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ABSTRACT

The ability to accurately identify out-of-distribution (OOD) samples is essential not
only as a stand-alone machine learning task but also for maintaining the reliability
and safety of machine learning systems. Within this domain, post hoc density
estimators like the energy score are popular ways for detecting OOD samples.
However, most of the existing post hoc density estimation have mainly focused on
marginalizing the conditional distributions over all possible classes. In this paper,
we introduce the Conditional Density Ratio (CDR) score, a principled post hoc den-
sity estimator that leverages both a class-conditional generative model in the latent
space and a discriminative classifier model, allowing us to estimate the marginal
densities of the latent representation without marginalization. We demonstrate that
a key component to the success of the CDR score lies in correctly calibrating the
two models and propose a simple yet effective method to automatically tune the
temperature parameter without the need for out-of-distribution samples. We illus-
trate the general compatibility of the proposed method with two popular density
estimators, the kernel density estimator and the Mahalanobis estimator. Through
experiments on a wide range of OOD benchmark tasks, we verify the effectiveness
of the proposed method and advocate it as an easy-to-implement baseline that can
achieve competitive performance in most tested scenarios.

1 INTRODUCTION

As the field of machine learning rapidly advances, ensuring the integrity and safety of predictive
models becomes crucial, particularly when deployed in dynamic and uncertain environments. A
fundamental aspect of ensuring model reliability is the effective detection of outlier/out-of-distribution
(OOD) samples, which is pivotal not only for maintaining the robustness of ML systems but also for
their capability to perform standalone outlier detection tasks. Traditional OOD detection techniques
often fall short in complex and high-dimensional data scenarios. Following recent advancements
in neural networks, a plethora of neural network-based OOD detection methods have been pro-
posed (Yang et al., 2022; Han et al., 2022). Among these methods, post-hoc detection methods
like the maximum softmax probability (MSP) score (Liu et al., 2020; Hendrycks & Gimpel, 2016;
Liang et al., 2017; Huang et al., 2021; Lee et al., 2018) stand out as favorable in practice due to their
plug-and-play simplicity with pre-trained neural networks. This is especially beneficial in the era of
large-scale models where fine-tuning can be challenging without access to latest compute resources.

Recently, post-hoc density estimation based methods like the energy score (Liu et al., 2020) and the
Gaussian mixture based energy measurement (GEM) score (Morteza & Li, 2022) have also been
proposed for OOD detection. However, most of the existing post hoc density estimation have mainly
focused on marginalizing the conditional distributions over all possible classes. In this paper, we
explore an alternative approach, and propose a simple yet principled method termed the Conditional
Density Ratio (CDR) score for post hoc density estimation. At a high level, the proposed CDR score
leverages both a class-conditional generative model in the latent space and a discriminative classifier
model to estimate the densities for outlier detection without the need for marginalization with respect
to different classes. Importantly, the CDR score is a general framework that applied to a wide range
of density estimators. In this paper, we showcase the effectiveness of the proposed method with the
Mahalanobis estimator and the kernel density estimation. Like all post-hoc detection methods, the
CDR score builds upon trained models without requiring additional training, enabling the utilization
of both models with minimal computational overhead. The additional conditional generative models
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Figure 1: An illustration on the proposed Conditional Density Ratio score. Given an input, a pre-
trained neural network is used to obtain the latent representation z. Then, we approximate pψ(z|y)
using models like a mixture of Gaussian, and use the pretrained neural network classifier for pϕ(y|z).
Assuming a uniform prior p(y), the conditional density ratio log

pψ(z|y)
pϕ(y|z) is used for outlier detection.

in the latent space can be obtained using a small number of samples with minimal cost. A cornerstone
of our proposed solution is a novel temperature scaling technique that effectively balances the relative
contributions of the generative and discriminative models, optimizing their performance without
needing access to any OOD samples for temperature tuning.

Problem Setup To simulate a challenging real-world scenario, we consider a setup where we
have access to the pretrained model weights but not the training data. Additionally, we have no
access to any OOD samples and only a small number of in-distribution (ID) data for validation.
Such a scenario is frequently encountered in real-world applications, yet it is under-explored in the
context of outlier detection. We evaluate the effectiveness of the CDR score on a wide range of OOD
detection benchmarks, demonstrating superior performance. With the temperature scaling technique,
our approach is hyperparameter-free and easily adoptable for any OOD model, serving as a strong
baseline in the domain of outlier detection.

Summary of Contributions Firstly, we advocate for a previously under-emphasized post-hoc OOD
detection setup where only the model weights and a small number of inlier validation samples are
available. Secondly, we propose the Conditional Density Ratio (CDR) score, a general framework
for post hoc OOD detection. Thirdly, we emphasize temperature scaling as a key component of the
proposed method and devise a novel methodology to automatically tune the temperature parameters
with a small number of inlier samples. Lastly, we showcase the wide applicability of the proposed
method and empirically demonstrate its effectiveness.

2 RELATED WORKS

Post-Hoc Methods Post-hoc OOD detection is a widely adopted setup for detecting out-
of-distribution samples. A popular approach is the maximum softmax probability (MSP)
score (Hendrycks & Gimpel, 2016). Building upon this approach, temperature scaling and ad-
versarial perturbation have been found useful for MSP score-based OOD detection (Liang et al.,
2017). Adversarial perturbation can be seen as implicitly leveraging gradient information for OOD
detection, while another line of research focuses on explicitly using gradients as the score for de-
tection (Huang et al., 2021; Behpour et al., 2024; Igoe et al., 2022). It has also been found that
using cosine distance on the latent representation yields better OOD detection (Noh et al., 2023;
Techapanurak et al., 2019). More recently, Liu & Qin (2023) has proposed a method to construct
decision boundaries for OOD detection given a trained classifier. Alternatively, Shannon entropy can
also be used as the score for post-hoc OOD detection (Liu et al., 2023). Most of the aforementioned
methods use the trained classifier model for OOD detection. Instead, applying Mahalanobis distance
measure in the latent representation space has also achieved success for OOD detection (Lee et al.,
2018; Chen et al., 2023). However, none of these methods model the underlying p(x) distribution
for OOD, which can be considered a fundamental flaw, under reasonable assumptions. In this work,
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we propose a unified approach that leverages both the discriminative classifier and the Mahalanobis
distance in a principled way to approximate the underlying p(x) for OOD detection. Most similar
to our work are (Morteza & Li, 2022; Peng et al., 2024; Liu et al., 2020), which also highlight the
limitations of MSP and Mahalanobis distance due to their underlying assumptions. However, instead
of using conditional probability ratios to mitigate the issue, these methods propose to aggregate over
all possible classes to approximate p(x) instead. We empirically show that the performance of these
methods falls short. Recently, the non-parametric KNN algorithm has also been demonstrated to
work well for OOD detection (Sun et al., 2022). Lastly, we emphasize that, unlike many previously
proposed methods which contain hyperparameters that are hard to tune without access to OOD data,
our proposed method only includes a temperature parameter that we demonstrate can be effectively
tuned with only a small number of inlier samples.

Training-Time Adjustments Aside from post-hoc OOD methods, many train-time adjustments
have been proposed to tackle the problem of OOD detection. For instance, it was recently discovered
that the norm of logits can be harmful for OOD detection, and a simple fix was proposed to normalize
logits during the training of neural networks (Wei et al., 2022). Similarly, research has proposed
normalizing the latent representation space before logits (Haas et al., 2023). Most of these methods
require customized training of models, which can be a significant limitation when models are large
and training data is not available. Furthermore, it has been demonstrated that outlier exposure during
training can significantly enhance the performance of OOD detection (Hendrycks et al., 2018). In
light of this observation, numerous methods have been proposed to exploit different types of outlier
samples during training (Zheng et al., 2023; Zhu et al., 2023; Du et al., 2021; 2023; Tao et al., 2023).
However, incorporating OOD samples during training can lead to bias in the model. In this work, we
consider a setup where no labeled OOD samples are available for training nor inference.

Unsupervised/Self-Supervised Methods OOD detection has also been considered in the context of
unsupervised learning where no label information is available. This line of research typically overlaps
with the literature on anomaly detection (Salehi et al., 2021). Traditionally, such problems are
tackled using support vector machine models (Fumera & Roli, 2002; Li et al., 2003). These models
have recently been combined with neural networks (Ruff et al., 2018). Aside from discriminative
approaches, generative unsupervised methods like normalizing flows (Chali et al., 2023), VAE (Xiao
et al., 2020; An & Cho, 2015), and GANs (Di Mattia et al., 2019) have also been proposed for
OOD detection. However, these generative models have generally shown poor OOD detection
performance (Kirichenko et al., 2020; Zhang et al., 2021; Nalisnick et al., 2019). Instead of modeling
the density function explicitly, another interesting line of work considers self-supervised learning for
OOD detection. For instance, contrastive learning has been demonstrated to be an effective approach
to enhance OOD detection performance (Ming et al., 2022; Sehwag et al., 2021). Transformation-
based self-supervised methods have also shown improved performance compared to explicitly
modeling the density (Shenkar & Wolf, 2021; Qiu et al., 2021; Golan & El-Yaniv, 2018; Bergman
& Hoshen, 2020). In this work, we demonstrate that post-hoc density estimation methods can be
integrated into these pseudo-label-based self-supervised learning methods at test time.

3 METHOD

3.1 PRELIMINARIES

Problem Statement Let x ∈ Rd denote an input feature and y ∈ {1, . . . ,K} its corresponding
label. Jointly, an input-label tuple (x, y) is a random sample from some joint distribution PX,Y . We
denote the marginal distributions of the random variables X and Y by PX and PY , respectively. In
this work, we assume that a dataset DN

train = {(xi, yi)}Ni=1 is sampled i.i.d. from PX,Y . A classifier
fθ : Rd → RK parameterized by θ is trained on DN

train to approximate the underlying conditional
posterior probability p(y|x). We denote the approximate conditional distribution as p̂θ(y|x).
After training, we consider the challenging scenario where the training data DN

train is no longer
available. Instead, a validation set DM

val consisting of samples drawn i.i.d. from PX,Y can be attained,
where M ≪ N . At test time, in addition to the inlier marginal distribution PX , samples can also
be drawn from an outlier distribution QX . The goal of post-hoc OOD detection is to leverage the
learned (frozen) classifier fθ to devise a binary classifier g(x) to determine whether a test sample
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x is sampled from PX (ID) or QX (OOD). Specifically, given a threshold λ and a scoring function
S(x), the decision can be made via a level set estimation:

gλ(x) =

{
ID S(x) ≥ λ

OOD S(x) < λ.

Under the reasonable assumption that outlier samples have zero or low likelihood under the inlier
distribution PX , a natural choice to the scoring function S(x) is the ID density function p(x)(Zhang
et al., 2021; Morteza & Li, 2022; Peng et al., 2024). We formalize the intuition in Appendix A.

We parameterize the classifier model fθ with a neural network consisting of a multi-layer feature
extractor hθ(x) which maps input feature x to a low dimensional feature z, followed by a linear
classifier fψ that maps z to the logit output. Since fθ is a fixed deterministic function at test time, we
make the assumption that z is a faithful representation of x, and will use z interchangeably with x.

Maximum Softmax Probability for OOD Given a feature extractor hθ that maps x to a low
dimensional feature z, and a linear classifier fψ which maps z to logits, a straightforward approach
is the maximum softmax probability (MSP) (Hendrycks & Gimpel, 2016). Formally,

MSP (z;ψ, T ) = max
i
p̂ψ(y|z) = max

i

exp (fψi(z)/T )∑
j exp (fψj (z)/T )

≈ max
i
p(y|z) ̸∝ p(z),

where T denotes the temperature constant that adjusts the spikiness of the output distribution (Guo
et al., 2017; Liang et al., 2017). T = 1 is used in the original work (Hendrycks & Gimpel, 2016). A
follow-up work proposes tuning of the temperature with a held-out OOD dataset (Liang et al., 2017).
Such a method would not work for our problem setup. In addition, note that the MSP score does
not equal the marginal density p(z), potentially leading to suboptimal performance. Indeed, while a
well-calibrated probability p(y|x) captures the uncertainty inherent in the labeling space given an
input data x drawn from the ID distribution, the underlying conditional p(y|x) may be undefined
when the sample x is drawn from the OOD distribution, where p(x) = 0.

Mahalanobis Distance for OOD Recently, Lee et al. (Lee et al., 2018) proposed to use Maha-
lanobis distance as the score function instead. Specifically, given the latent representation z, a
class-conditional distribution p(z|y) is approximated with a Gaussian distribution p̂ϕ(z|y = c) =
N (z|µc,Σ), where ϕ = {µ1, . . . , µk,Σ}. Under this assumption, the Mahalanobis distance (Hastie
& Tibshirani, 1996) score function is

M(z;ϕ) = max
i

exp

(
−1

2
(z − µi)

⊤Σ−1(z − µi)

)
∝ max

i
p̂ϕ(z|y = i) ≈ max

i
p(z|y = i) ̸∝ p(z).

Under the scenario where p(y|z) is degenerate at the ground truth label, the Mahalanobis distance
becomes equivalent to the marginal density p(z). However, this scenario may not hold even for ID
samples, which means the Mahalanobis distance can be sub-optimal in practice.

Post Hoc Density Estimation for OOD Given a pretrained classifier network, it is possible to
approximate the marginal density p(z). One example is the energy score (Liu et al., 2020):

E(z : ψ, T ) = log
∑
i

− exp (fψi(z)/T ) ∝ log
∑
i

p̂ψ(z|y = i) = log p̂ψ(z) ≈ log p(z),

under the assumption that the partition function Z(ψ) of p̂ψ(z|y) = exp (fψ(z)/T )
Z(ψ) for normalization

is a constant (Grathwohl et al., 2019). This may not hold in practice.

Alternatively, for Mahalanobis distance, density estimation can be achieved with the GEM (Gaussian
mixture based Energy Measurement) score (Morteza & Li, 2022)

GEM(z;ϕ, T ) = log
∑
i

exp

(
− 1

2T
(z − µi)

⊤Σ−1(z − µi)

)
∝ log

∑
i

p̂ϕ(z|yi) ≈ log p(z),

under uniform class prior p(y). The partition function for normalization is a constant in this case.

Remark It is unconventional to introduce a temperature term into Mahalanobis distance and
Gaussian distribution. Previously, T = 1 has been used for both GEM and Mahalanobis distance for
OOD. However, as we demonstrate below, the temperature term is a crucial for our proposed method.
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3.2 CONDITIONAL DENSITY RATIO FOR ANOMALY DETECTION

Prior works on post hoc density estimation have mainly focused on summing of conditional distribu-
tions over all possible classes. In this work, we consider an alternative method to obtain an density
estimation given a pre-trained classifier network. Specifically, by law of conditional probability, we
have p(z) = p(z|y)p(y)

p(y|z) . Given a class-conditional approximations p̂ϕ(z|y), we can obtain p̂ϕ(y|z)
by Bayes rule, resulting in a trivial solution of p(z) ≈ p̂ϕ(z). However, if we instead approximate
p(y|z) with the classifier head p̂ψ(y|z), the marginal density can be approximated by p̂ϕ(z|y)p(y)

p̂ψ(y|z) .
Assuming a uniform class prior p(y), we have the Conditional Density Ratio (CDR) score

CDRi(z;ϕ, ψ) = log p̂ϕ(z|y = i)− log p̂ψ(y = i|z)

∝
(
− 1

2Tϕ
(z − µi)

⊤Σ−1(z − µi)

)
− log

exp (fψi(z)/Tψ)∑
j exp (fψj (z)/Tψ)

∝ log p̂ϕ,ψ(z) ≈ log p(z).

The proposed CDR score is a general framework that can be applied with a wide range of density
estimators. Building on the prior success of GEM for OOD detection, a natural choice is to estimate
p(z|y) using a mixture of Gaussian distributions, denoted as p̂ϕ(z|y). Consequently, the resulting
CDR score provides a principled way to combine the key components of GEM and energy scores.

Unlike the energy and GEM scores, which derive marginal densities by marginalizing over y, the
CDR score estimates p(z) by conditioning on y. Therefore, for a K-class classification problem,
there are K distinct CDR scores. With perfect estimation of the conditional probabilities, all of
these CDR scores will converge to the same value.In practice, CDR scores obtained conditioned on
different classes can vary. We adopt a simple solution to aggregate the CDR scores across different
class, giving us

CDR(z;ϕ, ψ) =
1

K

k∑
i

CDRi(z;ϕ, ψ). (1)

On Marginalization Versus Conditional Density Ratio While the CDR score does not offer a
computational advantage over marginalization-based methods such as the energy score or GEM
score, we empirically demonstrate in the experimental section below that the proposed CDR score
performs competitively against its marginalization-based counterparts. We attribute this to the fact
that the CDR score leverages a combination of two distributions. Specifically, the CDR score can
be interpreted as a principled approach to combining p(y|z) and p(z|y), both of which have been
independently used for OOD detection, to achieve better performance when used together.

From a theoretical perspective, the energy score is only a valid density estimator if the partition
function for normalization remains constant. However, this assumption may not hold in practice,
potentially leading to inaccurate estimates. In sharp contrast, while the same classifier p̂ψ(y|z) is
used, the CDR score avoids marginalization, allowing it to serve as a valid density estimator even in
scenarios where the partition function for normalization is not constant.

The relationship between CDR and Energy Score To gain further insight into what the CDR
score is doing, we can rewrite the CDR score as

CDR(z;ϕ, ψ) ∝ 1

K

k∑
i

log p̂ϕ(z|y = i)− log p̂ψ(z|y = i)︸ ︷︷ ︸
Average Generative Conditional Ratio

+ log
∑
j

p̂ψ(z|y = j)︸ ︷︷ ︸
Energy Score

, (2)

As such, the CDR score can be interpreted as a correction to the energy score. As we demonstrate in
Section 5, with correctly scaled temperatures, the average generative conditional ratio (GCR) is much
closer to zero for inlier samples. Indeed, under perfect estimation, the GCR is trivially zero for all
classes. Thus, combining GCR with energy score yields superior OOD performance.

Setting Temperatures for CDR Score A crucial component of the success of the CDR score is
setting the temperatures Tϕ and Tψ effectively. One can easily scale the temperatures by optimizing
the separation between ID and OOD data with access to OOD data (Liang et al., 2017; Hendrycks
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Algorithm 1 Temperature Scaling for CDR Score
Input Small Validation dataset Dval = {(zi, yi)}Ni=1, ϕ and ψ.

Initialize Tψ = 1, Tϕ = 1.
Update Tψ = argminTψ −

∑
i log p̂ψ(yi|zi) [Temperature Scaling for p̂ψ(y|z)]

Update Tϕ = argminTϕ
∑
i− log

(
p̂ϕ(zi|y = yi)− 1

K−1

∑
j ̸=yi p̂ϕ(zi|y = j)

)
+R(zi, yi|Tψ)

[Temperature Scaling for p̂ϕ(z|y)]
Output Tψ , Tϕ

et al., 2018). However, it becomes much more challenging to find the right temperatures with only
ID data. Our guiding principle in selecting the right temperatures lies in maximizing the likelihood
of the density functions on the inlier data. For p̂ψ(y|z), this can be achieved by minimizing the
negative log-likelihood function with respect to Tψ. This approach, commonly used to calibrate
neural networks for classification (Guo et al., 2017), can also benefit outlier detection. Intuitively,
a more calibrated p̂ψ(y|z) yields a better density estimator and, hence, improved OOD detection
performance. Inspired by this, we propose a novel strategy for selecting Tϕ. Given a labeled sample
(zi, yi), we maximize the likelihood p̂ϕ(zi|y = yi) for the ground-truth label while minimizing the
likelihood p̂ϕ(zi|y = j) for all j ̸= yi. Naively optimizing the two temperatures independently
can result in density functions that are orders of magnitude different from each other, leading to
suboptimal performance. To unleash the full power of the log ratio, we add a regularization term
when optimizing Tϕ so that the two components p̂ϕ(z|y) and p̂ψ(y|z) are comparable in scale on
average. Formally, given a validation dataset Dval = {(zi, yi)}Ni=1 and a temperature-tuned p̂ψ(y|z),
we optimize Tϕ with the following approach:

L (Tϕ|Dval, Tψ) =
∑
i

− log

p̂ϕ(zi|y = yi)−
1

K − 1

∑
j ̸=yi

p̂ϕ(zi|y = j)

+R(zi, yi|Tψ), (3)

where R(zi, yi) =
1
K

∑K
j=1 |log p̂ϕ(zi|y = j)− log p̂ψ(y = j|zi)|. In practice, the above optimiza-

tion can be solved efficiently using grid search, since the logits of the samples can be pre-computed
and saved. We illustrate the procedure in Algorithm 1.

Extension to Kernel Density Estimators (KDEs) The CDR score is generally applicable to a
wide range of density estimators. In this paper, we also explore the Parzen-Rosenblatt window
method (Hastie et al., 2009) as an alternative to approximate p(z|y). Under such an assumption,

p̂(z|y = i) ∝
∑
j

exp

(
−
(
Zi
j − z

)T
Σ−1

(
Zi
j − z

)
T

)
, (4)

where Zi
1 . . .Z

i
n corresponds to all the samples in the validation set with label y = i. We empirically

observed that the Mahalanobis distance-based structured kernel yields better performance compared
to the simple Gaussian kernel. For consistency, the window size is replaced with the temperature
term T . We use the same strategy as above to search for T automatically using validation set.

We note that the KDE estimator is more computationally expensive than the Mahalanobis estimator.
Specifically, during inference, the computational complexity of the KDE estimator scales linearly
with the number of samples. This can become computationally intensive when the sample size for
KDE computation is large. Therefore, in all our experiments, we use a very small validation set to
compute the KDE score. Further details are provided in the experimental section below. Additionally,
since the KDE score is computed in the latent representation space z, we precompute and cache the
latent representation vectors z for all validation samples immediately after training. This approach
makes the KDE estimator practical for real-world applications.

Extension to Self-Supervised Learning The CDR score can also be applied to self-supervised
scenarios. For instance, rotation prediction given a dataset of unlabeled images has found to be
a useful self-supervised learning task (Golan & El-Yaniv, 2018) for outlier detection. Instead of
using the MSP score, we can similarly apply the CDR score. A significant advantage of the CDR
score compared to energy score is the reduced reliance on the accuracy of the classifier network
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for detection, provided the classifier is calibrated. Given a less confident classifier prediction, the
CDR score will automatically rely more on the Mahalanobis distance for detection. This is beneficial
especially for the case of self-supervised learning where even the underlying p(y|z) can have high
uncertainty. In the extreme scenario when p(y|z) = p(y), energy score-based OOD detection
becomes a coin flip, and CDR reduces to the GEM score with a uni-modal Gaussian distribution.

4 EXPERIMENTS

Benchmark Methods We compare the CDR score with MSP score (Hendrycks & Gimpel, 2016),
Energy score (Liu et al., 2020), Mahalanobis distance score (Lee et al., 2018), GEM score (Morteza &
Li, 2022) and GradNorm score (Huang et al., 2021). We have selected these methods for benchmark
comparison as all of these are post-hoc OOD detection methods that do not require additional training
nor auxilliary data (Yang et al., 2022). To compare with the baseline methods in their original
configurations, we set temperatures to 1 for all the baseline methods. In Appendix E, we evaluate
the impact of temperatures on these benchmark methods. To further illustrate the effectiveness of
the proposed method, we also benchmark against the KNN score (Sun et al., 2022), a competitive
baseline for post-hoc OOD detection with a hyper-parameter k. We use the k = 50 for all our
experiments, a good hyper-parameter that worked well for a range of tasks in the original paper, We
compute KNN scores using a small validation set for fair comparison. The goal of the experiments
is to demonstrate that the proposed method can serve as an off-the-shelf competitive method that
works on a wide range of datasets. As such, we have excluded comparisons against other relevant, but
more complicated methods that require additional model training, finetuning and/or hyperparameter
tuning (Liang et al., 2017; Hsu et al., 2020; Peng et al., 2024). We compare different methods with
the false positive rate of OOD samples when true positive rate of ID samples is at 95% (FPR95) and
the area under the ROC curve (AUROC) (Hendrycks & Gimpel, 2016).

Datasets We use common OOD benchmark datasets to demonstrate the effectiveness of our proposed
method (Yang et al., 2022; Sun et al., 2022). Specifically, we use the CIFAR (Krizhevsky et al.,
2009) datasets and the ImageNet dataset (Deng et al., 2009) as the ID data. For CIFARs, we use
Textures (Cimpoi et al., 2014), SVHN (Netzer et al., 2011), LSUN-resize (Yu et al., 2015) and
iSUN (Xu et al., 2015) as the OOD datasets. To further validate the effectiveness of the proposed
method, we also use the hard-OOD datasets comprising of ImageNet-Resize, ImageNet-Fix and
LSUN-fix and CIFAR10/CIFAR100 depending on the ID data (Tack et al., 2020). For ImageNet,
following prior literature (Sun et al., 2022), we use Places365 (Zhou et al., 2017), Textures (Cimpoi
et al., 2014), iNaturalist (Van Horn et al., 2018) and SUN (Xiao et al., 2010) as OOD datasets.

Model Details For CIFARs, we train our own classifier model because we need an additional
validation set for our experiments. No hyperparameter tuning is done in training the classifier model.
Specifically, we use a 121 layer DenseNet (Huang et al., 2017) as the classifier model for training.
During training, we withhold 10% of the training dataset as the validation set. The same validation
set is used at test time to compute temperatures and the means and variance for the Mahalanobis
distance. We train the models using SGD with momentum 0.9, and weight decay 5× 10−4 for 200
epochs1. For ImageNet, we use the pretrained WideResNet50 (Zagoruyko & Komodakis, 2016)
model provided by PyTorch. We use 25 samples per class to estimate the means and the covariance
matrix, and for temperature tuning.

Additional Experiments To test the applicability of the proposed method on other models, we
have conducted additional experiments using the ResNet model for CIFARs in Appendix F. We also
benchmark the OOD detection performance of the proposed method on a wide range of models
trained with the ImageNet dataset in Appendix D. Lastly, experiments with NLP datasets can be
found in Appendix C. In general, similar conclusions hold across all experiments conducted.

4.1 RESULTS

We report experimental results on the supervised model in Tables 1, 2 and 3. To compare with the
methods proposed in the original papers, temperatures are only applied to the CDR scores.

1We trained the model with code obtained at https://github.com/kuangliu/pytorch-cifar.
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Table 1: OOD detection results on labeled CIFAR10 dataset using Desenset. "Maha" indicates
Mahalanobis distance, "CDR_KDE" and "CDR_Maha" refers to CDR scores computed using kernel
density estimator and the Mahalanobis distance respectively. Bold results indicate best performances.

OOD Average SVHN LSUN-Resize Texture iSUN
FPR95↓ AUROC ↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

GradNorm 69.65 65.86 66.4 70.84 66.5 69.99 79.06 53.14 66.62 69.45
MSP 57.61 90.62 63.33 89.82 49.65 92.87 65.25 87.43 52.19 92.36
Energy 37.26 91.99 46.27 90.88 22.25 96.02 57.02 85.43 23.48 95.62
Maha 20.35 95.58 22.54 95.31 17.14 96.76 23.48 93.88 18.24 96.38
GEM 20.38 95.58 22.58 95.3 17.17 96.75 23.53 93.87 18.25 96.38
KNN 24.95 95.67 33.71 94.89 15.39 97.19 33.69 93.77 16.99 96.82

CDR_KDE 14.68 97.01 19.71 96.51 7.17 98.59 23.94 94.52 7.9 98.43
CDR_Maha 10.53 97.72 11.87 97.75 5.37 98.8 18.42 95.7 6.47 98.64

Hard-OOD Average ImageNet-Resize ImageNet-Fix LSUN-fix CIFAR100
FPR95↓ AUROC ↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

GradNorm 82.60 54.50 70.62 65.79 85.69 50.78 87.03 50.71 87.05 50.7
MSP 63.89 88.00 57.78 90.77 65.02 87.53 64.98 88.07 67.76 85.61
Energy 47.86 88.88 34.52 93.22 50.4 88.18 49.73 89.01 56.77 85.12
Maha 61.57 81.82 20.2 95.69 72.37 78.79 75.79 79.43 77.91 73.38
GEM 61.58 81.81 20.19 95.69 72.37 78.78 75.82 79.41 77.93 73.37
KNN 43.95 90.64 25.34 95.19 45.44 90.48 49.59 89.24 55.41 87.64
CDR_KDE 38.65 91.05 13.33 97.26 43.85 90.13 44.44 90.62 52.97 86.19
CDR_Maha 42.36 90.21 10.23 97.91 49.82 89.15 50.72 89.53 58.67 84.24

Table 2: OOD detection results on labeled CIFAR100 dataset with a pretrained Desenset.

OOD Average SVHN LSUN-Resize Texture iSUN
FPR95↓ AUROC ↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

GradNorm 87.53 51.58 74.37 75.06 96.48 35.41 83.21 59.47 96.06 36.37
MSP 84.42 73.71 83.96 75.66 83.09 74.28 86.76 72.21 83.85 72.69
Energy 82.09 77.20 83.75 77.67 77.44 80.75 87.32 71.73 79.85 78.65
Maha 35.62 91.68 62.36 85.88 23.66 94.95 30.34 91.86 26.1 94.03
GEM 35.65 91.67 62.42 85.86 23.67 94.95 30.35 91.84 26.17 94.03
KNN 44.15 90.28 48.5 91.25 47.54 90.08 34.34 90.72 46.23 89.07

CDR_KDE 30.52 92.69 52.29 87.72 18.68 95.47 29.65 92.83 21.47 94.73
CDR_Maha 19.55 96.01 37.88 93.19 9.27 97.84 19.27 95.81 11.79 97.19

Hard-OOD Average ImageNet-Resize ImageNet-Fix LSUN-fix CIFAR10
FPR95↓ AUROC ↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

GradNorm 92.15 49.30 95.06 35.49 88.11 58.62 95.35 45.73 90.09 57.35
MSP 85.73 72.39 85.49 70.91 83.75 74.05 88.97 70.04 84.71 74.55
Energy 84.05 74.06 82.23 75.72 79.6 76.68 91.04 68.97 83.34 74.85
Maha 78.47 62.22 25.23 93.84 92.69 56.22 97.07 53.76 98.87 45.07
GEM 78.47 62.19 25.23 93.83 92.7 56.18 97.07 53.73 98.89 45.02
KNN 83.18 56.56 42.47 90.75 93.04 54.36 99.19 34.71 98.01 46.4

CDR_KDE 69.87 77.91 23.85 94.06 77.22 77.29 90.77 67.98 87.65 72.3
CDR_Maha 71.33 75.90 12.34 97.26 84.51 74.15 93.06 65.66 95.42 66.52

Table 3: OOD detection results on ImageNet dataset with a pretrained Wide-ResNet50.

Average Places SUN iNaturalist Texture
FPR95↓ AUROC ↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 61.07 84.29 67.75 82.41 64.97 83.5 46.58 90.04 64.98 81.21
Energy 60.55 86.31 66.12 84.32 61.26 86.21 55.73 90.49 59.08 84.20
Maha 79.52 74.83 94.4 65.87 92.97 67.33 87.74 75.42 42.98 90.68
GEM 79.52 74.83 94.4 65.87 92.97 67.33 87.74 75.42 42.98 90.68
KNN 52.22 87.24 76.42 78.9 71.39 82.26 47.49 91.32 13.58 96.47
CDR_KDE 45.61 91.02 63.22 86.07 59.36 88.39 43.74 93.47 16.13 96.15
CDR_Maha 64.82 85.61 83.66 78.62 81.9 81.08 71.16 86.74 22.55 96.00

CDR achieves competitive performance The proposed CDR score is the best-performing method
on average among all the hyperparameter-free methods tested. Unlike MSP and Energy scores,
which rely more heavily on the accuracy of the classifier model, CDR is much more robust even
when the classifier does not perform as well. This is evident by comparing the performances of
OOD detection when the ID distribution is CIFAR-10 versus CIFAR-100, the latter of which has a
lower classifier performance. For example, the average AUROC for the Energy score dropped from
91.99% to 77.20% on the same set of OOD datasets. In contrast, the average AUROC for CDR_Maha
only slightly decreased from 97.41% to 95.66%. Moreover, both CDR_KDE and CDR_Maha
achieve competitive performances overall, indicating that the CDR framework is a general method
for outlier detection. Comparing the two, CDR_KDE appears to be a more robust method, achieving
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Table 4: Average outlier detection results on the self-supervised rotation prediction task.

CIFAR10 CIFAR100
Average OOD Average Hard OOD Average OOD Average Hard OOD
FPR95↓ AUROC↑ FPR95↓ AUROC ↑ FPR95↓ AUROC ↑ FPR95↓ AUROC ↑

GradNorm 44.60 90.69 64.76 81.82 91.30 65.41 95.85 51.73
MSP 50.87 91.07 68.65 82.82 87.85 71.54 94.07 55.85
Energy 41.10 92.63 62.56 84.35 87.51 72.30 94.28 56.27
Maha 46.84 87.45 79.77 61.22 53.87 80.98 78.85 61.72
GEM 46.94 87.39 79.82 61.13 54.01 80.78 78.91 61.68
KNN 59.03 88.32 74.29 78.93 70.62 80.43 84.78 64.69
CDR_KDE 32.55 94.19 58.83 85.12 53.72 83.47 81.01 60.86
CDR_Maha 16.59 96.83 58.09 84.84 37.89 90.35 75.89 63.47

Figure 2: Histograms of the average generative conditional ratio (GCR) score, the energy score and
the CDR score of a DenseNet model trained on CIFAR10 dataset. CDR score is a sum of the GCR
and energy score. See Equation 2 for details. "In" and "Out" corresponds to ID and OOD samples
respectively. Imagenet-Resize is used as the OOD dataset.

consistently competitive detection performance across a wide range of models and tasks. However,
using CDR_KDE comes at the cost of increased computational requirements.

When Does CDR Fail? We highlight a scenario where the CDR score performs subpar. As can be
seen from the results on the hard-OOD dataset for CIFAR-100, when Mahalanobis distance performs
poorly, both CDR methods are worse off than the Energy score. Comparatively, CDR_KDE is more
robust. Note that, despite a chance-level detection performance by the Mahalanobis distance score,
the CDR_Maha still recovers and achieves a reasonable OOD detection rate without the need for
any hyperparameter tuning. Therefore, we promote the CDR and density ensemble as off-the-shelf
metrics that can achieve competitive performance across a wide range of tasks.

Density Scores Improves Self-Supervised Learning Lastly, we show in Table 4 the CDR score
can also be applied to outlier detection with rotation prediction as the self-supervised learning task
for improved detection performance. More details can be found in Appendix G.

5 ABLATION STUDY

Breaking Down CDR Score We have broken down in Equation 2 the CDR score into the average
generative conditional ratio (GCR) and the energy score. To further gain empirical insights into
the breakdown, we illustrate, using the CIFAR10 as the inlier distribution and the Imagenet-Resize
dataset as the outlier distribution, the OOD detection performance of GCR, energy, and the CDR
score. We plot the histogram of the scores in Figure 2. We highlight several observations. Firstly, the
GCR score for the inlier dataset is much closer to zero for inlier samples on average. Indeed, under
perfectly learned density functions, GCR scores are zero for all samples. In practice, due to estimation
errors, GCR will be non-zero. Nevertheless, intuitively, the difference will be much smaller for inlier
samples. Secondly, though the OOD detection performance of GCR alone is unsatisfactory, it can be
combined with the energy score for much better performance.

A Closer Look at Temperature Scaling for CDR Score Firstly, we compare AUROCs with and
without the proposed temperature scaling. Results are summarized in Figure 3. As seen clearly,
the proposed method for temperature scaling works well for most of the cases, often increasing the
OOD detection performance significantly. Even in cases where temperature-scaled models perform
subpar, the differences are small. To further understand how far away the temperature tuned with
the proposed method is from the optimal temperature, we show plots of AUROC vs. temperature
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Figure 3: Bar plots of AUROCs of OOD detection for different methods and datasets with/without
temperature scaling. Results obtained with DenseNet for CIFARs and Wide-ResNet for ImageNet.

(a) CIFAR10 (Maha) (b) CIFAR100 (Maha) (c) CIFAR10 (KDE) (d) CIFAR100 (KDE)

Figure 4: Plots of AUROC against temperatures. Imagenet-Resize is used as the OOD dataset.

for various datasets in Figure 4. In general, despite varying gaps in temperatures, the gap is small in
terms of AUROC performance. We emphasize here again that the proposed method for temperature
tuning only requires a small set of validation sets. In practice, the performance can further improve
when OOD samples are available. Lastly, we note that, despite the seemingly worse performance of
CDR_KDE on CIFARs when compared with CDR_Maha for experiments with the CIFAR datasets,
the gap is largely due to the fact that the proposed temperature scaling method works better for
CDR_Maha. With an optimal temperature, CDR_KDE performs on par with CDR_Maha. Additional
details can be found in Appendix E.

Additional Ablations To facilitate further understanding of the proposed method, we have conducted
additional experiments with different variants of the CDR. Details can be found in Appendix B.

6 DISCUSSIONS

We have proposed the conditional density ratio (CDR) for OOD detection. We have illustrated the
importance of temperature scaling for our proposed method and devised a simple yet effective method
to automatically tune the temperatures. Of the two variants of CDR scores tested, we have found
CDR_KDE to be the more robust method across different models and tasks. Collectively, CDR
provides us with an easy-to-implement, hyper-parameter-free method for outlier detection.

Limitations There are several potential limitations to the proposed method. Firstly, while the CDR
score works well in most cases tested, the method can perform unsatisfactorily when either one of
the conditional density approximations performs poorly. Secondly, we have made the simplistic
assumption that the marginal distribution p(z) is a good approximation to the true data distribution
p(x). This might not be the case in reality. Lastly, despite its effectiveness, the proposed method for
temperature scaling may not be optimal in practice.

Future Directions We have just scratched the surface on density estimation-based approaches
for OOD detection, and there are a lot of future directions for exploration. For instance, it can be
beneficial to use a more expressive distribution like an exponential family (Peng et al., 2024) or even a
non-parametric one to approximate p(z|y). To take a step further, instead of modeling the distribution
in latent representation space, we can instead leverage a generative model like normalizing flow to
directly approximate p(x) instead.

10
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A DERIVATIONS ON USING ID DENSITY FUNCTIONS FOR OUTLIER
DETECTION

In this section, we formalize the intuition that, under the assumption that outlier samples have low
likelihood under the inlier density function, a scoring function for outlier detection is optimal when
based on the inlier density function. Derivations are adapted from (Sun et al., 2022).

Outlier detection can be formulated as a binary classification task of OOD and ID samples, where the
OOD class is only available at test time. Suppose the test set {(zi, gi)} is drawn i.i.d. from PZ,G,
where zi ∈ Z is the feature embedding and gi ∈ G = {0 (OOD), 1 (ID)} is the corresponding label.

Let P denote the marginal distribution of Z. At test time, P can be represented as:

P = ϵPood + (1− ϵ)Pid,

where Pood and Pid are the underlying distribution of Z for OOD and ID data, respectively, and ϵ
represents the proportion of OOD samples at test time. The correspinding probability density function
can be represented as pood(zi) = p(zi|gi = 0) and pid(zi) = p(zi|gi = 1).

In general, OOD detection can be an ill-posed problem without assumptions on which out-distributions
are relevant (Zhang et al., 2021). In this work, we make a reasonable assumption that OOD samples
live in low density regions with respect to the inlier density function, and that OOD samples are
uniformly distributed outside of the high-density region of ID data:

pood(z) = c01{pid(z) < c1},

for some constants c0 and c1.

Now, given the two distributions, the Bayes Optimal Classifier is a probabilistic model that makes the
most probable prediction for a new example (Devroye et al., 2013). It is described using the Bayes
Theorem, which provides a principled way for calculating a conditional probability, assuming the
underlying density function is available.

hBay(zi) = 1{p(gi = 1|zi) ≥ β}

From the above, the empirical estimation of the probability of z being ID data p̂(gi = 1|zi) can be
expressed as:

p(gi = 1|zi) =
p(zi|gi = 1) · p(gi = 1)

p(zi)

=
pid(zi) · p(gi = 1)

pid(zi) · p(gi = 1) + pood(zi) · p(gi = 0)

p̂(gi = 1|zi) =
(1− ϵ) p̂id(zi)

(1− ϵ) p̂id(zi) + ϵ p̂ood(zi)

=
(1− ϵ) p̂id(zi)

(1− ϵ)p̂id(zi) + ϵ ĉ01{p̂id(z) < ĉ1}
,

where p̂id(z) and p̂ood(z) denote estimates of the underlying densities pid(z) and pood(z). Observe
that, under our assumptions, the OOD detection problem boils down to accurately deriving the
empirical estimation of p̂id(z).
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B ADDITIONAL ABLATION STUDY FOR CDR SCORE

In this section, we conduct additional ablation studies to further facilitate our understanding of our
proposed method.

How Effective is Aggregating CDR Scores Across Classes? We have shown in Equation 1 that
the CDR score is an aggregation of class-specific CDR scores, and argued that such an approach
gives us improved OOD detection performance. To empirically demonstrate the claim, we consider
the following variants of CDR scores:

• "CDR_One": the variant where we only use the CDR score of the first class for OOD
detection,

• "CDR_Max": the variant where we take the maximum of all class-conditional CDR scores
for each sample for OOD detection,

• "CDR_Argmax": the variant where we take the class-conditional CDR score of the predicted
class obtained from the pre-trained classifier model.

Results We conduct experiments with the CDR_Maha score on the CIFAR datasets. Results are
summarized in Table 5 and 6. As seen clearly, the relatively poor performances by "CDR_One",
"CDR_Max" and "CDR_Argmax" highlight the importance of aggregating class-conditional CDR
scores.

Table 5: OOD detection results on labeled CIFAR10 dataset with a pretrained DenseNet.

OOD Average SVHN LSUN-Resize Texture iSUN
FPR95↓ AUROC ↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CDR 10.53 97.72 11.87 97.75 5.37 98.8 18.42 95.7 6.47 98.64
CDR_One 38.54 92.52 27.11 95.36 40.28 94.03 48.97 86.47 37.8 94.21
CDR_Max 15.78 96.25 12.58 97.37 14.1 97.01 22.43 93.5 13.99 97.1
CDR_ArgMax 25.70 93.72 28.14 93.26 24.22 94.95 26.28 92.12 24.14 94.54

Hard-OOD Average ImageNet-Resize ImageNet-Fix LSUN-fix CIFAR100
FPR95↓ AUROC ↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CDR 42.36 90.21 10.23 97.91 49.82 89.15 50.72 89.53 58.67 84.24
CDR_One 72.26 82.63 45.59 91.57 78.36 81.74 80.83 84.55 84.26 72.66
CDR_Max 50.02 86.23 15.79 96.29 57.63 84.7 61.95 84.27 64.69 79.66
CDR_ArgMax 66.28 76.59 25.16 93.85 77.04 72.25 81.29 73.23 81.62 67.02

Table 6: OOD detection results on labeled CIFAR100 dataset with a pretrained DenseNet.

OOD Average SVHN LSUN-Resize Texture iSUN
FPR95↓ AUROC ↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CDR 19.55 96.01 37.88 93.19 9.27 97.84 19.27 95.81 11.79 97.19
CDR_Unlabeled 18.82 96.12 35.98 93.53 9.09 97.87 18.78 95.86 11.43 97.23
CDR_One 35.31 92.65 47.01 91.91 31.39 93.07 31.15 93.15 31.67 92.46
CDR_Max 23.83 95.12 45.82 91.41 11.83 97.46 23.42 94.82 14.26 96.78
CDR_ArgMax 42.13 87.45 69.86 78.85 31.36 91.91 34.5 88.1 32.79 90.95

Hard-OOD Average ImageNet-Resize ImageNet-Fix LSUN-fix CIFAR100
FPR95↓ AUROC ↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

CDR 71.33 75.90 12.34 97.26 84.51 74.15 93.06 65.66 95.42 66.52
CDR_Unlabeled 71.21 76.07 12.33 97.24 84.16 74.38 92.99 65.98 95.34 66.68
CDR_One 78.32 67.57 27.68 94.01 89.06 67.21 98.56 51.66 97.96 57.38
CDR_Max 72.52 74.18 15.89 96.64 84.76 73.03 94.82 60.39 94.6 66.64
CDR_ArgMax 80.51 54.83 30.84 90.6 94.12 46.52 97.92 46.46 99.15 35.74
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C EXPERIMENTS WITH BERT ON NLP DATASETS

We conduct additional experiments with NLP datasets using the Amazon (He & McAuley, 2016),
Imdb (Maas et al., 2011), Yelp (Zhang et al., 2015), 20newsgroups (Lang, 1995), and Agnews (Zhang
et al., 2015) datasets. For simplicity, we use the datasets curated by ADBench (Han et al., 2022)
instead of the raw datasets. The datasets involve embedding vectors extracted using a BERT (Devlin
et al., 2018) model pretrained on the BookCorpus and English Wikipedia. The datasets are subsampled
and only contain 10,000 samples each. More details on the datasets can be found at (Han et al.,
2022). For experimental purposes, we consider the following scenarios for supervised model training
and outlier detection:

• The 20 newsgroups dataset contains six different classes, respectively. We treat the samples
from the first three classes as inliers. To simulate a hard OOD sample scenario, we treat the
remaining classes as outliers.

• The Agnews dataset contains four different classes, respectively. We treat the samples from
the first three classes as inliers. Similarily, we treat the remaining one as the outlier.

In addition to near-OOD samples, we also consider data from Amazon, Imdb, and Yelp as outliers for
each case. During training, a linear classifier is trained to distinguish between the inlier classes. We
also compute the mean and precision matrices using the inlier classes. We use 60% of the available
inlier data for training and the remaining samples for testing. We hold out 10% of the samples in the
training data as a validation set and use it to estimate the mean, covariance matrix, and temperature
parameters for Mahalanobis, GEM, and CDR score. For KNN, since no OOD samples are available
for tuning the hyperparameter, we set k = 10 for our experiments. Results are summarized in Table 7
and 8. Similar to other results, the proposed CDR loss yields competitive performance in most of the
cases tested.

Table 7: OOD detection results using models trained with the first 3 classes of 20newsgroups dataset
as inlier samples. 20news Outlier corresponds to the remaining 3 classes in the dataset.

20news Outlier Agnew Amazon Imdb Yelp
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

MSP 93.64 69.33 95.38 56.34 91.05 72.44 96.60 72.83 89.76 75.02
Energy 93.31 66.14 95.01 55.29 84.04 76.51 95.95 66.44 78.38 81.23
Maha 82.25 70.67 5.94 98.69 46.98 91.63 36.92 94.47 54.87 90.55
GEM 82.25 70.65 5.93 98.69 46.98 91.62 36.93 94.46 54.87 90.54
KNN 88.50 65.51 22.24 91.84 68.54 87.40 66.15 91.11 74.35 85.27

CDR_KDE 78.35 76.21 29.61 88.59 34.45 91.89 45.82 90.21 32.18 92.78
CDR_Maha 77.88 76.89 7.79 98.28 32.35 94.35 28.58 95.42 35.59 94.08

Table 8: OOD detection results using models trained with the first 3 classes of Agnews dataset as
inlier samples. Agnews Outlier corresponds to the remaining class in the dataset.

20news Agnews Outlier Amazon Imdb Yelp
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

MSP 54.93 88.00 83.45 73.27 53.85 91.40 69.54 87.16 46.18 92.75
Energy 34.92 89.99 78.93 74.70 30.06 94.56 66.78 87.38 23.19 95.63
Maha 24.23 93.78 73.98 75.80 19.57 96.61 16.15 97.27 14.26 97.10
GEM 24.23 93.77 73.99 75.79 19.61 96.61 16.17 97.26 14.28 97.09
KNN 51.83 86.12 88.31 68.24 71.64 85.34 76.00 86.23 57.14 89.04

CDR_KDE 13.92 96.67 71.39 77.71 4.83 98.80 9.56 98.05 3.63 99.12
CDR_Maha 12.26 97.13 68.83 79.07 3.88 98.88 5.78 98.55 2.88 99.17
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D ADDITIONAL EXPERIMENTS ON IMAGENET

We provide additional experimental data on models trained with the ImageNet dataset. We empirically
observed that, given the same sets of ID datasets and OOD datasets, the OOD detection performances
vary widely across different training strategies and model architectures for the ImageNet dataset.
Even when the architecture is identical, detection performances across different methods fluctuate sig-
nificantly. To holistically benchmark different strategies for OOD detection, we conduct experiments
using the following architectures and weights provided by PyTorch:

• Wide_ResNet101_2_Weights.IMAGENET1K_V1,
• ResNet50_Weights.IMAGENET1K_V1,
• ResNet50_Weights.IMAGENET1K_V2,
• ViT_B_16_Weights.IMAGENET1K_V1,
• DenseNet121_Weights.IMAGENET1K_V1,
• MobileNet_V2_Weights.IMAGENET1K_V1.

Details on model training can be found at https://pytorch.org/vision/stable/
models.html.

Model-wise performances are summarized in Tables 9, 10, 11 12, 13 and 14. Observe that, the
relative OOD detection performances for different strategies can vary widely across different model
architectures and datasets for the ImageNet dataset. This is the case even when model architectures
stay the same, as exemplified by the comparison between Table 10 and 11. We leave it to future work
to investigate the impact of model architectures and training configurations on the performance of
OOD detection.

To better compare the overall strategies, we compute the mean and standard deviation across different
model architectures for all OOD datasets. Results are summarized in Figure 5. We highlight that our
proposed CDR_KDE not only performs the best among all the methods in most scenarios, but the
variances in performances across different models are also one of the smallest, making it an ideal
method as an easy-to-implement, hyper-parameter-free benchmark method for the important task of
outlier detection.

Figure 5: Bar plots of AUROCs and FPR95s for different OOD datasets averaged across all the
models tested. In general, the proposed CDR_KDE not only achieves superior performances for most
of the cases, but also exhibits lower variances across different models.
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Table 9: OOD detection results on ImageNet dataset with a pretrained Wide-ResNet50.

Average Places SUN iNaturalist Texture
FPR95↓ AUROC ↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 61.07 84.29 67.75 82.41 64.97 83.5 46.58 90.04 64.98 81.21
Energy 60.55 86.31 66.12 84.32 61.26 86.21 55.73 90.49 59.08 84.20
Maha 79.52 74.83 94.4 65.87 92.97 67.33 87.74 75.42 42.98 90.68
GEM 79.52 74.83 94.4 65.87 92.97 67.33 87.74 75.42 42.98 90.68
KNN 52.22 87.24 76.42 78.9 71.39 82.26 47.49 91.32 13.58 96.47

CDR_KDE 45.61 91.02 63.22 86.07 59.36 88.39 43.74 93.47 16.13 96.15
CDR_Maha 64.82 85.61 83.66 78.62 81.9 81.08 71.16 86.74 22.55 96.00

Table 10: OOD detection results on ImageNet dataset with a pretrained ResNet50 with
IMAGENET1K_V1 weights.

Average Places SUN iNaturalist Texture
FPR95↓ AUROC ↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 65.26 82.89 72.19 80.7 69.33 81.79 53.02 88.47 66.51 80.58
Energy 57.48 87.07 65.73 84.1 58.65 86.68 53.39 90.69 52.16 86.81
Maha 83.08 64.51 97.5 52.72 97.47 53.12 94.38 62.02 42.96 90.19
GEM 83.08 64.51 97.5 52.72 97.47 53.12 94.38 62.01 42.96 90.19
KNN 53.57 85.87 74.46 78.14 66.58 82.69 61.58 85.58 11.67 97.08

CDR_KDE 53.49 88.75 72.8 82.6 67.87 85.46 58.07 90.77 15.23 96.15
CDR_Maha 69.22 82.13 90.29 73.15 88.57 75.84 81.44 82.6 16.58 96.94

Table 11: OOD detection results on ImageNet dataset with a pretrained ResNet50 with
IMAGENET1K_V2 weights.

Average Places SUN iNaturalist Texture
FPR95↓ AUROC ↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 70.14 78.69 73.87 76.7 71.4 78.71 61.67 84.48 73.6 74.88
Energy 97.28 49.63 97.67 48.92 97.8 50.13 98.06 50.9 95.59 48.56
Maha 45.07 89.05 65.59 82.96 60.88 85.48 26.84 94.98 26.95 92.77
GEM 45.07 89.05 65.59 82.96 60.88 85.48 26.84 94.98 26.95 92.77
KNN 68.05 82.75 85.34 76.4 84.98 77.96 74.74 84.18 27.15 92.47

CDR_KDE 52.43 83.55 70.62 74.38 67.16 77.85 34.67 92.74 37.25 89.21
CDR_Maha 54.52 83.66 75.36 73.58 71.92 76.81 37.48 92.83 33.32 91.41

Table 12: OOD detection results on ImageNet dataset with a pretrained DenseNet121.

Average Places SUN iNaturalist Texture
FPR95↓ AUROC ↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 63.66 82.75 69.77 81.07 67.77 81.52 49.75 89.09 67.34 79.31
Energy 51.16 87.58 58.78 85.04 53.05 87.25 40.28 92.63 52.54 85.41
Maha 79.43 62.26 98.01 45.47 98.16 46.08 94.42 63.69 27.11 93.81
GEM 79.43 62.26 98.01 45.46 98.16 46.07 94.42 63.69 27.11 93.81
KNN 66.98 79.68 88.33 68.75 86.23 72.81 78.2 80.42 15.14 96.74

CDR_KDE 53.32 88.31 76.29 81.2 73.4 83.81 49.36 91.8 14.22 96.41
CDR_Maha 70.92 81.90 93.92 71.3 93.39 73.94 81.82 85.04 14.56 97.32

Table 13: OOD detection results on ImageNet dataset with a pretrained MobileNet_V2.

Average Places SUN iNaturalist Texture
FPR95↓ AUROC ↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 70.16 80.81 76.44 78.29 74.06 79 59.31 86.82 70.83 79.11
Energy 58.77 86.63 66.2 83.23 59.31 86.23 55.08 90.42 54.5 86.63
Maha 91.59 38.79 99.29 27.6 99.55 24.41 99.38 28.73 68.12 74.43
GEM 91.59 38.79 99.29 27.59 99.55 24.41 99.38 28.72 68.12 74.43
KNN 70.40 74.86 92.28 62.66 88.54 67.07 85.33 73.05 15.46 96.66

CDR_KDE 68.00 84.72 85.02 77.92 84.7 80.5 80.06 85.82 22.23 94.64
CDR_Maha 81.87 71.70 96.86 61.89 97.61 62.66 96.32 69.04 36.67 93.22

Table 14: OOD detection results on ImageNet dataset with a pretrained ViT_B_16.

Average Places SUN iNaturalist Texture
FPR95↓ AUROC ↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 61.58 83.21 68.35 80.49 66.46 81 51.24 88.26 60.25 83.07
Energy 67.94 74.24 74.81 68.37 73.21 70.14 64.64 79.23 59.11 79.2
Maha 45.13 88.63 56.48 84.68 54.58 86.02 18.04 95.98 51.42 87.84
GEM 45.13 88.63 56.48 84.68 54.58 86.02 18.04 95.98 51.42 87.84
KNN 66.98 85.54 79.16 80.24 78.46 81.95 58.51 90.37 51.77 89.59

CDR_KDE 52.30 84.99 63.68 79.68 62.06 80.97 28.25 94.75 55.21 84.56
CDR_Maha 50.53 85.18 62.42 80.15 60.59 81.25 20.14 95.9 58.95 83.42
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E ADDITIONAL DETAILS ON THE ABLATION STUDY OF TEMPERATURE
SCALING

In this section, we provide additional details on the ablation study on temperature scaling. Specifically,
we investigate how temperature scaling affects benchmark methods like MSP and energy. To this
end, we apply the temperatures found using the algorithm proposed for temperature search in this
paper to all the relevant benchmark methods using models trained on the CIFAR10 and CIFAR100
datasets. Results are summarized in Table 15. Interestingly, we see that the proposed temperature
scaling leads to better performance for MSP but degrades the OOD detection effectiveness of energy
and GEM. Next, we provide in Figures 6, 7, 8 and 9 the plots of AUROC against temperatures

Table 15: Average OOD detection results with/without temperature scaling. We compare each pair
of the results, and boldface the better results.

CIFAR10 CIFAR100
Average OOD Datasets Average Hard OOD Dataset Average OOD Datasets Average Hard OOD Datasets
FPR95↓ AUROC↑ FPR95↓ AUROC ↑ FPR95↓ AUROC ↑ FPR95↓ AUROC ↑

MSP 50.10 / 57.61 91.61 / 90.62 58.25 / 63.89 88.78 / 88.00 81.74 / 84.41 76.16 / 73.71 83.97 / 85.73 74.07 / 72.39
Energy 37.28 / 37.26 91.88 / 91.99 48.41 / 47.86 88.73 / 88.88 83.84 / 82.09 76.82 / 77.20 84.89 / 84.05 73.55 / 74.06
GEM 27.76 / 20.38 92.63 / 95.58 68.60 / 61.58 73.01 / 81.81 46.15 / 35.65 86.69 / 91.67 81.73 / 78.47 52.96 / 62.19
CDR_KDE 14.68 / 11.41 97.01 / 97.64 38.65 / 38.22 91.05 / 91.14 30.52 / 25.89 92.69 / 94.43 69.87 / 68.98 77.91 / 78.22
CDR_Maha 10.53 / 27.76 97.72 / 92.52 42.36 / 68.81 90.21 / 72.47 19.55 / 44.84 96.01 / 87.71 71.33 / 81.33 75.90 / 54.15

on models trained using CIFAR10 and CIFAR100 for all the OOD datasets for both the CDR_KDE
and CDR_Maha. Similar to the observation from Figure 4, temperature scaling is beneficial for
CDR_Maha. Though it can degrade the performance of CDR_KDE in some cases, the amount of
degradation is very minimal in most cases when temperature scaling is harmful. Lastly, we note that,
though CDR_Maha is shown as the better method when compared with CDR_KDE in Table 1 and 2,
the improvement comes largely from a better selected temperature using the proposed method. When
comparing the optimal temperature AUROC, CDR_KDE performs on par with CDR_Maha in nearly
all of the cases, as can be seen from Figures 6, 7, 8 and 9. However, according to CDR_Maha,
CDR_KDE is much less sensitive to the choice of temperature, as can be seen from the much smaller
variations in AUROCs when temperatures increase in the figures.

(a) CIFAR10 (Maha) (b) CIFAR10 (Maha) (c) CIFAR10 (Maha) (d) CIFAR10 (Maha)

(e) CIFAR10 (KDE) (f) CIFAR10 (KDE) (g) CIFAR10 (KDE) (h) CIFAR10 (KDE)

Figure 6: Plots of AUROC against temperatures for different methods and datasets.
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(a) CIFAR10 (Maha) (b) CIFAR10 (Maha) (c) CIFAR10 (Maha) (d) CIFAR10 (Maha)

(e) CIFAR10 (KDE) (f) CIFAR10 (KDE) (g) CIFAR10 (KDE) (h) CIFAR10 (KDE)

Figure 7: Plots of AUROC against temperatures for different methods and datasets.

(a) CIFAR100 (Maha) (b) CIFAR100 (Maha) (c) CIFAR100 (Maha) (d) CIFAR100 (Maha)

(e) CIFAR100 (KDE) (f) CIFAR100 (KDE) (g) CIFAR100 (KDE) (h) CIFAR100 (KDE)

Figure 8: Plots of AUROC against temperatures for different methods and datasets.

(a) CIFAR100 (Maha) (b) CIFAR100 (Maha) (c) CIFAR100 (Maha) (d) CIFAR100 (Maha)

(e) CIFAR100 (KDE) (f) CIFAR100 (KDE) (g) CIFAR100 (KDE) (h) CIFAR100 (KDE)

Figure 9: Plots of AUROC against temperatures for different methods and datasets.
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F EXPERIMENTS WITH RESNET ON CIFAR

In light of the variance in OOD detection performances of different models on the ImageNet dataset,
we conduct additional experiments on OOD performance with a ResNet34 model. We use the
identical training setup as the DenseNet model. Results are summarized in Table 16 and 17. In
general, the impact of model architecture choices is smaller on CIFAR experiments, and the same
conclusions hold for experiments with the ResNet34 models.

Table 16: OOD detection results on labeled CIFAR10 dataset with a pretrained ResNet.

OOD Average SVHN LSUN-Resize Texture iSUN
FPR95↓ AUROC ↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

GradNorm 82.04 55.11 86.34 50.78 77.93 61.07 82.55 50.3 81.34 58.3
MSP 48.18 87.33 54.85 87.83 41.61 89.72 49.17 85.75 47.09 86.03
Energy 47.18 87.40 53.86 87.87 40.43 89.83 48.37 85.77 46.05 86.12
Maha 49.69 89.67 31.71 93.76 64.72 87.04 35.2 91.93 67.12 85.96
GEM 49.70 89.67 31.73 93.75 64.74 87.04 35.21 91.92 67.12 85.96
KNN 41.05 89.02 46.45 88.94 34.84 91.31 41.21 87.73 41.68 88.1

CDR_KDE 38.96 90.34 41.45 91.13 35.46 91.68 37.52 89.83 41.41 88.71
CDR_Maha 33.08 92.52 29.36 93.8 34.04 92.84 29.06 92.56 39.87 90.87

Hard-OOD Average ImageNet-Resize ImageNet-Fix LSUN-fix CIFAR100
FPR95↓ AUROC ↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

GradNorm 86.11 46.71 81.66 60.19 86.71 42.97 89.79 37.53 86.28 46.13
MSP 52.83 84.39 55.27 81.87 50.18 85.85 50.19 86.52 55.68 83.33
Energy 52.03 84.44 54.34 81.94 49.37 85.9 49.37 86.56 55.05 83.37
Maha 71.96 82.51 67.85 83.34 72.65 82.97 72.54 84.02 74.81 79.71
GEM 71.98 82.51 67.88 83.34 72.66 82.96 72.55 84.02 74.81 79.71
KNN 50.28 84.61 52.22 83.49 47.23 85.9 47.56 86.52 54.12 82.51

CDR_KDE 49.21 86.32 50.81 84.79 46.33 87.53 46.77 88.26 52.91 84.7
CDR_Maha 49.27 87.67 48.51 87.51 47.27 88.5 47.23 89.42 54.06 85.26

Table 17: OOD detection results on labeled CIFAR100 dataset with a pretrained ResNet.

OOD Average SVHN LSUN-Resize Texture iSUN
FPR95↓ AUROC ↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

GradNorm 74.83 70.88 58.36 84.97 78.22 64.15 83.24 67.92 79.49 66.46
MSP 77.92 80.44 77.26 82.51 72.65 82.39 86.06 75.56 75.69 81.29
Energy 76.62 80.76 76.39 82.89 69.86 82.96 86.72 75.39 73.51 81.81
Maha 84.68 69.67 87.25 70.72 92.67 64.97 65.69 79.3 93.11 63.7
GEM 84.68 69.67 87.25 70.71 92.68 64.96 65.69 79.3 93.11 63.69
KNN 67.71 83.99 64.99 86.37 61.53 85.94 78.62 79.04 65.7 84.61

CDR_KDE 61.07 85.30 57.28 87.13 59.36 86.31 64.02 82.8 63.6 84.94
CDR_Maha 63.52 86.54 62.42 87.34 69.51 85.98 49.43 88.36 72.7 84.48

Hard-OOD Average ImageNet-Resize ImageNet-Fix LSUN-fix CIFAR10
FPR95↓ AUROC ↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

GradNorm 86.25 62.02 81.05 64.3 85.84 61.92 92.61 56.36 85.48 65.5
MSP 81.72 77.15 77.62 80.46 79.44 78.11 89.61 71.33 80.2 78.69
Energy 81.05 77.19 75.19 80.92 78.96 78.09 89.79 71.08 80.24 78.67
Maha 95.43 55.87 91.48 65.45 95.76 54.81 96.97 52.7 97.49 50.5
GEM 95.43 55.85 91.48 65.43 95.76 54.79 96.97 52.69 97.5 50.49
KNN 80.17 77.31 68.66 83.8 80.29 77.72 90.39 69.56 81.33 78.14

CDR_KDE 79.10 77.84 64.21 84.63 79.94 78.15 89.99 70.31 82.27 78.28
CDR_Maha 84.30 75.29 69.48 85.22 86.49 74.56 91.91 67.44 89.31 73.92
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G ADDITIONAL DETAILS ON SELF-SUPERVISED OUTLIER DETECTION TASK

To showcase the general applicability of the proposed method, we apply the CDR score to the scenario
of anomaly detection for self-supervised learning. Specifically, we train a DenseNet121 model using
an identical setup as a supervised scenario. However, instead of the underlying labels, for each image,
we randomly apply a rotation from the set of {0◦, 90◦, 180◦, 270◦} to each image and have the neural
network predict the angle of rotation of the image. At test time, we find the mean vectors of each
rotation and the covariance matrix given a small set of validation samples. Scoring functions for
outlier detection can then be applied, given an embedding vector. During inference, we apply all
rotations to each image. The overall anomaly scores are obtained by taking the average across all
rotations. We provide in Table 18 and 19 the full breakdown of the aggregated results in Table 4.

Table 18: OOD detection results on self-supervised CIFAR10 dataset with a pretrained DenseNet.

OOD Average SVHN LSUN-Resize Texture iSUN
FPR95↓ AUROC ↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

GradNorm 44.60 90.69 62.82 85.51 41.77 91.7 29.79 94.77 44.01 90.77
MSP 50.87 91.07 48.83 92.53 57.05 89.09 39.7 93.85 57.89 88.82
Energy 41.10 92.63 37.19 94.06 46.3 91.08 32.23 94.91 48.68 90.48
Maha 46.84 87.45 68.95 80.9 39.36 91.2 42.39 86.91 36.64 90.79
GEM 46.94 87.39 69.07 80.8 39.46 91.17 42.52 86.84 36.72 90.75
KNN 59.03 88.32 42.69 92.86 77.01 83.67 41.01 93.19 75.41 83.57

CDR_KDE 32.55 94.19 36.89 94.19 34.82 93.31 22.85 96.39 35.63 92.85
CDR_Maha 16.59 96.83 19.36 96.62 16.11 96.69 13.23 97.85 17.64 96.15

Hard-OOD Average ImageNet-Resize ImageNet-Fix LSUN-fix CIFAR100
FPR95↓ AUROC ↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

GradNorm 64.76 81.82 36.64 92.75 68.26 81.26 78.7 78.37 75.43 74.89
MSP 68.65 82.82 52.86 90.65 69.81 82.73 75.03 80.36 76.88 77.55
Energy 62.56 84.35 43.74 92.06 63.36 84.51 69.48 83.01 73.66 77.81
Maha 79.77 61.22 31.97 92.17 94.41 54.38 98.31 43.34 94.39 54.97
GEM 79.82 61.13 32.08 92.14 94.46 54.27 98.31 43.24 94.44 54.88
KNN 74.29 78.93 73.76 85.83 72.04 79.33 71.23 75.42 80.12 75.13

CDR_KDE 58.83 85.12 31.2 94.31 62.12 84.84 68.79 83.32 73.22 78.01
CDR_Maha 58.09 84.84 14.36 97.15 65.25 83.83 79 80.73 73.76 77.65

Table 19: OOD detection results on self-supervised CIFAR100 dataset with a pretrained DenseNet.

OOD Average SVHN LSUN-Resize Texture iSUN
FPR95↓ AUROC ↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

GradNorm 91.30 65.41 92.89 69.95 97.51 57.83 76.74 77.4 98.04 56.45
MSP 87.85 71.54 86.32 75.33 92.96 66.71 78.63 77.71 93.5 66.41
Energy 87.51 72.30 85.06 77.61 93.45 66.82 77.54 78.46 93.98 66.29
Maha 53.87 80.98 89.04 68.72 22.83 94.73 76.31 67.49 27.29 92.96
GEM 54.01 80.78 89.24 68.37 22.96 94.69 76.45 67.13 27.4 92.91
KNN 70.62 80.43 81.28 75.09 64.11 84.26 74.15 78.6 62.95 83.78

CDR_KDE 53.72 83.47 65.66 81.52 42.64 85.21 62.15 83.01 44.43 84.12
CDR_Maha 37.89 90.35 58.14 85.62 16.28 95.31 55.85 86.79 21.27 93.67

Hard-OOD Average ImageNet-Resize ImageNet-Fix LSUN-fix CIFAR10
FPR95↓ AUROC ↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

GradNorm 95.85 51.73 96.25 60.73 92.23 58.08 98.83 41.19 96.07 46.91
MSP 94.07 55.85 91.89 69.56 91.59 60.01 96.81 46.67 95.97 47.16
Energy 94.28 56.27 92.26 69.15 91.58 61.72 97.25 47.41 96.04 46.8
Maha 78.85 61.72 26.81 92.23 95.67 50.28 95.07 59.85 97.83 44.5
GEM 78.91 61.68 27.04 92.15 95.68 50.11 95.06 59.86 97.84 44.58
KNN 84.78 64.69 64.7 83.97 89.14 64.96 89.41 63.15 95.88 46.68

CDR_KDE 81.01 60.86 40.83 86.82 90.54 62.15 96.31 48.38 96.34 46.07
CDR_Maha 75.89 63.47 18.57 95.06 91.7 62.65 95.52 52.68 97.77 43.5
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