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ABSTRACT

Diffusion and flow matching models have been recently used to solve various linear
inverse problems such as image restoration. Using a pre-trained diffusion or flow-
matching model as a prior, most existing methods modify the reverse-time sampling
process by incorporating the likelihood information from the measurement. How-
ever, they struggle in challenging scenarios, e.g., in case of high measurement noise
or severe ill-posedness. In this paper, we propose Flow with Interpolant Guidance
(FIG), an algorithm where reverse-time sampling is efficiently guided with mea-
surement interpolants through theoretically justified schemes. Experimentally, we
demonstrate that FIG efficiently produces highly competitive results on a variety
of linear image reconstruction tasks on natural image datasets. We improve upon
state-of-the-art baseline algorithms, especially for challenging tasks. The code will
be released.

1 INTRODUCTION

Linear inverse problems have long been an active field of research in applied mathematics, statistics,
and signal processing. In particular, linear inverse problems such as image restoration have many
real-world applications. A typical mathematical model for linear inverse problems reads as follows:

y = Ax∗ + n, (1)
where y ∈ Rn is the observed measurement, x∗ ∈ Rd denotes the underlying true signal, A ∈ Rn×d

is a linear forward measurement operator, and n ∈ Rn is the measurement noise independent of
signal x∗. The goal of solving a linear inverse problem is to retrieve the underlying signal x∗ given
the observed measurement. In real-world scenarios, the problem is often ill-posed, i.e., the underlying
signal is high dimensional compared to the number of observations. Formally, n ≪ d, in which case
the solution to the inverse problem is not unique. From a Bayesian perspective, the prior is given by a
data representation of the underlying true signal, and the inverse problem can be solved by calculating
the posterior using the measurement likelihood (Idier, 2013).

Recent developments in continuous normalizing flows have shown tremendous success in sampling
from underlying complex high-dimensional distributions (Chen et al., 2018). Particularly, flow
matching models (Lipman et al., 2023; Liu et al., 2023b; Albergo & Vanden-Eijnden, 2023; Albergo
et al., 2023; Ma et al., 2024) together with diffusion models (Song et al., 2021b; Ho et al., 2020;
Song et al., 2021a; Rombach et al., 2022), emerge as powerful tools for image synthesis (Dhariwal
& Nichol, 2021). The idea behind both models is to simulate a process that gradually perturbs data
until it becomes random noise. Moving from data to noise, usually referred to as forward process,
can be represented by either a stochastic differential equation (SDE) or an ordinary differential
equation (ODE) (Song et al., 2021b; Lipman et al., 2023). A score or velocity network is trained
using the forward process to “memorize” the dynamics. Then one can generate new data from noise
by time-reversing the memorized dynamics, which is usually referred to as the reverse process. In
practice, velocity and score networks can be accurately learned so that the generation quality of flow
matching and diffusion models is high especially for image data.

Due to the aforementioned advantages, flow matching and diffusion models have frequently been
adopted to solve inverse problems for imaging data (Jalal et al., 2021). Specifically, for linear inverse
problems, recent works use pre-trained flow matching or diffusion models as a prior, and guide it
towards the posterior by incorporating the measurement likelihood. Though existing methods achieve
highly competitive results, most of them are either slow in inference, or struggle in challenging tasks.
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Figure 1: Overview of our FIG algorithm during the conditional sampling process. Black arrows
(→) denote the unconditional update. Orange arrows (→) represent K times conditional updates
with unconditional sample x′

t and measurement interpolant yt at each timestep t. Blue arrows (→)
indicate the measurement interpolation.

In this work, we propose a simple yet effective algorithm for linear inverse problems named ‘Flow
with Interpolant Guidance’ (FIG). We summarize its mechanism in Fig. 1. In FIG, the measurement
y is interpolated parallel to the forward process to obtain measurement interpolants {yt}t∈[0,T ]. Then
the likelihood of yt is used to perturb the reverse process. Our key contributions are summarized as
follows:

• We propose a novel algorithm FIG that applies to all linear forward measurement operators
and pre-trained models irrespective of complexity.

• We show that the updating scheme of FIG is theoretically justified.

• We implement FIG using both flow matching and diffusion models to solve various linear
image reconstruction tasks, including challenging scenarios such as high measurement noise
and severe ill-posedness. Results demonstrate that FIG achieves state-of-the-art performance
with competitive runtime and memory consumption.

2 BACKGROUND AND RELATED WORKS

2.1 FLOW MATCHING AND DIFFUSION MODELS

Though various formulations were proposed, flow matching generally defines a continuous-time
stochastic process {xt}t∈[0,T ] for some T ∈ (0,∞], where x0 = x∗ refers to the data distribution
that one aims to draw samples from, and xT = εx is a noise variable that is easy to obtain. The
marginal distribution of xt for t ∈ (0, T ) is defined as an interpolant between the two boundaries,
i.e.,

xt = αtx0 + σtxT , (2)

where {αt}t∈[0,T ] and {σt}t∈[0,T ] are two smooth interpolation coefficients such that α0 = σT = 1
and αT = σ0 = 0 (Albergo & Vanden-Eijnden, 2023; Ma et al., 2024). For readability, we remove
the dependence of xt on t when there is no ambiguity. The interpolation Eq. (2) is the forward
process of flow matching, whose dynamics can be represented by the probability flow ODE (Ma
et al., 2024)

ẋ = vt(x). (3)

Here, the velocity field v satisfies

vt(x) = E(ẋt|xt = x) = α̇tE(x0|xt = x) + σ̇tE(xT |xt = x). (4)

Typically, the velocity is parameterized by a neural net vθ and trained by minimizing the loss

Lv(θ) =

∫ T

0

E∥vt,θ(x)− α̇tx0 + σ̇txT ∥2dt. (5)

Given a sufficiently well trained vθ, one can sample the target x∗ by numerically solving Eq. (3) in
reverse time, i.e.,

ẋ = −vt(x), (6)

with initial condition xT = εx. This corresponds to the reverse process of flow matching.
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In contrast to flow matching, diffusion models directly define the dynamics of the forward process
through an SDE. Given certain choices of the drift and diffusion coefficients, the forward process
converges to a noise distribution. More specifically, the forward diffusion model corresponds to the
Ito process

dx = f(x, t)dt+ g(t)dW , (7)

where f and g are predetermined, and W denotes standard Brownian motion. Specific choices of f
and g lead to different diffusion models. For example, taking f(x, t) = − 1

2β(t)x and g(t) =
√

β(t)
for some β(t) > 0, we obtain the variance-preserving (VP) SDE (Song et al., 2021b; Ho et al., 2020)

dx = −1

2
β(t)xdt+

√
β(t)dW . (8)

When T → ∞, the noise xT ∼ N (0, I).

The reverse process of Eq. (7) was shown (Anderson, 1982) to correspond to

dx =
[
f(x, t)− g(t)2st(x)

]
dt+ g(t)dW , (9)

where W is a Brownian motion independent of W , and st(x) denotes the score function of xt.
Using the forward process defined in Eq. (8), one trains a neural net to learn the score function
st,θ(x) ≈ ∇x log p(x, t) via a loss similar to Eq. (5), where p(x, t) is the PDF of xt. One then runs
the reverse process detailed in Eq. (9) with the trained score to obtain a data sample (Song et al.,
2021b).

2.2 RELATION BETWEEN FLOW MATCHING AND DIFFUSION MODELS

There are both common grounds and differences between flow matching and diffusion models. For
the flow matching setting, Ma et al. (2024) shows that

vt(x) = atx+ btst(x), (10)

where at, bt are determined by αt and σt in Eq. (2), demonstrating the fact that score and velocity
are interchangeable. However, it can also be shown by Tweedie’s formula (Efron, 2011) that

st(xt) = −α−1
t E(x0|xt), (11)

which reveals a singularity in the score function at time T , since αT = 0. As v does not explode so
long as the interpolation coefficients are smooth, training a velocity via flow matching is numerically
more stable than training the score.

Though score and velocity are closely related, diffusion and flow matching models still differ
significantly in terms of dynamics. In flow matching, there is only one noise variable εx. Interpolation
between data and noise leaves the path-wise trajectory of x[0,T ] smooth in t. In contrast, diffusion
models are driven by Brownian motion, such that the path-wise trajectory is non-differentiable.
Therefore, the law of a diffusion process and a flow matching process can never agree. Nevertheless,
with certain choices of coefficients, a flow matching model and a diffusion model can share the
same marginal distributions. For example, consider the VP SDE given in Eq. (8). Let T = ∞,
αt =

√
1− e−

∫ t
0
β(s)ds, and σt = e−

1
2

∫ t
0
β(s)ds. Then the distribution of xt generated by Eq. (2) is

exactly the same as the one of the VP SDE given in Eq. (8). This suggests that a number of algorithms
such as DPS (Chung et al., 2023b) can replace their diffusion based priors with flow matching priors,
since it is often the marginal distribution instead of the law of the whole process that matters.

2.3 LINEAR INVERSE PROBLEMS WITH FLOW MATCHING AND DIFFUSION PRIOR

Recent attempts addressing linear inverse problems using flow matching or diffusion models can
be classified into two categories: 1) task-specific methods that train a conditional diffusion model
(Saharia et al., 2023; 2022; Whang et al., 2022); and 2) task-agnostic methods that only rely on
pre-trained unconditional diffusion models. For task specific methods, Liu et al. (2023a); Chung et al.
(2023c) formulate the conditional diffusion as a Schrödinger bridge problem, which can be further
related to the Doob’s h-transform (Särkkä & Solin, 2019; Zhang et al., 2021) and stochastic optimal
control (Uehara et al., 2024).
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Task-agnostic methods tackle Bayesian inverse problems, where pre-trained flow matching or dif-
fusion models are treated as priors. In contrast to the usual Bayesian settings, the prior can only
be sampled by solving the reverse process. The key question is how to incorporated measurement
likelihood into the reverse process such that it leads to a solution of the problem. Ideally, one method
is to “hijack” the reverse process by adding a guidance such that the process is conditioned on the
measurement y. For instance, for diffusion priors, one aims to sample from the following SDE:

dx =
[
f(x, t) + g(t)2∇x log pt (x|y)

]
dt+ g(t)dW . (12)

Since ∇xt
log pt (xt|y) = ∇x log pt (xt) + ∇x log q (y|xt) (Bayes rule), ∇x log q (y|xt) is the

guidance leading to the posterior. However, the conditional density q (y|xt) is intractable, because
the measurement y only depends on x0 = x∗ due to the linear inverse problem specified in Eq. (1).

Though the likelihood is intractable, various algorithms have been proposed to tackle linear inverse
problems with diffusion or flow matching prior. Among the existing methods, Chung & Ye (2022);
Chung et al. (2022); Zhu et al. (2023) adopt a projection onto the measurement subspace; Kawar
et al. (2022); Meng & Kabashima (2022) approximate q(y|xt) via SVD; Mardani et al. (2024);
Feng et al. (2023) use variational inference; Fei et al. (2023); Chung et al. (2023b); Song et al.
(2023); Pokle et al. (2023); Pandey et al. (2024) estimate the likelihood score ∇xt log q(y|xt);
Dou & Song (2024); Trippe et al. (2023); Cardoso et al. (2024) carry out exact Bayesian posterior
estimation with sequential Monte Carlo (SMC); Choi et al. (2021); Song et al. (2022) enforce data
consistency via optimization at each time step; Ben-Hamu et al. (2024) optimize the starting noise
so that the generation process yields the intended results; Xu & Chi (2024); Li et al. (2024) use
the variable splitting techniques (Geman & Yang, 1995; Afonso et al., 2010; Boyd et al., 2011;
Venkatakrishnan et al., 2013) to decouple the optimization with respect to prior and data consistency;
Zhang et al. (2024) introduce a decoupled noise annealing process to handle highly nonlinear
problems. Despite promising experimental results, we find prior works struggle to efficiently handle
challenging linear inverse problems. More specifically, we find methods of high reconstruction quality
are often time consuming, and efficient methods fail to consistently obtain high quality reconstruction
throughout different tasks. Furthermore, current methods struggle to effectively handle high levels of
measurement noise.

3 METHOD

In this section, we propose ‘Flow with Interpolant Guidance’ (FIG), a simple yet effective algorithm
that can leverage all pre-trained flow matching and diffusion models to solve linear inverse problems.
During initialization, we perturb the measurement {y}t∈[0,T ] parallel to the forward process of x
to get measurement interpolants yt similar to (Song et al., 2022). The intuition of measurement
interpolants comes from filtering (Dou & Song, 2024). With the interpolants, the likelihood qt(yt|xt)
is Gaussian for all t. Then at each time t ∈ [0, T ], we incorporate qt(yt|xt) as guidance for sampling
xt. This section provides more details and is organized as follows. In Section 3.1, we state how
to obtain measurement interpolants. Section 3.2 presents the FIG algorithm. We then show in
Section 3.3 that the updating scheme is theoretically justified. Section 3.4 discusses details regarding
the practical implementation of our algorithm. For readability, we choose to adopt a flow matching
narrative in most of this section, although FIG can also use a diffusion prior. Empirical results using
both flow matching and diffusion priors will be shown in Section 4.

3.1 GENERATING MEASUREMENT INTERPOLANTS

Given a pre-trained flow model, xt is interpolated following Eq. (2), with x0 following the data
distribution and xT = εx ∼ N (0, I). We consider a parallel interpolation of y, i.e.,

yt = αty0 + σtyT , (13)

where y0 = y, and yT = εy = Aεx. The following sequence of equalities reveals the distribution of
qt(yt|xt):

yt = αt(Ax0 + n) + σtAεx = A(αtx0 + σtxT ) + αtn = Axt + αtn. (14)

Hence, we have qt(yt|xt) = N
(
yt;Axt, α

2
tσ

2
nI

)
. We note that the generation of the process yt

relies on the fact that the measurement y0 has a linear relationship with the signal x0, thus the
interpolant measurement only works for linear models.
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Algorithm 1 Flow with Interpolant Guidance (FIG)

Require: T , c, K, w, y0

1: Initialize xT = εx ∼ N (0, I) ▷ Initialize xt

2: ∆t = 1/T
3: for i = T to 1 do
4: t = i/T , t′ = (i− 1)/T
5: yi−1 = αt′y0 + wσt′Aεx ▷ measurement interpolation with rescaled variance
6: xi−1 = xi − vθ(xi, t)∆t ▷ Unconditional update
7: for k = 1 to K do
8: xi−1 = xi−1 − cλtσt∆t

2α2
tσ

2
n
∇xi−1∥yi−1 −Axi−1∥22 ▷ K-times conditional update

9: end for
10: end for

It is worth mentioning that xt in Eq. (14) is defined by the interpolation process given in Eq. (2),
instead of the probability flow ODE detailed in Eq. (3). In this case it is fair to ask: is the conditional
distribution of yt|xt still Gaussian when xt is sampled from Eq. (3)? The answer is yes because xt

defined in Eq. (2) and Eq. (3) have the same distribution (Liu et al., 2023b).

3.2 ALGORITHM OVERVIEW

Before diving into the detailed analysis, we first provide an overview of the FIG algorithm (see
Algorithm 1). The algorithm numerically solves a reverse-time ODE to generate samples from the
correct posterior,

dx = −vt(x)dt+ λtσt∇x log qt(yt|x)dt, with xT ∼ N (0, I). (15)

Here, vt denotes the (unconditional) velocity field from the pre-trained model, λt = σ̇t − α̇t

αt
σt, and

∇x log qt(y|x) = − 1
2α2

tσ
2
n
∇x∥y −Ax∥2. The derivation and justification of Eq. (15) are detailed

in Section 3.3.

Numerically, time is discretized on a uniform grid with ∆t referring to the step size. In the following,
we use xi and yi instead of xti and yti for readability. The updating scheme at each time ti,
corresponding to an Euler’s method with splitting (Leimkuhler & Matthews, 2015), is as follows:{

x′
i−1 = xi − vti(xi)∆t

xi−1 = x′
i−1 − λtσt

2α2
tσ

2
n
∇x′

i−1
∥yi−1 −Ax′

i−1∥2∆t.
(16)

Each step of the two-step updating scheme has a different aim. The first step in Eq. (16) corresponds to
the unconditional update, which is exactly a numerical discretization of the reverse process specified
in Eq. (6). In a practical implementation it is performed via Euler’s method (see line 6 in Algorithm 1).
The second step is a conditional update that incorporates measurement information. In practice K
gradient descent steps with learning rate c carry out the conditional update (see line 7 to line 9 in
Algorithm 1). We introduce the theoretical reasoning of this simple but effective updating scheme
next.

3.3 THEORETICAL JUSTIFICATION

We now provide the theoretical reasoning underlying FIG. Importantly, note that for all t ∈ (0, T ),
the marginal distribution of yt is uniquely determined by y0 and εy as detailed in Eq. (13). We make
the following technical assumption:

Assumption 1 The conditional distribution of xt given y0 and εy is equivalent to the conditional
distribution of xt given yt.

Let pt(·|yt) be the density of xt given yt. The following theorem reviews the dynamics of pt(·|yt).

Theorem 1 Let vt(x|yt) be the conditional velocity field that generates pt, i.e., pt(x|yt) solves the
reverse-time continuity equation with initial condition pT being a standard Gaussian:

∂tpt(x|yt)−∇x · [vt(x|yt)pt(x|yt)] = 0. (17)

5
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Let st(x|yt) = ∇x log pt(x|yt) be the score function. Then under Assumption 1,

vt(x|yt) =
α̇t

αt
x− λtσtst(x|yt). (18)

We defer the proof to Appendix A.1. Theorem 1 describes the conditional dynamics, which demon-
strates consistency. The corresponding (reverse-time) probability flow ODE gives rise to the numerical
updating scheme Eq. (16):

dx = −vt(x|yt)dt, (19)
with initial condition xT ∼ N (0, I). In view of Eq. (18), we rewrite the conditional probability flow
ODE detailed in Eq. (19) as

dx = −vt(x|yt)dt = −
( α̇t

αt
x− λtσt∇x log pt(x|yt)

)
dt

= −
( α̇t

αt
x− λtσt∇x log pt(x)

)
dt+ λtσt∇x log qt(yt|x)dt

= −vt(x)dt+ λtσt∇x log qt(yt|x)dt.

(20)

Here, ∇x log qt(y|x) = − 1
2α2

tσ
2
n
∇x∥y−Ax∥2. Further, vt denotes the (unconditional) velocity field

from the pre-trained model. Note that this equation is identical to Eq. (15). An Euler discretization
of Eq. (15) yields exactly Eq. (16). Interestingly, when we let αt = 1 − t and σt = t, i.e., when
we follow the rectified flow (Liu et al., 2023b), the coefficient λtσt = t

1−t = 1/SNRt, where
SNRt =

1−t
t = αt

σt
. The following corollary summarizes the direction of the conditional update.

Corollary 1 The conditional update direction at time ti is equivalent to a gradient flow direction
that maximizes an L2-regularized posterior log-likelihood at the next timestep log pi−1(xi−1|yi−1):

∇xi−1

(
log pi−1(xi−1|yi−1) +

|α̇i−1|
αi−1

1

SNRt

∥xi−1∥2

2

)
. (21)

Corollary 1 demonstrates that FIG updating direction is equivalent to maximizing a regularized
log-likelihood, providing further intuition into the algorithm. The proof is provided in Appendix A.2.

While all previous derivations uses a flow matching base model, FIG can also be applied to diffusion
models. When adopting a diffusion prior, the following corollary states the SDE version of FIG.

Corollary 2 Let the pre-trained unconditional generation be a diffusion model, as detailed in Eq. (7),
then FIG admits the form:

dx =
[
f(x, t) + g(t)2st (x|yt)

]
dt+ g(t)dW . (22)

Numerically sampling Eq. 22 gives the FIG algorithm with diffusion prior. It is interesting to observe
that Eq. (22) coincides with the limiting process of FPS (Dou & Song, 2024), yet the sampling
procedure of FIG remains different. The proof is given in Appendix A.3.

3.4 PRACTICAL IMPLEMENTATION

In practice, we observe that a conditional update can be viewed as minimizing the distance between
the data xt projected onto the measurement space and the measurement interpolants yt. The
likelihood score represents the gradient of the conditional update. Therefore, a single conditional
update corresponds to one step of gradient descent. If we perform only one conditional update per
timestep and adjust the update magnitude solely by tuning the weight c of the likelihood score, the
effectiveness of the conditional update within a single timestep will be significantly reduced. However,
if fully optimizing this distance, the log-likelihood of measurement interpolant will be overwhelming
compared to the prior information, resulting in severe overfitting. Thus, maintaining a balance
between the measurement information and the prior information is crucial for our reconstruction
problem. To remedy the issue, we introduce a new parameter K. After an unconditional update,
we perform K conditional updates with theoretically justified weights and directions as previously
shown. We also note that due to the nature of ODEs, once the velocity field and initialization are

6
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SR (4×) Gaussian Deblur Motion Deblur Inpainting

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

FIG-Flow 29.41 0.811 0.201 26.83 0.738 0.261 30.84 0.871 0.209 27.08 0.814 0.274

DPS-Flow 28.73 0.777 0.221 22.95 0.568 0.337 21.95 0.571 0.382 27.05 0.801 0.244
DMPS 29.00 0.807 0.222 26.74 0.725 0.255 29.81 0.828 0.226 12.66 0.284 0.658

OT-ODE 28.40 0.769 0.225 26.34 0.708 0.252 29.07 0.818 0.226 18.86 0.475 0.500

FIG-Diffusion 29.89 0.846 0.163 29.83 0.845 0.147 31.81 0.882 0.137 27.36 0.848 0.163

DPS-Diffusion 28.85 0.801 0.172 28.32 0.797 0.136 30.69 0.843 0.127 28.23 0.793 0.164
DDNM+ 28.82 0.750 0.340 7.84 0.021 0.840 - - - 28.70 0.843 0.182

DAPS 29.59 0.809 0.158 29.74 0.808 0.146 31.67 0.859 0.119 27.85 0.791 0.183
C-ΠGDM 28.14 0.787 0.106 3.72 0.077 0.860 - - - 13.28 0.216 0.729

Table 1: Quantitative comparison (PSNR, SSIM, LPIPS) of different algorithms for different tasks
on the CelebA-HQ 256× 256 test dataset. All input images have a measurement Gaussian noise of
σn = 0.05. Bold for the best.

determined, the final generated data is uniquely determined. However, the random initialization does
not correspond to the desired reconstruction result. Therefore, we opt to average multiple random
initializations, thereby reducing the impact of incorrect initial values during the interpolation of
measurements. Given that our measurement model is linear, this approach is equivalent to introducing
another parameter w to generate yt, i.e., the new yt is generate via αty0 + wσtεy .

By combining the practical design considerations, we obtain Algorithm 1. The parameters c, w, K
are constants, with c and K being task-specific, governing the balance between unconditional and
conditional updates. The parameter w helps us obtain an empirically better log-likelihood of the
measurement interpolants. The effectiveness of both strategies is examined in later ablation studies.

Though FIG is effective in solving most linear inverse problems for imaging, it struggles with
inpainting tasks where a large region is masked. The reason is that the masked pixels carry zero
information for the conditional update, as they are totally “masked”. Therefore, we propose a simple
remedy termed FIG+. It improves the performance for inpainting tasks. Concretely, for each xt

update, we first estimate x̂0 using Tweedie’s formula, and perturb it to time t to get x̂t. Then we mix
the masked parts of x̂t with the current xt to update the masked region. A hyper-parameter mixing
weight m ∈ [0, 1] determines how much we trust x̂0. We provide the pseudocode in Appendix B.
When m = 0, we retrieve the original FIG algorithm. The added three lines compared to the original
FIG algorithm only involve simple addition and matrix (mask) multiplication. Hence they don’t affect
the runtime and memory consumption much. In our experiments below, we only use FIG+ for the
inpainting task.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on 3 natural image datasets: CelebA-HQ (Karras et al., 2018),
LSUN-Bedroom (Yu et al., 2015), and AFHQ-Cat (Choi et al., 2020). All images used are from the
official test splits and preprocessed to the size of 256× 256× 3.

Tasks. Our evaluation focuses on linear inverse problems including super-resolution, deblurring,
and inpainting. For super-resolution, we apply 4× bicubic downsampling across all datasets. For
deblurring tasks, we use Gaussian blurring with a kernel size of 61× 61 and a standard deviation of
3.0, and motion blurring with the same kernel size but a standard deviation of 0.5. For inpainting,
we perform random inpainting by masking out 90% of the total pixels. We follow the SVD-based
measurement operations defined in DDRM (Kawar et al., 2022), as DDNM, DMPS, and OT-ODE
require an SVD for their conditional updates. For all tasks above, we add a measurement Gaussian
noise n ∼ N (0, σ2

nI) with σn = 0.05. To further demonstrate the capabilities of our algorithm,
we conducted two additional, more complex experiments: 4× super-resolution with high noise
(σn = 1.0), 16× super-resolution with noise (σn = 0.2).
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(a) Reference (b) Measure (c) DPS (d) DMPS (e) OT-ODE (f) FIG (ours)

Figure 2: Results for 90% random inpainting with noise σn = 0.05 on the CelebA-HQ dataset using
a flow matching base model.

(a) Reference (b) Measure (c) DPS (d) DDNM+ (e) DAPS (f) FIG (ours)

Figure 3: Results for 90% random inpainting with noise σn = 0.05 on the CelebA-HQ dataset using
a diffusion base model.
Metrics. For the quantitative comparison, we use the perceptual Learned Perceptual Image Patch
Similarity (LPIPS) distance (Zhang et al., 2018), along with two standard metrics: peak signal-to-
noise-ratio (PSNR), and structural similarity index (SSIM).

Baselines. We compare the performance of our algorithm to several state-of-the-art training-free
algorithms for solving inverse problems, including DPS (Chung et al., 2023b), OT-ODE (Pokle et al.,
2023), DMPS (Meng & Kabashima, 2022), DDNM/DDNM+ (Wang et al., 2023), DAPS (Zhang et al.,
2024), and C-ΠGDM (Pandey et al., 2024). OT-ODE is an improved version of ΠGDM (Song et al.,
2023) applied to flow matching models, thus it is used instead of ΠGDM as the baseline. Likewise,
we transferred DPS and DMPS to flow matching using Eq. (18). Leveraging the advantages of flow
matching models, we fine-tune the baseline methods to ensure they all achieve their best performance
at 50 NFEs except for OT-ODE. It requires less than 50 NFEs due to its start time strategy.

Base Models. We implemented our FIG algorithm for both flow matching and diffusion models. We
refer to both incarnations via FIG-Flow and FIG-Diffusion. For each base model, we then compared
with three state-of-the-art algorithms respectively. For FIG-Flow, we use the pre-trained Rectified
Flow model from Liu et al. (2023b) as our base model and implement all baselines on it to ensure a
fair comparison. In the diffusion category, we utilize EDM (Karras et al., 2022) as the base model
for our algorithm, DPS, and DAPS. Since DDNM/DDNM+ employs a unique time travel structure
that may not transfer well, we retain their original DDIM base model and conduct experiments
using their original code. For C-ΠGDM, we use the default VPSDE (Song et al., 2021b). For
unconditional generation, we choose the Euler ODE solver for simplicity as it makes it easier to add
the measurement information at each sampling step.

4.2 EXPERIMENTAL RESULTS

The quantitative comparisons are listed in Tables 1, 2, 11 and 12, with samples of reconstructed images
shown in Figs. 2 to 6. Additional experimental results are presented in Appendices F and G. Our
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SR (4×) σn = 1.0 SR(16×) σn = 0.2

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

FIG (ours) 24.47 0.722 0.315 19.92 0.553 0.405

DPS 22.50 0.593 0.378 19.20 0.531 0.424
DMPS 24.06 0.678 0.342 19.91 0.536 0.441

OT-ODE 15.14 0.191 0.695 17.79 0.408 0.570

Table 2: Quantitative comparison (PSNR, SSIM, LPIPS) of different algorithms for high noise bicubic
super-resolution on the CelebA-HQ 256× 256 test dataset. Bold for the best.

(a) Reference (b) Measure (c) DPS (d) DMPS (e) OT-ODE (f) FIG (ours)

Figure 4: Results for 4× bicubic super-resolution with high noise σn = 1.0 on the CelebA-HQ
dataset.

algorithm FIG demonstrates highly competitive performance across all tasks, metrics, and datasets.
For all these tasks, DPS and OT-ODE tend to produce sharper edges, but this sometimes results
in unrealistic details and textures, leading to worse metrics. In contrast, our algorithm generates
faithfully smooth images with a good balance of detail and realism.

Algorithm Total Memory NFEs Avg. Inf. Time (s)

FIG-Flow 7735MB 50 2.80±0.12
DPS-Flow 8109MB 50 4.41±0.14

DMPS 7847MB 50 2.83±0.15
OT-ODE 8257MB 40 3.69±0.14

FIG-Diffusion 2809MB 100 4.06±1.01
DPS-Diffusion 7761MB 100 8.19±1.04

DDNM+ 28707MB 1210 28.36±0.61
DAPS 2809MB 1000 59.56±1.70

C-ΠGDM 5697MB 5 0.45±0.01

Table 3: The running time and memory consumption re-
quired for different algorithms on the CelebA-HQ 256×256
test dataset for the super-resolution task. All experiments
are conducted on a single NVIDIA RTX A6000 GPU for
reconstruction of one image. Bold for the best.

Our algorithm exhibits superior per-
formance compared to other baselines
with flow matching prior, particularly
for the challenging super-resolution
tasks with high levels of noise. We do
not include the results from diffusion-
based algorithms for those tasks be-
cause they all fail to yield a reason-
able reconstruction. Note that Wang
et al. (2023) reported a similar task
with average pooling super-resolution
but it fails on bicubic super-resolution.
See Appendix E for more details of
DDNM/DDNM+. Additionally, to fur-
ther demonstrate the robustness of our
algorithm, we test it on 4× super-
resolution with non-uniform and high
noise. As shown in Fig. 6, our algo-
rithm performs well even under these
challenging conditions.

In addition to the outstanding performance, our algorithm is highly efficient in terms of computational
resources as shown in Table 3. For the same NFEs (except for OT-ODE due to its initialization
technique), our algorithm attains optimal results in both running time and memory usage.

To validate our theoretical results and the effectiveness of practical design components, we perform
ablation studies (detailed in Appendix C) on 1) K-times conditional update with results in Fig. 7
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(a) Reference (b) Measure (b) DPS (b) DMPS (b) OT-ODE (b) FIG (ours)

Figure 5: Results for 16× bicubic super-resolution with high noise σn = 0.2 on the CelebA-HQ
dataset.

(a) Reference (b) Measure (c) FIG (ours) (d) Reference (e) Measure (f) FIG (ours)

Figure 6: Results for 16× bicubic super-resolution with high non-uniform Gaussian noise (first row)
and non-uniform Laplacian noise (second row) on CelebA-HQ dataset.

and Tables 4 to 6 in Appendix C.1; 2) measurement interpolant variance rescaling with results in
Fig. 8 and Tables 7 to 9 in Appendix C.2. Both the visual outputs and quantitative results support the
principles underlying the development of FIG.

5 CONCLUSION

In this paper, we presented FIG, a task-agnostic algorithm for solving linear inverse problems. Our
key observation: adding noise to the measurement is easier compared to denoising the signal. We thus
use measurement interpolants to guide the unconditional generation. The FIG algorithm is simple yet
effective, as is shown by experiments on multiple tasks over several high-dimensional datasets.

Limitations: First, since the measurement interpolants rely on the linear relationship between the
measurement and the underlying signal, FIG can not directly be applied to general non-linear inverse
problems. For the same reason, the algorithm is not compatible with pre-trained models with latent
encodings. Second, the FIG result is still an approximated posterior. To obtain true posterior samples,
one should consider methods based on stochastic optimal control (Guo et al., 2024; Uehara et al.,
2024). Another way is to sequentially update εx so that it generates the intended image (Ben-Hamu
et al., 2024).

Future Work: Although FIG can not be extended to non-linear problems in general, its potential
application in bilinear problems such as blind motion deblurring (Chung et al., 2023a; Fei et al., 2023)
could be an interesting direction. When fixing either the blurring kernel or the image, the noise model
is linear, thus measurement interpolants can be constructed. Using FIG’s updating scheme could
potentially lead to better reconstruction. However, initialization and regularization on the kernel are
highly non-trivial, and require future explorations. Another interesting direction is to extend FIG to
latent models (Rout et al., 2024; Song et al., 2024).
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APPENDIX: FIG: FLOW WITH INTERPOLANT GUIDANCE FOR LINEAR INVERSE
PROBLEMS

A PROOFS

A.1 PROOF OF THEOREM 1

The proof follows from Appendix C of Ma et al. (2024). We start with the conditional density
pt(x|y0, εy) and later use Assumption 1 to get pt(x|yt). Let

p̂t(k) =

∫
eik·xpt(x|y0, εy)dx (23)

be the characteristic function, which is also equal to

p̂t(k) = Ẽeik·xt . (24)

Here Ẽ denote the expectation on x0|y0, εy and εx|y0, εy . Similar to Ma et al. (2024), we have

∂tp̂t(k) = ∂tẼeik·xt

= ikẼ(ẋte
ik·xt)

= ikEpt
Ẽ(ẋte

ik·xt |xt)

= ikEpt
[Ẽ(ẋt|xt)e

ik·xt ]

= ikEpt
(ṽt(xt)e

ik·xt),

(25)

where we define ṽt(xt) = Ẽ(α̇tx0 + σ̇tεx|xt) = E(α̇tx0 + σ̇tεx|xt,y0, εy).

Now using the two formulations of the characteristic function given in Eq. (23) and Eq. (24), we have

∂t

∫
eik·xpt(x|y0, εy)dx = ik

∫
ṽt(xt)e

ik·xtpt(x|y0, εy)dx. (26)

Thus we have ∫
eik·x∂tpt(x|y0, εy)dx

=

∫
ṽt(xt)∇x(e

ik·xt)pt(x|y0, εy)dx

=−
∫

∇x · [ṽt(xt)pt(x|y0, εy)]e
ik·xtdx,

(27)

where the last equality uses integration by parts. Using the inverse Fourier transform we have

∂tpt(x|y0, εy) +∇x · [ṽt(xt)pt(x|y0, εy)] = 0. (28)

Since we start from t = T , a minus sign should be added to ṽ. Using Assumption 1 gives Eq. (17).
Assumption 1 can also be equivalently stated as follows: let the density function of xt given y0 and
εy be pt(x|y0, εy), then there exists pt such that

pt(x|y0, εy) = pt(x|yt). (29)

The equality holds when εy is independent of εx. The proof follows the one of Equation 9 by Ma
et al. (2024).

vt(x|yt) = α̇tE [x∗|x,yt] + σ̇tE [εx|x,yt]

= α̇tE
[
xt − σtε

αt

∣∣∣∣ x,yt

]
+ σ̇tE [εx|x,yt]

=
α̇t

αt
x+

(
σ̇t −

α̇tσt

αt

)
E [εx|x,yt]

=
α̇t

αt
x+

(
σ̇t −

α̇tσt

αt

)
(−σtst(x|yt))

=
α̇t

αt
x− λtσtst(x|yt)

(30)
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Algorithm 2 FIG+

Require: T , c, K, w, m, y0

1: Initialize xT = εx ∼ N (0, I) ▷ Initialize xt

2: ∆t = 1/T
3: for i = T to 1 do
4: t = i/T , t′ = (i− 1)/T
5: yi−1 = αt′y0 + wσt′Aεx ▷ measurement interpolation with rescaled variance
6: xi−1 = xi − vθ(xi, t)∆t ▷ Unconditional update
7: for k = 1 to K do
8: xi−1 = xi−1 − cλtσt∆t

2α2
tσ

2
n
∇xi−1

∥yi−1 −Axi−1∥22 ▷ K-times conditional update
9: end for

10: x′
0 = (1− t)vθ (xi, t) + xi ▷ use Tweedie’s formula to estimate x0

11: x′
i−1 = αi−1x

′
0 + σi−1εx ▷ perturb estimated x0 to time ti−1

12: xi−1 = Axi−1 + (1−m)(I −A)xi−1 +m(I −A)x′
i−1 ▷ mix x′

i−1 with xi−1

13: end for

A.2 PROOF OF COROLLARY 1

From Eq. (16), the first update for x′
i−1 uses information of xi. If we now consider the second step

first and then it’s next update step, the update scheme reads as follows:

{
xi−1 = x′

i−1 − λtσt

2α2
tσ

2
n
∇x′

i−1
∥yi−1 −Ax′

i−1∥2∆t

x′
i−2 = xi−1 − vti−1

(xi−1)∆t,
(31)

which is a splitting of

−
( α̇ti−1

αti−1

x− λti−1σti−1∇x log pti−1(x|yti−1)
)
dt. (32)

This completes the proof.

A.3 PROOF OF COROLLARY 2

The corollary is a direct result of Theorem 1. The velocity field of diffusion models is defined in the
probability flow ODE (Song et al., 2021b), which is exactly Eq. (22) when conditioning on yt.

B FIG+ ALGORITHM

We provide the FIG+ algorithm in Algorithm 2.

C ABLATION STUDY

C.1 K-TIMES CONDITIONAL UPDATE

In this section, we perform the ablation study over the K-times conditional update strategy.
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(a) Reference (b) Measure (c) K = 1 (d) Overfit (e) optimal K

Figure 7: Our FIG algorithm for Gaussian deblurring and random inpainting with noise σn = 0.05
on the CelebA-HQ dataset.

SR (4×) Gaussian Deblur Colorization Inpainting

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

K = 1 28.51 0.812 0.222 25.43 0.691 0.271 24.21 0.902 0.241 30.02 0.895 0.189
optimal K 28.51 0.812 0.222 26.45 0.738 0.257 24.21 0.902 0.241 33.33 0.920 0.131

Table 4: Quantitative comparison (PSNR, SSIM, LPIPS) of our algorithm for different K’s on the
CelebA-HQ 256 × 256 validation set. All input images have a measurement Gaussian noise of
σn = 0.05. Note that for SR (4×) and colorization, the optimal K = 1, so they have the same
metrics.

SR (4×) Gaussian Deblur Colorization Inpainting

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

K = 1 24.48 0.646 0.370 22.75 0.533 0.445 24.27 0.862 0.284 27.25 0.815 0.246
optimal K 24.48 0.646 0.370 23.36 0.554 0.433 24.27 0.862 0.284 29.17 0.872 0.156

Table 5: Quantitative comparison (PSNR, SSIM, LPIPS) of our algorithm for different K’s on the
LSUN-Bedroom 256 × 256 validation set. All input images have a measurement Gaussian noise
of σn = 0.05. Note that for SR (4×) and colorization, the optimal K = 1, so they have the same
metrics.

SR (4×) Gaussian Deblur Colorization Inpainting

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

K = 1 28.45 0.730 0.260 25.33 0.590 0.330 25.52 0.906 0.246 31.04 0.867 0.178
optimal K 28.45 0.730 0.260 26.25 0.632 0.310 25.52 0.906 0.246 31.04 0.867 0.178

Table 6: Quantitative comparison (PSNR, SSIM, LPIPS) of our algorithm for different K’s on
the AFHQ-Cat 256× 256 validation set. All input images have a measurement Gaussian noise of
σn = 0.05. Note that for SR (4×), colorization, and inpainting, the optimal K = 1, so they have the
same metrics.

We run experiments with K = 1 and the optimal K. For both experiments, we finetune other
hyperparameters so that our algorithm achieves the best performance under certain K settings. Fig. 7
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contains examples of Gaussian deblurring and random inpainting on the CelebA-HQ dataset. When
we set K = 1, the results are blurry and exhibit unnatural details compared to the result for the
optimal K. If we fully minimize the distance ∥yt − Axt∥22 at each timestep, the output shows
severe overfitting problems as illustrated in Fig. 7d. To mitigate the risk, we tune K and c for better
performance. The quantitative results are shown in Table 4, Table 5, and Table 6.

C.2 MEASUREMENT INTERPOLANT VARIANCE RESCALING

In this section, we ablate the measurement interpolant variance rescaling technique.

(a) Reference (b) Measure (c) w = 1 (d) optimal w

Figure 8: Our FIG algorithm for super-resolution and random inpainting with noise σn = 0.05 on the
LSUN-Bedroom and AFHQ-Cat datasets.

SR (4×) Gaussian Deblur Colorization Inpainting

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

w = 1 25.66 0.585 0.376 24.08 0.533 0.383 23.24 0.673 0.400 19.36 0.407 0.495
optimal w 28.51 0.812 0.222 26.45 0.738 0.257 24.21 0.902 0.241 33.33 0.920 0.131

Table 7: Quantitative comparison (PSNR, SSIM, LPIPS) of our algorithm for different w’s on the
CelebA-HQ 256 × 256 validation set. All input images have a measurement Gaussian noise of
σn = 0.05.

SR (4×) Gaussian Deblur Colorization Inpainting

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

w = 1 21.02 0.327 0.566 20.06 0.273 0.575 19.80 0.486 0.557 19.48 0.346 0.571
optimal w 24.48 0.646 0.370 23.36 0.554 0.433 24.27 0.862 0.284 29.17 0.872 0.156

Table 8: Quantitative comparison (PSNR, SSIM, LPIPS) of our algorithm for different w’s on the
LSUN-Bedroom 256× 256 validation set. All input images have a measurement Gaussian noise of
σn = 0.05.
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Figure 9: Metrics for 4× super resolution on CelebA-HQ 256× 256 validation set with
different variance rescaling factor w.

SR (4×) Gaussian Deblur Colorization Inpainting

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

w = 1 26.02 0.538 0.395 24.74 0.466 0.419 23.95 0.685 0.441 21.76 0.388 0.523
optimal w 28.45 0.730 0.260 26.25 0.632 0.310 25.52 0.906 0.246 31.04 0.867 0.178

Table 9: Quantitative comparison (PSNR, SSIM, LPIPS) of our algorithm for different w’s on the
AFHQ-Cat 256 × 256 validation set. All input images have a measurement Gaussian noise of
σn = 0.05.

In our algorithm, the measurement interpolant is defined as yt = αty0 + wσtεy . Without rescaling,
i.e., for w = 1, as shown in the first row in Fig. 8, we observe that the reconstructed result appears
as if two images have been combined: one representing our measurement and the other determined
by the initialization and the ODE. Increasing the weight of the measurement guidance can address
this issue, but it leads to overfitting, resulting in a high level of noise in the final output as shown
in the second row in Fig. 8. With a smaller optimal w, we can achieve a balance between these two
situations, resulting in much better outcomes. The quantitative results are presented in Tables 7 to 9.
All experiments are conducted by carefully fine-tuning the hyper-parameters. Fig. 9 gives a visual
illustration of effects on different w for super resolution on CelebA with flow matching prior. It’s
clear that w affects the performance of our algorithm and there exists an optimal w. We only show
the PSNR and LPIPS because the SSIM scores are close.

D RECOVERY VS PERCEPTUAL TRADE-OFF

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID ↓
FIG-Diffusion 29.89 0.846 0.163 25.46 0.013

DPS-Diffusion 28.85 0.801 0.172 19.31 0.005
DDNM+ 28.82 0.750 0.340 64.85 0.052

DAPS 29.59 0.809 0.158 23.69 0.013
C-ΠGDM 28.14 0.787 0.106 30.51 0.019

Table 10: Quantitative comparison (PSNR, SSIM, LPIPS, FID, KID) of different algorithms for 4×
super-resolution with noise σn = 0.05 on the CelebA-HQ 256× 256 test dataset. Bold for the best.
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(a) Reference (b) Average pooling (c) Bicubic

Figure 10: DDNM+ results for 4× bicubic super-resolution with noise σn = 0.05 on the CelebA-HQ
dataset.

In this section, we report FID and KID along with the metrics used in the main paper, i.e., PSNR,
SSIM, and LPIPS for 4× super-resolution with noise σn = 0.05 on the CelebA-HQ 256 × 256
(see Table 10), and discuss the recovery and perceptual trade-off in those metrics.

PSNR and SSIM are considered recovery metrics that measure pixel-level fidelity while LPIPS, FID,
and KID are referred to as perceptual metrics that assess perceptual similarity or high-level semantic
fidelity.

In this paper, we focus on image reconstruction tasks involving noisy measurements. In this case,
metrics like FID and KID, while effective for generative models emphasizing perceptual realism,
evaluate distribution-level similarity and may fail to capture details in structural recovery, particularly
in high-noise scenarios where subtle details matter. Additionally, FID and KID can be misleading if
the reconstructed images are perceptually plausible but deviate significantly from the ground truth.
PSNR and SSIM, however, provide a clear and objective measure of how well the noise has been
suppressed and the original content preserved, which remains critical in our experiments. In all,
PSNR and SSIM, LPIPS are baseline metrics widely used in image restoration domain.

As shown in Table 10, our algorithm achieves a balanced trade-off between recovery and perceptual
metrics. In the task of noisy image reconstruction, it not only delivers the best recovery metrics but
also achieves impressive perceptual scores.

E BASELINE IMPLEMENTATIONS

For the pretrained model, we use both flow matching and diffusion models. For all algorithms with a
flow matching base model, we use the rectified flow.1 For measurement operators, since our baseline
methods OT-ODE and DMPS require an SVD, we inherit codes from the DDRM Github repository.

DPS-Flow. In the codes for the Rectified flow model, αt = t and σt = 1− t. Following Eq. (18),
we have x̂0 = (1− t)vθ(xt, t) + xt. Given x̂0, we implement DPS strictly following Algorithm 1
of (Chung et al., 2023b) and fine-tune the hyperparameter ζi to achieve the best performance.

DMPS. With the SVD operations from DDRM codes, we implement DMPS strictly following
Algorithm 1 in (Meng & Kabashima, 2022) and fine-tune the hyperparameter λ to get the best results.
Again, the score function is obtained by the velocity following Eq. (18).

OT-ODE. Using the same x̂0 as DPS and the SVD operations from the DDRM implementation, we
implement the OT-ODE strictly following Algorithm 1 of (Pokle et al., 2023) and test the start time
for each task to get the best performance.

DAPS. We use the official repository2 and strictly follow the Algorithm 1 of Zhang et al. (2024) to
implement DAPS.

DPS-Diffusion. We implement DPS on the EDM implementation from the DAPS repository.

1https://github.com/gnobitab/RectifiedFlow
2https://github.com/zhangbingliang2019/DAPS
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SR (4×) Gaussian Deblur Colorization Inpainting

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

FIG (ours) 24.54 0.682 0.327 22.94 0.588 0.402 21.87 0.865 0.320 30.24 0.895 0.139

DPS 24.23 0.649 0.346 19.82 0.433 0.471 14.30 0.610 0.596 27.21 0.771 0.283
DMPS 24.08 0.653 0.368 22.76 0.575 0.413 21.26 0.865 0.326 27.34 0.841 0.212

OT-ODE 23.82 0.639 0.349 22.16 0.566 0.389 22.06 0.781 0.385 26.56 0.768 0.278

Table 11: Quantitative comparison (PSNR, SSIM, LPIPS) of different algorithms for different tasks
on the LSUN-Bedroom 256× 256 test dataset. All input images have a measurement Gaussian noise
of σn = 0.05. Bold for the best.

SR (4×) Gaussian Deblur Colorization Inpainting

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

FIG (ours) 27.50 0.707 0.272 25.14 0.591 0.334 26.36 0.915 0.227 28.99 0.835 0.202

DPS 25.70 0.607 0.332 21.40 0.407 0.429 21.82 0.763 0.407 26.20 0.709 0.300
DMPS 27.49 0.709 0.286 24.97 0.577 0.343 26.12 0.913 0.221 27.02 0.781 0.262

OT-ODE 25.95 0.617 0.326 24.42 0.536 0.357 25.39 0.849 0.291 28.22 0.789 0.235

Table 12: Quantitative comparison (PSNR, SSIM, LPIPS) of different algorithms for different tasks
on the AFHQ-Cat 256× 256 test dataset. All input images have a measurement Gaussian noise of
σn = 0.05. Bold for the best.

DDNM/DDNM+. We implement DDNM and DDNM+ strictly following Algorithm 1 and 2 of
Wang et al. (2023).3 We reproduce all the metrics of the tasks reported in their paper but find that
the performance of DDNM/DDNM+ varies significantly across different tasks. Our experiment
shows that DDNM/DDNM+ fails on Gaussian deblurring with noise, which matches the result of
Meng & Kabashima (2022). We also find that DDNM/DDNM+ can’t handle super-resolution with
bicubic down-sampling well, resulting in noisy reconstructions as shown in Fig. 10. However for
super-resolution with average pooling, we achieved good results for both SR(4×) with noise standard
deviation 0.05 and SR(16×) with noise standard deviation 0.2. Motion deblur is not implemented
since DDNM requires SVD operations.

C-ΠGDM. We implement C-ΠGDM strictly following Algorithm 1 of Pandey et al. (2024).4 We
reproduce all the metrics of the tasks reported in their paper and find that the performance varies
significantly across different measurement noise levels. Our experiment shows that C-ΠGDM fails
on Gaussian deblurring and 90% random inpainting with noise. However, we find C-ΠGDM results
are especially competitive in terms of LPIPS, and the runtime is much lower than all other baseline
methods we include. Motion deblur is not implemented since SVD operations are required.

F ADDITIONAL EXPERIMENTAL RESULTS FOR FLOW MATCHING MODEL

We show additional results with flow matching priors. Reconstructed images for motion deblurring
with σn = 0.05 on CelebA-HQ are shown in Fig. 11. Additional quantitative results on other datasets
(LSUN-Bedroom, AFHQ-Cat) are shown in Tables 11 and 12.

3https://github.com/wyhuai/DDNM
4https://github.com/mandt-lab/c-pigdm
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(a) Reference (b) Measure (c) DPS (d) DMPS (e) OT-ODE (f) FIG (ours)

Figure 11: Results for motion deblurring with noise σn = 0.05 on the CelebA-HQ dataset.
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(a) Reference (b) Measure (c) DPS (d) DMPS (e) OT-ODE (f) FIG (ours)

Figure 12: Results for super-resolution (4×) with noise σn = 0.05 on AFHQ-Cat, CelebA-HQ, and
LSUN-Bedroom datasets.
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(a) Reference (b) Measure (c) DPS (d) DMPS (e) OT-ODE (f) FIG (ours)

Figure 13: Results for Gaussian deblurring with noise σn = 0.05 on AFHQ-Cat, CelebA-HQ, and
LSUN-Bedroom datasets.
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(a) Reference (b) Measure (c) DPS (d) DMPS (e) OT-ODE (f) FIG (ours)

Figure 14: Results for colorization with noise σn = 0.05 on AFHQ-Cat, CelebA-HQ, and LSUN-
Bedroom datasets.
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G ADDITIONAL EXPERIMENT RESULTS FOR DIFFUSION MODEL

In this section, we show that our algorithm works for diffusion models. Qualitative results are shown
below.

(a) Reference (b) Measure (c) DPS (d) DDNM+ (e) DAPS (f) FIG (ours)

Figure 15: Results for 4× bicubic super-resolution with noise σn = 0.05 on the CelebA-HQ dataset.

(a) Reference (b) Measure (c) DPS (d) DDNM+ (e) DAPS (f) FIG (ours)

Figure 16: Results for Gaussian deblurring with noise σn = 0.05 on the CelebA-HQ dataset.

(a) Reference (b) Measure (c) DPS (d) DAPS (e) FIG (ours)

Figure 17: Results for motion deblurring with noise σn = 0.05 on CelebA-HQ dataset.
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