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Abstract

Visual Language Models (VLMs) typically rely on1

processed RGB images, leading to information loss2

that limits performance in challenging scenes like3

low-light or high dynamic range. Traditional Image4

Signal Processing (ISP) pipelines, optimized for5

human perception, discard crucial raw sensor data6

beneficial for machine understanding. To overcome7

this, we introduce Raw-VLM, an end-to-end model8

that enables VLMs to natively interpret raw image9

sensor data. Raw-VLM integrates a learnable ISP10

(GM-ISPNet) and a Raw-Tokenlizer module within11

its vision encoder (Raw-ViT). This differentiable12

frontend is jointly trained with the VLM, adap-13

tively converting raw Bayer patterns into machine-14

centric representations that preserve vital semantic15

features while suppressing noise. Our approach ad-16

dresses the information bottleneck, modality mis-17

match, and task-agnostic limitations of conven-18

tional RGB-based VLMs. Raw-VLM significantly19

improves performance on tasks such as raw im-20

age captioning (9% gain), visual question answer-21

ing (5.4% gain), and reduces hallucinations (3.02%22

gain on POPE). By directly leveraging raw data,23

Raw-VLM enhances VLM capabilities in difficult24

scenarios, bridging the gap between sensor data and25

high-level semantic understanding.26

1 Introduction27

Image processing and analysis have long been fundamen-28

tal tasks in computer vision. With the advent of large-scale29

datasets and the rapid development of deep learning tech-30

niques [LeCun et al., 2015], significant progress has been31

made in various tasks such as object detection, segmentation,32

image restoration, and generation. However, most publicly33

available datasets consist of RGB images that have undergone34

compression and post-processing through the camera’s im-35

age signal processing (ISP) pipeline. This process inevitably36

discards large amounts of original sensor information, which37

becomes a bottleneck for fine-grained visual analysis tasks.38
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In contrast to common compressed formats such as JPEG 39

and PNG, Raw images retain the full fidelity of the data cap- 40

tured by the camera sensor before any ISP processing. Raw 41

images preserve higher dynamic range, better color precision, 42

and linear light intensity, offering a more physically accurate 43

representation of the scene. These advantages have motivated 44

researchers to utilize Raw images for tasks such as image 45

restoration, denoising, low-light enhancement, and object de- 46

tection under adverse lighting conditions, achieving notable 47

results. 48

Meanwhile, large language models (LLMs) such as GPT, 49

Claude, and Deepseek have shown remarkable capabilities in 50

natural language understanding and generation, driven by ad- 51

vances in model architecture, training techniques, and com- 52

putational power. However, LLMs primarily rely on textual 53

inputs and lack the ability to directly process visual infor- 54

mation. To bridge this gap, vision-language models (VLMs) 55

have emerged, integrating vision (images, videos) and lan- 56

guage to enable multimodal semantic understanding. VLMs 57

extract visual features using vision encoders and align them 58

with pretrained LLMs to perform tasks such as visual ques- 59

tion answering (VQA), image captioning, and cross-modal 60

retrieval. These models have demonstrated impressive perfor- 61

mance in real-world applications such as autonomous driving, 62

surveillance, robotic perception, and medical imaging. 63

Despite these advances, current VLMs suffer from a fun- 64

damental limitation: the vision encoders operate on RGB im- 65

ages that have undergone irreversible ISP processing. Tra- 66

ditional ISP is designed to enhance human visual percep- 67

tion, often at the cost of discarding high dynamic range de- 68

tails and suppressing high-frequency textures through non- 69

differentiable operations such as demosaicing and tone map- 70

ping. These losses significantly hinder the model’s ability 71

to understand challenging visual scenes, such as low-light or 72

HDR environments. In contrast, Raw images contain rich, 73

unprocessed information that is crucial for robust semantic 74

interpretation in such scenarios. 75

To address this issue, we propose a novel end-to-end Raw 76

image-based vision-language model, Raw-VLM. Our key 77

idea is to insert a learnable ISP module (GM-ISPNet) and 78

a Raw feature tokenizer (Raw-Tokenlizer) before the stan- 79

dard vision encoder, forming a fully differentiable front-end 80

(Raw-ViT) that directly processes Raw images. Unlike con- 81

ventional ISP, which is optimized for human perception, our 82
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Figure 1: Framework of Raw-VLM.

learnable ISP is optimized jointly with the VLM for machine-83

level visual reasoning. This enables the model to preserve84

critical semantic features while suppressing irrelevant sensor85

noise, effectively transforming Raw photon data into features86

aligned with the language model’s semantic space.87

Furthermore, due to the lack of existing Raw-VLM88

datasets, we construct a large-scale Raw image vision-89

language dataset covering tasks such as Raw image caption-90

ing, Raw image OCR, and Raw image VQA. Our contribu-91

tions can be summarized as follows:92

• We present Raw-VLM, the first end-to-end vision-93

language model that natively processes Raw images, en-94

abling direct semantic understanding from sensor data.95

We also propose a four-stage training strategy to jointly96

optimize the model components.97

• We introduce GM-ISPNet, a differentiable ISP module98

deeply integrated with VLMs, featuring a global prior99

guidance mechanism and dynamic convolution-based100

mixture-of-experts for demosaicing, tone mapping, and101

denoising. It overcomes the non-differentiability and se-102

mantic limitations of traditional ISP.103

• We design Raw-Tokenlizer, a module that extracts104

physically grounded visual priors from Raw data and105

collaborates with GM-ISPNet and the visual encoder to106

form the Raw-ViT front-end. Extensive experiments107

show that Raw-VLM significantly outperforms RGB-108

based VLMs on multiple tasks, especially in low-light109

and HDR scenarios.110

2 Related Work111

Recent advances in deep learning have led to significant112

breakthroughs across various domains, with notable impacts113

in fields like computer vision, natural language processing,114

and reinforcement learning[He et al., 2022b; He et al., 2022a;115

Xu and He, 2022; Xu et al., 2024b; Xu et al., 2024c; Xu et 116

al., 2023; Chen et al., 2025; Xu et al., 2025; He et al., 2025; 117

Deng et al., 2025]. In particular, deep neural networks 118

(DNNs) have enabled substantial improvements in perfor- 119

mance, surpassing traditional algorithms in tasks such as im- 120

age classification, object detection, and image generation. 121

These achievements are driven by the increasing availability 122

of large-scale datasets, the development of more sophisticated 123

model architectures, and the growing computational power 124

provided by modern GPUs and specialized hardware. Conse- 125

quently, deep learning has become a cornerstone of modern 126

artificial intelligence (AI), facilitating the creation of more 127

intelligent systems capable of performing complex tasks that 128

were once thought to be the domain of human expertise. In 129

this section, we explore key developments that have propelled 130

this rapid progress, focusing on three major areas: Image 131

Signal Processing (ISP) pipelines, Vision-Language Models 132

(VLMs), and the application of raw image data in computer 133

vision tasks. 134

This section reviews prior works from three perspectives: 135

(1) Image Signal Processing (ISP) pipelines, (2) Vision- 136

Language Models (VLMs), and (3) Applications of Raw im- 137

ages in computer vision tasks. 138

2.1 Image Signal Processing Pipelines 139

The Image Signal Processing (ISP) pipeline [Ramanath et al., 140

2005] transforms raw data captured by image sensors into 141

RGB images that align with human visual perception. Tra- 142

ditional ISP typically involves a sequential set of operations, 143

including black level correction, lens shading correction, bad 144

pixel removal, denoising, white balance, demosaicing, color 145

correction, tone mapping, gamma correction, sharpening, and 146

compression. 147

Classical denoising methods in ISP include mean filtering, 148

bilateral filtering [Tomasi and Manduchi, 1998], guided filter- 149

ing [He et al., 2012], non-local means, and BM3D [Dabov et 150



al., 2007]. With the rise of deep learning, CNN-based denois-151

ers like DnCNN [Zhang et al., 2017] and transformer-based152

models have achieved state-of-the-art performance. Brooks153

et al. [Brooks et al., 2019] proposed an unprocessing pipeline154

to synthesize realistic Raw noise for learning-based denois-155

ing, followed by more accurate physical modeling [Wei et156

al., 2020] and diffusion-based Raw denoisers [Yi et al., 2024;157

Feng et al., 2022].158

White balance correction, another critical ISP task, his-159

torically relied on assumptions like Gray World and Perfect160

Reflector. However, these heuristics often fail in complex161

lighting. Deep learning-based methods [Afifi et al., 2022;162

Afifi et al., 2021] predict channel gains under diverse illu-163

mination and across sensors, improving generalization.164

Recent research has moved towards end-to-end AI-based165

ISP networks. PyNet [Ignatov et al., 2020] replaces the entire166

ISP using a pyramid CNN. Chen et al. [Zhang et al., 2021] in-167

troduced global color mapping and flow-based alignment for168

Raw-to-RGB translation. Other works [A Sharif et al., 2021]169

jointly optimize tasks like denoising and demosaicing. Real-170

CamNet [Xu et al., 2024a] introduces coordinate-aware mod-171

ules for distortion correction and compression-aware map-172

pings, making the ISP pipeline more practical for real-world173

deployment.174

2.2 Vision-Language Models175

VLMs have advanced rapidly by integrating visual under-176

standing into large language models (LLMs). Models like177

ChatGPT-4V and LLaVA have enabled impressive capabili-178

ties in image captioning, visual question answering (VQA),179

and visual dialog.180

VisualBERT [Li et al., 2019] was among the first to181

align image regions and text using a unified Transformer.182

CLIP [Radford et al., 2021] and DALL-E [Ramesh et183

al., 2021] introduced contrastive and generative learning184

paradigms with massive multi-modal datasets. CLIP employs185

ViT [Dosovitskiy et al., 2020] or CNN as image encoders and186

aligns them with text embeddings via contrastive learning.187

FLAVA [Singh et al., 2022] unified masked image model-188

ing, masked language modeling, and contrastive learning to189

build representations across modalities. MiniGPT-4 [Zhu et190

al., 2023] efficiently aligned visual and textual modalities us-191

ing a frozen vision encoder and a lightweight projection layer.192

LLaVA [Liu et al., 2023] extended instruction tuning to193

VLMs by transforming image-text pairs into instruction-194

style prompts, training on a GPT-4V-curated dataset. Mo-195

bileVLM [Chu et al., 2023] optimized model architecture196

for mobile deployment, achieving high throughput on Snap-197

dragon processors.198

Qwen-VL [Bai et al., 2023] introduced cross-attention be-199

tween OpenCLIP visual features and a Qwen-based LLM de-200

coder. Qwen2-VL [Wang et al., 2024] further improved mul-201

timodal understanding with dynamic resolution and rotary202

position embeddings, achieving leading results and influenc-203

ing the open-source VLM community.204

2.3 Raw Images in Computer Vision205

Raw images preserve rich sensor-level information that is of-206

ten discarded by standard ISP. Early work [Zhou et al., 2020;207

Buckler et al., 2017] explored pedestrian detection directly 208

from Raw gradient histograms, though noise modeling was 209

often neglected, especially under low-light conditions. 210

The scarcity of large-scale Raw datasets (e.g., PASCAL 211

Raw [Everingham et al., 2010], LOD) compared to RGB 212

datasets (e.g., ImageNet) has limited the development of 213

Raw-based models. Recent trends focus on leveraging RGB- 214

pretrained models while adapting them to Raw data. 215

VisionISP [Wu et al., 2019] demonstrated that ISP opti- 216

mized for human perception may not benefit machine vision, 217

and proposed learnable ISP modules to enhance detection 218

downstream. Rawgment [Yoshimura et al., 2023] applied 219

data augmentation directly in the Raw domain. 220

Furthermore, white balance errors and exposure control 221

have been shown to significantly degrade performance in 222

object detection tasks [Sayed and Brostow, 2021]. Cui 223

et al. [Cui and Harada, 2024] proposed Raw-Adapter, a 224

joint training framework that aligns Raw images with RGB- 225

pretrained models, achieving state-of-the-art results on PAS- 226

CAL and LOD datasets. 227

3 Methodology 228

We propose Raw-VLM, an end-to-end vision-language 229

model that directly consumes Raw images for multimodal un- 230

derstanding. Instead of relying on fixed ISP-processed RGB 231

images, Raw-VLM introduces a learnable image signal pro- 232

cessing pipeline and Raw-aware feature extraction to better 233

preserve high dynamic range and fine-grained details critical 234

for challenging scenarios such as low-light and HDR condi- 235

tions. 236

Figure 1 shows the overall architecture of Raw-VLM. It 237

consists of two main components: (1) the Raw visual encoder 238

Raw-ViT and (2) a large language model (LLM) decoder. 239

The Raw-ViT module integrates a learnable ISP network 240

(GM-ISPNet), a Raw-aware tokenizer (Raw-Tokenizer), and 241

a vision encoder (NaViT). 242

3.1 Raw-ViT: Raw Visual Encoder 243
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Figure 2: Framework of GM-ISPNet.

The Raw-ViT module transforms low-level Raw image 244

signals into high-level semantic features. It is composed of 245

three submodules: 246
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(1) GM-ISPNet: Learnable ISP Pipeline. To replace the247

fixed, human-centric ISP pipeline, we introduce GM-ISPNet,248

a differentiable and trainable module that maps Raw Bayer249

images to semantically meaningful RGB representations. It250

includes two novel components:251

• Global Feature Prior Module (GFPM): Extracts252

global semantic, brightness, and color distribution priors253

from Raw images to guide RGB reconstruction, improv-254

ing color fidelity and structural preservation (Fig. 3).255

• Mixture-of-Experts Module (MoE): Combines sev-256

eral expert branches (both dynamic and static) us-257

ing attention-based weighting, enabling adaptive fea-258

ture selection based on scene content and noise profiles259

(Fig. 4).260

(2) Raw-Tokenizer: Raw-Aware Feature Extractor.261

This module captures physical priors from Raw input such262

as linear photon response, noise distribution, and dynamic263

range. It aligns spatially with the ViT encoder using patch-264

based tokenization. The module is initialized with zero265

weights to ensure stable cold-start training and gradually266

learns to enhance semantic feature quality (Fig. 5).267
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Figure 4: MoE hybrid expert feature selection module.

(3) Vision Encoder: NaViT. We adopt NaViT, a flexible268

ViT variant that supports variable resolution and aspect ra-269
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Figure 5: Framework of Raw-Tokenizer.

tios using masked attention and local pooling. It avoids input 270

distortion and improves performance on visually structured 271

content like text and charts. 272

3.2 LLM Decoder and Multimodal Alignment 273

The output features from Raw-ViT are fed into a frozen LLM 274

decoder (Qwen2-7B [Wang et al., 2024]), which performs 275

multimodal reasoning and language generation. The model 276

leverages: 277

1. Multimodal Semantic Bridging: Raw visual features 278

are aligned to the language space via cross-attention, 279

enabling the model to generate context-aware, seman- 280

tically aligned responses. 281

2. Knowledge Transfer: The pretrained LLM transfers 282

world knowledge and commonsense reasoning to visual 283

tasks, enhancing performance on complex VQA and de- 284

scriptive prompts. 285

3.3 Training Strategy 286

To ensure effective cross-modal alignment, we propose a 287

four-stage progressive training strategy (Fig. 6): 288

• Stage 1: GM-ISPNet Pretraining. We pretrain GM- 289

ISPNet on a Raw-RGB paired dataset using L1 loss to 290

learn a good initialization for Raw-to-RGB mapping. 291

• Stage 2: Feature Alignment. Freeze the Raw- 292

Tokenizer and ViT encoder. Fine-tune GM-ISPNet to 293

align its output distribution to the pretrained vision en- 294

coder’s RGB domain. 295

• Stage 3: Joint Raw-ViT Optimization. Fine-tune GM- 296

ISPNet, Raw-Tokenizer, and the vision encoder jointly. 297

This enables feature fusion and improves Raw domain 298

robustness. 299

• Stage 4: LLM Instruction Tuning with LoRA. Freeze 300

Raw-ViT and fine-tune the LLM using Low-Rank Adap- 301

tation (LoRA) [Hu et al., 2022] to support downstream 302

VQA and captioning tasks with minimal additional pa- 303

rameters. 304

3.4 Loss Functions 305

Different stages use specialized loss functions: 306

• Stage 1: Uses L1 loss L1 = 1
n

∑n
i=1 |yi − ŷi| for Raw- 307

to-RGB regression. 308
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Figure 6: Four training stages of Raw-VLM.

• Stages 2–4: Use standard supervised fine-tuning with309

cross-entropy loss:310

L(θ) =
N∑
i=1

− logP (yi|xi; θ)

where (xi, yi) are instruction-answer pairs.311

3.5 Raw-VLM Dataset Construction312

To support training and evaluation, we construct a large-313

scale Raw-VLM dataset by back-converting high-quality314

RGB images into Raw format using the unprocessing315

pipeline [Brooks et al., 2019]. To simulate realistic degra-316

dation, we apply:317

1. Brightness Attenuation: Multiply Raw values by a318

scalar r ∈ [0.1, 0.3].319

2. Poisson-Gaussian Noise: Model shot noise and read320

noise as:321

variance = I · ShotNoise + ReadNoise

and generate samples from N (0,
√

variance).322

The dataset includes 340,873 image-text pairs across 8 di-323

verse VLM tasks: COCO-Caption, VG, GQA, TextVQA,324

OCR-VQA, A-OKVQA, ScienceQA, and ChartQA. Each325

sample includes a degraded Raw image and a corresponding326

textual annotation, enabling evaluation of Raw-VLM under327

challenging conditions (Fig. 7).328

3.6 Evaluation Protocol329

We adopt standard VLM benchmarks spanning:330

• Answer Matching: Evaluate open-ended predictions331

using exact match, BLEU, and ROUGE. For long an-332

swers, we use LLM-based scoring to assess semantic333

equivalence.334

• Multiple Choice: Select the correct answer from dis- 335

tractors; accuracy is computed directly. 336

• Hallucination Detection: Assess alignment between 337

visual input and textual output using contradiction de- 338

tection metrics. 339

4 Experiments 340

In this section, we evaluate the proposed GM-ISPNet and 341

Raw-VLM across multiple benchmarks and application sce- 342

narios. We first present experiments for GM-ISPNet on the 343

Raw-to-RGB reconstruction task, including quantitative com- 344

parison, qualitative results, and ablation studies. Then, we 345

validate the effectiveness of Raw-VLM on various vision- 346

language tasks using Raw images, including zero-shot and 347

hallucination evaluations. 348

4.1 Experimental Setup 349

Hardware and Environment. All experiments are imple- 350

mented using PyTorch 2.6.0 with CUDA 11.8 and Python 351

3.10. Training is conducted on an Ubuntu 20.04 server with 352

Intel Xeon Gold 6148 CPUs (80 cores), 512GB RAM, and 353

dual NVIDIA GeForce RTX 4090 GPUs. 354

Datasets. For Raw-to-RGB reconstruction, we use the 355

Raw-RGB dataset described in Sec. 3.7, containing 613,945 356

training and 20,000 testing pairs. Input resolution is resized 357

to 512 × 512. For vision-language evaluation, we use the 358

Raw-VLM dataset (Sec. 3.7), comprising 340,873 image-text 359

pairs across image captioning, VQA, and knowledge-based 360

VQA. 361

4.2 GM-ISPNet: Raw-to-RGB Reconstruction 362

Quantitative Results. Table 1 compares GM-ISPNet with 363

state-of-the-art end-to-end ISP methods. Our model achieves 364

the best performance across PSNR, SSIM, FSIM, LPIPS, 365
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DISTS, DeltaE, and MDSI metrics, outperforming LiteISP-366

Net by +1.52 dB in PSNR and achieving a new state-of-the-367

art score of 38.24 dB.368

输入Raw图像 FSRCNN AWNet CSANET MWISP
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Figure 8: GM-ISPNet qualitative comparison results.

Qualitative Results. Figures 8 show visual comparison369

results. GM-ISPNet produces sharper textures, more natural370

color transitions, and better denoising, especially in low-light371

and high dynamic range regions. It also outperforms LiteISP372

and PyNet in color fidelity and detail preservation.373

4.3 Raw-VLM: Vision-Language Understanding374

Quantitative Evaluation. We evaluate Raw-VLM on mul-375

tiple VLM benchmarks: ChartQA, ScienceQA, TextVQA,376

OCR-VQA, LLaVA-Bench, and POPE hallucination detec-377

tion. We compare Raw-VLM with 7 baselines formed378

by combining existing ISP models (e.g., FSRCNN, PyNet,379

LiteISP) with Qwen2VL-7B.380

Tables 3 show that Raw-VLM consistently outperforms all381

baselines. Notably, it improves ChartQA by +4.2 points and382

achieves higher POPE and LLaVA-Bench scores, indicating383

better factuality and reduced hallucination.384

Zero-Shot Generalization. To test generalization, we385

evaluate Raw-VLM on Raw-DocVQA and Raw-InfoVQA386

without any fine-tuning. Table 4 shows Raw-VLM achieves 387

the best zero-shot accuracy, demonstrating strong transfer- 388

ability and semantic alignment capabilities. 389

4.4 Ablation Study for Raw-VLM 390

To validate the contribution of individual components and 391

training stages, we conduct a comprehensive ablation study 392

on Raw-VLM using ChartQA, TextVQA, and POPE metrics. 393

Results in Table 2 show that: 394

• Adding the MoE module improves fine-grained feature 395

extraction in challenging regions. 396

• Global priors from GFPM enhance color consistency 397

and scene-level understanding. 398

• Progressive training (stages 1–4) significantly improves 399

performance and stability. 400

• Raw-Tokenizer enhances representation by incorporat- 401

ing physical priors. 402

• LoRA fine-tuning improves LLM reasoning ability with 403

minimal additional parameters. 404

Conclusion of Results. Raw-VLM achieves superior per- 405

formance on both quantitative and qualitative metrics across 406

multiple vision-language tasks. It effectively leverages Raw 407

image information and demonstrates strong generalization, 408

hallucination resistance, and task adaptability compared to 409

traditional ISP+VLM pipelines. 410

5 Conclusion 411

In this paper, we propose Raw-VLM, the first end-to-end 412

vision-language model capable of reasoning directly from 413

Raw images. To bridge the gap between sensor-level data and 414

semantic understanding, we introduce a learnable ISP module 415

(GM-ISPNet) and a Raw-aware tokenizer, forming the Raw- 416

ViT encoder that integrates seamlessly with large language 417

models. We also construct a large-scale synthetic Raw-VLM 418



Table 1: Quantitative comparison results of different RAW2RGB methods on the test dataset

Method PSNR↑ SSIM↑ FSIM↑ LPIPS↓ DISTS↓ DeltaE↓ MDSI↓

FSRCNN(ECCV’17) 34.3441 0.9166 0.9623 0.2618 0.1432 4.6904 0.2493
PyNet(CVPR’20) 35.7916 0.9463 0.9756 0.2055 0.0896 4.1979 0.2249

AWNet(CVPR’21) 33.6232 0.9239 0.9680 0.2595 0.1298 5.6193 0.2467
CSANet(CVPR’22) 34.9142 0.9301 0.9706 0.2218 0.1212 4.5287 0.2379
MwISP(CVPR’21) 35.3660 0.9431 0.9734 0.2019 0.0937 4.1157 0.2288

ResUNet(CVPR’21) 35.7885 0.9338 0.9705 0.2281 0.1129 3.7302 0.2338
LiteISPNet(ICCV’21) 36.7222 0.9526 0.9774 0.1617 0.0828 3.5090 0.2130
GM-ISPNet(Ours) 38.2424 0.9626 0.9819 0.1291 0.0678 3.1767 0.2005

Table 2: Ablation experiment quantitative results table

Method TextVQA↑ ChartQA↑ POPE↑

Basic model + Qwen2VL-7B 74.682 69.04 85.193
Basic model + MoE module + Qwen2VL-7B 74.924 69.78 85.423

Raw-VLM first stage 74.917 71.12 85.319
Raw-VLM second stage 74.992 71.42 85.518
Raw-VLM third stage 75.012 72.119 86.142

Raw-VLM Phase 4 75.248 73.24 87.039

dataset to facilitate training and evaluation. Extensive experi-419

ments demonstrate that Raw-VLM significantly outperforms420

RGB-based VLM pipelines, especially under low-light and421

noisy conditions. Furthermore, ablation studies confirm the422

effectiveness of each component and our progressive training423

strategy. Our work highlights the potential of leveraging Raw424

data for robust multimodal reasoning and opens new direc-425

tions for vision-language research beyond conventional RGB426

inputs.427
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