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Abstract: Conversational assistive robots have the potential to guide humans to
accomplish various daily tasks such as cooking meals, performing exercises, or
operating machines. However, to interact effectively over long-horizon tasks, the
robot must be able to infer the human’s goal from their interactions with the sur-
rounding environment. A few key challenges in inferring the world and user state
are that the sensors are noisy, and the robot has partial observability of the envi-
ronment and the human’s intention. These problems compound as the robot col-
lects more noisy observations about the user and environment over long periods
of time. Our proposed work aims to bridge the gap in enabling the robot to per-
form accurate online inference of the world and user state in a partially observable
environment, especially over extended periods.
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1 Introduction

A conversational social robot can help humans perform daily activities, such as cooking dinner more
independently and safely. Imagine a scenario where the human mistakenly performs sub-optimal
actions while cooking dinner, e.g., forgetting to turn off the stove. In such a situation, an assistive
robot must be able to suggest corrective next steps based on its understanding of the world and the
user [1, 2]. An assistive robot guide to turning off the stove will be effective in the given case. To
interact effectively, the robot must infer the human’s goal and current step in the activity given the
observations of the state of the appliances, e.g. (the microwave is off, the stove is on) and the state
of the attributes of objects (e.g., dishes are dirty). Such an assistive robot will benefit people with
dementia or cognitive impairment. It can also be helpful to an operator trying to build a machine, a
child with autism trying to do their homework, or a child learning to do a chore.

The problem of inferring the world and user state is challenging because the sensors are noisy, and
the robot has partial observability of the environment and the human’s intention. The uncertainty
in state estimation compounds as the robot collects more noisy observations about the user and
environment over long periods of time [3]. Existing approaches do model the user and the world state
but do not handle uncertainty from both the world sensors’ observation and human language for state
estimation over extended periods. Our proposed work aims to introduce methods to manage these
sources of uncertainty. Our work aims to enable the robot to perform accurate and time-efficient
online inference of the world and user state in a partially observable environment, especially over
extended periods.

2 Handling Different Sources of Uncertainty
Long-term social interactions require an estimation of the world and user state given a sequence

of observations of human’s interaction with the environment. In this section, I will describe the
different sources of uncertainty for estimating the world state, the user state and the task specification
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for long-horizon assistive robotics. I will also describe briefly our proposed methods for handling
uncertainty in long-horizon tasks.

2.1 Uncertainty in the World State

Home-service robots have a great potential to assist human users by retrieving spatial-temporal
information about the objects in the environment from their long-term observations. Imagine a
home robot monitoring the environment over long periods of time. Such a robot will have a massive
amount of observations of the objects in the environment. The human user can then ask the home
robot to assist them in finding objects in the environment by asking a simple query such as ”What
are the favorite places in the house where I can place my keys?” To answer such a simple query, the
service robots must have a situational understanding of the environment over extended periods, not
just for days but weeks and months. This requires the robot to estimate the state of objects in the
environment over an extended time in a partially observable environment. Service robots with such
an ability will be well-suited to help the elderly, especially those with dementia.

The previous approaches for long-term object state estimation and retrieval either assume 1. static
cameras [4, 5, 6], 2. full observability [6], or 3. short-time horizon for object search [7, 8]. For
long-term object retrieval, the above assumptions leave a partially-observable robot searching over
countless detections of objects in visual sensor data from many different time slices. These detec-
tions will contain partial views ? of different object instances. Further, storing all these partial-view
detections will take up a lot of memory space and time. Existing approaches will search all of
these partial views of objects even when they are not irrelevant to the query. What we propose is
a Detection-based 3-level hierarchical Association approach, D3A that allows for a compact and
query-able spatial-temporal state estimation representation [9, 10]. Our algorithm performs online
incremental and hierarchical learning to identify keyframes that best represent the unique objects
in the environment. This spatial-temporal representation of objects in the environment also enables
the answering of queries for object retrieval from long-term observations. D3A demonstrates high
accuracy and time efficiency when queried. For a set of 150 queries, D3A returns a small set of can-
didate keyframes (which occupy only 0.17% of the total sensory data) with 81.98% mean accuracy
for answering object retrieval queries in 11.7 ms. Our algorithm is powerful enough that it does not
need to know the object detection algorithm and the natural language query processing algorithm
during data collection and can still build a queryable spatial-temporal representation of objects over
long periods of time.

2.2 Uncertainty in the User State

Next, for effective long-term social interactions, we must handle uncertainty in both the user and
the world state over long-horizon tasks. We aim to establish a method to enable assistive robots to
infer the goal the human tries to achieve based on their interaction with the environment. Even in
an environment where the robot has maximal sensor information, like a smart home, the robot still
needs to figure out what it is human doing. To be an effective assistant, the robot must interpret
the goal the human is trying to achieve and the action the human should take to complete their
plan. Previously, human progress during hierarchical tasks has been modeled using hierarchical task
networks (HTNs) [2, 11]. However, these plan/goal recognition techniques do not allow the agent to
leverage its ability to use language to reduce uncertainty by asking questions. Further, interpreting
language input from the human is challenging because of the vast space of observations — language
utterances spoken by the human. The existing solution to this problem is heuristics [12, 13, 14],
which are prone to fail as the tasks get complex and the environment sensors become complex or
noisy.

!'Spatial-temporal information of object refers to the whereabouts of the object such as where the object has
been identified in the physical environment of the robot and at what times
2Partial views of objects refers to the partially occluded objects seen from different viewpoints by the robot
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Figure 1: Architecture of Dialogue Goal Recognition POMDP (DGR-POMDP)

We propose to solve this problem by combining the Hierarchical Task Networks (HTNs) with Par-
tially Observable Markov Decision Process (POMDP) in our Dialogue Goal Recognition POMDP
(DGR-POMDP). This is particularly challenging because the POMDP does not assume a hierar-
chical human mental model or task specification structure [15]. Further, the state and observation
spaces are large for modeling users and the world. For our work, we assume the person is a plan-
ner with hierarchically-described goals and subgoals. The agent is represented by a POMDP model
updating its belief in human progress by asking clarification questions about noisy sensor data. An
illustration of our approach’s architecture and a sample example of a clarification question is shown
in Fig-1.

We evaluate the performance of DGR-POMDP over various cooking tasks in a simulated environ-
ment and perform a robot demonstration. We show that by incorporating language feedback from
the human along with the world state information in a hierarchical task model, our decision-theoretic
dialogue framework achieves 86% accuracy in goal recognition and step recognition by only ask-
ing 44% more questions than a baseline that also models human as HTN but does not incorporate
language feedback. Our oracle that always asks the right question only outperforms our policy by
1%.

2.3 Uncertainty in the Task Specifications

Next, we deal with the uncertainty in the task specifications. For human goal and plan recognition,
our previous work assumes that a handcrafted hierarchical task specification exists for the tasks hu-
mans aim to achieve. However, hand-coding an HTN for complex tasks is difficult, as it requires
significant domain knowledge and engineering effort [16]. Hence, lastly, I propose a learning algo-
rithm that learns task specifications from natural language and demonstrations to enable generalized
goal inference. Large Language Models have previously been shown to successfully generate sto-
ries (Rashkin et al., 2020), summaries (Lewis et al., 2020), and commonsense facts (Bosselut et al.,
2019; Hwang et al., 2020). Here we investigate their application to Hierarchical Task Networks.
We plan to use common sense knowledge in large language models and demonstrations of human
completing their tasks to extract hierarchical temporal task representations of various goals. We
propose to generate the action-graph structure of the available actions and objects in an environment
by prompting LLM for subtasks of new goals.

3 Conclusion

Our proposed line of work aims to test the hypothesis that using hierarchical spatial-temporal struc-
tures to model the world and user state in long-term social interactions can enable the robot to have
a more accurate & time-efficient online state inference. Our proposed algorithms aim to improve the
robot’s user experience over extended periods by performing better state estimation for long-term
social interactions. In our work, we describe three sources of uncertainty - world state, user state,



and task specifications. Then we make the following contributions. First, we bring forward a novel
algorithm that performs efficient world state estimation over long periods while handling uncertainty
due to noisy sensors and partial observability. Next, we present a novel formulation for accurate in-
ference of the latent variable of the user’s goals and plans from noisy world sensors and language
feedback. Finally, we provide an outline of learning hierarchical task specifications from demonstra-
tions and natural language using common sense knowledge in large language models. Our proposed
work aims to enable generalized goal inference of human progress during long-horizon task com-
pletion. Our introduced methods help manage uncertainty in world, user, and task specifications. A
home robot with enhanced capabilities of state estimation can assist humans during task completion,
improving social interactions over long periods.
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