
AI METROPOLIS: SCALING LARGE LANGUAGE MODEL-BASED
MULTI-AGENT SIMULATION WITH OUT-OF-ORDER EXECUTION

Zhiqiang Xie 1 Hao Kang 2 Ying Sheng 1 Tushar Krishna 2 Kayvon Fatahalian 1 Christos Kozyrakis 1

ABSTRACT
With more advanced natural language understanding and reasoning capabilities, agents powered by large language
models (LLMs) are increasingly developed in simulated environments to perform complex tasks, interact with
other agents, and exhibit emerging behaviors relevant to social science research and innovative gameplay develop-
ment. However, current multi-agent simulations frequently suffer from inefficiencies due to the limited parallelism
caused by false dependencies, resulting in a performance bottleneck. In this paper, we introduce AI Metropolis,
a simulation engine that improves the efficiency of LLM agent simulations by incorporating out-of-order exe-
cution scheduling. By dynamically tracking real dependencies between agents, AI Metropolis minimizes false
dependencies, enhances parallelism, and maximizes hardware utilization. Our evaluations demonstrate that AI
Metropolis achieves speedups from 1.3× to 4.15× over standard parallel simulation with global synchronization,
approaching optimal performance as the number of agents increases.

1 INTRODUCTION

Large Language Models (LLMs) are advanced machine
learning models trained on vast amounts of data, excelling in
understanding and generating natural language. They have
transformed natural language processing, enabling high-
accuracy applications like text completion (Merity et al.,
2016), summarization (Narayan et al., 2018), and reason-
ing (Cobbe et al., 2021). Beyond simple queries and chat-
bot interactions (OpenAI, 2024a), there is growing interest
in using LLMs to create self-planning, decision-making,
problem-solving, and reasoning engines (Wang et al., 2024).
These advancements aim to develop human-like agents (Xi
et al., 2023) capable of performing complex tasks, inter-
acting with environments and other agents, and making
informed decisions based on context.

This interest is particularly pronounced in developing LLM-
powered agents within simulated environments, where two
unique opportunities arise. First, simulation environments
provide an efficient platform for testing and tuning LLM
agents (Dubois et al., 2024; Liu et al., 2023; Wang et al.,
2023b), with potential applications extending to real-world
settings or virtual environments like gaming. Second, the
enhanced natural language understanding and reasoning ca-
pabilities of LLMs have sparked a trend of examining emer-
gent social behaviors of these agents in game-like simula-

1Stanford University 2Georgia Institute of Technology. Corre-
spondence to: Zhiqiang Xie <xiezhq@cs.stanford.edu>.

Proceedings of the 8 th MLSys Conference, Santa Clara, CA, USA,
2025. Copyright 2025 by the author(s).

tions (Park et al., 2023; Altera.AL et al., 2024). Such studies
can serve as predictive models, forecasting real-world hu-
man behaviors, which is highly valuable for social science
research (Ziems et al., 2023; Grossmann et al., 2023).

Despite the significance of simulation environments for
LLM agents, the efficiency of managing simulation states
and scheduling LLM requests in simulations are often over-
looked, leading to slow and inefficient simulation processes.
Recent research commonly implements their LLM agents
simulation (Park et al., 2023; Gong et al., 2023) directly ad-
hering to a paradigm borrowed from reinforcement learning
agent training and traditional multi-agent simulation (Emau
et al., 2011), where simulation time is discretized into time
steps and a step (or similar) function is invoked to apply
agents’ actions, synchronize the environment, and coordi-
nate agents at each interval. This pattern, illustrated in
Algorithm 1, is prevalent in prominent reinforcement learn-
ing frameworks such as OpenAI Gym (Brockman et al.,
2016), Meta Pearl (Zhu et al., 2024), and TensorFlow
Agents (Guadarrama et al., 2018). The rationale behind
this design is that global synchronization, enforced through
the step function, easily maintains temporal causality within
the simulation by serializing tasks along the simulation time
axis.

While this design suits the needs of reinforcement learning
and traditional multi-agent simulations, we found it ineffi-
cient for LLM agents due to their unique performance char-
acteristics, necessitating a novel scheduling approach. Sim-
ulations involving LLM agents, like other LLM-powered
applications, are heavily dominated by inference time. Tak-

AI Metropolis

ing the pioneering work on generative agents (Park, 2024)
(GenAgent) as an example, our trace analysis reveals that
approximately 95% of the simulation time is dedicated to
LLM inference. Consequently, inference throughput be-
comes crucial, as higher throughput directly translates to
shorter completion times and lower costs. Furthermore, re-
cent studies on LLM serving engines (Kwon et al., 2023;
Zheng et al., 2024) indicate that large batch sizes are es-
sential for achieving high inference throughput. Unfortu-
nately, the traditional approach, which enforces step-wise
temporal causality across simulation steps, introduces exces-
sive synchronization that significantly reduces parallelism,
thereby reducing achievable batch sizes and leading to low
throughput. This reduction in parallelism occurs because
the execution times of LLM queries from different agents
within a simulation step can vary significantly due to two
main reasons: (1) variations in the input and output lengths
of queries, and (2) differing numbers of queries sent by
different agents. As a result, enforcing global synchroniza-
tion causes many agents to wait unnecessarily for each step
to complete, limiting concurrent LLM queries and further
reducing throughput. This reduction in parallelism also
hampers scalability, as adding more resources fails to mean-
ingfully decrease the overall simulation completion time.

Our key observation is that temporal causality in simula-
tions can be maintained without the costly global step-wise
synchronization in the simulation. Intuitively, if two agents
are far apart in a simulated world, the actions of one agent
will not be immediately visible to the other. This means that
it is often unnecessary for all agents to wait for each step to
finish before proceeding, revealing a false dependency that
can be removed to improve efficiency in the simulation.

To address the aforementioned challenge, in this paper, we
present AI Metropolis, a multi-agent simulation engine for
LLM-powered agents that introduces the concept of out-
of-order execution to simulation scheduling. By carefully
tracking real dependencies between agents during runtime,
we can effectively eliminate most false dependencies. This
approach allows certain agents to advance in simulation
time ahead of others without affecting the simulation’s out-
come, which significantly enhances parallelism and thus
better utilizes hardware with larger inference batch sizes.
Dependency tracking is achieved by analyzing the temporal-
spatial relationships between agents, where the number of
steps an agent can advance is determined by its distance
from other agents. Similar to the scoreboard in out-of-order
execution algorithms, AI Metropolis maintains a specialized
dependency graph to efficiently track these relationships.

AI Metropolis provides LLM agent developers with inter-
faces similar to OpenAI Gym (Brockman et al., 2016), while
seamlessly managing simulation state updates, database I/O,
scheduling, and LLM inference processes. We evaluated AI

Metropolis by replaying traces collected from instrumenting
the original GenAgent implementation (Park, 2024) across
different models, GPUs, and simulation scales. The results
demonstrate that AI Metropolis outperforms the standard
approach of parallel simulation with global step synchro-
nization, achieving speedups from 1.3× to 4.15×, and ap-
proaching an order of magnitude improvement over the orig-
inal GenAgent implementation. As the number of agents
increases, AI Metropolis rapidly nears optimal performance,
demonstrating its scalability and effective dependency man-
agement. We have open-sourced AI Metropolis to accelerate
research in large-scale LLM agent simulation. In addition,
we released the collected GenAgent traces to address a
critical gap in LLM serving benchmarks, particularly in cap-
turing the unique and complex dependency patterns among
LLM calls. Both are available at: https://github.
com/xiezhq-hermann/ai-metropolis.

Algorithm 1 Traditional Simulation Scheduling

1: Input: target step, agents, world
2: Initialize: step← 0
3: while step < target step do
4: actions← []
5: for all agent in agents do
6: actions.append(agent.proceed(world)) a

7: end for
8: world.step(actions)
9: step← step + 1

10: end while

aThe proceed function involves LLM calls to process tasks.

2 SIMULATION OF LLM AGENT
INTERACTION

2.1 Background

While simulation environments vary greatly, featuring di-
verse and complex action spaces and interactions, they typ-
ically adhere to a common high-level procedure outlined
in Algorithm 1. In this procedure, agents determine their
next actions based on the current state of the world and
their internal states. These actions, in turn, update the world
state as the simulation progresses, subsequently influencing
future agent behaviors. The functions agent.proceed and
world.step are provided by agent and environment devel-
opers, and can be implemented through manually defined
rules, calls to LLMs, or a combination of both.

To illustrate the challenge of achieving efficient simulation,
we use GenAgent as a concrete example within the broad
family of simulations for LLM agent interaction. GenAgent
proposes a comprehensive agent architecture and interac-
tion mechanisms that have inspired substantial subsequent

https://github.com/xiezhq-hermann/ai-metropolis
https://github.com/xiezhq-hermann/ai-metropolis

AI Metropolis

0 100 200 300 400 500
Time (s)

Figure 1. A snippet of the execution trace of a GenAgent simula-
tion. The x-axis shows the elapsed execution time, with each row
representing an agent’s stream of LLM invocations. Colored bars
denote different agent functions, and black dashed vertical lines
indicate the completion of each step.

research. Their concepts and workflows are widely adopted
in the community. In GenAgent, 25 agents inhabit a world
called SmallVille, akin to a grid-based game. Each agent
possesses its own personality, social relationships, and daily
routines. They navigate the world, interact with objects, and
converse with other agents. The agent.proceed function on
line 6 of Algorithm 1 is expanded to Algorithm 2 to detail
several steps: perceiving surroundings, planning actions
based on recent events, recalling relevant past events from
memory, following a structured daily routine, and occasion-
ally reflecting on their actions or experiences. Each of these
steps can involve LLM calls. Each step corresponds to ten
seconds in the simulated time in GenAgent.

Algorithm 2 Proceed function in GenAgent

1: Input: agent, world
2: Output: action
3: perceived events← agent.perceive(world)
4: retrieved events← agent.retrieve(perceived events)
5: action← agent.plan(world, retrieved events)

2.2 Motivation and Challenges

Imbalanced workload reduces available parallelism.
Although line 5 in Algorithm 1 suggests that parallelism can
scale up to the number of agents, the effective parallelism is
often significantly lower due to workload imbalance among
agents. As illustrated in Figure 1, there are moments when
many agents send out LLM requests uniformly. However,
for the majority of the execution time, a few agents domi-
nate each step, resulting in prolonged idle periods for many
other agents who issue no LLM queries. This sparsity in-
herently arises from agents having independent schedules

Figure 2. The dependency between agents’ tasks is introduced by
temporal causality. The top illustration shows an overly strict
enforcement of this dependency, while the bottom illustration
depicts a case of actual dependency.

and encountering distinct events, making even distributions
unlikely. Additionally, as shown in Figure 1, even for the
same type of LLM calls, completions can vary significantly
depending on inputs provided by different agents, further in-
troducing imbalance. Our measurements indicate that for a
full-day simulation of 25 agents, there are, on average, only
1.94 concurrent LLM queries throughout the simulation.

False Dependency. While the workload imbalance across
agents might be inevitable, low parallelism is not. We found
that the primary cause of idleness is the overly strict en-
forcement of time causality. Requiring all events in one
time step to complete before advancing to the next step
introduces unnecessary dependencies. As shown in Fig-
ure 2, this approach creates an implicit all-to-all dependency
across agents in consecutive steps. However, some agents,
such as agent A, may be sufficiently isolated and unable
to interact with others, thus not creating dependencies on
agents like B or C. Our trace analysis for a whole day sim-
ulation of GenAgent indicates that, on average, each agent
is dependent on only 1.85 agents (including itself) from the
prior step, far less than the default 25. The issue of false
dependencies worsens as the agent count grows, as more
false dependencies are enforced, diminishing the benefits
of increased parallelism. Although agents’ behaviors are
driven by responses from LLMs, which limits a scheduler’s
ability to optimally manage dependencies without foresight,
agent behavior is still somewhat predictable. Agents are con-
strained by their movement speed and limited action space,
providing an opportunity to reduce most false dependencies
through analysis of agents’ temporal-spatial relationships.

AI Metropolis

Requests of Different Priorities. The dependency lens
also reveals something unique about simulation compared to
common LLM services like chatbots: there are long critical
paths in the task of simulation, consisting of a chain of
LLM calls that cannot be parallelized. Therefore, requests
have different priorities; those on the critical path should be
served before non-critical requests to minimize the overall
completion time as much as possible.

3 DESIGN OF AI METROPOLIS

Motivated by observations described in §2.2, we design
AI Metropolis, an optimized simulation engine that serves
as middleware between the developer-defined world and
agents and the LLM serving engine, efficiently managing
state updates and scheduling LLM queries. By allowing
agents to progress at varying speeds based on their LLM
call loads, AI Metropolis eliminates the need for frequent
global synchronization, reducing false dependencies and
maximizing parallelism. Algorithm 3 provides an overview
of the new scheduling workflow adopted by AI Metropolis,
contrasting it with the traditional time step synchronized
scheduling shown in Algorithm 1.

Algorithm 3 AI Metropolis Scheduling Workflow

1: Input: target step, agents, world
2: Initialize: base step← 0, ready agents← agents
3: worker pool← InitProcessPool(process routine)
4: ready queue← PriorityQueue()
5: ack queue← PriorityQueue()
6: dependency graph← Graph(agents)

{Controller}
7: while base step < target step do
8: ready clusters← geo clustering(ready agents)
9: ready queue.put(ready clusters)

10: ack cluster← ack queue.get()
11: ready agents← update agents(agents, ack cluster)
12: base step← update base step(ack cluster)
13: end while
{Worker}

14: while base step < target step do
15: cluster← ready queue.get()
16: actions← []
17: for all agent in cluster do
18: actions.append(agent.proceed(world))
19: end for
20: world.resolve conflict and commit(actions)
21: dependency graph.update(cluster)
22: end while

3.1 Overview

Below, we define essential terms used in AI Metropolis:

• Blocked: An agent A becomes blocked if it has to wait
for another agent B to finish the current step before it
can proceed, ensuring temporal causality and simula-
tion correctness. This is formally defined in §3.2.

• Coupled: Agents A and B, become coupled if they
are sufficiently close, interact with each other, and thus
must proceed together. This is formally defined in §3.2.

• Cluster: A cluster is a group of coupled agents at the
same step. Each agent can independently issue requests
to LLMs within its proceed function. However, the
entire group needs to synchronize at the end of the step
to resolve potential conflicts and avoid dependency
violations as described in §3.2.

• Worker: A worker is a process that handles one clus-
ter, to proceed one step at a time. Within the worker
process, each agent in the cluster operates in its own
thread to communicate with the LLM serving engine
and process its tasks. Workers are independent pro-
cesses without synchronization between them, and the
number of workers can be adjusted based on available
CPU resources.

• Controller: The controller is the main process of
the simulation engine. After initializing the world,
it periodically communicates with workers through
two queues: it prepares tasks for workers via the
ready queue and confirms the completion of clusters
from workers through the ack queue.

During a simulation, workers continuously pull clusters
from the ready queue. After finishing the step for a cluster,
a worker updates the dependency graph stored in a database
for all agents in the cluster and then places the completed
cluster in the ack queue as a completion confirmation. Si-
multaneously, the controller continuously pulls notifications
from the ack queue. Each time it processes a confirma-
tion, it queries the dependency graph to filter out the agents
that are not blocked, creating new ready clusters out of
the ready agents and placing them into the ready queue
promptly. This workflow allows agents to advance steps
ahead of others as long as dependency permits. Notably,
both the ready queue and ack queue are priority queues that
automatically sort tasks based on their associated steps.

We discuss the the dependency tracking mechanism in §3.2,
the spatiotemporal dependency graph realizing the mecha-
nism in §3.3, agent clustering in §3.4, priority scheduling in
§3.5, and key implementation details in §3.6.

3.2 Dependency Tracking

As described in §2.2 and shown in Figure 2, temporal causal-
ity introduces the dependence of tasks in a simulation. Using

AI Metropolis

the language of computer systems, temporal causality cre-
ates an order of a set of reads and writes on a shared memory.
At the beginning of each step, agents read different parts
of the environment and at the end, they commit writes to
different parts. Therefore, the tasks of an agent across differ-
ent steps must be serialized, as it reads what it wrote in the
last step. The dependency between tasks of different agents
can then also be formulated as a read-after-write data de-
pendency. For two agents A and B, if A is about to observe
a part of the world at step StepA, and B is about to write
to that part of the world at step StepB . if StepB is smaller
than StepA, meaning that the write is designed to happen
before the read, then A must wait for B to complete step
StepB before starting the tasks in step StepA.

In simulations, each agent typically perceives only a por-
tion of the world, defined by the surrounding area within
a specified radius, denoted as radius p. We also assume
a maximum speed limit, denoted as max vel, governing
both agents’ movement and information propagation within
each step. For instance, in GenAgent, an agent perceives
an area within a radius of 4 grid units and can modify the
status of an adjacent grid by interacting with an object or
agent on it or moving to it. This defines the region the agent
can read from and write to. Consequently, to maintain read-
after-write data dependency, the following condition must
hold throughout the simulation:

∀ agents A,B, and their current steps StepA and StepB ,

if StepA ̸= StepB , then dist(A,B) > radius p

+ (|StepA − StepB | − 1)×max vel

where dist(A,B) denotes the distance between A and B.
This ensures a read in a later step never overlaps with regions
potentially influenced by writes from previous steps. Intu-
itively, this means that agents never perceive other agents
who exist at different times. To enforce this condition, we
can derive the following rules to determine the relationships
between the tasks of agents. The complete derivation can
be found in Appendix A and the following are the rules AI
Metropolis uses: for any two agents A and B and their tasks
in steps StepA and StepB ,

• We define that A and B are coupled if StepA = StepB
and dist(A,B) ≤ radius p+max vel, which means
they must be grouped into the same cluster and proceed
to the next step together.

• We define that A is blocked by B if dist(A,B) ≤
(StepA − StepB + 1)×max vel+ radius p, mean-
ing that A cannot begin tasks in step StepA until B
advances to the next step.

• A cluster can freely advance to the next step if none of
its agents are blocked by any other agent.

A@x

D@y

C@y F@z

E@yB@x

Figure 3. An example of a spatiotemporal dependency graph. Each
node, such as A@x, represents an agent (A) at a specific time step
(x). Single arrows indicate dependencies, while double arrows
represent coupled relationships between agents. Purple boxes
denote clusters of agents, where green nodes indicate agents that
are free to proceed and orange nodes represent blocked agents.

Note that this set of rules are conservative, meaning the read
in the later step will wait for all potential writes to a certain
region to finish, even if the write does not occur eventually.
While this may still preserve some false dependencies, we
show in §4 that it achieves performance close to the optimal.
Additionally, this design does not require a data race detector
and correction mechanism, making it more scalable and
easier to implement.

3.3 Spatiotemporal Dependency Graph

AI Metropolis uses rules defined in §3.2 to construct a spe-
cial graph that tracks dependencies between agents. It is
named spatiotemporal dependency graph and each node in
the graph represents an agent, containing its temporal (time
step) and spatial (coordinates on the map) information. An
edge A→ B indicates that agent B is currently blocked by
agent A, while A ↔ B signifies that agents A and B are
coupled into a cluster as shown in Figure 3.

AI Metropolis maintains this graph in an in-memory
database. Whenever a worker advances a cluster to the next
step, it re-examines relationships between each agent in the
cluster and other relevant agents, applying predefined rules.
Any resulting changes in relationships are then recorded
in the database. An efficient coordinate-based geo-query
approach is employed to confine each agent’s checks to
neighbors within a specific radius, resulting in an effective
common-case complexity of O(S × N). To further mini-
mize overhead, the update algorithm is implemented in a
parallel manner with transactional update enforcement to
prevent data races. As a result, a typical local graph update
for a cluster of agents takes about 1 ms, accounting for less
than 1% of total runtime. Afterward, the worker process
places a completion confirmation into the ack queue.

The dependency graph will be utilized by the controller
process for efficiently identifying the agents that are not
blocked, allowing it to release maximum parallelism.

AI Metropolis

3.4 Agent Clustering

When agents are close enough to each other, they perceive
each other’s actions committed in the last step. In other
words, they collectively read what they wrote in the last
step. They might also encounter write conflicts that must
be resolved by developer-specified rules; for example, two
agents might both want to use the bathroom, but only one
can step in. These potential interactions couple them into a
cluster that must proceed together. Whenever there are new
ready agents who are not blocked, the controller process
runs geo clustering to group coupled agents into clusters
based on the rule described in §3.2. If none of the members
of a cluster are blocked, the cluster is considered ready and
will be placed into the ready queue. Using clusters as the
minimal synchronized units, as opposed to synchronizing
all agents as described in Algorithm 1, effectively reduces
false dependencies and scheduling overhead.

3.5 Priority Scheduling

As motivated in §2.2, allowing agents to process tasks as-
sociated with different time steps simultaneously creates
requests of varying priorities. We found that the time step
associated with a request serves as a good measure of its
priority. A write operation in a prior step can block many
reads in subsequent steps; intuitively, the smaller the time
step, the more future actions it can potentially block. To
enhance parallelism, we maintain both the ready queue and
ack queue as priority queues, prioritizing the execution of
tasks from earlier steps. No preemption during LLM infer-
ence is applied as that might cause extra overhead (Sheng
et al., 2023b). We demonstrate the effectiveness of this
priority scheduling in §4.4.

3.6 System Implementation

In addition to the design choices around dependency man-
agement, clustering, and priority scheduling that enable AI
Metropolis to expose more parallelism from the simulation,
it is also worth highlighting some of the design choices that
make AI Metropolis scalable:

Proper Mapping of Parallelism. Choosing the right pro-
gramming abstraction for different tasks is critical to scala-
bility. AI Metropolis employs threads for agents, as the need
for synchronization within clusters requires low-overhead
communication. Processes manage the controller and work-
ers to bypass Python’s Global Interpreter Lock (GIL) and
facilitate scaling beyond a single machine.

Light and Fast Critical Path on the Controller Process.
All critical path tasks are implemented in C++ to minimize
overhead and circumvent Python’s GIL limitations. Further-
more, heavy lifting, including complex agent processing

logic and dependency graph updates, is offloaded to concur-
rent workers. This approach lightens the critical path for
the controller process, minimizing workers’ waiting time
for task allocation.

Scalable I/O. Except for ready queue and ack queue, all
inter-process synchronization are handled through an in-
memory (Redis) database. This database also handles trans-
actional updates for all simulation states and stores instru-
mentation data, supporting automatic scalability beyond a
single node.

Decoupling Simulation Engine from LLM Serving En-
gine. In AI Metropolis, only workers communicate with
the LLM serving engine through a thin shim layer, providing
easy observability and scalability.

We implemented the core of AI Metropolis in about 1k
lines of C++ and 2k lines of Python code. An additional 3k
lines of Python code (excluding assets and prompts) were
written to port the GenAgent simulation using our interfaces.
This is about 50% of the code compared to the original
implementation, achieving up to an order of magnitude
speed-up and promising scalability, as demonstrated in §4.

4 EVALUATION

In the evaluation, we aim to answer the following questions:

• Does AI Metropolis effectively enhance parallelism by
tracking real dependencies, and how does this translate
to shorter completion times?

• Does AI Metropolis scale as the size of the simulated
world increases and the number of agents grows?

• Given that AI Metropolis does not eliminate all false
dependencies as illustrated in §3.2, how well does it
perform compared to the optimal solution?

We describe the experimental setup in §4.1 and discuss the
performance results of full-day simulations at a small scale
in §4.2, which uses the same simulation settings reported
in the GenAgent paper. We then examine the performance
comparisons as the size of the world increases and the num-
ber of agents grows to a thousand, assessing scalability in
§4.3. Finally, we conduct a performance breakdown in §4.4
to demonstrate the effectiveness of priority scheduling.

4.1 Methodology

Serving Engine. We use SGLang (Zheng et al., 2024)
(v0.1.17) as the LLM serving engine, as it is not only
one of the state-of-the-art LLM serving engines but also
lightweight and easy to instrument and modify. For consis-
tent and stable performance benchmark results, we turned

AI Metropolis

(a) Simulation using Llama-3-8b-instruct
on NVIDIA L4 GPU

(b) Simulation using Llama-3-70b-instruct
on NVIDIA A100 GPUs (c) LLM query distribution in simulation

Figure 4. (4a, 4b) End-to-end 25 agents full day simulation completion time with different number of GPUs. (4c) shows the distribution of
LLM calls over the simulated hours, note the low activity period during 1 a.m. - 4 a.m. is because all agents are sleeping.

off its automatic common prefix caching feature; however,
enabling the cache generally provides about a 20% through-
put gain across all settings.

Model and Hardware Platform. We benchmarked AI
Metropolis with various models and GPUs to assess its effec-
tiveness across different sizes and complexities. We chose
state-of-the-art open-source LLMs from the Meta Llama-3
instruct series (Meta, 2024). Community benchmarks (Chi-
ang et al., 2024) indicate that the smallest 8B model already
surpasses the ChatGPT-3.5 model used in the original GenA-
gent paper, making it ideal for performance evaluation. We
benchmarked our system with both the 8B and 70B models.
The 8B model offers a lightweight deployment option, while
the 70B model provides advanced capabilities, though at
a higher cost. For the Llama-3 8B experiments, we used
NVIDIA L4 GPUs on GCP G2 instances, scaling from one
to eight GPUs to assess data parallelism. For the Llama-3
70B experiments, we used NVIDIA A100-80GB GPUs, ap-
plying tensor parallelism across four GPUs, and expanding
to eight GPUs for a hybrid data and tensor parallelism con-
figuration. Additionally, we benchmarked AI Metropolis
using the Mixtral-8× 7B-Instruct-v0.1 (Mistral AI, 2023)
model, a mixture of expert models, on the same A100 plat-
form which can leverage higher data parallelism to reveal
more performance characteristics.

Traces. We collected workload traces for 40 simulation
days of GenAgent by instrumenting the original implemen-
tation (Park, 2024) and running it multiple times using the
same settings reported in the paper. OpenAI GPT-3.5 API
service (OpenAI, 2024b) was used as the LLM engine as
the same setting in the paper. On average, each simulation
day’s trace consists of 56.7k LLM call events. Each event
includes the input prompt, configurations, LLM response,
calling step, and caller’s identity. A separate trace file tracks
the agent’s movements throughout the simulation. The aver-

age length of input tokens is 642.6, and the average length
of output tokens is 21.9. We conducted the performance
benchmark using the replay mode of AI Metropolis, faith-
fully replaying these traces to ensure the same movements,
interaction patterns, inputs, and the same length of genera-
tion output by setting ignore eos in SGLang for comparable
and stable performance results.

4.2 Full Day Simulation in SmallVille

We benchmark AI Metropolis using the same setup de-
scribed in the GenAgent paper, which involves 25 agents
within a world named SmallVille, a 100× 140 grid, running
for a full simulation day.

The following experiment settings are used in benchmark:

• single-thread employs a single thread to handle simu-
lation states and issue LLM requests, as per the design
adopted by the original implementation to simplify
simulator implementation. No parallelism is exposed
for LLM requests from different agents.

• parallel-sync is a stronger baseline in which all agents
operate within the same time step can independently
issue LLM requests. Although global synchronization
inherently limits achievable parallelism, it represents a
standard and effective strategy for synchronous multi-
agent simulations, as discussed in § 2.1. We imple-
mented this baseline as a mode of AI Metropolis.

• oracle represents the optimal dependency management
solution for comparison. This setting constructs an
optimal dependency graph by analyzing the full trace
and mining all necessary dependencies based on agent
interactions. For example, if two agents appear in each
other’s observation space, they synchronize before and
after the step to ensure temporal causality. This setting
is unattainable in real systems and serves to illustrate

AI Metropolis

Figure 5. Benchmark of busy (12 p.m. - 1 p.m.) and quiet (6 a.m. - 7 a.m.) hours using Llama-3-8b-instruct on NVIDIA L4 GPUs, with
agent counts scaled from 25 to 1000. Single-thread results for 500 and 1000 agents are projected based on workload estimations.

the potential improvement of dependency management.
By having an optimal dependency graph, the most
available parallelism will be released.

• critical refers to the critical path of the simulation,
extracted from the optimal dependencies used in the
oracle setting. It identifies the path containing the most
LLM input and output tokens, setting a lower bound of
completion time regardless of available resources.

First, AI Metropolis outperforms the single-thread and
parallel-sync baselines by 2.38× and 1.44× on a single L4
GPU. As additional GPUs are employed, increasing the de-
mand for parallelism, the speedup rises to 3.25× and 1.67×
respectively on 8 GPUs. We also measured the achieved
parallelism for each simulation by averaging the number
of outstanding requests over the execution time, where AI
Metropolis reached 3.46, compared to 0.95 for single-thread
and 1.94 for parallel-sync on 8 GPUs. These results align
with the observed speedups, as greater parallelism improves
GPU utilization and overall performance.

AI Metropolis also approaches oracle performance, reach-
ing 74.7% of the oracle performance on 8 GPUs and up to
82.9% on a single GPU. This gap arises from AI Metropo-
lis’s longer critical path compared to the oracle baseline,
as it conservatively prevents certain agents from advancing
prematurely to avoid potential temporal causality violations,
as elaborated in §3. We further discuss this gap in §6.

A similar trend is observed in benchmarks conducted on
A100 GPUs with larger models. AI Metropolis achieves a
2.45× and 1.45× speedup compared to single-thread and

parallel-sync, respectively, and attains 82% of the oracle
performance on 8 GPUs. Additional speedups are antic-
ipated with higher data parallelism, given the oracle-to-
critical ratio of 64.7% on A100s versus 88% on L4 GPUs,
as memory demands for 70B models (8.75× higher) limit
processing capacity.

4.3 Scaling up to a Thousand Agents

Given the limited research on accommodating hundreds of
agents, we simulate a larger environment by concatenating
multiple SmallVilles into a single, LargeVille for bench-
marking. Agents in each segment replay different traces
that we collected independently, but they operate within the
same time and space. Since the concatenation approach
introduces straightforward parallelism, rather than focusing
on the critical path, which is artificially shortened due to the
lack of interaction between different parts of the LargeVille,
we introduce no-dependency as a more suitable lower bound
for completion time when scaling agents. In this setting, all
LLM calls can be issued simultaneously, maximizing hard-
ware utilization. In Figure 5, 7 and 6, the gpu-limit uses the
shorter completion time of the critical and no-dependency
settings. Moreover, for benchmark with a larger number of
agents, we opted to focus on two specific intervals from an
entire day’s simulation, as illustrated in Figure 4c: the busy
hour (12 PM - 1 PM, approximately 5,000 calls) and the
quiet hour (6 AM - 7 AM, approximately 800 LLM calls).
This setup shortens experiment time and highlights scaling
effects across different workloads, where busy hours fea-
ture long conversations, and quiet hours are mainly routine
activities with less LLM queries as agents just wake up.

AI Metropolis

Figure 6. Benchmark of busy (12a.m. - 1p.m.) and quiet (6a.m. - 7a.m.) hour using Llama-3-70b-instruct on NVIDIA A100 GPUs with
scaling number of agents from 25 to 1000.

Figure 7. Benchmark of Mistral 8×7 on 8 A100 GPUs, with agent
counts scaled from 25 to 1000.

The benefits of AI Metropolis increase with increasing num-
bers of agents. Figure 5 shows that AI Metropolis achieves
closer performance to oracle as the number of agents in-
crease: it achieves 90% of oracle on one GPU with 100
agents, reaching parity with oracle at 500 agents. On 8
GPUs, AI Metropolis improves from 53.1% to 97.0% of
oracle across settings. Speedups over single-thread and
parallel-sync also scale with agent count, increasing from
3.37× and 1.88× at 25 agents to 19.5× and 4.15× at 500
agents. Unlike single-thread, which cannot leverage paral-
lelism, and parallel-sync, which suffers from costly synchro-
nization, AI Metropolis utilizes parallelism more effectively,
maximizing speedup as agent count grows.

After reaching peak speedup over parallel-sync at 500
agents, the speedup plateaus, slightly decreasing to 3.94× at
1000 agents. This is because, as agent count grows relative
to available computational resources, even less efficient de-
pendency management achieves adequate hardware utiliza-
tion. Meanwhile, AI Metropolis reaches 97% of oracle per-
formance, indicating that additional parallelism is less effec-
tive. This trend appears earlier on a single L4 GPU, where
computational resources are more limited. AI Metropolis
achieves a maximum speedup of 1.87× over parallel-sync
at 100 agents, tapering to 1.60× as AI Metropolis’s perfor-
mance approaches oracle—from 90.9% at 100 agents to
100% at 500 agents.

Similar trends appear in the quiet hour benchmark, as shown
in Figure 5, with some variation: the lighter and less fre-
quent LLM calls in the quiet hour benchmark reduce the syn-
chronization overhead for parallel-sync, allowing more par-
allelism. As a result, AI Metropolis shows a smaller speedup
over parallel-sync with the same agents and GPUs—for
instance, 1.28× in the 25-agent, 8-GPU setting, where
achieved parallelism is 2.25 for parallel-sync and 2.80 for
AI Metropolis. By comparison, the busy hour benchmark
achieves parallelism values of 1.89 and 3.74 on the same
setting, respectively. Nevertheless, as the number of agents
increases, the speedup for AI Metropolis rises from 1.28×
to 2.79× at 500 agents on 8 GPUs.

Similar trends also hold for larger models on 8 A100 GPUs.
AI Metropolis peaks at a 1.97× speedup over parallel-sync
with 500 agents in the busy hour benchmark and 2.01× in
the 1000-agent quiet hour benchmark, as shown in Figure 6.
To further explore model variability, we benchmarked the
Mistral MoE 8 × 7b model on the same 8 A100 platform,
which uses 80% of a 70b model’s memory with lighter I/O
and computation. With the 8× 7b MoE model, we observe
higher peak speedups of 2.97× and 2.29× over parallel-
sync at 500 agents for busy and quiet hour benchmarks, re-
spectively, due to greater resource availability on the GPUs,
which allows for better parallelism utilization.

4.4 Priority Scheduling Breakdown

GPUs metropolis oracle

4 8 4 8

w/ priority (s) 8611 6148 8392 5683
w/o priority (s) 8942 7114 8484 5689
Speedup (%) 3.84% 15.7% 1.10% 0.11%

Table 1. Performance breakdown of metropolis and oracle with
and without priority scheduling on L4 GPUs. The first two rows
are completion time in seconds.

All the experiments discussed so far have priority scheduling

AI Metropolis

enabled, where every request includes a step count, and
requests with smaller counts have higher execution priority.
This applies to the oracle baseline as well. We repeated the
experiment of busy hours with 500 agents on 4 and 8 L4
GPUs for AI Metropolis and the oracle, but with priority
scheduling turned off.

As shown in Table 1, priority scheduling does not signif-
icantly impact performance of oracle because it already
achieves sufficient parallelism, and its dependency graph
is sparse as discussed in §2.2, making priority less criti-
cal for unlocking additional parallelism. In contrast, we
observed up to a 15.7% speedup for AI Metropolis with
priority scheduling. This is because the conservative rules
defined in §3.2 make agents falling behind to block others
more frequently. Priority scheduling reduces this block-
ing, allowing AI Metropolis to perform closer to the oracle.
With priority enabled, the average achieved parallelism in
the 500-agent, 8-GPU benchmark increases from 41.9 to
50.9 for AI Metropolis, compared to a minor increase from
69.4 to 69.9 for oracle.

5 RELATED WORK

LLM Agent Society Simulation and Multi-agents Collab-
oration. With increasing interest in LLM agents, several
recent frameworks, such as Camel (Li et al., 2023), Auto-
GPT (Significant Gravitas, 2023), and OpenAI Swarm (Ope-
nAI, 2024d), have emerged to simplify the development of
multi-LLM agent interactions. However, these frameworks
primarily provide interfaces for connecting LLM agents but
lack a shared environment or state synchronization, making
multi-agent interactions more akin to microservices con-
nected via remote procedure calls. In contrast, GenAgent
and similar explorations (Wang et al., 2023a; Gong et al.,
2023; Altera.AL et al., 2024) represent a different approach,
which we call AI agent society. In these systems, agents
exist within a virtual world, interacting with both each other
and the environment. However, this line of research typi-
cally emphasizes agent architectures and prompt engineer-
ing, often resulting in a lock-step simulation process for sim-
plicity, which can lead to slower simulations. AI Town (a16z
infra, 2023), though inspired by generative agents and sim-
ilar to AI society frameworks, provides a platform with
minimal environmental interactivity. Agents can move and
converse with others, but cannot interact with the environ-
ment. Due to the unpredictable nature of LLM-powered
conversations, there is no cohesive timeline: agents can talk
for hours or just seconds. As a result, there is no structured
progression of time, such as morning, afternoon, or night,
where agents engage in different activities. Instead, agents
simply walk and talk, making AI Town more of a conversa-
tion simulator than a dynamic AI society. By contrast, rather
than simplifying the virtual world or compromising its func-

tionality, AI Metropolis overcomes inherent performance
challenges in the simulation of AI agent society through out-
of-order execution, enhancing efficiency while preserving
the logical correctness of the original synchronous simula-
tion.

General Multi-agent Simulation. While LLM agent sim-
ulation may appear superficially similar to general multi-
agent simulations, such as those used in reinforcement learn-
ing (Brockman et al., 2016; Zhu et al., 2024; Shacklett et al.,
2023) and multi-agent processing (Emau et al., 2011), they
present fundamentally different scheduling challenges due
to the high per-agent computational demands and signifi-
cant workload imbalances inherent in LLM execution, as
discussed in §2.2. These unique demands necessitate spe-
cialized scheduling strategies. AI Metropolis is designed to
offer a user experience comparable to that provided by estab-
lished reinforcement learning frameworks, while seamlessly
managing the additional complexities behind the scenes.

LLM Serving Optimizations. An active line of re-
search (Yu et al., 2022; Kwon et al., 2023; Agrawal et al.,
2023; Zheng et al., 2024; Sheng et al., 2023a; Chen et al.,
2024) in LLM inference optimization has been making con-
tinuous advancements in increasing throughput and reduc-
ing latency from various angles. These engines typically
achieve optimal performance when there are ample requests
available for scheduling but generally do not address request
dependencies. AI Metropolis complements these efficient
engines by increasing parallelism within the simulation,
thereby enhancing overall throughput. Since AI Metropolis
decouples the simulation engine from the serving engine,
improvements in serving engines directly boost simulation
throughput. While a substantial body of research exists on
general inference and serving, it remains largely orthogonal
to our work. Some studies address dependencies among
LLM requests, such as (Kim et al., 2023) for function call-
ing and (Zheng et al., 2024) for LLM programs to achieve
higher parallelization. However, these approaches assume
rigid dependencies, unlike AI Metropolis, which focuses on
reducing false dependencies to further enhance efficiency.

6 DISCUSSION AND FUTURE WORK

Applications of AI Metropolis. Although this paper high-
lights GenAgent as the primary use case, AI Metropolis
offers broad applicability across various domains. First, as a
pioneering framework for simulating social behaviors with
LLMs, GenAgent has significantly influenced subsequent
research, inspiring various studies with similar architectures
as discussed in §5. By providing an efficient execution
engine, AI Metropolis can benefit a broad audience and
can be easily adapted to diverse simulation environments
through parameter adjustments such as perception radius

AI Metropolis

and movement speed. Second, the core assumption behind
AI Metropolis,that global synchronization is unnecessary
because each agent perceives only a limited portion of the
environment, is broadly applicable. This assumption mir-
rors real-world situations where humans or robots naturally
have restricted perceptual fields. For example, video games
commonly render only elements visible to players to op-
timize computational efficiency. Hence, AI Metropolis is
suitable for a broad class of simulations aimed at replicating
realistic, human-like interactions. Finally, while our current
formulation emphasizes temporal-spatial relationships in
Euclidean space, it can also be generalized to non-Euclidean
spaces. For example, project OASIS (Yang et al., 2024) uses
LLM agents to simulate interactions within social networks,
where agent relationships are defined by network hops rather
than physical distances. By mapping these hops to distances
within AI Metropolis’s framework, similar out-of-order exe-
cution mechanisms could be applied, potentially enhancing
parallelism and improving simulation efficiency.

Offline and Interactive. While AI Metropolis currently
focuses on maximizing throughput for offline simulation,
its core principles—fine-grained dependency management
and priority scheduling—are also applicable to interactive
environments such as video games. The key distinction
between a real game and an offline simulation lies in inter-
activity, which introduces strict latency requirements. We
view games like The Sims (Electronic Arts, 2000) as hybrids
of interactive and offline components: the player-facing el-
ements demand low latency for real-time responsiveness,
while background agents can operate in a simulation-driven
manner to produce realistic social behaviors. A promis-
ing direction for AI Metropolis is to support such hybrid
deployments, balancing request prioritization and incorpo-
rating lightweight decision-making components to reduce
latency in interactive tasks while optimizing throughput for
background simulations.

Conservative or Speculative Execution. As discussed
in §3.2, AI Metropolis adopts conservative rules to prevent
causality violations, which can extend the critical path and
limit parallelism. Despite this, AI Metropolis delivers per-
formance close to the oracle setting in most cases, as demon-
strated in §4. This is largely due to its ability to expose suffi-
cient parallelism and leverage effective priority scheduling.
While there are scenarios where unlocking additional paral-
lelism could further improve performance, the gap between
AI Metropolis and the oracle remains small, as evidenced
by the quiet hour benchmark in §4.3. Nonetheless, this gap
highlights opportunities for further optimization. Incorpo-
rating speculative execution with race detection could help
close it, although this might challenge the system’s scalabil-
ity principles—an interesting trade-off we reserve for future
research.

Simulation with Smaller Models. While models with
fewer parameters or quantized parameters can achieve
higher throughput, they typically require even greater paral-
lelism to fully utilize hardware resources. Additionally, our
experiments show that smaller models often struggle to ac-
curately follow instructions in complex tasks. Although or-
thogonal to the current design of AI Metropolis, addressing
this trade-off between accuracy and throughput represents a
promising direction for future work.

Online APIs and Local Models. While proprietary APIs
like GPT-4 (OpenAI, 2024c) and Claude 3 (Anthropic, 2024)
lead in performance, open-source models are on the rise.
AI Metropolis supports local model serving with optimized
dependency management for faster, cost-effective simula-
tions, yet remains compatible with online APIs, enhancing
parallelism and simplifying state management for users.

7 ACKNOWLEDGMENT

We thank anonymous reviewers and our shepherd, Prof.
Dimitrios Stamoulis, for their constructive suggestions. We
thank Joon Sung Park, Brennan Shacklett, Mark Zhao, Athi-
nagoras Skiadopoulos, Qizheng Zhang, Piero Molino and
the (Altera.AL) team for valuable discussions and feedback.
This research was partly supported by the Stanford Platform
Lab and its affiliates, and by ACE, one of the seven cen-
ters in JUMP 2.0, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA. This research was
also partly supported by NSF CNS-2047283.

REFERENCES

a16z infra. Ai town: An open-source platform in-
spired by generative agents. https://github.com/
a16z-infra/ai-town, 2023.

Agrawal, A., Panwar, A., Mohan, J., Kwatra, N., Gulavani,
B. S., and Ramjee, R. Sarathi: Efficient llm inference
by piggybacking decodes with chunked prefills. arXiv
preprint arXiv:2308.16369, 2023.

Altera.AL. Building digital humans. https://altera.
al. Accessed: 2024-11-04.

Altera.AL, Ahn, A., Becker, N., Carroll, S., Christie, N.,
Cortes, M., Demirci, A., Du, M., Li, F., Luo, S., Wang,
P. Y., Willows, M., Yang, F., and Yang, G. R. Project
sid: Many-agent simulations toward ai civilization, 2024.
URL https://arxiv.org/abs/2411.00114.

Anthropic. Claude 3: An overview. https://www.
anthropic.com/claude-3, 2024.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,

https://github.com/a16z-infra/ai-town
https://github.com/a16z-infra/ai-town
https://altera.al
https://altera.al
https://arxiv.org/abs/2411.00114
https://www.anthropic.com/claude-3
https://www.anthropic.com/claude-3

AI Metropolis

Schulman, J., Tang, J., and Zaremba, W. Openai gym,
2016.

Chen, L., Ye, Z., Wu, Y., Zhuo, D., Ceze, L., and Krishna-
murthy, A. Punica: Multi-tenant lora serving. Proceed-
ings of Machine Learning and Systems, 6:1–13, 2024.

Chiang, W.-L., Zheng, L., Sheng, Y., Angelopoulos, A. N.,
Li, T., Li, D., Zhang, H., Zhu, B., Jordan, M., Gonzalez,
J. E., and Stoica, I. Chatbot arena: An open platform
for evaluating llms by human preference, 2024. URL
https://arxiv.org/abs/2403.04132.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. CoRR, abs/2110.14168, 2021. URL
https://arxiv.org/abs/2110.14168.

Dubois, Y., Li, C. X., Taori, R., Zhang, T., Gulrajani, I., Ba,
J., Guestrin, C., Liang, P. S., and Hashimoto, T. B. Al-
pacafarm: A simulation framework for methods that learn
from human feedback. Advances in Neural Information
Processing Systems, 36, 2024.

Electronic Arts. The sims, 2000. URL https://www.
ea.com/games/the-sims. Video game.

Emau, J., Chuang, T., and Fukuda, M. A multi-process
library for multi-agent and spatial simulation. In Proceed-
ings of 2011 IEEE Pacific Rim Conference on Communi-
cations, Computers and Signal Processing, pp. 369–375.
IEEE, 2011.

Gong, R., Huang, Q., Ma, X., Vo, H., Durante, Z., Noda, Y.,
Zheng, Z., Zhu, S.-C., Terzopoulos, D., Fei-Fei, L., and
Gao, J. Mindagent: Emergent gaming interaction. 2023.
URL https://arxiv.org/abs/2309.09971.

Grossmann, I., Feinberg, M., Parker, D. C., Christakis, N. A.,
Tetlock, P. E., and Cunningham, W. A. Ai and the trans-
formation of social science research. Science, 380(6650):
1108–1109, 2023.

Guadarrama, S., Korattikara, A., Ramirez, O., Castro, P.,
Holly, E., Fishman, S., Wang, K., Gonina, E., Wu,
N., Kokiopoulou, E., Sbaiz, L., Smith, J., Bartók, G.,
Berent, J., Harris, C., Vanhoucke, V., and Brevdo, E.
TF-Agents: A library for reinforcement learning in
tensorflow. https://github.com/tensorflow/
agents, 2018. URL https://github.com/
tensorflow/agents. [Online; accessed 25-June-
2019].

Kim, S., Moon, S., Tabrizi, R., Lee, N., Mahoney, M. W.,
Keutzer, K., and Gholami, A. An llm compiler for parallel
function calling. arXiv preprint arXiv:2312.04511, 2023.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626,
2023.

Li, G., Hammoud, H. A. A. K., Itani, H., Khizbullin, D., and
Ghanem, B. Camel: Communicative agents for ”mind”
exploration of large language model society. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023.

Liu, R., Yang, R., Jia, C., Zhang, G., Yang, D., and Vosoughi,
S. Training socially aligned language models on simu-
lated social interactions. In The Twelfth International
Conference on Learning Representations, 2023.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models, 2016.

Meta. Llama 3: Advancing ai research. https://llama.
meta.com/llama3/, 2024. Accessed: 2024-06-25.

Mistral AI. https://mistral.ai/news/mixtral-of-experts/,
2023.

Narayan, S., Cohen, S. B., and Lapata, M. Don’t give me
the details, just the summary! topic-aware convolutional
neural networks for extreme summarization, 2018.

OpenAI. Chatgpt: Openai language model. https://
chat.openai.com/, 2024a. Accessed: 2024-06-22.

OpenAI. Openai gpt-3.5 api. https://platform.
openai.com/docs/models/gpt-3-5, 2024b.
Accessed: 2024-06-25.

OpenAI. Introducing gpt-4. https://openai.com/
research/gpt-4, 2024c.

OpenAI. Swarm: Scalable infrastructure for multi-agent
coordination, 2024d. URL https://github.com/
openai/swarm. Accessed: 2024-10-29.

Park, J. S. Generative agents. https://github.com/
joonspk-research/generative_agents,
2024. GitHub repository.

Park, J. S., O’Brien, J. C., Cai, C. J., Morris, M. R., Liang,
P., and Bernstein, M. S. Generative agents: Interactive
simulacra of human behavior. In In the 36th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’23), UIST ’23, New York, NY, USA, 2023. Asso-
ciation for Computing Machinery.

Redis. Redis: In-memory data structure store. https:
//redis.io. Accessed: 2024-06-25.

https://arxiv.org/abs/2403.04132
https://arxiv.org/abs/2110.14168
https://www.ea.com/games/the-sims
https://www.ea.com/games/the-sims
https://arxiv.org/abs/2309.09971
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://github.com/tensorflow/agents
https://llama.meta.com/llama3/
https://llama.meta.com/llama3/
https://chat.openai.com/
https://chat.openai.com/
https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://openai.com/research/gpt-4
https://openai.com/research/gpt-4
https://github.com/openai/swarm
https://github.com/openai/swarm
https://github.com/joonspk-research/generative_agents
https://github.com/joonspk-research/generative_agents
https://redis.io
https://redis.io

AI Metropolis

Shacklett, B., Rosenzweig, L. G., Xie, Z., Sarkar, B., Szot,
A., Wijmans, E., Koltun, V., Batra, D., and Fatahalian,
K. An extensible, data-oriented architecture for high-
performance, many-world simulation. ACM Transactions
on Graphics (TOG), 42(4):1–13, 2023.

Sheng, Y., Cao, S., Li, D., Hooper, C., Lee, N., Yang, S.,
Chou, C., Zhu, B., Zheng, L., Keutzer, K., Gonzalez, J. E.,
and Stoica, I. S-lora: Serving thousands of concurrent
lora adapters. arXiv preprint arXiv:2311.03285, 2023a.

Sheng, Y., Cao, S., Li, D., Zhu, B., Li, Z., Zhuo, D., Gonza-
lez, J. E., and Stoica, I. Fairness in serving large language
models. arXiv preprint arXiv:2401.00588, 2023b.

Significant Gravitas. AutoGPT, 2023. URL https:
//github.com/Significant-Gravitas/
AutoGPT.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu,
Y., Fan, L., and Anandkumar, A. Voyager: An open-
ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023a.

Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang,
J., Chen, Z., Tang, J., Chen, X., Lin, Y., Zhao, W. X.,
Wei, Z., and Wen, J. A survey on large language model
based autonomous agents. Frontiers of Computer Science,
18(6), March 2024. ISSN 2095-2236. doi: 10.1007/
s11704-024-40231-1. URL http://dx.doi.org/
10.1007/s11704-024-40231-1.

Wang, Z., Cai, S., Chen, G., Liu, A., Ma, X., and Liang, Y.
Describe, explain, plan and select: Interactive planning
with large language models enables open-world multi-
task agents. arXiv preprint arXiv:2302.01560, 2023b.

Xi, Z., Chen, W., Guo, X., He, W., Ding, Y., Hong, B.,
Zhang, M., Wang, J., Jin, S., Zhou, E., Zheng, R., Fan,
X., Wang, X., Xiong, L., Zhou, Y., Wang, W., Jiang, C.,
Zou, Y., Liu, X., Yin, Z., Dou, S., Weng, R., Cheng,
W., Zhang, Q., Qin, W., Zheng, Y., Qiu, X., Huang, X.,
and Gui, T. The rise and potential of large language
model based agents: A survey, 2023. URL https:
//arxiv.org/abs/2309.07864.

Yang, Z., Zhang, Z., Zheng, Z., Jiang, Y., Gan, Z., Wang,
Z., Ling, Z., Chen, J., Ma, M., Dong, B., et al. Oasis:
Open agents social interaction simulations on one million
agents. arXiv preprint arXiv:2411.11581, 2024.

Yu, G.-I., Jeong, J. S., Kim, G.-W., Kim, S., and Chun, B.-
G. Orca: A distributed serving system for {Transformer-
Based} generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
22), pp. 521–538, 2022.

Zheng, L., Yin, L., Xie, Z., Sun, C., Huang, J., Yu, C. H.,
Cao, S., Kozyrakis, C., Stoica, I., Gonzalez, J. E., Bar-
rett, C., and Sheng, Y. Sglang: Efficient execution
of structured language model programs, 2024. URL
https://arxiv.org/abs/2312.07104.

Zhu, Z., de Salvo Braz, R., Bhandari, J., Jiang, D., Wan,
Y., Efroni, Y., Wang, L., Xu, R., Guo, H., Nikulkov, A.,
Korenkevych, D., Dogan, U., Cheng, F., Wu, Z., and
Xu, W. Pearl: A production-ready reinforcement learn-
ing agent, 2024. URL https://arxiv.org/abs/
2312.03814.

Ziems, C., Held, W., Shaikh, O., Chen, J., Zhang, Z., and
Yang, D. Can large language models transform computa-
tional social science? arxiv. Technical report, Retrieved
2023-10-06, from http://arxiv. org/abs/2305.03514, 2023.

https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/Significant-Gravitas/AutoGPT
http://dx.doi.org/10.1007/s11704-024-40231-1
http://dx.doi.org/10.1007/s11704-024-40231-1
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2309.07864
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.03814
https://arxiv.org/abs/2312.03814

