(z))∑N−1

j=0
exp(zj)

exp(max(z))

, (3)

where z ∈ RN and σ(zi) is the softmax output with respect to the ith neuron. Our SNN approximates
exp(zi)

exp(max(z)) by using the proposed WOSS neuron model and scales the threshold (Vθ) of the following

layer by their sum (
∑N−1

j=0
exp(zj)

exp(max(z)) ), leading to the final softmax result. Note that multiplying the
threshold by the sum term has the effect of dividing inputs by the same amount.
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Since SpikedAttention generates a single spike per neuron, the objective is to approximate exp(zi)
exp(max(z))

with B−ti ∈ [0, 1]. Before converting it to a spike-based representation, we extract the maximum
value of z, i.e., Mz, by running a proxy training dataset. Then, by setting zi = Mzz

′
i and by applying

logB on the normalized exponential term, it can be expressed as

logB(
exp(Mzz

′
i)

exp(max(Mzz′))
) =

(z′i −max(z′))Mz

loge B
≈ −ti, (4)

where ti is the required spike time at neuron i to approximate the left-hand side of Eq. (4). The z′

arrives at WOSS neurons by spikes Sz from the previous layer, i.e., each row of S(QKT ), with the
form of the one-spike phase coding.

First, we need to compute ‘z′i − max(z′)’ from the input spikes, i.e., Sz. To do so, we first find
max(z′) by detecting the first incoming spike, called a winner spike. In Fig. 4(a), the winner spike is
observed at neuron i. For the neuron i, its potential increases by 1 at t = 1 (Fig. 4(b)). Inspired by
inhibitory neurons in (25), the winner spike activates the global inhibition so that potentials of all
neurons (including i) within the same softmax group decrease by 1. The global inhibition performs
the subtraction by max(z′) in Eq. (4). After the global inhibition at t = 1, non-winner neurons
receive an input spike at t > 1. Fig. 4(c) shows how the potential of non-winner neuron j changes.
At t = 3, the neuron j receives the input spike, increasing the potential by 1. At each timestep t, the
potential decays by the base B (at t = 2 and t = 3 in Fig. 4(c)), which is identical to the leak factor
λ in Eq. (1). This decay factor allows us to assign a dedicated phase B−t to each timestep. Thus,
after the first “potential update” stage (t ≥ T ), each neuron i has the fixed potential equal to

VWOSS(i)(t ≥ T ) = B(T−1)(z′i −max(z′)). (5)

Now, we need to generate a single output spike at each neuron by comparing its potential to the
threshold (i.e., “spike generation” stage in Fig. 4(b-c)). The threshold is initially set to 0 so that the
winner-spike is time-shifted and fires at t = 0 for a more precise approximation of softmax, i.e.,
utilizing full timestep T (Fig. 4(b)). The desired time ti that each neuron should fire approximately
equals to (max(z′)−z′

i)Mz

loge B . To find the ti, we shift the threshold by following

dVθ(t)

dt
= −BT−1 loge B

Mz
, (6)

and generate output spike comparing the threshold with the neuron’s potential. Note that the right-
hand side of Eq. (6) is a constant and thus can be pre-computed. The appearance of BT−1 is to
match the scale of the potential after the “potential update” stage. The − loge B

Mz
term is to consider

the Mz/ loge B in Eq. (4). Then, by comparing the Eq. (5) with the shifted threshold Vθ(ti), we can
generate a spike if the threshold becomes more negative (Fig. 4(c)) that satisfies

ti > (max(z′)− z′i)
Mz

loge B
. (7)

The output spike from the WOSS neuron, i.e., SWOSS , approximates exp(zi)
exp(max(z)) . Thus, it needs to

be divided by
∑ exp(zi)

exp(max(z)) to complete the softmax calculation. This is done by amplifying the
threshold at the following trace-driven dot products (i.e., SAttn · SV ) by the sum term, which is the
summation of spikes from the WOSS neurons in the same group, i.e., each row of SWOSS . Similar
to Eq. (1), the threshold is incremented by SWOSS(t) and multiplied by B at each timestep until it
reaches

∑ exp(zi)
exp(max(z)) , which is expressed as follows:

Vθ(i,:)(t+ 1) = B × Vθ(i,:)(t) +
∑
j∈zi

SWOSS(i,j)(t), (8)

where Vθ(t = 0) is initially set to 1. Note that all elements at each row i share the same threshold
Vθ(i,:). Finally, the output neuron at the final trace-driven dot product in Fig. 1(b) generates spikes that
approximate ‘softmax(SQ · SKT /

√
d) · SV ’. Note that implementing WOSS neurons for softmax

in the neuromorphic hardware incurs 9.88% area and 12.35% power overheads compared to the
hardware only with LIF neurons with no support of softmax (details are discussed in Appendix C).

7



D
e

c
o

d
e

d
 S

p
ik

e

Trace-driven QKT 

(First Block)

-1.0

-0.5

0.0

0.5

1.0

-0.5 0.0 0.5 1.0-1.0

WOSS-Softmax

(First Block)

0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.00.0

Trace-driven QKT 

(Last Block)

-0.5 0.0 0.5 1.0-1.0
0.0

0.2

0.4

0.6

0.8

1.0

WOSS-Softmax 

(Last Block)

Last layer

(Classifier)

-1.0

-0.5

0.0

0.5

1.0

-0.5 0.0 0.5 1.0-1.0

Figure 5: Scatter plots showing the correlation between the actual activation values in Swin Trans-
former (x-axis) and the decoded spike values in converted SpikedAttention (y-axis). The parameters
are set to T = 40, B = 1.15.

5 Experimental Results

5.1 Conversion of Swin Transformer to SpikedAttention

The proposed SpikedAttention is implemented by SpikingJelly (34) and PyTorch computing with four
NVIDIA GeForce RTX 4090 GPUs. For evaluation, Swin Transformer (6) is selected as a baseline
and converted to an SNN, i.e., SpikedAttention, to perform image classification. Conventional
transformers require GeLU and layer normalization, which are non-spike computations. Thus, as a
pre-trained model, we replaced GeLU with ReLU and layer normalization with batch normalization
according to (35). Since some activations are not followed by the ReLU function in Swin-T, those
cannot be converted to unsigned/positive spikes. To cover both positive and negative values, we
utilized a signed neuron (36) that generates a positive spike (+1) if the potential is greater than Vθ

and a negative spike (−1) if the potential is less than Vθ. Therefore, we trained two baselines, i.e., one
with ReLUs at every layer and another with no change, to convert them to SNNs. Fig. 5 illustrates
the correlation between the decoded spike values and the actual activations at trace-driven matrix
multiplication and softmax layers of SpikedAttention. The earlier layers (e.g., First Block) have little
conversion error, but the deeper layers (e.g., Last Block) have higher conversion error. Nevertheless,
the classifier exhibits a high correlation between the actual activations and the decoded spikes.

Table 1: Comparison between SpikedAttention and the prior work in terms of the parameter size, the
energy consumption, the required timestep, and the accuracy on ImageNet classification task

Model Method Param (M) Energy (mJ)† Timestep Acc (%)

Spikformer (12) Direct Training 66.3 21.5 4 74.8
SDSA (13) Direct Training 66.3 6.1 4 77.1

Meta-SpikeFormer (37) Direct Training 55.4 52.4 4 80.0
Meta-SpikeFormer (37) Direct Training 55.4 13.0 1 79.1

MST (14) ANN-to-SNN 28.5 158.6 128 77.9
Ours (w/o ReLU) ANN-to-SNN 28.7 3.0 40 80.0
Ours (w/ ReLU) ANN-to-SNN 28.7 1.8 40 77.4

†For the fair comparison with the prior work, only the energy consumption for weight accumulations is included.

Table 1 compares performance between the prior work and the proposed SpikedAttention (denoted as
‘Ours’ in the table). For the fair comparison, we estimate the energy consumption of only weight
accumulations (discussed in Appendix A.1) for the entire timestep similar to the prior work (12; 13).
Previous SNNs based on vision transformers demonstrated better performance than CNN-based
SNNs (10; 11; 24). However, existing SOTA transformer-based SNNs consume 2 ∼ 53× higher
energy than SpikedAttention (w/o ReLU) while presenting lower accuracy (≤ 80%). Other SNNs feed
external inputs as floating point numbers, resulting in higher energy consumption. It is noteworthy
that SpikedAttention minimizes the energy consumption even with T = 40 by allowing only one
spike per neuron. To perform a hardware-realistic energy comparison between ANNs and SNNs,
we estimated the total energy consumption by using the energy metric presented in (38) which
considers the data movement and the membrane potential update as well (details can be found in
Appendix A.2). As a result, SpikedAttention reduces the energy consumption by 42% with only
0.6% accuracy loss when converting an ANN (w/o ReLU) which consumes 45.4mJ. Similarly, the
energy consumption of SpikedAttention is 47% lower than the ANN (w/ ReLU) which consumes
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Table 2: Conversion results of pre-trained models from MST (14) to SpikedAttention

Dataset Model Param (M) Energy (mJ) Timestep Accuracy (%)

CIFAR-10 ANN (w/ ReLU) 27.5 42.1 1 97.5
MST (Unsigned) 27.5 1089.9 64 96.3
Ours (Unsigned) 27.5 21.3 24 97.3

CIFAR-100 ANN (w/ ReLU) 27.6 47.1 1 87.7
MST (Unsigned) 27.6 1157.1 64 85.4
Ours (Unsigned) 27.6 23.7 24 86.3

ImageNet ANN (w/ ReLU) 28.3 55.5 1 79.3
MST (Unsigned) 28.3 1836.7 128 77.9
Ours (Unsigned) 28.3 31.7 48 77.2

27.5 mJ. To directly compare with the previous ANN-to-SNN conversion method, i.e., MST (14), the
pre-trained ANNs from MST were converted to SpikedAttention as well (Table 2). In Table 2, we
computed the energy consumption of ANNs and SNNs using the hardware-realistic energy metric
(Appendix A.2). Since the pre-trained models of MST embed ReLU in each layer, they were converted
to SpikedAttention using unsigned neurons. The MST consumes significantly higher energy (≥ 48×)
than SpikedAttention because multiple spikes are generated for a longer timestep T = 64 or 128. In
addition, the first convolution layer is based on floating point-based MACs instead of spike-based
accumulations. Compared to the MST, SpikedAttention achieves higher accuracy with shorter T
thanks to the trace-driven matrix multiplication. As a result, we achieve SOTA SNN accuracy on
ImageNet without any training or modifying the architecture while minimizing energy consumption.

5.2 Conversion of BERT to SpikedAttention

Table 3: Comparison between SpikedAttention and other BERT models on GLUE Benchmark

Dataset CoLa MNLI MRPC QNLI QQP RTE SST-2 WNLI STS-B
MA-BERT (39) (ANN)

Accuracy (%) 59.8 84.7 84.3 91.4 91.2 64.6 92.6 56.3 84.8
Energy (mJ) 189.7 189.7 189.7 189.7 189.7 189.7 189.7 189.7 189.7

SpikingBERT (40) (SNN)
Accuracy (%) - 78.1 79.2 85.2 86.8 66.1 88.2 - 82.2

Ours (SNN)
Timestep 24 24 16 24 24 16 16 16 24
Accuracy (%) 59.3 84.4 84.1 91.0 90.8 65.0 92.1 56.3 83.9
Energy (mJ) 81.5 82.1 77.5 81.6 82.1 79.1 79.9 77.7 79.9

Our proposed SpikedAttention is also applicable to NLP since it converts attention modules into
spike-based computations. However, there are some functions, such as GeLU and LayerNorm, that are
difficult to compute with an SNN for now. Since MA-BERT (39) replaces GELU with ReLU, converts
LayerNorm to BatchNorm, and fuses normalization layers into adjacent linear layers, MA-BERT can
be easily converted to SpikedAttention without any modification. Therefore, we converted MA-BERT
(base-uncased) with 110M parameters to SpikedAttention. Note that accuracy loss of MA-BERT
compared to traditional BERT is only 0.1%. Even though MA-BERT approximates the softmax with
a two-layer neural network, we converted MA-BERT with the original softmax to SpikedAttention
(thanks to WOSS). The output of the token embedding is binary coded and fed to our SNN model. By
converting the pre-trained MA-BERT for text classification on GLUE benchmark (41), we observed
only 0.3% accuracy loss on average without any additional training (Table 3). Note that Matthews
correlation coefficient is reported for CoLA, while accuracy is reported for the other tasks. By
estimating the energy consumption as presented in Appendix A.2, SpikedAttention reduces the
energy by 58% on average compared to MA-BERT. The SpikedAttention is the first work that
demonstrates the transformer-to-SNN conversion for NLP tasks. SpikingBERT (40) directly trains
SNN as a student using knowledge distillation from a pre-trained BERT as a teacher. Compared to
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SpikingBERT (T = 125), SpikedAttention was able to achieve 3.6% higher accuracy on average as it
directly converts a well-trained BERT into an SNN without training.

6 Conclusion

This paper presented trace-driven matrix multiplication and winner-oriented spike shift to convert
the attention module with spike-based computations. Our proposed methods accurately approximate
all activations in the self-attention module as spikes without performing expensive exponent compu-
tations. Thus, our work outperforms previous transformer-based SNNs in accuracy and consumes
much less energy (25.6mJ for vision tasks and 80.2mJ for language tasks on average) without struc-
tural modifications or direct training. By converting ANNs with a high number of multiplications
into addition-only SNNs without any training iterations, our work makes AI more accessible on
energy-constrained devices. Since the presented conversion method does not require any additional
training, we can obtain SNNs without increasing the amount of carbon emissions. However, there
are some limitations: first, the timestep required for SpikedAttention to maintain high accuracy is
longer than directly trained SNNs. Thus, our next goal would be reducing the timestep by learning
the per-layer base for better one-spike phase coding. The second limitation is that SpikedAttention
do not support GeLU and LayerNorm making it difficult to be generalized to any language models.
Nevertheless, our work is an essential step towards converting large language models to SNNs, and
converting LayerNorm and GeLU to spike-based computations remains as our future work.
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A Energy Metrics

A.1 Simple Energy Metric Considering Only Synaptic Operations

For the fair comparison with the prior work (12; 13), energy cost of synaptic operations is estimated
based on the power consumption of 32-bit floating-point arithmetic units synthesized in 45nm CMOS
technology (9). The synaptic operations of the ANN architecture are MACs, i.e., input activations are
multiplied by the corresponding weights and partial sums are accumulated. We estimate the energy
consumption of an ANN (denoted as EANN ) by using the number of synaptic operations associated
with the layer l of the ANN (SynOP l), which is defined as:

EANN = (Eadd + Emult) ·
NL∑
l=1

SynOP l (9)

where Eadd + Emult is 3.7pJ for a single 32-bit floating point MAC operation.

Unlike ANNs that require both multipliers and adders, SNNs only require additions. Only weights
that are connected to pre-synaptic neurons that fire spikes are accumulated together. Therefore, the
energy consumption of an SNN can be estimated by:

ESNN = Eadd ·
T∑

t=1

NL∑
l=1

(γl
t · SynOP l) (10)

where γl
t is the ratio of spikes at timestep t and Eadd is 0.9pJ for a single 32-bit floating point

addition. Note that the energy numbers reported in the Table 1 accounts for the entire timesteps in
SNN models.

A.2 More Realistic Energy Metric Considering Hardware

The energy metric described in Appendix A.1 only considers the computing energy. However, a large
portion of energy is being consumed by repeatedly reading/writing activations and weights, as well
as updating the neuron potential over multiple timesteps. The data movement highly depends on
the underlying hardware architecture, e.g., on-chip memory capacity and interconnect topology. For
instance, membrane potentials can be fetched from DRAM, whereas the neuron model is computed
on the core (42). In that case, the energy cost of fetching membrane potentials becomes significant.
On the contrary, Intel’s Loihi (32) places a large on-chip memory to store membrane potentials or
traces inside the chip. Therefore, to perform a hardware-agnostic energy comparison between ANNs
and SNNs, we estimated the total energy consumption by using the energy metric presented in (38),
which considers the energy of reading weights and spikes, the energy of computing the neuron model,
and the energy of writing spikes back to the memory.

First, the energy consumption of an ANN is computed by:

EANN = Erdtot
+ EMAC + Eoffmap,

Erdtot
= 2Erd ·

NL∑
l=1

γlSynOP l,

EMAC = (Eadd + Emult) ·
NL∑
l=1

γlSynOP l,

Eoffmap = Ewr ·
NL∑
l=1

Actl,

(11)

where Erdtot is the energy for reading weights and activations, EMAC is the energy for arithmetic
operations, and Eoffmap is the energy for writing MAC results to the scratchpad memory. The
Actl is number of output activations at layer l and Erd/Ewr is set to 5pJ for the 32-bit read/write
operation (9). Also, the activation sparsity is considered by the term γl for the fair comparison with
the SNN.
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Next, the energy consumption of an SNN is computed as follows:

ESNN = Erdtot
+ EAC + ENeuron + Eoffmap,

Erdtot = (1 +
1

32
)Erd ·

T∑
t=1

NL∑
l=1

γl
t · SynOP l,

EMAC = Eadd ·
T∑

t=1

NL∑
l=1

γl
t · SynOP l,

ENeuron = (Erd + Emult + Eadd + Ecomp + Esub + Ewr) ·
T∑

t=1

NL∑
l=1

Actl,

Eoffmap =
Ewr

32
·

T∑
t=1

NL∑
l=1

Actl,

(12)

where Erdtot is the energy for reading weights and input spikes, EAC is the energy for synaptic
operations (i.e., additions), ENeuron is the energy for computing neuron models and Eoffmap is
the energy for writing output spikes to the scratchpad memory. In Erdtot

and Eoffmap, the energy
of reading/writing 1-bit spike is Erd/32 (or Ewr/32) since Erd/Ewr is the read/write energy for
32-bit data. The ENeuron consists of retrieving the neuron’s potential (Erd), multiplying leak
factor (Emulti), adding input to potential (Eadd), comparing with the threshold (Ecomp), subtracting
the potential by the threshold (Esub), and finally writing the potential back to the memory (Ewr).
As in (38), we defined Esub and Ecomp to have the same energy value as Eadd = 0.9pJ . Note
that SpikedAttention stops generating spikes at neurons that fired already implying that there is no
energy consumed by those neurons afterwards. The energy overhead of computing the neuron model
was 30∼40% of the total energy, even though the total timestep of SpikedAttention converted from
Swin-T was T = 40. This is because the number of synaptic operations (

∑NL

l=1 SynOP l) is larger
than the number of output activations (

∑NL

l=1 Actl). Therefore, even with the overhead of computing
the neuron model, SpikedAttention, which generates a single spike for the entire timestep (i.e.,∑T

t=1 γ
l
t ≤ 1), is energy efficient since the sparsity of synaptic operations is the most critical factor

in improving energy efficiency.

B LIF Model with Phase Coding

In this work, our phase coding with the base ‘B’ follows the phase coding scheme presented in (28),
which fixes the base to 2. The dynamics of a neuron in the phase coding can be computed by Eq. 1 by
changing the leak factor of the LIF to the selected base B.

To express the equivalence clearly, we formulate it as the following theorem:

Theorem B.1. Given the following neuron dynamics of the phase coding with the base B

uj(t) = uj(t− 1) +

Npre∑
i=1

wijB
−tSi(t),

Sj(t) =

{
1, if uj(t) ≥ Vθ ×B−t

0, otherwise

. (A1)

It can be formulated to the following LIF-based neural dynamics:

vj(t) = B · vj(t− 1) +

Npre∑
i=1

wijSi(t), Sj(t) =

{
1, if vj(t) ≥ Vθ

0, otherwise
. (A2)

Proof. The equivalence of the two dynamics lies in the equivalence of the conditions, uj(t) ≥ B−t·Vθ

and vj(t) ≥ Vθ, i.e., uj(t) = vj(t) ·B−t, t = 1, . . . , T . We prove this using mathematical induction.
For t = 1, we have uj(1) = vj(1) ·B−1 = 0. Assume that uj(t) = vj(t) ·B−t holds for t = 1, ..., t,
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next we prove that uj(t+ 1) = vj(t+ 1) ·B−(t+1):

uj(t+ 1) = uj(t) +

Npre∑
i=1

wijB
−(t+1)Si(t+ 1)

= vj(t)B
−t +

Npre∑
i=1

wijB
−(t+1)Si(t+ 1)

= B−(t+1)

B · vj(t) +
Npre∑
i=1

wijSi(t+ 1)


= B−(t+1) · vj(t+ 1).

(13)

■

C Hardware Overhead of Implementing WOSS Neurons

To implement WOSS in the neuromorphic hardware, we need some modifications to the hardware
structure of the existing LIF neuron. The recent Loihi2 (32) allows users to select a neuron model
among many neuron models implemented in hardware. Thus, we designed WOSS neuron in Verilog
and synthesized the hardware module in 45nm CMOS technology using OpenROAD (43) to estimate
the area/power overhead when realizing it on top of the commercial neuromorphic hardware. Please
note that WOSS neurons are only required for the softmax layer accounting for 19% of all neurons
at each attention block of Swin-T. The remaining 81% are implemented as typical LIF neurons. As
summarized in Table. 4, compared to a general LIF model, the proposed WOSS neuron increases the
area by 52% and the power consumption by 65%. This translates to 9.88% larger area and 12.35%
higher power consumption to support the proposed WOSS method for softmax operations.

Table 4: Area and power overheads of a hardware module for supporting the WOSS neuron

Tech Node: 45nm Area (µm2) Power (µW )
General LIF 807 542
WOSS LIF 1227 894

Overhead (%) 52 65

D Visualization of Attention Map

Fig. 6 presents the attention maps, highlighting the areas of activation’s interest in the image at the
outputs of several self-attention layers. The attention maps from the pre-trained Swin Transformer and
the SpikedAttention were extracted using Score-CAM (44). The attention maps of SpikedAttention
from the 9th to 12th attention layer are similar to those of Swin-T, even though the conversion
error increases at deeper layers. This visualization of attention maps implies that our ANN-to-SNN
conversion method successfully transforms attention modules into spike-based operations.

E Selecting the Optimal Base B for a Given Timestep T

To achieve the optimal performance, SpikedAttention needs to set an optimal base. For selecting the
optimal base, we define an error function to find the optimal base B, which presents the smallest
difference between approximated spike values and true activations. The most common error evaluation
is an absolute or relative error. However, we need something more suitable for our work. It is not
effective to use absolute error like MSE , i.e., 1

n

∑
(x− x̂)

2 where x is the actual value and x̂ is the
approximated value, since larger error gets accumulated for large x as our spike approximation is
log-based. The relative error like ARE, i.e., 1

n

∑
|(x−x̂

x )|, is also not a good candidate, since the same
relative difference may imply different timestep scale which depends on the base B. For instance, for
a given x, 1.1× x is 1.95 timesteps away from x when the base is 1.05. When the base increases to
1.07, the timestep difference between the two values decreases to 1.41.
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Figure 6: Comparison of attention maps based on Score-CAM (44) between Swin-T (baseline ANN)
and SpikedAttention (Ours; B = 1.16 and T = 40) on ImageNet-1K at the output of various attention
blocks.

We can accurately estimate the approximation error between the real-valued activation and the
decoded spike value using the logarithmic error Eq(x) as follows:

Eq(x) =

{
B × |L+ 1|, if L > −1

B × |L− ⌊L⌉|, if − 1 ≥ L ≥ −T
B × 0.5, otherwise.

(14)

where x is the sampled activation from X of ANN and ‘L = logB x − logB (max(X))’ is the
logarithm of normalized activation. Note that as the weights are normalized (45; 46) by max(X), i.e.,
the maximum value of X in a subset of the training dataset, each activation is approximated by a
spike as ‘max(X)×B−t’. In other words, spike time t represents −⌊L⌉. Error with values less than
‘max(X)×B−T ’ is fixed to 0.5, since logB 0 is not defined.
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Figure 7: (a) Normalized logarithmic error (Eq(x)
B ) with respect to the normalized activation ( x

max(X) )
at a given timestep T = 4. (b) Logarithmic error (Eq(x)) and the accuracy on the ImageNet
classification task at various base B values at a given timestep T = 40.

Fig. 7(a) shows the error function for a given timestep T = 4. The Eq. (14) first computes the
logB-based absolute error, i.e., |L− ⌊L⌉|, where L is ‘logB x− logB (max(X))’. By doing this, we
can accurately measure the error when approximating an activation with a spike having B−t value.
Two exception ranges are (i) L > −1 and (ii) L < −T and they are correctly handled to estimate the
error conservatively. Then, this logB-based error term is multiplied by B to set the timestep scale
properly.

To find the optimal base, our method sets the initial base B0 in the midpoint of the search
space (1.0, 1.5]. Then, we compute the

∑
Eq(x) for both B = B0 − ϵ and B = B0 + ϵ, and
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update the base to one of them that provides a smaller error. The optimal base with the smallest error
can be found within a given search space by iterating the process several times. Fig. 7(b) presents the
logarithmic error Eq(x) and the accuracy according to the base B. The accuracy loss follows the
same trend to our logarithmic error function, i.e., as B gets smaller, the accuracy increases while our
error term decreases. If B gets too small, however, the accuracy decreases (equivalently, our error
term increases) due to the increased number of underflows. As a result, we utilized the logB-based
absolute error multiplied by the base when determining the optimal base for a given benchmark.

F Performance on Question Answering

Table 5: Performance of SpikedAttention on Question Answering

Question Answering

Dataset Model Param (M) Energy (mJ) Timestep F1 Score (%)

SQuAD MA-BERT (w/o ReLU) 110 833.8 1 88.3
Ours (Signed) 110 337.9 24 87.2

To demonstrate that SpikedAttention can reduce energy consumption for more complex tasks, we
converted MA-BERT for question answering to SpikedAttention. We trained the existing MA-BERT
on the SQuAD dataset (47) for question answering and converted it to spike-based computations. As
a result, SpikedAttention achieves an energy reduction of 59.5% with only 1.1% accuracy loss, as
presented on Table 5.
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Figure 8: Accuracy loss and the energy consumption at various timesteps when converting Swin-T to
an SNN for ImageNet classification. (a) SpikedAttention from Swin-T without any modification, and
(b) SpikedAttention from Swin-T with inserted ReLUs.

Regarding the accuracy, as discussed in Appendix E, the larger the timestep T, the smaller the base
value of an one-spike SNN can be. A smaller base reduces the conversion loss, leading to higher
accuracy. Regarding the energy consumption, as discussed in Appendix A.2, a longer timestep
incurs higher energy consumption due to more neuron model computations and data movements. To
summarize, a longer timestep increases the energy consumption while reducing the accuracy loss.
Fig. 8 shows the accuracy loss and the energy consumption at various timesteps when converting
Swin-T to an SNN for ImageNet classification. It clearly shows the trade-off between the total
timestep and the accuracy/energy consumption. Note that even at T = 24 the accuracy loss is less
than 0.5%.
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Figure 9: Energy consumption of MA-BERT and SpikedAttention, and accuracy loss of BERT-to-
SNN conversion on the GLUE SST2 dataset according to the maximum input length (i.e., 64, 128,
192 and 256).

H Energy Consumption at Various Input Token Lengths

Energy consumption of ANN/SNN varies with the input token length for NLP tasks. To evalute this,
we varied the input token length of MA-BERT (i.e., target ANN) from 64 to 256 on SST-2 dataset.
Also, the same lengths of input tokens are fed into the converted SpikedAttention model for the
energy evaluation. Fig. 9 shows energy consumptions at various input lengths for both ANN and
SpikedAttention. In addition, the accuracy losses due to the ANN-to-SNN conversion are presented
which are negligible (< 1%).

For both ANN and SpikedAttention, the energy consumption increases as the maximum input
length increases from 64 to 256. This is because the number of computations increases in the
attention module with the increase in the input length. For instance, MA-BERT with the input
length of 128 consumes 189.7mJ of energy, while MA-BERT with the input length of 256 consumes
458.9mJ (2.4×). Since SpikedAttention benefits from fully spiked-based computations, the energy
consumption for input lengths of 128 and 256 is 79.9mJ and 188.0mJ , respectively. These energy
numbers imply that SpikedAttention is 2.4× more energy-efficient compared to the ANN, regardless
of the input token length. As we optimized the spiked-based computation in the attention module
with WOSS and trace-based matrix multiplication, the energy reduction ratio of SpikedAttention
compared to ANN slightly increases as the input length increases.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See line 51-68 in Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See line 307-313 in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Appnedix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 5 and Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: See supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 5 and Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not observe large enought variance in our inference of conversion from
pre-trained model.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See line 241 in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See line 304-307 in Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes] .
Justification: We properly cited the pre-trained models (Swin-Transformer,Masked Spiking
Transformer and MA-BERT) on which our work is based.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: Our work does not release new assets
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: Our work does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA] .
Justification: Our work does not involve crowdsourcing nor research with human subjects
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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