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Abstract

In a human-AI collaboration, users build a men-
tal model of the AI system based on its relia-
bility and how it presents its decision, e.g. its
presentation of system confidence and an ex-
planation of the output. Modern NLP systems
are often uncalibrated, resulting in confidently
incorrect predictions that undermine user trust.
In order to build trustworthy AI, we must un-
derstand how user trust is developed and how
it can be regained after potential trust-eroding
events. We study the evolution of user trust
in response to these trust-eroding events using
a betting game. We find that even a few in-
correct instances with inaccurate confidence
estimates damage user trust and performance,
with very slow recovery. We also show that
this degradation in trust reduces the success of
human-AI collaboration and that different types
of miscalibration—unconfidently correct and
confidently incorrect—have different negative
effects on user trust. Our findings highlight the
importance of calibration in user-facing AI ap-
plications and shed light on what aspects help
users decide whether to trust the AI system.

1 Introduction

AI systems are increasingly being touted for use
in high-stakes decision-making. For example, a
doctor might use an AI system for cancer detection
from lymph node images (Bejnordi et al., 2017),
a teacher may be assisted by an AI system when
teaching students (Cardona et al., 2023), or individ-
uals may rely on AI systems to fulfill their infor-
mation requirements (Mitra et al., 2018). AI sys-
tems are integrated across diverse domains, with
an expanding presence in user-centric applications.
Despite their growing performance, today’s AI sys-
tems are still sometimes inaccurate, reinforcing the
need for human involvement and oversight.
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Figure 1: Diachronic view of a typical human-AI col-
laborative setting. At each timestep t, the user uses
their prior mental model ψt to accept or reject the AI
system’s answer yt, supported by an additional message
mt (AI’s confidence), and updates their mental model
of the AI system to ψt+1. If the message is rejected, the
user invokes a fallback process to get a different answer.

An effective approach for facilitating decision-
making in collaborative settings is for the AI sys-
tem to offer its confidence alongside its predictions.
This is shown in Figure 1, where the AI system pro-
vides an additional message that enables the user
to either accept or reject the system’s answer based
on the additional message, such as the confidence
score. This makes a strong case for the AI’s confi-
dence being calibrated (Guo et al., 2017) – when
the confidence score aligns with the probability of
the prediction being correct.

When a user interacts with an AI system, they
develop a mental model (Hartson and Pyla, 2012)
of how the system’s confidence relates to the in-
tegrity of its prediction. The issue of trust has been
extensively studied in psychology and cognitive sci-
ence with Mayo (2015); Stanton et al. (2021) find-
ing that incongruence (mismatch between mental
model and user experience) creates distrust. Given
the ever-increasing reliance on AI systems, it is
crucial that users possess a well-defined mental
model that guides their trust in these systems. Nev-
ertheless, our current understanding regarding the
evolution of user trust over time, its vulnerability
to trust-depleting incidents, and the methods to re-
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store trust following such events remain unclear.
Addressing these inquiries holds great significance
in the advancement of reliable AI systems.

In this paper, our objective is to investigate user
interactions with an AI system, with a specific fo-
cus on how the system’s confidence impacts these
interactions. Through a series of carefully designed
user studies, we explore the implications of mis-
calibrated confidences on user’s perception of the
system and how this, in turn, influences their trust
in the system. Our experiments shed light on how
users respond to various types of miscalibrations.
We find that users are especially sensitive to con-
fidently incorrect miscalibration (Section 4.1) and
that the trust does not recover even after a long
sequence of calibrated examples. Subsequently,
we delve into an analysis of how trust degradation
corresponds to the extent of miscalibration in the
examples provided (Section 4.2). Then, we assess
whether diminished trust in an AI system for a
specific task can extend to affect a user’s trust in
other tasks (Section 4.3). We also explore different
methodologies for modeling a user’s trust in an AI
system (Section 5). Our results show how reduced
trust can lower the performance of the human-AI
team thus highlighting the importance of holistic
and user-centric calibration of AI systems when
they are deployed in high-stakes settings.

2 Related Work

Human-AI Collaboration. Optimizing for co-
operation with humans is more productive than fo-
cusing solely on model performance (Bansal et al.,
2021a). Human-AI collaboration research has fo-
cused on AI systems explaining their predictions
(Ribeiro et al., 2016) or examining the relationship
between trust and AI system’s accuracy (Rechkem-
mer and Yin, 2022; Ma et al., 2023). Related to
our work, Papenmeier et al. (2019); Bansal et al.
(2021b); Wang and Yin (2022); Papenmeier et al.
(2022) examined the influence of explanations and
found that inaccurate ones act as deceptive experi-
ences which erode trust.

Nourani et al. (2021); Mozannar et al. (2022)
study the development of mental models which cre-
ate further collaboration expectations. This mental
model, or the associated expectations, can be vio-
lated, which results in degraded trust in the system
and hindered collaboration (Grimes et al., 2021).
The field of NLP offers several applications where
trust plays a vital role, such as chatbots for various

tasks or multi-domain question answering (Law
et al., 2021; Vikander, 2023; Chiesurin et al., 2023)
and transparency and controllability are one of the
key components that increase users’ trust Bansal
et al. (2019); Guo et al. (2022).

Trust and Confidence Calibration. A common
method AI systems use to convey their uncertainty
to the user is by its confidence (Benz and Ro-
driguez, 2023; Liu et al., 2023). For the system’s
confidence to reflect the probability of the system
being correct, the confidence needs to be calibrated,
which is a long-standing task (Guo et al., 2017;
Dhuliawala et al., 2022). This can be any met-
ric, such as quality estimation (Specia et al., 2010;
Zouhar et al., 2021) that makes it easier for the
user to decide on the AI system’s correctness. Re-
lated to calibration is selective prediction where
the model can abstain from predicting. The latter
has been studied in the context of machine learning
(Chow, 1957; El-Yaniv et al., 2010) and its various
applications (Rodriguez et al., 2019; Kamath et al.,
2020; Zouhar et al., 2023).

Trust calibration is the relation between the
user’s trust in the system and the system’s abili-
ties (Lee and Moray, 1994; Turner et al., 2022;
Zhang et al., 2020; Yin et al., 2019; Rechkemmer
and Yin, 2022; Gonzalez et al., 2020; Vodrahalli
et al., 2022). Specifically, Vodrahalli et al. (2022)
explore jointly optimization of calibration (transfor-
mation of the AI system reported confidence) with
human feedback. They conclude that uncalibrated
models improve human-AI collaboration. How-
ever, apart from their experimental design being
different from ours, they also admit to not studying
the temporal effect of miscalibrations. Because of
this, our results are not in contradiction.

Modeling User Trust. Ajenaghughrure et al.
(2019); Zhou et al. (2019) predictively model the
user trust in the AI system. While successful, they
use psychological signals, such as EEG or GSR,
for their predictions, which is usually inaccessi-
ble in the traditional desktop interface setting. Li
et al. (2023) use combination of demographic infor-
mation together with interaction history to predict
whether the user is going to accept or reject AI sys-
tem’s suggestion. The field has otherwise focused
on theoretical frameworks to explain factors that
affect trust in mostly human-robot interaction sce-
narios (Nordheim et al., 2019; Khavas et al., 2020;
Ajenaghughrure et al., 2021; Gebru et al., 2022).



3 Human AI Interaction over Time

We begin by providing a preliminary formalism for
a human-AI interaction over time. It comprises of
two interlocutors, an AI system and a user. At
time t, the user provides the AI system with an
input or a question qt and the AI system responds
with an answer yt along with a message comprising
of its confidence in the answer mt. The user has
two options, either they accept the AI’s answer or
reject it and try to find an answer themselves. The
AI is either correct (at = 1) or incorrect (at = 0).
The combination of correctness at and confidence
mt results in four different possibilities each with
a different reward, or risk, shown in Figure 2. For
example, confidently incorrect may lead to the user
disastrously accepting a false answer while uncon-
fidently correct will make the user spend more time
finding the answer themselves.

 Confident⬆ Incorrect✖    Confident⬆ Correct

Unconfident⬇ CorrectUnconfident⬇ Incorrect✖

Figure 2: Possible correctness and confidence combi-
nations of an AI system. Confidently incorrect and
unconfidently correct are miscalibrated while the rest is
calibrated (i.e. confidence corresponds to correctness.

During the interaction, the user learns a men-
tal model (Ψt) of the AI system that they can
use to reject and accept the AI’s prediction. This
mental model encapsulates something commonly
referred to as user trust, which is, however, ab-
stract and can not be measured directly. Instead,
in our study, we rely on a proxy that describes
a manifestation of this trust. We ask the user to
make an estimate of their trust by tying it to a
monetary reward. We assume that both depend
on the given question qt, message mt, and his-
tory. The users place a bet between 0¢ and 10¢,
i.e. uBt = UB(qt,mt,Ψt) ∈ [0¢, 10¢]. We for-
mally define the user’s decision to accept or reject
the AI’s answer as uDt = UD(qt,mt,Ψt)∈{1, 0},
given question qt, message mt, and history. In this
work, by the user’s mental model, we refer to it
in the context of the features the user might use
to decide how much they are willing to bet on the
AI’s prediction and how likely they are to agree
with the AI and how Ψt changes over time.

3.1 Study Setup
To study how user trust changes temporally we
design a set of experiments with a sequence of

interactions between a user and a simulated AI
question-answering (QA) system. We recruit par-
ticipants who are told that they will evaluate a QA
system’s performance on a sequence of question-
answer pairs. The participants are shown the AI’s
produced confidence in its answer and then are in-
structed to use this confidence to assess its veracity.
We term an instance of the AI’s question, predic-
tion, and confidence as a stimulus to the user. This
method of using user interactions with a system to
study user trust is similar to the study performed
by Gonzalez et al. (2020). After the participant de-
cides if the system is correct or incorrect, they bet
from 0¢ to 10¢ on their decision about the system’s
correctness. We then reveal if the AI was correct
or incorrect and show the user the gains or losses.
The monetary risk is chosen intentionally in order
for the participants to think deeply about the task.
An alternative, used by Vodrahalli et al. (2022), is
to simply ask for participants’ confidence in the
answer. While straightforward, we consider this
to be inadequate in the crowdfunding setting. This
decision is further supported by the fact that there
is a difference between what participants report
and what they do (Papenmeier et al., 2019). The
average duration of the experiment was 6.7 minutes
(Figure 9) and we collected 18k stimuli interactions
(Table 3). See Figure 3 for an overview of the ex-
periment design and Figure 13 for the annotation
interface.1

3.2 Simulating AI
To investigate users’ interactions, we simulate an
AI system that outputs predictions and confidences.
The prediction and confidence are produced using
a pre-defined generative process.

Our simulated AI encompasses four modes for
the generation of AI ‘correctness’ and confidence
values. For miscalibrated questions, we have two
modes: confidently incorrect (CI) and unconfi-
dently correct (UC) modes, while for calibrated
questions we use the accurate mode (control) to
generate questions.

We define a conditional variable ct which de-
notes the aforementioned conditions. Then, based
on the condition ct, we have the following data
generation process at timestep t. In our data gen-
eration process, we first decide the AI correct-
ness at ∈ [0, 1] and then decide the confidence
mt ∈ [0%, 100%] as below:

1Online demo: zouharvi.github.io/trust-intervention
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at ∼

Bernoulli(0.7) if ct = calibrated
Bernoulli(0.0) if ct = CI
Bernoulli(1.0) if ct = UC

mt ∼


Uniform(0.45, 0.85) if ct = cal. ∧ at = 1
Uniform(0.2, 0.55) if ct = cal. ∧ at = 0
Uniform(0.7, 1.0) if ct = CI ∧ at = 0
Uniform(0.1, 0.4) if ct = UC ∧ at = 1

To control for participants prior knowledge of
the answers to the provided questions, we use ran-
domly generated questions with fictional premises.
We also experimented with questions sourced from
a combination of Natural Questions (Kwiatkowski
et al., 2019) and TriviaQA (Joshi et al., 2017). Un-
fortunately, this approach resulted in a lot of noise
and instances of misconduct as participants would
look up the answers to increase their monetary re-
ward. See Appendix A for a description of stimuli
generation. We note that the set of questions that
the participants see have similar ECE (Expected
Calibration Error) scores and we compare this to a
real NLP model in Appendix B.

on my
decision

Question: Which
painting was discovered
in a hidden vault in 2020?
AI answer: "The
Forgotten Masterpiece"
by Michael Chen
Confidence: 91%

The system
is correct

The system
is incorrect

You predicted
the system is
correct and it
was correct

(+8¢)

I bet  8¢ 8¢

Figure 3: Pipeline for a single stimulus out of 60. The
maximum payout for a bet is 10¢. UI Elements show
possible user actions. See Figure 13 for screenshots.

4 Experiments

We perform three types of experiments. In Sec-
tion 4.1, we establish the different effects of con-
fidently incorrect and unconfidently correct stim-
uli. Then, in Section 4.2 we see how the size of
confidently incorrect intervention affects the users
interaction with the AI system and in Section 4.3
explore if miscalibration is transferable between
question types. Lastly, we predict the user interac-
tion in Section 5.

4.1 Effect of Miscalibration

We categorize AI behavior into four categories (Fig-
ure 2) and design an experiment to answer:

RQ1: Do miscalibrated examples affect user trust
and alter how they interact with the AI system?

We posit that miscalibrated stimuli decrease user
trust and subsequently verify the hypotheses:

H1: Confidently incorrect examples lower partici-
pants’ trust in the system
H2: Unconfidently correct examples lower partic-
ipants’ trust in the system, but less so
H3: Miscalibrated examples reduce the human-
AI collaboration performance
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Figure 4: Average user bet values (y-axis) and bet cor-
rectness (point & histogram color) with no intervention
(control, top) and confidently incorrect intervention (bot-
tom). The spline shows a 3rd degree polynomial fitted
with MSE. Transparent features are overlayed from the
other graph. See Figure 14 for an annotated version.

We assign each user to a particular condition.
For the control group, we show 60 calibrated stim-
uli. For confidently incorrect and unconfidently
correct groups, we show 10 calibrated, then 5 mis-
calibrated (according to the particular mode), and
then 45 calibrated stimuli. We then observe, in par-
ticular, the user bet value and accuracy (Figure 4).

Confidently incorrect intervention. The control
group, which was shown only calibrated stimuli,
quickly learns to bet higher than at the beginning
and becomes progressively better at it. The confi-
dently incorrect intervention group has the same
start but then is faced with the intervention, where
they bet incorrectly because of the inaccurate confi-
dence estimation. Even after the intervention, their
bet values remain significantly lower and they are
worse at judging when the AI is correct. The dif-
ference in bet values before and after intervention
across confidence levels is also observable in Fig-
ure 11. We use the user bet value as a proxy for
trust (ūBcontrol = 7¢, ūBCI = 5¢) and the user cor-
rectness of the bet (ūBcontrol = 89%, ūBCI = 78%).
The significances are p<10−4 and p=0.03, respec-



tively, with two-sided t-test.
Owing to possible errors due to user random-

ization, we also performed a quasi-experimental
analysis of our data to better quantify the effect
of our intervention. Interrupted Time Series (Fer-
ron and Rendina-Gobioff, 2014, ITS) analysis is a
quasi-experimental method that allows us to assess
and quantify the causal effect of our intervention
on a per-user basis. ITS models the user’s behav-
ior before and after the intervention and quantifies
the effect of the intervention. As the comparison
is intra-user, it helps mitigate randomness arising
from the inter-user comparison between treatment
and control. We use ITS with ARIMA modeling,
which is expressed as

uBt = β0 + β1t+ β21t>15 + ϵt + . . .

where 1t>15 is the indicator variable indicating
whether t is after the intervention.2 We are inter-
ested in the β2 values that indicate the coefficient
of deviation from the user bet values before the in-
tervention. Using ITS we find a β2 = −1.4 (p<0.05

with two-sided t-test), showing a significant drop
in user bet value after the confidently incorrect in-
tervention. We thus reject the null hypothesis and
empirically verify H1.
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Figure 5: Average user bet values (y-axis) and bet cor-
rectness (point & histogram color) with unconfidently
correct intervention. The spline shows 3rd degree poly-
nomial fitted with MSE. Transparent features are over-
laid from control group (Figure 4, top).

Unconfidently correct intervention. We now
turn to the unconfidently correct intervention. From
Figure 2, this type of intervention is symmetric to
confidently incorrect apart from the fact that the
baseline model accuracy is 70%. Figure 5 shows
that users are much less affected by this type of
miscalibration. A one-sided t-test shows a statis-
tically significant difference between the average
bet values across control and unconfidently correct

2We ignore the moving average and error terms for brevity.
See Appendix C for the full formula.

groups (p<10−3 with two-sided t-test), which pro-
vides evidence for H2. Prior work in understand-
ing psychology has found similar results where
humans tend to be more sympathetic to underconfi-
dent subjects (Thoma, 2016). While applying find-
ings from human-human interaction to human-AI
interactions, we exercise caution and acknowledge
the need for further research.
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Figure 6: Average accumulated reward. The α is the
primary coefficient of linear fits after the 15th stimulus
(after intervention). Lines in black are fit using ordinary
least squares (p<10−4 with two-sided t-test).

Consequences of lower trust. We now examine
how user’s fallen trust in the system affects their
task performance. We assert that when the human’s
trust is calibrated, i.e., the human can effectively
decide when the AI is likely to be right or wrong,
signifies a strong collaboration. The overall mon-
etary gain, which the user accumulates, acts as a
good proxy for the collaboration. To analyze this
difference we fit a linear model after the interven-
tion to predict the rate of score increase. We model
the cumulative gain at timestep t as t · α+ c where
α is perceived as the expected gain in ¢ per one
interaction. We report α for all three interventions.
The results in Figure 6 show that without interven-
tion, α = 5.2, which is much higher than with
unconfidently correct intervention (α = 4.2) and
confidently incorrect intervention (α = 4.0). No-
tably, the confidently incorrect intervention has a
more negative effect than the unconfidently cor-
rect intervention. We thus empirically validate H3,
miscalibrated examples significantly reduce the per-
formance of the human-AI team in the long run.

RQ1 Takeaways:
• User trust in the AI system is affected by mis-

calibrated examples.
• Confidently incorrect stimuli reduce trust more

than unconfidently correct stimuli.



≤ 40 > 40
Int. ¢ α β2 Bet Acc. Bet Acc.

0 207 5.3 - 6.6 92% 6.8 92%
1 188 4.8 -0.5† 6.2 87% 6.4 88%
3 193 5.0 -0.8 5.9 84% 5.9 82%
5 158 4.0 -1.4 5.4 86% 5.3 90%
7 147 3.7 -1.2 5.5 80% 5.5 86%
9 118 2.9 -0.9 5.6 72% 5.8 84%

Table 1: Experiments with varying numbers of con-
fidently incorrect stimuli. The α and the gain ¢ are
shown from 19th sample (after intervention for all). The
columns ≤ 40 and > 40 signify which stimuli in the
sequence are considered. All β are with p < 10−3 with
two-sided t-test apart from † which is p = 0.24.

4.2 Intervention Size

Seeing a noticeable drop in user trust when faced
with model confidence errors, we ask:

RQ2: How many miscalibrated examples does it
take to break the user’s trust in the system?

We do so by changing the number of confidently
incorrect stimuli from original 5 to 1, 3, 7, and
9 and measure how much are users able to earn
after the intervention, how much they are betting
immediately after the intervention and later one.
We now discuss the average results in Table 1.

Upon observing an increase in intervention size,
we note an initial decreasing trend followed by a
plateau in β2 (4th column), implying a decrease in
trust and user bet values, albeit only up to a cer-
tain level. Shifting our focus to accuracy, which
measures the users’ ability to determine the AI’s
correctness, we observe an initial decline as well
(6th column). This decline suggests that users adapt
to the presence of miscalibrated examples. How-
ever, after 40 examples (25 after intervention), the
accuracy begins to rise (8th column) once again,
indicating that users adapt once more. Next, we an-
alyze ¢ and α, which represent the total reward and
the rate of reward increase. As the intervention size
increases, both ¢ and α (2nd and 3rd columns) con-
tinue to decline. This means that the performance
is what is primarily negatively affected. Based
on these findings, we conclude that users possess
the ability to adapt their mental models as they
encounter more calibrated stimuli. However, the
decreased trust still leads them to place fewer bets
on the system’s predictions, resulting in a dimin-
ished performance of the human-AI team.

RQ2 Takeaways:
• even 5 inaccurate confidence estimation exam-

ples are enough to long-term affect users’ trust
• with more inaccurate confidence estimation ex-

amples, users are more cautious

4.3 Mistrust Transferability

Increasingly, single machine learning models are
used on a bevy of different topics and tasks (Kaiser
et al., 2017; OpenAI, 2023). Owing to the distribu-
tion of the training data, the AI’s performance will
vary over input types. Although users are generally
not privy to training data input types, Mozannar
et al. (2022) show that users use this variance in
model behavior to learn when the model is likely
to be wrong. Inspired by this we ask:

RQ3: Do miscalibrated questions of one type of
question affect user trust in the model’s output for
a different type of question?

In the next experiment, we simulate this by hav-
ing two types of questions – either related to trivia
or math. Then, we introduce a confidently incorrect
intervention only for one of the types and observe
the change in trust on the other one. For example,
we introduce a confidently incorrect math questions
and then observe how it affects trust on trivia stim-
uli. We refer to the type of questions we provide
intervention for as “affected” questions while the
other as “unaffected” questions. We run two sets
of experiments where we mix trivia and math as
affected questions.

The results in Figure 7 show that there is a gap
between trust in the unaffected and affected stimuli
type. The gap (ūBunaffected = 5.4¢, ūBaffected = 5.0¢)
is smaller than in the control settings (Figure 4)
but still statistically significant (p<10−3 with two-
sided t-test). This is supported by the analysis
using ITS where we look for the relative change
to compare user bet values before and after the
intervention. We find a significant decrease in bet
values for both affected and unaffected questions
(βaffected = −0.94, βunaffected = −0.53, p<0.05 with
two-sided t-test).

RQ3 Takeaways:
• Miscalibrated responses of one type affect the

user’s overall trust in the system
• Miscalibrated responses of one type further re-

duce user trust in examples of the same type
• Thus users also take into consideration question

types as they create mental models of the AI
system correctness
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Figure 7: Average user bet values (y-axis) and bet cor-
rectness (point & histogram color). The spline shows
a 3rd degree polynomial fitted with MSE. ‘Affected’ is
the question type that undergoes confidently incorrect
intervention.

Model Will agree? Bet value

Constant Baseline 81.8% (69.2%) 3.2¢

Random Forest (stateless) 86.8% (81.8%) 2.9¢

Logistic/Lin. Regression 87.8% (82.0%) 2.1¢
Random Forest 87.9% (82.8%) 2.0¢
Multi-Layer Perceptron 87.7% (82.9%) 1.9¢
GRU 89.7% (85.0%) 1.8¢

Table 2: Performance of modeling various aspects of
user decisions. ‘MAE Bet value’ column shows mean
absolute error ‘Will agree?’ is formatted as ‘F1 (ACC)’.
See Section 5 for a description of target variables. ‘State-
less’ uses only confidence as an input feature.

5 Modeling User Trust

In human-AI collaboration systems, it is the col-
laboration performance that is more important than
the accuracy of the AI system itself (Bansal et al.,
2021a). In such cases, an AI system that can under-
stand and adapt to how its output is used is more
better. An important challenge in understanding
the user’s behavior is estimating how likely the user
is to trust the system. This would also allow the
system to adapt when user trust in the system is low
by perhaps performing a positive intervention that
increases user trust. We apply our learnings from
the previous section and show that systems that
explicitly model the user’s past interactions with
the system are able to better predict and estimate
the user’s trust in the system. We now develop in-
creasingly complex predictive statistical models of
user behavior, which will reveal what contributes
to the user process and affects trust. For evaluation,
we use F1 and accuracy (agreement) and mean ab-
solute error (bet value) for interpretability.

• uDt ∈{T, F} Will the user agree? (F1)
• uBt ∈ [0, 10] How much will the user bet? (MAE)

5.1 Local Decision Modeling
We start by modeling the user decision at a particu-
lar timestep without explicit access to the history
and based only on the pre-selected features that
represent the current stimuli and the aggregated
user history. These are:

• Average previous bet value
• Average previous TP/FP/TN/FN decision. For

example, FP means that the user decided the
AI system was correct which was not the case.

• AI system confidence
• Stimulus number in user queue

Each sample (input) is turned into a vector,3 and
we treat this as a supervised machine learning task
for which we employ linear/logistic regression, de-
cision trees, and multilayer perceptron (see code
for details). We evaluate the model on a dev set
which is composed of 20% of users4 which do not
appear in the training data and present the results in
Table 2. It is important to consider the uninformed
baseline because of the class imbalance. The re-
sults show, that non-linear and autoregressive mod-
els predict the user decisions better although not
flawlessly.

Decision trees provide both the importance of
each feature and also an explainable decision pro-
cedure for predicting the user bet (see Figure 15).
They also offer insights into feature importance
via Gini index (Gini, 1912). For our task of pre-
dicting bet value, it is: previous average user bet
(63%), AI system confidence (31%), stimulus num-
ber (1%), and then the rest. The R2 feature values
of linear regression reveal similar importance: pre-
vious average user bet (0.84), AI system confidence
(0.78), previous average TP (0.70) and then the rest.
The mean absolute error for bet value prediction
of random forest models based only on the current
confidence (stateless, i.e. no history information)
is 2.9¢. This is in contrast to a mean absolute error
of 2.0¢ for a full random forest model. This shows
that the interaction history is key in predicting user
trust.

5.2 Diachronic Modeling
Recurrent networks can selectively choose to re-
member instances of the context that are crucial to
making a prediction. Unlike alternate approaches

3For example, ⟨avg. bet: 6.7, TP: 50%, FP: 10%, TN:
30%, FN: 10%, conf: 81%, i: 13⟩

4(30 + 30 + 30) · 20% · 60 = 1080 samples
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Figure 8: Vector similarity (inner product) between
subsequent hidden states of the recurrent GRU model.
See Figure 12 for comparison across queues.

that use an average of mean interactions a user
had with a system, a GRU can effectively track
where user trust in the system underwent a large
change. To test this, we look at the information in
the hidden state of the GRU we train on the user
interactions (see Figures 8 and 12). The GRU’s
internal state is able to identify areas that caused
shifts in the user’s trust and changed their future
interactions. This peak is much higher for the con-
fidently incorrect than for the unconfidently correct
interventions which is in line with our conclusion
that confidently incorrect examples deteriorate trust
more than unconfidently correct examples.

6 Discussion

We now contextualize our findings to real-world
applications and discuss the differences and their
implications.

Miscalibration impacts user trust. Even a small
(5) number of miscalibrated examples affects how
users trust the system in the future. In our con-
trolled setting we consider a symmetric risk-reward
setup. However, past work has shown that trust is
linked to risk. In real applications, the reward and
cost of trusting the system might not be the same.
For example in an AI system detecting cancer, hav-
ing a doctor manualy do the screening has lower
cost than a misdiagnosis.

Confidently incorrect examples lower trust
more than confidently correct examples. Stan-
dard methods of evaluating model calibration, such
as the Expected Calibration Error (ECE), do not
take this into account. A holistic calibration metric
should take these user-centric aspects into account,
particularly, how users interpret these confidence
scores and how it affects their trust in the system.

Miscalibration effects persist and affect user be-
havior over long time spans. In our setup, users
interact with the system continuously over a ses-

sion. After the intervention, their trust decreases
over several interactions. Real-life user interactions
with AI systems might not always follow this pat-
tern. For example, a user might use a search engine
in bursts when they have an information need. The
larger time intervals between interactions might
dampen the strong feelings of trust or mistrust.

Mistrust transfers between input types. Our ex-
periments reveal that the model’s miscalibration on
a certain type of input also reduces the user’s trust
in the model on other types of inputs. In real-world
applications, AI systems are generally presented
to users as an abstraction and the user may or may
not be aware of the underlying workings of the sys-
tem. For example, recent user-facing LLMs often
employ techniques such as a mixture-of-experts or
smaller specialized models that perform different
tasks. In such cases, the transfer of miscalibration
can be erroneous.

RNN outperforms linear models in modeling
user trust. This is indicative that modeling user
trust is complex and requires more sophisticated
non-linear models. Like most deep learning mod-
els, a recurrent network requires more data for accu-
rate prediction. However, user-facing applications
can collect several features and with more data
deep learning models might generalize better and
help us dynamically track and predict user trust.

7 Conclusion

When interacting with AI systems, users create
mental models of the AI’s prediction and iden-
tify regions of the system’s output they can trust.
Our research highlights the impact of miscalibra-
tions, especially in confidently incorrect predic-
tions, which leads to a notable decline in user trust
in the AI system. This loss of trust persists over
multiple interactions, even with just a small num-
ber of miscalibrations (as few as five), affecting
how users trust the system in the future. The lower
trust in the system then hinders the effectiveness
of human-AI collaboration. Our experiments also
show that user mental models adapt to consider
different input types. When the system is mis-
calibrated for a specific input type, user trust is
reduced for that type of input. Finally, our exami-
nation of various trust modeling approaches reveals
that models capable of effectively capturing past
interactions, like recurrent networks, provide better
predictions of user trust over multiple interactions.



8 Future work

Regaining trust. We examined how miscali-
brated examples shatter user trust and we show
that this effect persists. We also show that this lack
of trust adversely affects human-AI collaboration.
Understanding how to build user trust in systems
could greatly aid system designers.

Complex reward structures. In our experi-
ments, the user is rewarded and penalized equally
when they are correct and incorrect. This re-
ward/penalty is also instantly provided to the user.
This might not hold for other tasks, for example,
in a radiology setting, a false negative (i.e. miss-
ing a tumor) has a very large penalty. Past work
in psychology has shown that humans suffer from
loss-aversion (Tversky and Kahneman, 1992) and
are prone to making irrational decisions under risk.
(Slovic, 2010). We leave experimentation involving
task-specific reward frameworks to future work.

Ethics Statement
The participants were informed that their data
(anonymized apart from interactions) would be pub-
lished for research purposes and had an option to
raise concerns after the experiment via online chat.
The participants were paid together with bonuses,
on average, ≃$24 per hour, which is above the Pro-
lific’s minimum of $12 per hour. The total cost of
the experiment was ≃$1500.

Broader impact. As AI systems get more ubiq-
uitous, user trust calibration is increasingly crucial.
In human-AI collaboration, it is important that the
user’s trust in the system remains faithful to the
system’s capabilities. Over-reliance on faulty AI
can be harmful and caution should be exercised
during deployment of critical systems.

Limitations

Simulated setup. Our experiments were con-
ducted on users who were aware that their actions
were being observed, which in turn affects their
behavior (McGrath, 1995). We hope our work in-
spires large-scale experiments that study how users
interact directly with a live system.

Domain separation. In the Type-Sensitivity Ex-
periment (Section 4.3) we consider only two ques-
tion types, trivia and math, and provide the partic-
ipant with an indicator for the question type. In
real-world usage, the user might provide inputs that
may not be clearly distinct from each other.

Monetary reward. A user interacting with an
information system to seek information. In our
experiments, we replace this goals with a monetary
reward. This misalignment in the motivation also
affects the participant behavior (Deci et al., 1999).
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Queue # Users # Stimuli

Control 39 2340
Intervention CI 1 27 1620
Intervention CI 3 39 2340
Intervention CI 5 30 1800
Intervention CI 7 30 1800
Intervention CI 9 30 1843
Trivia intervention CI 31 1860
Math intervention CI 31 1860
Intervention UC 40 2400

Total 297 17863

Table 3: Size summary of collected and released data.
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Figure 9: Breakdown of duration of individual user
actions. While the bet value decision (bet) and reading
the results (next) remain rather constant, the overall
decision process becomes faster.
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Figure 10: Overall distribution of (bipolar) bet values
across all collected data.

A Question Generation

We generate 60 trivia and math questions using
ChatGPT using the following two prompts. We
manually filter questions which are possibly an-
swerable given expert knowledge. See Figure 13
for examples of generated questions. All the gener-
ated questions are part of the released data.

Generate a fake mathematical question that seems like they
are answerable but a key information is missing. Generate two
plausible definitive answers, the first of which is “correct”.

Generate fake trivia question that seems like they are answer-
able but a key information is missing and they are not related
to the real world. Generate two plausible definitive answers,
the first of which is “correct”.
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Figure 11: Average bet for a particular confidence inter-
val before and after intervention (▶ means bet increased
after intervention and ◀ means decrease). The interven-
tion reduces the bet value which is otherwise naturally
increasing. See Figure 10 for bet distribution.
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Figure 12: Similarity (inner product) of GRU hidden
states for bet value prediction at different locations dur-
ing the experiment (pre ≤ 10, mid ≤ 15, post > 15)
and groups (control/confidently incorrect).

B Real AI System Confidence

In all our experiments (control and with different in-
terventions) we find a similar ECE scores (control:
0.29% , UC-5: 0.30%, CI-1: 0.28%, CI-3: 0.29%,
CI-5: 0.28%, CI-7: 0.29%, CI-9: 0.29%) This is
due to the intervention sizes being very small to
have a major effect on the ECE score. We com-
pare to other models: DPR on Natural Questions:
37.1%, ResNet-152 on Imagenet: 5.48%.

C Interrupted Time Series

uBt = β0 + β1 · t+ β2 · 1(t > 15)+

W∑
i=1

ϕiu
B
t−i︸ ︷︷ ︸

Moving average terms

+
W∑
j=1

θjϵt−j + ϵt︸ ︷︷ ︸
Error terms

https://chat.openai.com/


Figure 13: Screenshots of the user interface with all combinations (4) of user guess that the system was correct/in-
correct and the model being correct or incorrect.



10
calibrated

stimuli

45
calibrated

stimuli

5
confidently
incorrect
stimuli

average accuracy of 11th 
stimulus is 20%

average bet value is 8¢

average accuracy of 35th 
stimulus is 85%

average bet value is 6¢

spline from control group
(without interventions)

spline fitted to bet values

histograms of accuracy (projected from points)
upper (semi-transparent) is control group

bottom is confidently incorrect queue

Figure 14: Annotated version of Figure 4. Average user bet values (y-axis) and bet correctness (point & histogram
color) with control set of stimuli (top) and confidently incorrect stimuli (bottom). The spline shows 3rd degree
polynomial. Transparent features are overlayed from the other graph.
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Figure 15: First three layers of a decision tree that predicts bet value (in gray for each node).


