

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MATHREAL: WE KEEP IT REAL! A REAL SCENE BENCHMARK FOR EVALUATING MATH REASONING IN MULTIMODAL LARGE LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

## ABSTRACT

Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in visual mathematical reasoning across various existing benchmarks. However, these benchmarks are predominantly based on clean or processed multimodal inputs, without incorporating the images provided by real-world Kindergarten through 12th grade (K–12) educational users. To address this gap, we introduce MATHREAL, a meticulously curated dataset comprising 2,000 mathematical questions with images captured by handheld mobile devices in authentic scenarios. Each question is an image, containing the question text and visual element. We systematically classify the real images into three primary categories: image quality degradation, perspective variation, and irrelevant content interference, which are further delineated into 14 subcategories. Additionally, MATHREAL spans five core knowledge and ability categories, which encompass three question types and are divided into three difficulty levels. To comprehensively evaluate the multimodal mathematical reasoning abilities of state-of-the-art MLLMs in real-world scenarios, we design six experimental settings that enable a systematic analysis of their performance. Through extensive experimentation, we find that the problem-solving abilities of existing MLLMs are significantly challenged in realistic educational contexts. Based on this, we conduct a thorough analysis of their performance and error patterns, providing insights into their recognition, comprehension, and reasoning capabilities, and outlining directions for future improvements.

## 1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have catalyzed the development of MLLMs, which are capable of jointly interpreting visual and textual information. This evolution has substantially enhanced model performance across a broad range of multimodal understanding tasks, including visual question answering, diagram interpretation, document analysis, and mathematical reasoning. As MLLMs become increasingly adept at bridging text and vision, their reasoning capabilities, particularly in domains requiring precise symbol processing and structured logic, have drawn significant attention from the research community.

With the rapid development of reasoning models, an increasing number of mathematical reasoning benchmarks have been proposed, including both pure-text benchmarks and multimodal benchmarks. Pure-text mathematical reasoning benchmarks, such as AIME24 Ankner et al. (2024), AIME25 Jaech et al. (2024), OlympiadBench He et al. (2024), and Polymath Wang et al. (2025e), primarily focus on evaluating reasoning ability from textual question statements. More recently, multimodal benchmarks have been introduced to incorporate visual contexts, such as MathVista Lu et al. (2023), MathVerse Zhang et al. (2024b), TrustGeoGen Fu et al. (2025), MM-MATH Sun et al. (2024), MathVision Awais et al. (2024), LogicVista Xiao et al. (2024), DynaMath Zou et al. (2024), VisOnlyQA Kamoi et al. (2024), MathGlance Sun et al. (2025), VisioMath Li et al. (2025), MV-MATH Wang et al. (2025b), GeoEval Zhang et al. (2024a), and We-Math Qiao et al. (2024). These benchmarks provide diverse evaluation settings that test not only pure symbolic reasoning but also multimodal perception and reasoning, thereby driving progress in the development of more general and robust MLLMs.

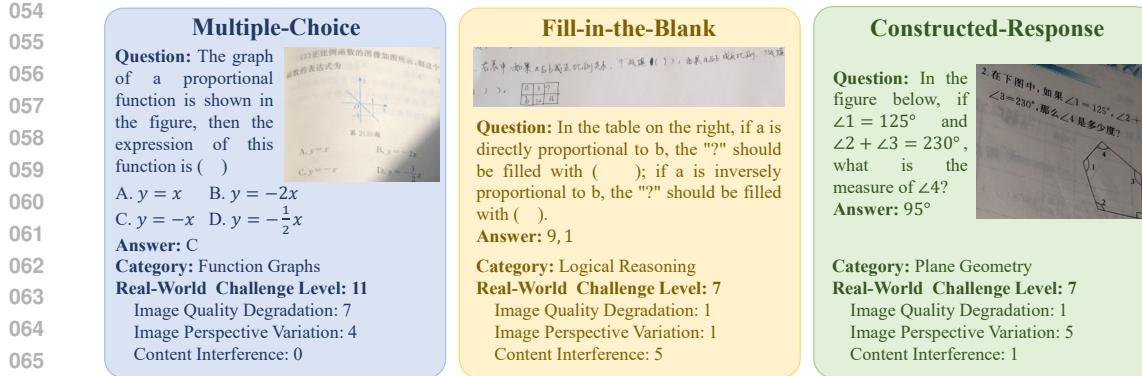


Figure 1: Sampled MATHREAL examples from each question type. Each question contains a real image and annotated information.

Despite these advancements, the majority of existing multimodal math benchmarks consist of clean or post-processed images, which rarely account for cases encountered by real-world users, making it difficult to assess how multimodal models perform in real environments. For instance, K–12 users often capture textbook pages or homework questions using handheld mobile devices to ask models for help. Real-world scenarios are often more challenging than traditional clean image inputs and the entire question text is embedded within the image, unlike conventional benchmarks that frequently rely on textual inputs. Additionally, mathematical question images captured by real-world users often reflect a distribution that differs substantially from both prior multimodal math benchmarks and the training data of existing models, as they are embedded in authentic educational contexts and aligned with real user needs, thereby posing joint challenges for both perception and reasoning.

To bridge this gap, we introduce MATHREAL, a novel benchmark designed to assess the performance of MLLMs on real-world, visually grounded K–12 mathematical questions. To support this, we develop a comprehensive data construction pipeline tailored to real-world multimodal math questions, addressing the challenges of collection, annotation, and validation under realistic conditions. MATHREAL comprises 2,000 high-quality questions sourced from authentic educational contexts, each captured via mobile photography as an image containing a figure, requiring models to first perceive visual content before performing reasoning. We define three primary challenges commonly encountered in real-world K–12 educational scenarios: *image quality degradation*, *perspective variation*, and *irrelevant content interference*, which are further divided into 14 fine-grained subcategories, such as *blur*, *rotation*, *handwritten answers*, etc.

To evaluate the multimodal mathematical reasoning abilities of MLLMs under real-world conditions, we construct MATHREAL with carefully designed annotations. Every question image spans five core knowledge and ability categories, three question types, and three difficulty levels. The dataset includes three question types and is systematically categorized across three difficulty levels and five knowledge domains, such as geometry, algebra, statistics, logical reasoning, and function graphs. To ensure high-quality and consistent annotations, each question is independently verified by at least two expert annotators, and is enriched with precise ground-truth metadata, including the ground-truth question text, detailed descriptions of visual elements, and correct answers.

We conduct extensive evaluations on MATHREAL across 4 LLMs and 40 multimodal models. Even in relatively simple K–12 scenarios, the best-performing model Doubao-1.5-thinking-vision-pro attains only 53.9% accuracy, in sharp contrast to the near-human or competition-level performance often reported on established mathematical benchmarks, underscoring the substantial gap to real-world applicability and the necessity of MATHREAL grounded in authentic educational scenarios. In conclusion, the contributions of this paper are summarized as follows:

- We propose MATHREAL, the first real-world benchmark of 2,000 K–12 multimodal math questions photographed in natural settings, covering 3 systematic characterizations of real-world scenarios, 5 knowledge and ability categories, 3 question types, and 3 difficulty levels.

108

109  
110  
111  
Table 1: Key Statistics of MATHREAL. The unit  
of question length is words.

| Statistic                                   | Number |
|---------------------------------------------|--------|
| Total questions                             | 2000   |
| - Multiple-Choice Questions                 | 104    |
| - Fill-in-the-Blank Questions               | 475    |
| - Constructed-Response Questions            | 1421   |
| Questions in the testmini set               | 480    |
| Elementary-level Questions                  | 779    |
| Middle School-level Questions               | 883    |
| High School-level Questions                 | 338    |
| Questions with only real images             | 745    |
| Questions with real images and clean images | 1255   |
| Questions with a single figure              | 1296   |
| Questions with multiple figures             | 704    |
| Questions with a single sub-question        | 829    |
| Questions with multiple sub-questions       | 1171   |
| Minimum question length                     | 7      |
| Maximum question length                     | 451    |
| Average question length                     | 122.03 |
| Average answer length                       | 27.25  |

122  
123  
124  
125  
126  
127  
128

- We evaluate 40 MLLMs under 6 experimental settings to assess their reasoning abilities under real-world conditions. Our results demonstrate a notable performance gap between real and clean images, indicating that existing MLLMs remain far from reliable when applied in real-world educational scenarios.
- Through controlled experiments, we demonstrate that visual conditions commonly encountered in real-world scenarios, such as blur, rotation, and handwritten answers, significantly impair the reasoning performance of current MLLMs. In contrast, these models achieve notably higher accuracy when provided with clean textual or visual inputs, indicating that their visual perception components remain fragile when exposed to realistic distortions.

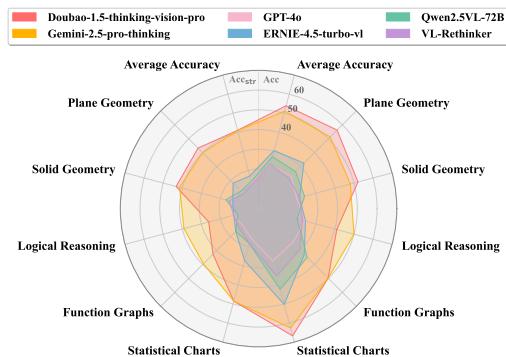
138  
139  
2 MATHREAL

140  
141 While MLLMs have shown strong performance on existing visual math benchmarks, these benchmarks predominantly feature clean inputs and rarely reflect usage in real-world educational scenarios. This is particularly relevant because MLLMs have the potential to explain solutions and evaluate answer correctness in real educational settings. To bridge this gap, we present MATHREAL, a benchmark grounded in naturally captured images and designed to evaluate MLLMs under realistic visual conditions.

147  
148 2.1 REAL VISUAL MATH DATASET

149  
150 **Dataset Overview.** MATHREAL comprises 2,000 math question instances, each represented as a  
151 noisy image captured via handheld mobile devices under real conditions. All images are sourced  
152 from authentic K–12 educational materials, including textbooks, exam papers, and printed exercises.  
153 The photographs reflect a wide range of real-world acquisition scenarios, encompassing three major  
154 categories of noise: image quality degradation, image perspective variation, and handwriting  
155 interference. These three categories are further divided into a total of 14 fine-grained subtypes, pro-  
156 viding a rich taxonomy of real-world imperfections. This collection process intentionally preserves  
157 the complexity and imperfection inherent to mobile-based image capture in practical settings.

158 Each sample in MATHREAL is an image that contains a complete math question, with both the  
159 question text and the associated figures embedded within the image rather than provided as separate  
160 clean inputs. The dataset includes 1,296 questions with a single figure and 704 questions with  
161 multiple figures. It also includes 829 questions with a single sub-question and 1,171 with multiple  
162 sub-questions, providing diverse reasoning structures. All questions are manually annotated with  
163 three supplementary elements: the ground-truth question text (QG), an exact visual description of the

Figure 2: Performance comparison of six MLLMs on five categories and overall average accuracy. The radar chart shows results under two evaluation standards: strict accuracy ( $Acc_{str}$ ) and loose accuracy ( $Acc$ ), symmetrically arranged across 12 axes.

162 figure present in the image (DG), and the correct reference answer. The purpose of these annotations  
 163 is to enable a systematic analysis of models’ multimodal perception and reasoning abilities in real-  
 164 world scenarios.

165 The dataset includes three types of questions: multiple-choice, fill-in-the-blank, and constructed-  
 166 response. In terms of academic stage, questions are distributed across three educational stages:  
 167 primary school, middle school, and high school, ensuring coverage of content across the K-12  
 168 spectrum. Additionally, 745 questions are accompanied only by real images, while 1,255 are paired  
 169 with both real images and clean images, which exclude real-world artifacts. The dataset also includes  
 170 a testmini subset of 480 questions. Detailed statistics on question types and visual content categories  
 171 are summarized in Table 1.

172

173

**Data Collection Process.** We construct the  
 174 dataset by sampling 1.5 million photographed  
 175 math questions from a large-scale user-  
 176 uploaded repository. A two-stage filtering  
 177 process is applied to ensure quality and rel-  
 178 evance. First, a domain-specific classifier  
 179 selects math-related samples containing fig-  
 180 ures. Then, GPT-4o, Doubao-1.5-vision-  
 181 pro-32k, and Qwen2.5-VL-Instruct-72B inde-  
 182 pendently evaluate each image to determine  
 183 whether it contains a single, complete ques-  
 184 tion and whether the figure is essential. Sam-  
 185 ples with irrelevant visuals or dialogue-style  
 186 formats are excluded. Only those approved  
 187 by all three models are retained, resulting in  
 188 a high-quality dataset for evaluating the visual  
 189 reasoning capabilities of MLLMs.

190

191

**Data Annotation Process.** We build a  
 192 Gradio-based platform and organize the anno-  
 193 tation into three fully manual stages. In Stage  
 194 One, we filter out samples that do not meet  
 195 benchmark criteria, such as incomplete ques-  
 196 tions, multiple-question images, or irrelevant  
 197 figures. In Stage Two, we annotate image  
 198 conditions according to a predefined taxon-  
 199 omy covering three major real-world scenario  
 200 types. In Stage Three, we annotate question-  
 201 level metadata, including question content,  
 202 type, educational stage, knowledge category,  
 203 figure descriptions, and ground truth answers.

204 All question-level metadata annotations (in-  
 205 cluding real-world challenge level) are conducted independently by two different professional anno-  
 206 tators. In cases where the two annotators disagree, a third professional annotator will re-annotate the  
 207 sample until consensus is reached. Detailed annotation rules for the real-world challenge level are  
 208 provided in the Appendix. In the end, we conduct a fully human-verified process to ensure that the  
 209 final dataset reflects diverse real-world conditions while maintaining high semantic and structural  
 210 quality for evaluating multimodal models.

211

212

## 2.2 DATA CHARACTERISTICS

213

214

215 In contrast to other MLLMs math reasoning datasets, the unique characteristics of MATHREAL are  
 216 summarized as “vision-only input” and “in-the-wild challenges”. These two features better align  
 217 with the data distribution in real educational scenarios and pose distinct challenges to the perception  
 218 and reasoning capabilities of MLLMs.

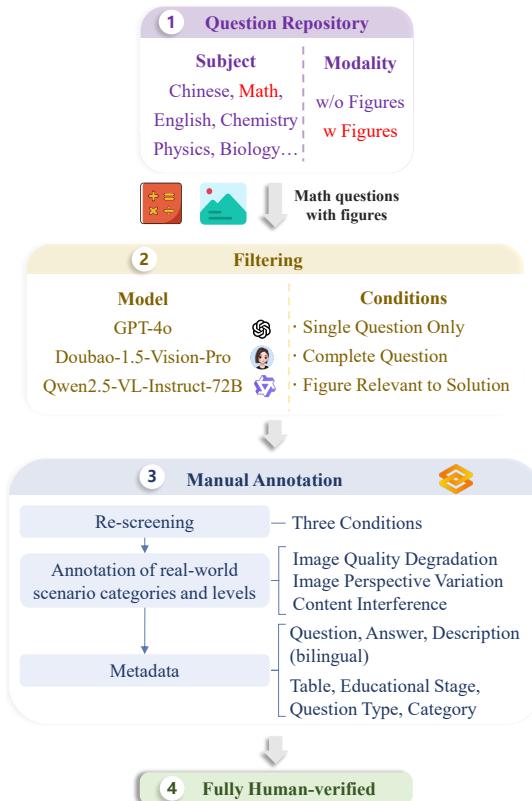


Figure 3: The flowchart of data construction, including data filtering and manual annotation.

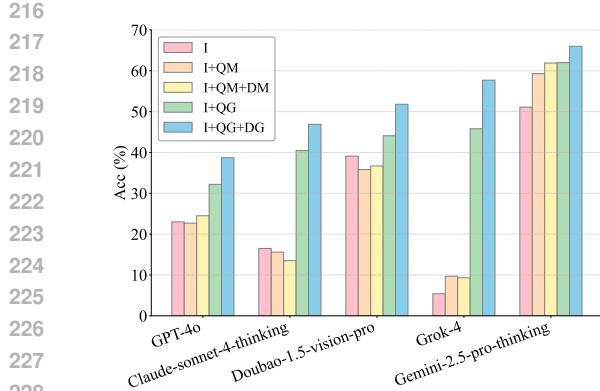


Figure 4: Acc of five models under different input settings.

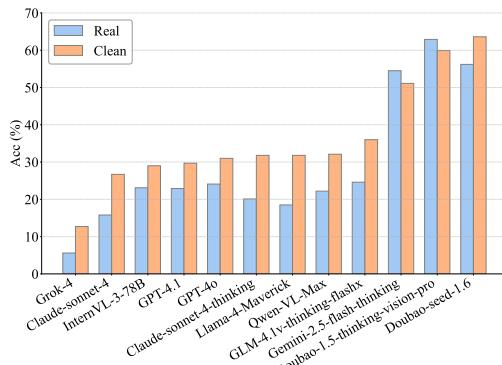


Figure 5: Acc comparison of models on real vs. clean images across selected 175 samples in MATHREAL *testmini*.

**Vision-Only Input.** In real educational scenarios, all information necessary for solving mathematical questions, including the question statement, figures, or diagrams, is typically contained within a single image. This requires models to first perceive and extract key information from the image before proceeding to reason and solve the question. Correspondingly, MATHREAL uses a single raw image as the sole input. However, to decouple perception and reasoning, the dataset provides QG and DG as supplementary annotations, facilitating fine-grained evaluation of MLLMs’ capabilities.

**In-the-Wild Challenges.** In real educational scenarios, raw images often contain substantial noise due to unconstrained capture conditions. This challenges models to robustly perceive critical content while ignoring non-essential artifacts. To reflect this realism, MATHREAL categorizes noise into three major categories, encompassing 14 fine-grained subtypes. Specifically, image quality degradation includes blur, underexposure/overexposure, shadow coverage, and glare; image perspective variation includes rotation, in-plane tilt, non-planar capture, and background distortion; irrelevant content interference includes handwritten questions, reverse side content, question marking, figure marking, handwritten answer for multiple-choice questions, and handwritten process for constructed-response questions. Detailed annotations are provided for each subtype.

### 3 EXPERIMENT

#### 3.1 EXPERIMENTAL SETUP

**Data Preparation and Subset Division.** The MATHREAL dataset contains 2,000 questions. To enable faster evaluation and model development validation, we divide the dataset into two subsets: *testmini* and *test*. The *testmini* subset includes 480 questions and serves as a validation set for model development or for users with limited computational resources. The *test* subset consists of the remaining 1,520 questions and functions as the standard evaluation set. We use a stratified random sampling strategy across different categories, ensuring that the sample sizes within each stratum are proportional to those in the full dataset, thus maintaining statistical representativeness. In the experiments that follow, all quantitative results are reported using the *testmini* subset of MATHREAL.

**Experimental Settings.** To evaluate the reasoning capability of MLLMs in real-world, image-based mathematical questions, we design six experimental settings that progressively disentangle visual perception and reasoning. Each question is an image containing both textual content (the *question*) and visual elements (the *figure*, which can be represented by a textual *description*). Based on this, three primary input modalities are defined: image only (I), which serves as the primary evaluation; image with human-annotated question text (I+QG); and image with human-annotated question text and figure description (I+QG+DG). Two reasoning paradigms are considered: a *one-stage* approach, where the model performs question recognition and reasoning jointly from the raw image ( $I_{UER}$ ), and a *two-stage* approach, where the model first generates intermediate

270 Table 2: Comparison of model performances across five categories. PG: Plane Geometry, SG: Solid  
 271 Geometry, LR: Logical Reasoning, FG: Function Graphs, SC: Statistical Charts.  $\text{Acc}_{\text{str}}$  is strict  
 272 accuracy,  $\text{Acc}$  is loose accuracy. The first and second highest accuracy of LLMs are bolded and  
 273 underlined, respectively.

| Model                                                             | Acc <sub>str</sub> |      |      |      |      |      | Acc  |      |      |      |      |      |
|-------------------------------------------------------------------|--------------------|------|------|------|------|------|------|------|------|------|------|------|
|                                                                   | PG                 | SG   | LR   | FG   | SC   | Avg  | PG   | SG   | LR   | FG   | SC   | Avg  |
| <i>LLMs (Question Text + Figure Description, CoT with 0-shot)</i> |                    |      |      |      |      |      |      |      |      |      |      |      |
| Qwen3-235B-A22B-thinking                                          | 29.1               | 30.6 | 41.3 | 20.9 | 48.5 | 31.2 | 35.2 | 36.4 | 48.8 | 27.5 | 61.4 | 37.9 |
| DeepSeek-V3                                                       | 27.5               | 31.5 | 34.8 | 27.9 | 57.6 | 31.2 | 42.4 | 36.5 | 46.9 | 41.3 | 69.9 | 43.3 |
| Qwen3-235B-A22B-instruct                                          | 34.0               | 33.3 | 37.0 | 39.5 | 45.5 | 35.4 | 46.0 | 40.9 | 50.8 | 52.3 | 60.5 | 46.8 |
| DeepSeek-R1                                                       | 42.9               | 36.9 | 41.3 | 30.2 | 57.6 | 41.2 | 56.3 | 44.5 | 51.7 | 47.7 | 77.0 | 53.8 |
| <i>Closed Models (Image-only, CoT with 0-shot)</i>                |                    |      |      |      |      |      |      |      |      |      |      |      |
| Grok-4                                                            | 5.7                | 2.7  | 0.0  | 0.0  | 0.0  | 3.5  | 7.7  | 3.9  | 2.9  | 0.0  | 3.3  | 5.4  |
| Claude-sonnet-4                                                   | 7.3                | 7.2  | 8.7  | 4.7  | 15.2 | 7.7  | 14.3 | 9.5  | 14.5 | 20.4 | 27.5 | 14.7 |
| Claude-sonnet-4-thinking                                          | 10.9               | 7.2  | 10.9 | 9.3  | 15.2 | 10.2 | 19.1 | 9.0  | 15.2 | 16.3 | 23.5 | 16.5 |
| GPT-4.1                                                           | 12.1               | 14.4 | 13.0 | 9.3  | 30.3 | 13.8 | 21.0 | 18.9 | 24.2 | 23.7 | 43.2 | 22.6 |
| GPT-4o                                                            | 13.4               | 14.4 | 13.0 | 11.6 | 15.2 | 13.5 | 23.2 | 20.0 | 24.4 | 24.4 | 27.5 | 23.0 |
| Qwen-VL-Max                                                       | 10.5               | 13.5 | 10.9 | 16.3 | 30.3 | 13.1 | 21.4 | 19.9 | 20.3 | 3.4  | 38.4 | 23.0 |
| o4-mini                                                           | 26.3               | 23.4 | 21.7 | 18.6 | 27.3 | 24.6 | 37.3 | 29.4 | 30.6 | 35.5 | 41.7 | 35.0 |
| o3                                                                | 27.1               | 29.7 | 15.2 | 14.0 | 36.4 | 26.0 | 37.3 | 36.1 | 26.1 | 25.2 | 44.2 | 35.4 |
| Douba-1.5-vision-pro-32k                                          | 27.5               | 27.9 | 19.6 | 20.9 | 27.3 | 26.2 | 41.2 | 36.7 | 30.5 | 39.5 | 42.6 | 39.1 |
| Douba-seed-1.6-thinking                                           | 36.8               | 27.0 | 17.4 | 39.5 | 30.3 | 32.5 | 48.4 | 33.7 | 30.9 | 49.6 | 55.8 | 43.9 |
| Gemini-2.5-flash-thinking                                         | 42.9               | 36.9 | 21.7 | 41.9 | 48.5 | 39.8 | 54.2 | 43.1 | 36.2 | 51.6 | 64.4 | 50.4 |
| Gemini-2.5-pro-thinking                                           | 40.1               | 41.4 | 39.1 | 39.5 | 48.5 | 40.8 | 51.3 | 48.1 | 50.0 | 49.8 | 62.6 | 51.1 |
| Douba-seed-1.6                                                    | 40.9               | 37.8 | 32.6 | 37.2 | 48.5 | 39.6 | 53.0 | 45.0 | 49.5 | 49.8 | 65.3 | 51.4 |
| Douba-1.5-thinking-vision-pro                                     | 43.3               | 43.2 | 26.1 | 32.6 | 48.5 | 41.0 | 56.2 | 52.1 | 41.0 | 49.8 | 66.7 | 53.9 |
| <i>Open-source MLLMs (Image-only, CoT with 0-shot)</i>            |                    |      |      |      |      |      |      |      |      |      |      |      |
| Gemma-3-4b-it                                                     | 1.2                | 1.8  | 2.2  | 0.0  | 0.0  | 1.2  | 4.2  | 2.4  | 2.9  | 0.0  | 1.0  | 3.1  |
| Gemma-3n-E4B                                                      | 2.4                | 2.7  | 4.3  | 7.0  | 6.1  | 3.3  | 8.1  | 6.6  | 11.0 | 11.0 | 15.4 | 8.8  |
| Gemma-3-27b-it                                                    | 4.5                | 4.5  | 2.2  | 2.3  | 6.1  | 4.2  | 10.0 | 6.0  | 7.6  | 9.5  | 13.1 | 9.0  |
| Kimi-VL-A3B-Instruct                                              | 3.6                | 10.8 | 0.0  | 9.3  | 0.0  | 5.2  | 11.1 | 14.5 | 9.4  | 17.8 | 9.3  | 12.2 |
| Qwen2.5-VL-7B-Instruct                                            | 4.0                | 9.0  | 13.0 | 4.7  | 6.1  | 6.2  | 15.0 | 14.7 | 23.2 | 18.2 | 21.7 | 16.5 |
| InternVL3-8B                                                      | 8.5                | 10.8 | 4.3  | 9.3  | 12.1 | 9.0  | 16.0 | 16.5 | 11.4 | 15.5 | 30.2 | 16.6 |
| InternVL3-14B                                                     | 7.7                | 14.4 | 8.7  | 4.7  | 21.2 | 10.0 | 15.6 | 18.7 | 20.0 | 14.3 | 35.4 | 18.0 |
| Llama-4-Maverick                                                  | 11.3               | 10.8 | 13.0 | 9.3  | 6.1  | 10.8 | 19.8 | 13.9 | 21.7 | 18.6 | 22.5 | 18.7 |
| InternVL3-78B                                                     | 7.7                | 15.3 | 15.2 | 11.6 | 15.2 | 11.0 | 17.3 | 19.1 | 24.3 | 25.6 | 34.5 | 20.3 |
| Qwen2.5-VL-32B-Instruct                                           | 8.9                | 13.5 | 13.0 | 18.6 | 30.3 | 12.7 | 18.4 | 18.4 | 19.9 | 31.8 | 41.4 | 21.3 |
| InternVL3-38B                                                     | 10.1               | 16.2 | 8.7  | 11.6 | 24.2 | 12.5 | 19.5 | 19.7 | 15.9 | 26.2 | 42.2 | 21.4 |
| GLM-4.1v-thinking-flashx                                          | 14.2               | 12.6 | 8.7  | 9.3  | 18.2 | 13.1 | 27.1 | 20.5 | 15.9 | 22.7 | 32.5 | 24.5 |
| Qwen2.5-VL-72B                                                    | 12.6               | 17.1 | 10.9 | 16.3 | 18.2 | 14.2 | 26.5 | 24.1 | 20.2 | 34.9 | 42.2 | 27.2 |
| ERNIE-4.5-Turbo-VL-Preview                                        | 18.2               | 13.5 | 13.0 | 16.3 | 27.3 | 17.1 | 32.5 | 21.5 | 24.6 | 32.7 | 50.2 | 30.4 |
| <i>Reasoner (Image-only, CoT with 0-shot)</i>                     |                    |      |      |      |      |      |      |      |      |      |      |      |
| Keye-VL-8B-Preview                                                | 3.2                | 4.5  | 0.0  | 4.7  | 6.1  | 3.5  | 4.7  | 4.8  | 0.7  | 4.7  | 13.4 | 4.9  |
| OVR                                                               | 2.8                | 5.4  | 4.3  | 7.0  | 15.2 | 4.8  | 6.8  | 7.2  | 9.4  | 14.9 | 19.6 | 8.7  |
| Revisual-R1                                                       | 6.1                | 6.3  | 4.3  | 4.7  | 12.1 | 6.2  | 11.9 | 7.5  | 8.7  | 9.3  | 26.0 | 11.3 |
| OpenVLthinker                                                     | 5.3                | 9.0  | 6.5  | 9.3  | 12.1 | 7.1  | 14.8 | 14.4 | 13.0 | 20.9 | 24.7 | 15.8 |
| ThinkLite-VL                                                      | 6.1                | 9.9  | 8.7  | 4.7  | 12.1 | 7.5  | 16.7 | 15.3 | 15.9 | 20.2 | 32.5 | 17.7 |
| VLAAL-Thinker-Qwen2.5VL-7B                                        | 5.7                | 10.8 | 8.7  | 7.0  | 9.1  | 7.5  | 16.0 | 17.6 | 18.2 | 22.9 | 34.0 | 18.5 |
| WeThink                                                           | 6.9                | 9.9  | 13.0 | 11.6 | 9.1  | 8.8  | 17.5 | 18.1 | 27.1 | 24.0 | 33.2 | 20.2 |
| MMR1-Math-v0-7B                                                   | 8.9                | 11.7 | 4.3  | 9.3  | 12.1 | 9.4  | 19.8 | 17.9 | 14.3 | 24.4 | 35.1 | 20.3 |
| MM-Eureka                                                         | 6.1                | 16.2 | 8.7  | 4.7  | 15.2 | 9.2  | 18.6 | 21.5 | 19.0 | 19.0 | 38.9 | 20.7 |
| MiMo-VL-7B-RL                                                     | 15.4               | 12.6 | 4.3  | 9.3  | 21.2 | 13.5 | 23.7 | 19.1 | 10.1 | 18.0 | 37.6 | 21.8 |
| VL-Rethinker-7B                                                   | 10.5               | 15.3 | 13.0 | 14.0 | 18.2 | 12.7 | 21.6 | 21.6 | 23.0 | 29.4 | 35.3 | 23.4 |
| Skywork-R1V3-38B                                                  | 18.2               | 8.1  | 8.7  | 20.9 | 21.2 | 15.4 | 30.3 | 16.1 | 18.4 | 35.3 | 34.3 | 26.6 |

313 representations—model-generated question text (QM) and figure description (DM)—followed by  
 314 reasoning (I+QM and I+QM+DM). This framework enables systematic analysis of perception and  
 315 reasoning under realistic conditions. Since in real-world scenarios users would not input models in  
 316 a few-shot manner, we restrict our evaluation to the CoT with 0-shot setting only.

### 318 3.2 EVALUATION PROTOCOL

319 **320 Strict Accuracy (Acc<sub>str</sub>).** Acc<sub>str</sub> requires that all sub-answers within a question be correct for the  
 321 model to receive credit. If any sub-answer is incorrect, the entire question is marked wrong.

322 **323 Loose Accuracy (Acc).** Acc allows partial correctness and is computed as the proportion of cor-  
 rectly answered sub-questions within each question.

324 For both metrics, an automated scoring pipeline based on GPT-4.1-nano compares model answers  
 325 against reference answers, enforcing strict rules for mathematical equivalence, numerical tolerance,  
 326 unit consistency, and symbolic structure to ensure scalable and reliable evaluation in real-world  
 327 tasks.

328

329

330 

### 3.3 MAIN RESULTS

331 **Robustness Challenge Under Real-world Visual Noise.** MATHREAL presents math questions  
 332 photographed in realistic settings, introducing three key types of visual degradation: image quality  
 333 deterioration, viewpoint shifts, and handwritten annotations. These factors pose substantial  
 334 challenges to visual understanding and reasoning for MLLMs. Evaluation reveals sharp perfor-  
 335 mance disparities under these conditions. Under the Acc, the top-performing models are Doubao-  
 336 1.5-thinking-vision-pro (53.9%) and Doubao-seed-1.6 (51.4%), while GPT-4o and Claude-sonnet-4  
 337 reach only 23.0% and 14.7%, respectively. At the other end of the spectrum, the weakest model,  
 338 Gemma-3-4b-it, achieves just 3.1%. These results highlight the difficulty current MLLMs face in  
 339 handling perceptual degradation. Performance drops are substantial even for frontier models,  
 340 underscoring the limitations of current vision-language alignment and error tolerance. MATHREAL  
 341 thus offers a more realistic and discriminative benchmark for evaluating robustness under imperfect,  
 342 real-world inputs.

343

344 **Performance Gap Between Closed and Open Models.** Results on the MATHREAL benchmark  
 345 show that closed-source models significantly outperform their open-source counterparts across all  
 346 evaluation metrics and task types, with performance gaps further amplified under noisy visual inputs.  
 347 Under the strict accuracy metric ( $Acc_{str}$ ), Doubao-1.5-thinking-vision-pro achieves the highest aver-  
 348 age accuracy of 41.0%. In contrast, the best open-source model, ERNIE-4.5-Turbo-VL-Preview,  
 349 reaches only 17.1%, resulting in a gap of over 20%. Reasoners also lag behind, with the strongest  
 350 performer, MiMo-VL-7B-RL, reaching only 13.5% under  $Acc_{str}$ . Most others fall below 10%, high-  
 351 lighting the difficulty of integrating reasoning pipelines with robust visual perception under degraded  
 352 inputs. This further emphasizes the advantage of end-to-end, well-aligned architectures in closed  
 353 models when handling real-world visual challenges.

354

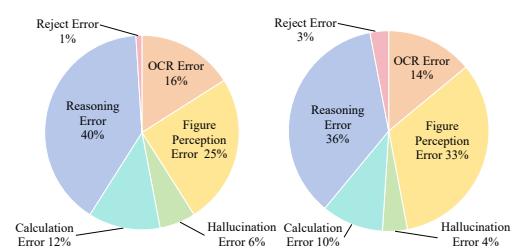
355 **Performance Divergence Across Categories.** MATHREAL reveals substantial performance di-  
 356 vergences across the five categories, reflecting distinct cognitive demands and multimodal chal-  
 357 lenges. Statistical charts (SC) yield the highest accuracies under both strict and loose metrics;  
 358 for example, Doubao-1.5-thinking-vision-pro achieves 48.5%  $Acc_{str}$ , and Doubao-seed-1.6 reaches  
 359 48.5%. These tasks benefit from structured layouts and low geometric ambiguity, enabling extrac-  
 360 tion from bar charts, tables, and plots. In contrast, logical reasoning (LR) and function graphs (FG)  
 361 are the most challenging. LR involves abstract symbolic inference, with top models like Gemini-2.5-  
 362 pro-thinking at 39.1%  $Acc_{str}$  and Doubao-seed-1.6 at 32.6%. FG requires precise spatial alignment  
 363 between visual features and expressions; even the best models, such as Gemini-2.5-flash-thinking,  
 364 attain only 41.9%. Overall, models perform best when visual input is structured and symbolic  
 365 reasoning is limited. Tasks requiring spatial abstraction, continuous alignment, or geometric com-  
 366 plexity—particularly under visual noise—remain key limitations for current MLLMs.

367

368 **Model Gaps in OCR and Description Handling.** Evaluation under different input settings re-  
 369 veals that current models still face significant challenges in OCR and structured description under-  
 370 standing. While adding QM or DM brings little or even negative gains, providing QG and DG  
 371 leads to substantial improvements across models. For example, Grok-4 remains below 10% accu-  
 372 racy with I and I+QM, yet surpasses 50% once QG or DG are provided. This clear divergence  
 373 suggests that models struggle to robustly extract and structure information directly from images, but  
 374 can reason effectively once accurate textual inputs are supplied. In contrast, stronger models such as  
 375 Gemini-2.5-pro-thinking show incremental improvements across all settings, indicating relatively  
 376 better internal perception but still benefiting from explicit QG/DG inputs. Overall, these results  
 377 highlight that OCR and structured description remain bottlenecks for real-world math reasoning.  
 Future models could address this gap by enhancing perception capabilities during pre-training, en-  
 abling post-training stages to better activate the synergy between perception and reasoning. More  
 detailed results are provided in the Appendix.

378 **Real Image vs. Clean Image.** To assess model robustness to image quality, we select 175 questions  
 379 from the testmini set and retrieve higher-quality clean versions of those images. We then evaluate  
 380 models on both real and clean inputs, computing  $\Delta = \text{Acc}_{\text{Clean}} - \text{Acc}_{\text{Real}}$  and aggregating these  
 381 deltas across the fourteen interference categories with both coarse-grained (binary presence/absence)  
 382 and fine-grained groupings. Most models exhibit substantial gains on clean images. Llama-4-  
 383 Maverick improves by +12.0% and Claude-sonnet-4-thinking by +11.8%—indicating that visual  
 384 noise significantly constrains their real-image performance. Blur attenuates the high-frequency  
 385 details essential for OCR-based text extraction and fine-grained visual feature recognition, while  
 386 rotation disrupts spatial alignment and forces reliance on implicit geometric transforms, causing the  
 387 strict accuracy of Claude-sonnet-4-thinking and Doubao-seed-1.6 to drop by approximately -0.25  
 388 and -0.20, respectively; in contrast, models pretrained with extensive rotational augmentation, such  
 389 as Gemini-2.5-pro-thinking and Qwen2.5VL-72B, remain largely unaffected. Figure marking and  
 390 handwritten answer interference often highlight key regions or provide solution cues, yielding modest  
 391 benefits to Doubao-1.5-thinking-vision-pro and Gemini-2.5-pro-thinking; by contrast, InternVL-  
 392 3-78B and Claude-sonnet-4-thinking, which exhibit weaker visual-saliency integration, suffer slight  
 393 declines. Notably, Doubao-1.5-thinking-vision-pro achieves a remarkable +0.21 increase in strict  
 394 accuracy ( $\text{Acc}_{\text{str}}$ ) on non-blurred real images versus clean versions—likely due to its vision back-  
 395 bone being thoroughly trained on authentic mobile-captured data, enabling it to exploit real-world  
 396 lighting, shading, and texture cues.

397 **LLM-as-a-Judge Consistency.** To assess the reliability of automatic evaluation, we adopt the  
 398 LLM-as-a-judge paradigm. Specifically, for each question we use the prompt templates detailed in  
 399 the Appendix and employ the GPT-4.1-nano model to generate judgments. To validate consistency,  
 400 we randomly sample 100 questions each from the main results of GPT-4o and Doubao-1.5-thinking-  
 401 vision-pro under  $\text{Acc}_{\text{str}}$ , and manually score them according to the same prompt. A case is consid-  
 402 ered inconsistent if the manual score diverges from the GPT-4.1-nano judgment. The resulting agree-  
 403 ment rates are 93% and 94% for GPT-4o and Doubao-1.5-thinking-vision-pro, respectively. These  
 404 high consistency levels demonstrate that the LLM-as-a-judge approach provides reliable evaluation  
 405 in our benchmark setting. Importantly, this method substantially reduces the labor cost of manual  
 406 comparisons while maintaining robust fidelity, thus offering a scalable and cost-effective solution  
 407 for both benchmark evaluation and model development.



419 Figure 6: Error distribution over 100 anno-  
 420 tated cases from Doubao-1.5-thinking-vision-  
 421 pro (left) and Gemini-2.5-pro-thinking (right)  
 422 error cases.

### 424 3.4 ERROR ANALYSIS

426 We conduct a detailed error analysis by randomly sampling 100 failed cases ( $\text{Acc} = 0$ ) from each of  
 427 Doubao-1.5-thinking-vision-pro and Gemini-2.5-pro-thinking. The errors are categorized into six  
 428 types: OCR error, figure perception error, calculation error, reasoning error, hallucination, and reject  
 429 error. The distribution is shown in Figure 6.

431 We observe a broadly consistent trend across both models. Reasoning errors account for the largest  
 432 proportion (over one-third), indicating that even when perception is mostly accurate, models often

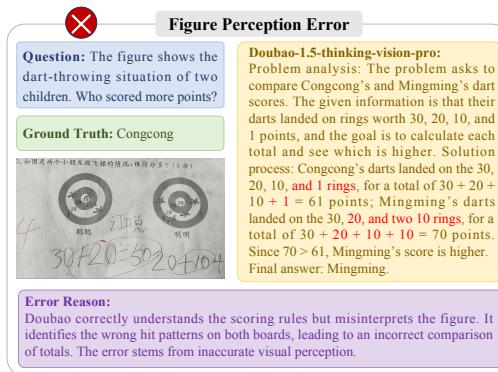


Figure 7: A basic figure perception error, with the error highlighted in red. More examples can be found in the appendix.

fail to construct valid logical chains or apply correct mathematical principles. Visual understanding remains another major source of failure. Specifically, figure perception errors and OCR errors together account for 40–50% of the failures, reflecting the strong dependence of multimodal math tasks on accurate visual decoding. In particular, noisy charts, distorted symbols, and handwritten notations frequently lead to misread digits or misinterpreted geometric structures. These perception issues are critical, as they compromise the model’s input before any reasoning occurs. Calculation errors, hallucinations, and reject errors occur less frequently but still contribute to overall performance degradation. Notably, hallucinations often arise when models fabricate nonexistent quantities or assumptions, while reject errors reflect failure to produce meaningful answers under uncertainty. Overall, the findings highlight two primary challenges: robust visual understanding under imperfect inputs, and consistent multi-step reasoning over noisy or ambiguous content. Addressing either alone is insufficient—future progress in MLLMs will require tightly integrated improvements across perception, parsing, and reasoning components.

## 4 RELATED WORK

**Plain Text Benchmarks.** MathQA Amini et al. (2019) is a large-scale benchmark consisting of math word problems designed to evaluate problem-solving in arithmetic and algebra through natural language. GSM8K Cobbe et al. (2021) contains 8,500 elementary-level math problems that test multi-step reasoning. In contrast, MATH Hendrycks et al. (2021) provides 12,500 challenging high-school competition-level questions. SuperCLUE-Math Xu et al. (2024) specializes in Chinese mathematical reasoning tasks. RV-Bench Hong et al. (2025) evaluates structural understanding by programmatically replacing numerical values in problems. Math-RoB Yu et al. (2025) introduces controlled perturbations to assess model stability under variations. PolyMath Wang et al. (2025e) addresses this by providing a high-quality, large-scale multilingual evaluation set.

**Multimodal Benchmarks.** With the development of multimodal large models, many benchmarks focused on multimodal math problems have also emerged. MathVista Lu et al. (2023) establishes the first comprehensive multimodal math evaluation through 6,141 visual tasks across diverse mathematical reasoning scenarios. MathVerse Zhang et al. (2024b) advances visual understanding assessment through 15,000 diagram-based samples, specifically designed to quantify diagram utilization in math problem-solving. MATH-Vision Wang et al. (2024) elevates evaluation standards with 3,040 competition-grade problems, creating a rigorous testbed for advanced mathematical reasoning. VisOnlyQA Kamoi et al. (2024) reveals fundamental limitations in geometric perception through 12 tasks demonstrating that even SOTA models struggle with basic visual perception. MathGlance Sun et al. (2025) isolates mathematical perception evaluation through 1,200 images and 1,600 questions spanning core perceptual tasks. MV-MATH Wang et al. (2025c) challenges the multivisual reasoning by developing 2,009 multi-image problems mirroring real-world mathematical contexts. GeoEval Zhang et al. (2024a) emphasizes unseen dataset evaluation importance through 2,000 geometry problems with specialized subsets for comprehensive assessment. We-Math Qiao et al. (2024) introduces four-dimensional evaluation metrics for knowledge acquisition and generalization assessment through 6,500 visual problems spanning 67 hierarchical concepts. CMMath Li et al. (2024b) delivers the first native Chinese mathematical benchmark with 23,000 curriculum-aligned questions, filling the critical gap in K-12 educational assessment.

## 5 CONCLUSION

MATHREAL introduces a new benchmark for evaluating MLLMs on real-world, noisy images of K-12 math questions, addressing the limitations of existing benchmarks that rely on clean images. The dataset includes diverse math questions with various types of visual noise, such as blur, perspective distortions, and handwritten interference. By evaluating several open-source and closed-source models, we establish a benchmark that highlights the limitations of current MLLMs in multi-visual mathematical reasoning, emphasizing the impact of image quality, input methods, and question types on performance. Our analysis reveals that most models struggle with noisy images, pointing to the need for more robust visual encoders in MLLMs. This work sets the stage for future improvements in multimodal reasoning, especially in real-world educational settings.

486 ETHICS STATEMENT  
487488 This research does not involve human subjects, personal data, or sensitive information. The MATH-  
489 REAL benchmark is built from photographs of educational materials and anonymized question  
490 repositories, with careful filtering to exclude any potentially identifying or private content. All im-  
491 ages depict only mathematical questions and related figures, and no faces, personal information be-  
492 yond problem-solving steps, or metadata are retained. The dataset is intended strictly for academic  
493 research and evaluation of multimodal reasoning systems, and we believe it poses no foreseeable  
494 ethical risks.495  
496 REPRODUCIBILITY STATEMENT  
497498 We have taken multiple steps to support reproducibility of our results. The dataset construction  
499 pipeline, including collection, filtering, and multi-stage manual annotation, is documented in the  
500 main paper and appendix. We provide taxonomy definitions, evaluation metrics, and scoring scripts,  
501 together with configuration details for all experimental settings. The *testmini* split and full anno-  
502 tation metadata are released at submission to allow method development and ablation studies. The  
503 complete dataset will be made publicly available upon acceptance. We also release prompts and  
504 evaluation templates to facilitate exact replication wherever model APIs allow.505  
506 REFERENCES  
507508 Meta AI. Llama 4. <https://www.llama.com/>, 2025a.  
509 Zhipu AI. Glm-4.1v-thinking-flashx model announcement. <https://www.zhipuai.cn/>,  
510 2025b.  
511 Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh  
512 Hajishirzi. Mathqa: Towards interpretable math word problem solving with operation-based for-  
513 malisms. In *Proceedings of the 2019 Conference of the North American Chapter of the Associa-  
514 tion for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short  
515 Papers)*, pp. 2357–2367, 2019.  
516  
517 Zachary Ankner, Mansheej Paul, Brandon Cui, Jonathan Daniel Chang, and Prithviraj Am-  
518 manabrolu. Critique-out-loud reward models. In *Pluralistic Alignment Workshop at NeurIPS  
519 2024*, 2024.  
520  
521 Anthropic. Claude sonnet 4. <https://www.anthropic.com/clause/sonnet>, 2025.  
522 Muhammad Awais, Tauqir Ahmed, Muhammad Aslam, Amjad Rehman, Faten S Alamri, Saeed Ali  
523 Bahaj, and Tanzila Saba. Mathvision: An accessible intelligent agent for visually impaired people  
524 to understand mathematical equations. *IEEE Access*, 2024.  
525 Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang  
526 Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-  
527 ization, text reading, and beyond, 2023. URL <https://arxiv.org/abs/2308.12966>.  
528  
529 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,  
530 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,  
531 2025.  
532 Baidu. Ernie technical report. [https://yiyuan.baidu.com/blog/publication/  
533 ERNIE\\_Technical\\_Report.pdf](https://yiyuan.baidu.com/blog/publication/ERNIE_Technical_Report.pdf), 2025.  
534  
535 ByteDance. Doubao-1.5-thinking-vision-pro. <https://www.volcengine.com/docs/82379/1554521>, 2025a.  
536  
537 ByteDance. Doubao-1.5-vision-pro. <https://www.volcengine.com/docs/82379/1553586>, 2025b.  
538  
539 ByteDance. Doubao-seed-1.6. [https://seed/bytedance.com/en/seed1\\_6](https://seed/bytedance.com/en/seed1_6), 2025c.

540 ByteDance. Doubao-seed-1.6-thinking. [https://seed/bytedance.com/en/seed1\\_6](https://seed/bytedance.com/en/seed1_6),  
 541 2025d.

542

543 Hardy Chen, Haoqin Tu, Fali Wang, Hui Liu, Xianfeng Tang, Xinya Du, Yuyin Zhou, and Cihang  
 544 Xie. Sft or rl? an early investigation into training rl-like reasoning large vision-language models.  
 545 *arXiv preprint arXiv:2504.11468*, 2025a.

546 Shuang Chen, Yue Guo, Zhaochen Su, Yafu Li, Yulun Wu, Jiacheng Chen, Jiayu Chen, Weijie Wang,  
 547 Xiaoye Qu, and Yu Cheng. Advancing multimodal reasoning: From optimized cold start to staged  
 548 reinforcement learning. *arXiv preprint arXiv:2506.04207*, 2025b.

549

550 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,  
 551 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to  
 552 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

553 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit  
 554 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the  
 555 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-  
 556 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

557

558 Yihe Deng, Hritik Bansal, Fan Yin, Nanyun Peng, Wei Wang, and Kai-Wei Chang. Openvlthinker:  
 559 An early exploration to complex vision-language reasoning via iterative self-improvement. *arXiv  
 560 preprint arXiv:2503.17352*, 2025.

561 Daocheng Fu, Zijun Chen, Renqiu Xia, Qi Liu, Yuan Feng, Hongbin Zhou, Renrui Zhang, Shiyang  
 562 Feng, Peng Gao, Junchi Yan, et al. Trustgeogen: Scalable and formal-verified data engine for  
 563 trustworthy multi-modal geometric problem solving. *arXiv preprint arXiv:2504.15780*, 2025.

564

565 Ling Fu, Zhebin Kuang, Jiajun Song, Mingxin Huang, Biao Yang, Yuzhe Li, Linghao Zhu, Qidi  
 566 Luo, Xinyu Wang, Hao Lu, et al. Ocrbench v2: An improved benchmark for evaluating large  
 567 multimodal models on visual text localization and reasoning. *arXiv preprint arXiv:2501.00321*,  
 2024.

568

569 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,  
 570 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms  
 571 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

572

573 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,  
 574 Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for  
 575 promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint  
 576 arXiv:2402.14008*, 2024.

577

578 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,  
 579 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv  
 580 preprint arXiv:2103.03874*, 2021.

581

582 Zijin Hong, Hao Wu, Su Dong, Junnan Dong, Yilin Xiao, Yujing Zhang, Zhu Wang, Feiran Huang,  
 583 Linyi Li, Hongxia Yang, et al. Benchmarking large language models via random variables. *arXiv  
 584 preprint arXiv:2501.11790*, 2025.

585

586 Mingxin Huang, Yongxin Shi, Dezhi Peng, Songxuan Lai, Zecheng Xie, and Lianwen Jin. Ocr-  
 587 reasoning benchmark: Unveiling the true capabilities of mllms in complex text-rich image rea-  
 588 soning. *arXiv preprint arXiv:2505.17163*, 2025.

589

590 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec  
 591 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *CoRR*, 2024.

592

593 Ryo Kamoi, Yusen Zhang, Sarkar Snigdha Sarathi Das, Ranran Haoran Zhang, and Rui Zhang.  
 594 Visonlyqa: Large vision language models still struggle with visual perception of geometric infor-  
 595 mation. *arXiv preprint arXiv:2412.00947*, 2024.

596

597 Sicong Leng, Jing Wang, Jiaxi Li, Hao Zhang, Zhiqiang Hu, Boqiang Zhang, Hang Zhang, Yuming  
 598 Jiang, Xin Li, Deli Zhao, et al. Mmr1: Advancing the frontiers of multimodal reasoning, 2025.

594 Bohao Li, Yuying Ge, Yi Chen, Yixiao Ge, Ruimao Zhang, and Ying Shan. Seed-bench-2-plus:  
 595 Benchmarking multimodal large language models with text-rich visual comprehension. *arXiv*  
 596 *preprint arXiv:2404.16790*, 2024a.

597 Can Li, Ting Zhang, Mei Wang, and Hua Huang. Visiomath: Benchmarking figure-based mathe-  
 598 matical reasoning in lmms. *arXiv preprint arXiv:2506.06727*, 2025.

600 Zhong-Zhi Li, Ming-Liang Zhang, Fei Yin, Zhi-Long Ji, Jin-Feng Bai, Zhen-Ru Pan, Fan-Hu Zeng,  
 601 Jian Xu, Jia-Xin Zhang, and Cheng-Lin Liu. Cmmath: A chinese multi-modal math skill evalua-  
 602 tion benchmark for foundation models. *arXiv preprint arXiv:2407.12023*, 2024b.

603 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,  
 604 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*  
 605 *arXiv:2412.19437*, 2024a.

606 Chenglong Liu, Haoran Wei, Jinyue Chen, Lingyu Kong, Zheng Ge, Zining Zhu, Liang Zhao, Jian-  
 607 jian Sun, Chunrui Han, and Xiangyu Zhang. Focus anywhere for fine-grained multi-page docu-  
 608 ment understanding. *arXiv preprint arXiv:2405.14295*, 2024b.

609 Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-  
 610 Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of  
 611 foundation models in visual contexts. *arXiv e-prints*, pp. arXiv–2310, 2023.

612 Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A bench-  
 613 mark for question answering about charts with visual and logical reasoning. *arXiv preprint*  
 614 *arXiv:2203.10244*, 2022.

615 Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document  
 616 images. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*,  
 617 pp. 2200–2209, 2021.

618 Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Botian Shi,  
 619 Wenhui Wang, Junjun He, Kaipeng Zhang, et al. Mm-eureka: Exploring visual aha moment with  
 620 rule-based large-scale reinforcement learning. *CoRR*, 2025.

621 OpenAI. Gpt-4o. <https://platform.openai.com/docs/models/gpt-4o>, 2024.

622 OpenAI. Gpt-4.1. <https://openai.com/index/gpt-4-1/>, 2025a.

623 OpenAI. o3-and-o4-mini. <https://openai.com/index/introducing-o3-and-o4-mini/>, 2025b.

624 Runqi Qiao, Qiuna Tan, Guanting Dong, Minhui Wu, Chong Sun, Xiaoshuai Song, Zhuoma  
 625 Gongque, Shanglin Lei, Zhe Wei, MiaoXuan Zhang, et al. We-math: Does your large multimodal  
 626 model achieve human-like mathematical reasoning? *CoRR*, 2024.

627 Wei Shen, Jiangbo Pei, Yi Peng, Xuchen Song, Yang Liu, Jian Peng, Haofeng Sun, Yunzhuo Hao,  
 628 Peiyu Wang, and Yahui Zhou. Skywork-r1v3 technical report. *arXiv preprint arXiv:2507.06167*,  
 629 2025.

630 Kai Sun, Yushi Bai, Ji Qi, Lei Hou, and Juanzi Li. Mm-math: Advancing multimodal math eval-  
 631 uation with process evaluation and fine-grained classification. In *Findings of the Association for*  
 632 *Computational Linguistics: EMNLP 2024*, pp. 1358–1375, 2024.

633 Yanpeng Sun, Shan Zhang, Wei Tang, Aotian Chen, Piotr Koniusz, Kai Zou, Yuan Xue, and Anton  
 634 van den Hengel. Mathglance: Multimodal large language models do not know where to look in  
 635 mathematical diagrams. *CoRR*, 2025.

636 Core Team, Zihao Yue, Zhenru Lin, Yifan Song, Weikun Wang, Shuhuai Ren, Shuhao Gu, Shicheng  
 637 Li, Peidian Li, Liang Zhao, Lei Li, Kainan Bao, Hao Tian, Hailin Zhang, Gang Wang, Dawei  
 638 Zhu, Cici, Chenhong He, Bowen Ye, Bowen Shen, Zihan Zhang, Zihan Jiang, Zhixian Zheng,  
 639 Zhichao Song, Zhenbo Luo, Yue Yu, Yudong Wang, Yuanyuan Tian, Yu Tu, Yihan Yan, Yi Huang,  
 640 Xu Wang, Xinzhe Xu, Xingchen Song, Xing Zhang, Xing Yong, Xin Zhang, Xiangwei Deng,  
 641 Wenyu Yang, Wenhan Ma, Weiwei Lv, Weiji Zhuang, Wei Liu, Sirui Deng, Shuo Liu, Shimao  
 642

648 Chen, Shihua Yu, Shaohui Liu, Shande Wang, Rui Ma, Qiantong Wang, Peng Wang, Nuo Chen,  
 649 Menghang Zhu, Kangyang Zhou, Kang Zhou, Kai Fang, Jun Shi, Jinhao Dong, Jiebao Xiao,  
 650 Jiaming Xu, Huaqiu Liu, Hongshen Xu, Heng Qu, Haochen Zhao, Hanglong Lv, Guoan Wang,  
 651 Duo Zhang, Dong Zhang, Di Zhang, Chong Ma, Chang Liu, Can Cai, and Bingquan Xia. Mimo-vl  
 652 technical report, 2025a. URL <https://arxiv.org/abs/2506.03569>.

653  
 654 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,  
 655 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical  
 656 report. *arXiv preprint arXiv:2503.19786*, 2025b.

657 Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen,  
 658 Chenlin Zhang, Chenzhuang Du, Chu Wei, et al. Kimi-vl technical report. *arXiv preprint*  
 659 *arXiv:2504.07491*, 2025c.

660  
 661 Kwai Keye Team, Biao Yang, Bin Wen, Changyi Liu, Chenglong Chu, Chengru Song, Chongling  
 662 Rao, Chuan Yi, Da Li, Dunju Zang, et al. Kwai keye-vl technical report. *arXiv preprint*  
 663 *arXiv:2507.01949*, 2025d.

664 Haozhe Wang, Chao Qu, Zuming Huang, Wei Chu, Fangzhen Lin, and Wenhui Chen. Vi-  
 665 rethinker: Incentivizing self-reflection of vision-language models with reinforcement learning.  
 666 *arXiv preprint arXiv:2504.08837*, 2025a.

667  
 668 Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and Hong-  
 669 sheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. *Advances in*  
 670 *Neural Information Processing Systems*, 37:95095–95169, 2024.

671  
 672 Peijie Wang, Zhong-Zhi Li, Fei Yin, Dekang Ran, and Cheng-Lin Liu. Mv-math: Evaluating mul-  
 673 timodal math reasoning in multi-visual contexts. In *Proceedings of the Computer Vision and*  
 674 *Pattern Recognition Conference*, pp. 19541–19551, 2025b.

675  
 676 Peijie Wang, Zhong-Zhi Li, Fei Yin, Dekang Ran, and Cheng-Lin Liu. Mv-math: Evaluating mul-  
 677 timodal math reasoning in multi-visual contexts. In *Proceedings of the Computer Vision and*  
 678 *Pattern Recognition Conference*, pp. 19541–19551, 2025c.

679  
 680 Xiyao Wang, Zhengyuan Yang, Chao Feng, Hongjin Lu, Linjie Li, Chung-Ching Lin, Kevin Lin,  
 681 Furong Huang, and Lijuan Wang. Sota with less: Mcts-guided sample selection for data-efficient  
 682 visual reasoning self-improvement. *arXiv preprint arXiv:2504.07934*, 2025d.

683  
 684 Yiming Wang, Pei Zhang, Jialong Tang, Haoran Wei, Baosong Yang, Rui Wang, Chenshu Sun,  
 685 Feitong Sun, Jiran Zhang, Junxuan Wu, et al. Polymath: Evaluating mathematical reasoning in  
 686 multilingual contexts. *arXiv preprint arXiv:2504.18428*, 2025e.

687  
 688 Yana Wei, Liang Zhao, Jianjian Sun, Kangheng Lin, Jisheng Yin, Jingcheng Hu, Yinmin Zhang,  
 689 En Yu, Haoran Lv, Zejia Weng, et al. Open vision reasoner: Transferring linguistic cognitive  
 690 behavior for visual reasoning. *arXiv preprint arXiv:2507.05255*, 2025.

691  
 692 xAI. Grok. <https://x.ai/grok>, 2025.

693  
 694 Yijia Xiao, Edward Sun, Tianyu Liu, and Wei Wang. Logicvista: Multimodal llm logical reasoning  
 695 benchmark in visual contexts. *arXiv preprint arXiv:2407.04973*, 2024.

696  
 697 Liang Xu, Hang Xue, Lei Zhu, and Kangkang Zhao. Superclue-math6: Graded multi-step math  
 698 reasoning benchmark for llms in chinese. *arXiv preprint arXiv:2401.11819*, 2024.

699  
 700 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,  
 701 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*  
 702 *arXiv:2505.09388*, 2025a.

703  
 704 Jie Yang, Feipeng Ma, Zitian Wang, Dacheng Yin, Kang Rong, Fengyun Rao, and Ruimao Zhang.  
 705 Wethink: Toward general-purpose vision-language reasoning via reinforcement learning. *arXiv*  
 706 *preprint arXiv:2506.07905*, 2025b.

702 Zhibo Yang, Jun Tang, Zhaohai Li, Pengfei Wang, Jianqiang Wan, Humen Zhong, Xuejing Liu,  
 703 Mingkun Yang, Peng Wang, Shuai Bai, et al. Cc-ocr: A comprehensive and challenging ocr  
 704 benchmark for evaluating large multimodal models in literacy. *arXiv preprint arXiv:2412.02210*,  
 705 2024.

706 Tong Yu, Yongcheng Jing, Xikun Zhang, Wentao Jiang, Wenjie Wu, Yingjie Wang, Wenbin Hu,  
 707 Bo Du, and Dacheng Tao. Benchmarking reasoning robustness in large language models. *arXiv*  
 708 *preprint arXiv:2503.04550*, 2025.

710 Jiaxin Zhang, Zhong-Zhi Li, Ming-Liang Zhang, Fei Yin, Cheng-Lin Liu, and Yashar Moshfeghi.  
 711 Geoeval: Benchmark for evaluating llms and multi-modal models on geometry problem-solving.  
 712 In *Findings of the Association for Computational Linguistics ACL 2024*, pp. 1258–1276, 2024a.

713 Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou,  
 714 Pan Lu, Kai-Wei Chang, Yu Qiao, et al. Mathverse: Does your multi-modal llm truly see the  
 715 diagrams in visual math problems? In *European Conference on Computer Vision*, pp. 169–186.  
 716 Springer, 2024b.

717 Mingyu Zheng, Xinwei Feng, Qingyi Si, Qiaoqiao She, Zheng Lin, Wenbin Jiang, and Weiping  
 718 Wang. Multimodal table understanding. *arXiv preprint arXiv:2406.08100*, 2024.

720 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen  
 721 Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for  
 722 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.

724 Chengke Zou, Xingang Guo, Rui Yang, Junyu Zhang, Bin Hu, and Huan Zhang. Dynamath: A  
 725 dynamic visual benchmark for evaluating mathematical reasoning robustness of vision language  
 726 models. *arXiv preprint arXiv:2411.00836*, 2024.

## 728 SUPPLEMENTARY MATERIAL

### 730 SUPPLEMENTARY MATERIAL OVERVIEW

- 732 • Section A: Introduction.
- 733 • Section B: Related work.
- 734 • Section C: Dataset Details.
- 735 • Section D: Experimental Details.
- 736 • Section E: Results Analysis.

## 739 A INTRODUCTION

741 The data and code: <https://anonymous.4open.science/r/MathReal-52CD>

## 744 B RELATED WORK

### 746 B.1 BENCHMARK FOR PERCEPTION AND OCR AS THE FOUNDATION OF REASONING

747 DocVQA Mathew et al. (2021) introduces 28,000 real document QA pairs, establishing the first  
 748 visual question answering evaluation framework for structured documents like contracts and  
 749 reports. ChartQA Masry et al. (2022) develops 3,200 chart QA samples, pioneering the joint rea-  
 750 soning evaluation mechanism between axis text and visual elements. SEED-Bench-2-Plus Li et al.  
 751 (2024a) expands to 15,672 test samples covering three rich-text environments, enabling fine-grained  
 752 evaluation across 63 data types. Fox Liu et al. (2024b) introduces 9 specialized sub-tasks includ-  
 753 ing region-level OCR and color-guided text recognition, establishing the first benchmark for fine-  
 754 grained document understanding across multi-page layouts. MMTab Zheng et al. (2024) releases  
 755 5,000+ tax/medical form test sets with specialized metrics for complex table reasoning like merged  
 cells and cross-column references. CC-OCR Yang et al. (2024) collects 15,000 cross-language text

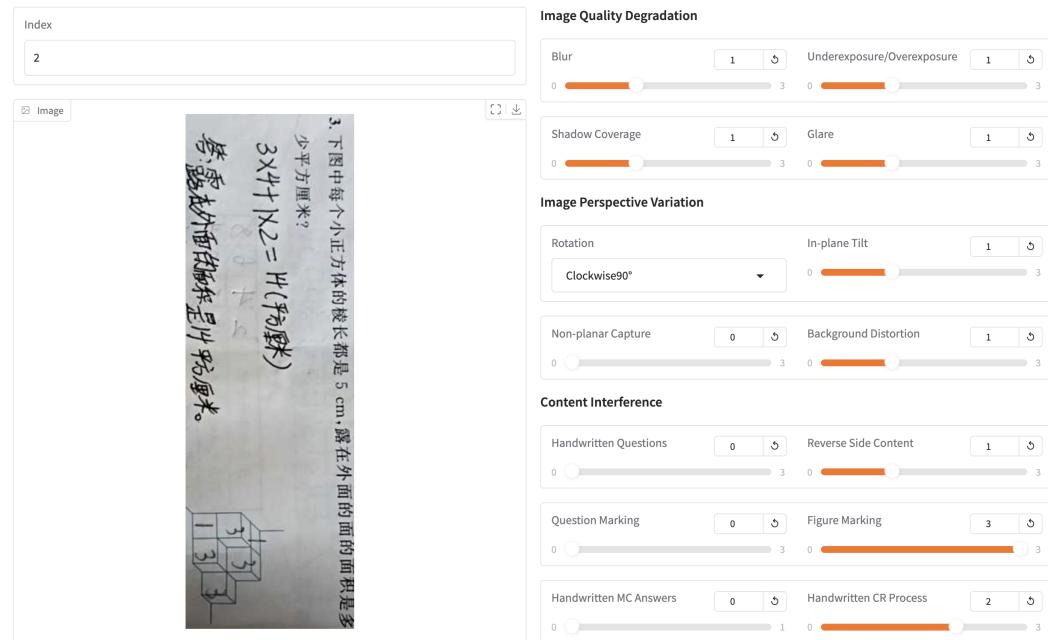
756 images, supporting complex document parsing validation across LaTeX, HTML and SMILES formats.  
 757 OCR-Reasoning Huang et al. (2025) creates 1,069 advanced reasoning questions with only  
 758 2.3% directly extractable answers, specifically testing deep reasoning capabilities like spatial  
 759 relationships and numerical calculations. OCRBench v2 Fu et al. (2024) upgrades to 10,000 human-  
 760 verified QA pairs across 31 scenarios and 23 tasks, first integrating eight core capability assessments  
 761 including text localization and logical reasoning.

## 762 C DATASET DETAILS

### 763 C.1 DATA ANNOTATION PROCESS

764 To facilitate annotation, we develop a Gradio-based data annotation platform and organize the  
 765 process into three fully manual stages: e-screening of basic image content, annotation of image  
 766 conditions, annotation of question-level metadata. This structured workflow ensures high semantic and  
 767 structural quality while reflecting the complexity and diversity of real-world educational scenarios.

768 **MathReal Annotation System--Real-world Scenario Categories and Levels**



769 Figure 8: Gradio annotation page of stage two.

770 **Stage One – Re-screening.** We manually verify whether each sample satisfies the three conditions  
 771 established during data collection:

- 772 • *Single Question Only*: the image contains exactly one complete question, with possible  
 773 interference from other incomplete or partial questions.
- 774 • *Complete Question*: the question text and figure are fully visible, with no missing text or  
 775 critical contents.
- 776 • *Figure Relevant to Solution*: the diagram or figure is essential for understanding or solving  
 777 the problem, not merely decorative or incidental.

778 Samples that fail to meet any of these criteria are discarded. This step ensures that only valid,  
 779 solvable, and diagram-dependent math questions proceed to the next stage.

800 **Stage Two – Real-world scenario categories and levels.** We annotate each image according to a  
 801 fine-grained taxonomy of real-world scenario categories and levels. This taxonomy comprises three  
 802 primary categories with fourteen subcategories:

810 MathReal Annotation System—Question Metadata Annotation

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Sample Index: 12

Image:

Basic Information

Table: 0 Educational Stage: Primary

Question Type: ConstructiveResponse Category: Solid Geometry Difficulty: Medium

Chinese Content

QuestionCN: 求下列图形的表面积。(单位:dm)

DescriptionCN: 1.左侧有一个标注底面半径r=2dm、高10dm的圆柱图形；2.右侧有一个标注底面直径d=4dm、高10dm的圆柱图,从中间纵切了一半。

AnswerCN: 150.72dm²;182.46dm²

Save Annotations

Use via API · Built with Gradio · Settings

Figure 9: Gradio annotation page of stage three.

- Image Quality Degradation:

- *Blur* (0–3): The degree to which the image’s text and figures are visually out of focus, ranging from completely clear and legible to entirely unrecognizable. 0: completely sharp and all text clearly legible, 1: slight blur but content recognizable, 2: strong blur making recognition difficult, 3: severe blur rendering content unreadable.
- *Underexposure/Overexposure* (0–3): The extent of excessive darkness or brightness in the image that may obscure content, from no exposure issues to fully black or white images. 0: no brightness issues, 1: mild darkness or brightness with content still visible, 2: severe underexposure or overexposure partially obscuring content, 3: extreme exposure resulting in completely black or white image.
- *Shadow Coverage* (0–3): The proportion of the question area obscured by shadows, from none to more than 60% coverage. 0: no shadows, 1: shadows covering 1%–30% of the content, 2: shadows covering 30%–60%, 3: shadows covering more than 60%.
- *Glare* (0–3): The presence of reflected light spots on the image, ranging from none to severe glare that renders the content unreadable. 0: no glare, 1: minor glare with text still legible, 2: strong glare partially obscuring content, 3: severe glare rendering content unreadable.

- Image Perspective Variation:

- *Rotation*: The orientation of the image compared to a correctly aligned version. (Up-right, clockwise 90°, counterclockwise 90°, or 180°)
- *In-plane Tilt* (0–3): The tilt angle of the image within the xy-plane, from no tilt to a tilt angle greater than 30°. 0: no tilt, 1: tilt angle within 15°, 2: tilt angle between 15°–30°, 3: tilt angle greater than 30°.
- *Non-planar Capture* (0–3): Perspective distortion caused by capturing the image from a non-perpendicular angle, resulting in trapezoidal or irregular shapes. 0: no perspective distortion, 1: slight perspective distortion without recognition difficulty, 2: trapezoidal or irregular deformation with partial recognition impact, 3: severe deformation such as ladder-shaped or warped forms strongly affecting recognition.
- *Background Distortion* (0–3): Physical bending or warping of the background or paper, from flat to severely deformed shapes affecting content recognition. 0: flat background, 1: minor folding without recognition impact, 2: moderate warping causing partial deformation, 3: severe bending or curling with strong recognition interference.

- Irrelevant Content Interference:

- *Handwritten Questions* (0–3): The extent to which the question text is handwritten, from neatly written to extremely illegible. 0: printed text, 1: neatly handwritten text,

864 2: irregular handwriting with recognition difficulty, 3: extremely messy handwriting  
 865 almost illegible.  
 866  
 867 – *Reverse-side Content* (0–3): Visual interference from text or images on the reverse  
 868 side of the paper, from none to severe bleed-through. 0: no interference, 1: slight  
 869 bleed-through without impact, 2: large amount of bleed-through partially obscuring  
 870 content, 3: severe bleed-through completely obscuring front content.  
 871  
 872 – *Question Marking* (0–3): The presence of underlining, circling, or other markings on  
 873 the question text, from none to heavily marked. 0: no markings, 1: few markings  
 874 with minimal interference, 2: frequent markings moderately obscuring text, 3: heavy  
 875 markings over most of the text.  
 876  
 877 – *Figure Marking* (0–3): Markings drawn on figures, from none to extensive markings  
 878 obscuring geometric shapes. 0: no markings, 1: one marked element not affecting  
 879 recognition, 2: multiple markings partially obscuring shapes, 3: extensive markings  
 880 heavily obscuring geometric figures.  
 881  
 882 – *Handwritten Answers for Multiple-choice or Fill-in-the-blank Questions* (0–1): The  
 883 presence of handwritten answers in answer blanks or options. 0: no handwritten  
 884 answers, 1: presence of handwritten answers.  
 885  
 886 – *Handwritten Process for Constructed-response Questions* (0–3): The amount of hand-  
 887 written solution steps shown in the image, from none to four or more lines. 0: no  
 888 solution steps, 1: one line of steps, 2: two to three lines of steps, 3: four or more lines  
 889 of steps.

886 We provide detailed annotations for each subtype to support fine-grained analysis of model robust-  
 887 ness under diverse real-world conditions. The gradio page of this stage is in Figure 8.

888 **Stage Three – Question Metadata Annotation.** We annotate eight key attributes:

889  
 890 • Ground-truth Question: The printed question text exactly as it appears in the image.  
 891  
 892 • Presence of Tables: Whether the question contains any tabular data (0 for no, 1 for yes).  
 893  
 894 • Educational Level: The intended education stage, categorized as primary, middle, or high  
 895 school.  
 896  
 897 • Question Type: The answer format, including multiple-choice, fill-in-the-blank, or  
 898 constructed-response.  
 899  
 900 • Category: The primary domain of the question, including plane geometry (PG), solid ge-  
 901 ometry (SG), logical reasoning (LR), function graphs (FG), and statistical charts (SC).  
 902  
 903 • Ground-truth Answer: The correct answer verified by annotators.  
 904  
 905 • Figure Description: A detailed natural-language description of the figure, excluding any  
 906 question text.  
 907  
 908 • Clean Image: A standardized and clean version of the image retrieved via web search when  
 909 available.

910 The gradio page of this stage is in Figure 9.

911 Finally, we conduct a fully human-verified review to ensure consistency and accuracy across all  
 912 stages. Through this three-stage pipeline, we construct MATHREAL, a high-quality dataset of real-  
 913 world, diagram-based math questions that provides a rigorous benchmark for evaluating visual per-  
 914 ception and reasoning under authentic conditions.

## 915 C.2 QUESTION DISTRIBUTION

916 All questions in the dataset are presented in Chinese. The longest question contains 451 characters,  
 917 while the shortest has only 7 characters, with an average length of 122.03 characters. Figure 10  
 918 further illustrates the distribution of question lengths, revealing a diverse range from very short  
 919 prompts to extended, detailed questions.

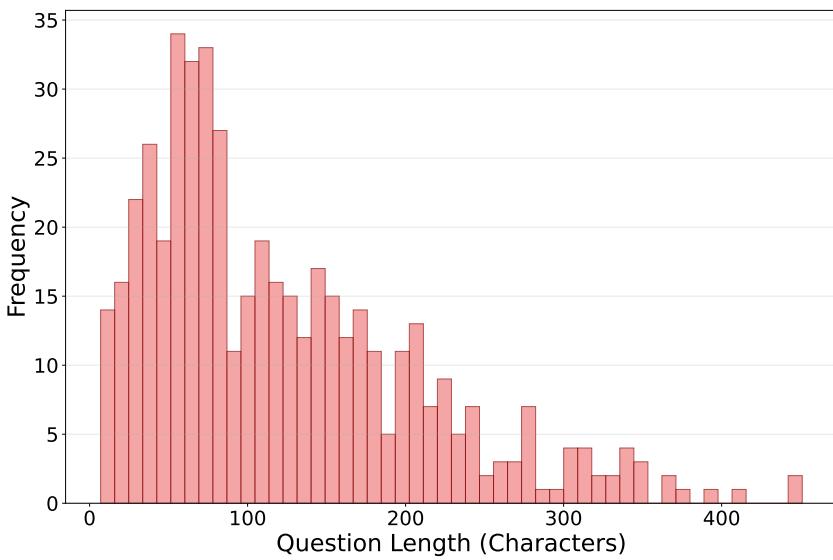


Figure 10: QuestionCN Length Distribution.

## 939 D EXPERIMENTAL DETAILS

### 941 D.1 PROPMT FOR OCR AND FIGURE UNDERSTANDING GENERATION

943 This prompt is designed to separately guide multimodal large language models in performing OCR-  
 944 based question text extraction and detailed figure understanding for real-world, image-based  
 945 mathematical problems. The OCR Task section specifies strict recognition rules, focusing solely on  
 946 printed question stems while excluding handwritten content, metadata, and irrelevant figure text. It  
 947 enforces format preservation, standardized handling of blanks, and precise processing of tables,  
 948 ensuring faithful reproduction of textual content without interpretation or solution attempts. The Figure  
 949 Understanding Task section instructs the model to analyze only the mathematical figures—such as  
 950 geometric diagrams, function plots, and statistical charts—present in the image. It requires a com-  
 951 prehensive, standalone description that details the figure’s structure, key elements, and mathematical  
 952 properties, without solving the problem or performing OCR. Together, these prompts enable a clear  
 953 separation between textual content extraction and visual element analysis, supporting controlled  
 954 evaluations of perception and reasoning.

### 955 D.2 PROMPT FOR ANSWER GENERATION

957 In our study, we design six experimental settings (**I**, **I<sub>UER</sub>**, **I+QM**, **I+QM+DM**, **I+QG**, and  
 958 **I+QG+DG**) to progressively disentangle visual perception and reasoning, enabling a systematic  
 959 evaluation of MLLMs’ perception and reasoning abilities under realistic educational scenarios. To  
 960 operationalize these settings and ensure consistency across experiments, we develop task-specific  
 961 prompts that guide the models in processing visual and textual information in a controlled manner.

962 The **Main Setting Prompt** is used for the primary evaluation setting (**I**), where the model receives  
 963 only the raw image and is required to jointly perform visual perception and mathematical reasoning.  
 964 The instructions are structured to guide the model from problem analysis, through detailed reason-  
 965 ing, to a strictly formatted final answer, ensuring that all information in the image is effectively  
 966 utilized.

967 The **I<sub>UER</sub> Setting Prompt** is tailored for the unified end-to-end reasoning scenario, where the model  
 968 performs OCR, figure understanding, and solution derivation within a single interaction. The work-  
 969 flow in this prompt is explicitly divided into OCR extraction, detailed figure analysis, reasoning, and  
 970 final answer formatting. By combining perception and reasoning within a unified instruction set, this  
 971 prompt facilitates systematic assessment of a model’s ability to integrate multimodal information in  
 a one-pass pipeline under real-world conditions.

972  
973  
974  
975  
976

Table 3: Prompt for OCR Task and Figure Understanding Task.

977

978

**Prompt for OCR Task**

979

980

You are a professional OCR text recognition expert. Please strictly follow the instructions below:

981

## 1. Recognition Scope:

982

Recognize only the printed question stem in the image. Ignore any handwritten content. Include only the question stem, excluding the problem number, year, region, and score.

983

## 2. Output Format:

984

Output text according to the original layout in the image, preserving paragraphs and line breaks. Do not merge or split paragraphs arbitrarily.

985

## 3. Multiple-Choice Options:

986

- If the option content consists only of text or numbers, fully recognize and output the options and their corresponding content.

987

- If any option contains image elements, do not recognize or output any option content.

988

## 4. Fill-in-the-Blank Questions:

989

- If blanks are present, represent them uniformly as “\_\_\_\_” (four underscores).

990

- If blanks are parentheses that need to be filled, represent them uniformly as “( )” (two parentheses and four spaces).

991

## 5. Math Questions with Figures:

992

- If text in the figure consists only of numbers, letters, or labels (e.g., AB, 30°), do not recognize or output it.

993

- Ignore all text embedded in abstract graphics (e.g., geometric figures, statistical charts, function plots); do not include it in the question stem.

994

## 6. Figure Captions:

995

Ignore all figure captions; do not recognize or output them.

996

## 7. Table Processing:

997

- Recognize text in the table row-by-row according to its original order.

998

- Use a single space as the delimiter between columns (e.g., “No. Name 1 Zhang San 2 Li Si”).

999

## Important Notes!!

1000

- Only return the actual recognized text content.

1001

- Do not add any explanations, analysis, hints, or extra notes.

1002

- Do not solve the problem or return the answer.

1003

- No image analysis is required; directly return the OCR results only.

1004

**Prompt for Figure Understanding Task**

1005

You are a professional mathematical figure analysis expert. Please analyze the mathematical figure in the image and provide a detailed description.

1006

## Requirements:

1007

1. Analyze only the mathematical figures in the image, including geometric figures, function plots, and statistical charts.

1008

2. Describe in detail the basic features, key elements, and mathematical properties of the figure.

1009

3. Your answer should contain only one part: *description*.

1010

4. The description must clearly and thoroughly describe the elements, structures, geometric shapes, or chart contents in the figure.

1011

5. Do not solve the problem or perform OCR recognition; only analyze what is present in the figure itself.

1012

Directly output the *description* without adding any extra content, explanations, or hints.

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Table 4: Prompt for Response Generation.

**Main Setting Prompt for Response Generation**

1030 Please solve the problem in the image by following these steps, and do not refuse to answer:

1031 1. Problem Analysis: Clearly identify the problem requirements, known conditions, and the objective  
1032 to be solved from the image.

1033 2. Solution Process:

- 1034 (1) Fully utilize the information provided in the image.
- 1035 (2) Present the reasoning and calculation process in detail.
- 1036 (3) Explain the principles behind each key step.
- 1037 (4) Perform verification or validation when necessary.

1038 3. Final Answer:

- 1039 (1) Place the answer inside `\boxed{}`.
- 1040 (2) If there are multiple answers, place each one inside a separate `\boxed{}`.
- 1041 (3) Strictly follow the required format for numerical values, units, etc., as stated in the problem.

**IUER Setting Prompt for Response Generation**

1042 Please answer the following math problem and strictly follow the steps below. Do not refuse to answer.

1043 1. OCR of the Question Text:

1044 Scope

- 1045 – Recognize only the printed question stem in the image.
- 1046 – Ignore any handwritten content.
- 1047 – Exclude problem number, year, region, and score.

1048 Output Format

- 1049 – Preserve the original layout, paragraphs, and line breaks.
- 1050 – Do not merge or split paragraphs arbitrarily.
- 1051 – Use English punctuation only.

1052 Multiple-Choice Questions

- 1053 – If options are text or numbers, recognize and output them completely.
- 1054 – If options contain image elements, do not output any options.

1055 Fill-in-the-Blank Questions

- 1056 – Represent blanks with “\_\_\_\_” (four underscores).
- 1057 – Represent to-be-filled parentheses with “( )” (two parentheses with four spaces).

1058 Questions with Figures

- 1059 – Ignore pure digits, letters, and labels inside the figure.
- 1060 – Do not OCR text embedded in abstract graphics such as geometric figures, statistical charts, or function plots.

1061 Special Handling

- 1062 – Figure captions: ignore completely.
- 1063 – Dialogue-style context images: recognize only the question stem and ignore dialogues in the image.
- 1064 – Tables: recognize row by row in the original order; separate columns with a single space.

1065 Notes

- 1066 – Recognize text content only.
- 1067 – Do not add any explanations, analyses, or hints.

1068 2. Figure Understanding:

- 1069 – Analyze only the mathematical graphics in the image, including geometric figures, function plots, and statistical charts.
- 1070 – Describe the basic characteristics, key elements, and mathematical properties of the figure in detail.
- 1071 – Your output should contain a single section named *description*.
- 1072 – *Description* must detail the elements, structures, geometric shapes, or chart content present in the figure.

1073 – Do not solve the problem and do not perform OCR here; only analyze the figure content.

1074 3. Solution Process:

- 1075 (1) Fully utilize information from the image, the OCR step, and the figure understanding step.
- 1076 (2) Present the reasoning and calculation steps in detail.
- 1077 (3) Explain the principles behind each key step.
- 1078 (4) Perform verification or validation when necessary.

1079 4. Final Answer:

- 1080 (1) Place the answer inside `\boxed{}`.
- 1081 (2) If there are multiple answers, place each one inside a separate `\boxed{}`.
- 1082 (3) Strictly follow the required format for numbers, units, and other specifications as stated in the problem.

1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1098  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1130  
1131  
1132  
1133  
Table 5: Prompt for Answer Extraction Task.

---

**Prompt for Answer Extraction Task**


---

You are a professional answer extraction expert. Please extract the final answer from the following text as accurately as possible, strictly following the priority strategy below:

Priority 1: Look for explicit answer keywords

- Search for the following keywords:
  - \* “final answer”, “answer”, “result”
  - \* “the answer is”, “the result is”

Priority 2: Extract from the end of the text

- If no explicit answer is found in the previous step, try to extract the most likely answer from the last paragraph or last sentence of the text

Important Requirements:

1. Multiple answers should be separated by semicolons (;
2. Return only the answer content itself, without extra explanations or formatting
3. If the answer cannot be determined, return *null*

Strictly follow the above priority order for extraction.

---

### D.3 PROMPT FOR EXTRACT AND EVALUATE ANSWERS

To ensure consistent and objective measurement of model performance across all six experimental settings, we design a two-stage evaluation pipeline comprising an *Answer Extraction* step followed by an *Answer Evaluation* step.

In the extraction stage, we first apply direct string matching to capture any content enclosed in `\boxed{}` from the model output. If no such match is found, we invoke a dedicated answer extraction prompt to identify the final answer based on explicit keyword matching or, failing that, from the concluding part of the output.

In the evaluation stage, the extracted answer is compared against the reference answer using a mathematical answer evaluation prompt, which enforces strict equivalence rules on numerical values, algebraic expressions, units, and multiple-part answers, while supporting proportional partial credit for partially correct responses. This design enables scalable, fine-grained, and reproducible accuracy assessment under realistic educational conditions.

### D.4 EVALUATION PROTOCOL

**OCR Accuracy Evaluation.** In real-world multimodal settings, OCR quality is often compromised by noise, handwriting, or layout distortions. To assess the reliability of model-generated OCR outputs, we adopt a hybrid metric that combines five components: numeric accuracy, keyword accuracy, semantic similarity, format and structure accuracy, and a lexical term based on normalized Levenshtein distance.

The final score is computed as:

$$\begin{aligned} \text{Acc}_{\text{OCR}} = & 0.2 \cdot \text{Acc}_{\text{num}} + 0.2 \cdot \text{Acc}_{\text{keyword}} + 0.2 \cdot \text{Sim}_{\text{sem}} \\ & + 0.2 \cdot \text{Acc}_{\text{format}} + 0.2 \cdot (1 - \text{Lev}_{\text{norm}}) \end{aligned}$$

Here,  $\text{Acc}_{\text{num}}$  measures exact agreement on all numbers and units,  $\text{Acc}_{\text{keyword}}$  evaluates proper nouns and other key entities,  $\text{Sim}_{\text{sem}}$  reflects sentence-level meaning consistency, and  $\text{Acc}_{\text{format}}$  assesses structural fidelity (tables, paragraphs, lists).  $\text{Lev}_{\text{norm}}$  is the normalized Levenshtein distance between the OCR output and the ground-truth question text. The first four scores are in  $[0, 1]$  following the rubric above (with semantic decisions based on GPT-4.1-nano judgments), and the lexical component contributes via  $(1 - \text{Lev}_{\text{norm}})$ .

Table 6: Prompt for Mathematical Answer Evaluation Task.

| <b>Prompt for Mathematical Answer Evaluation Task</b>                                                                                                                                                                                              |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| You are a top-tier mathematics evaluation expert, tasked with rigorously and precisely determining the correctness of model-generated answers.                                                                                                     |  |
| <b>Core Task</b>                                                                                                                                                                                                                                   |  |
| Determine whether the "Model Answer" below is mathematically and option-wise completely equivalent to the "Reference Answer", and assign a <b>partial credit score</b> based on the proportion of correct components.                              |  |
| <b>Evaluation Principles</b>                                                                                                                                                                                                                       |  |
| 1. <b>Numerical Core Priority</b> :                                                                                                                                                                                                                |  |
| - Focus solely on the final numerical values, expressions, options, or conclusions.                                                                                                                                                                |  |
| - Ignore solution processes, explanatory text (e.g., "the answer is:", "therefore the result is:"), variable names (e.g., D, E, Q1), and irrelevant descriptions.                                                                                  |  |
| - Only retain mathematical content that directly corresponds to the reference answer for comparison.                                                                                                                                               |  |
| 2. <b>Mathematical Equivalence (Strict Judgment)</b> :                                                                                                                                                                                             |  |
| - Fractions and decimals: $1/2$ is equivalent to $0.5$ ; $1/2$ is equivalent to $5/10$ .                                                                                                                                                           |  |
| - Numerical formats: $10$ is equivalent to $10.0$ ; $1,887,800$ is equivalent to $1887800$ (ignore thousand separators).                                                                                                                           |  |
| - Special symbols: $\pi$ is equivalent to $3.14$ (only when the problem explicitly allows approximation).                                                                                                                                          |  |
| - Algebraic expressions: $x^2 + y$ is equivalent to $y + x^2$ ; however, $18 + 6\sqrt{3}$ and $18 - 6\sqrt{3}$ are <b>not equivalent</b> .                                                                                                         |  |
| - Formatting: $(\sqrt{3} + 3)/2$ is equivalent to $\sqrt{3}/2 + 3/2$ .                                                                                                                                                                             |  |
| - Range notation: $x \in [0, 1]$ is equivalent to $0 \leq x \leq 1$ .                                                                                                                                                                              |  |
| - <b>Operator Sensitivity</b> : $+$ , $-$ , $\times$ , $\div$ , $\wedge$ (power), etc., must be strictly consistent; any symbol error renders the expressions non-equivalent.                                                                      |  |
| - <b>Coordinate Points</b> : $(x, y)$ values must be numerically identical. Treat $x$ and $y$ as <b>two sub-components</b> . If one is correct and the other wrong, assign 0.5 for that point.                                                     |  |
| - <b>Whitespace-induced formatting differences</b> : " $y=2x+3$ " and " $y = 2 x + 3$ " are equivalent; ignore the impact of spaces within expressions.                                                                                            |  |
| 3. <b>Unit Handling</b> :                                                                                                                                                                                                                          |  |
| - Reference answer has no unit: if the model answer includes a correct and reasonable unit (e.g., $15$ vs $15m$ ), it is considered correct.                                                                                                       |  |
| - Reference answer has a unit: incorrect units are considered wrong (e.g., $15m$ vs $15cm$ ); if the model answer lacks a unit but the numerical value is correct, it is considered correct.                                                       |  |
| - Ignore unit formatting differences: " $180 \{ dm \}^2$ " and " $180dm^2$ " are equivalent; correctly extract the content.                                                                                                                        |  |
| 4. <b>Handling Multi-Part Answers (Critical!)</b> :                                                                                                                                                                                                |  |
| - You must <b>split the reference answer into all sub-answers (blanks)</b> based on its structure.                                                                                                                                                 |  |
| - Each newline "\n", semicolon ;, or major section "(1)", "(2)" indicates a separate blank.                                                                                                                                                        |  |
| - For each blank, further decompose it if it contains multiple components:                                                                                                                                                                         |  |
| - <b>"Or"-connected answers</b> : e.g., " $5$ or $-75$ " $\rightarrow$ two valid solutions. If model answers only " $5$ ", give 0.5 for that blank.                                                                                                |  |
| - <b>Coordinate pairs</b> : e.g., $(5, 0)$ $\rightarrow$ treat as two values. If model says $(5, 1)$ , give 0.5.                                                                                                                                   |  |
| - <b>Multiple points</b> : e.g., $(1, 0), (9, 8), (-1, 9)$ $\rightarrow$ three points. Each correct point gives 1/3.                                                                                                                               |  |
| - Total score = sum of all correct sub-components / total number of sub-components.                                                                                                                                                                |  |
| - Always allow <b>proportional partial credit</b> unless explicitly stated otherwise.                                                                                                                                                              |  |
| 5. <b>Special Rules for Multiple-Choice Questions</b> :                                                                                                                                                                                            |  |
| - If the reference answer is a single option (e.g., "B"), then as long as the model answer contains that option letter (e.g., "B", "B.", "Option B", "B. $f'(x_0) > g'(x_0)$ ") and no other options, it is considered correct $\rightarrow 1.0$ . |  |
| - If multiple options appear or an incorrect option is selected, it is considered wrong $\rightarrow 0.0$ .                                                                                                                                        |  |
| 6. <b>Semantic Equivalence</b> :                                                                                                                                                                                                                   |  |
| - Even if the phrasing differs, as long as the mathematical meaning is the same, it is considered correct.                                                                                                                                         |  |
| 7. <b>Proof or Graphing Questions</b> :                                                                                                                                                                                                            |  |
| - If the question type is a proof or graphing question, treat the model answer as acceptable by default; do not score it, and directly return <code>&lt;score&gt;1.0&lt;/score&gt;</code> .                                                        |  |
| <b>Scoring Criteria</b>                                                                                                                                                                                                                            |  |
| - <b>1.0</b> : All components are correct.                                                                                                                                                                                                         |  |
| - <b>0.0–1.0</b> : Assign partial credit <b>proportionally</b> based on the number of correct sub-components.                                                                                                                                      |  |
| - <b>0.0</b> : No component is correct.                                                                                                                                                                                                            |  |
| - Round to <b>two decimal places</b> (e.g., $0.83, 0.67, 0.50$ ).                                                                                                                                                                                  |  |
| <b>Output Format</b>                                                                                                                                                                                                                               |  |
| You must strictly return only the XML tag containing the score, with no additional text or explanation.                                                                                                                                            |  |
| <code>&lt;score&gt;score&lt;/score&gt;</code>                                                                                                                                                                                                      |  |

1188 **Answer Accuracy Evaluation.**  $\text{Acc}_{\text{str}}$  requires that all sub-answers within a question be correct  
 1189 for the model to receive credit. If any component is incorrect, the entire question is marked as wrong.  
 1190 This metric emphasizes the completeness and consistency of chain-of-thought reasoning and aligns  
 1191 with the standard pedagogical principle of “full marks only if fully correct.” It is formally defined  
 1192 as:

1193

$$1194 \text{Acc}_{\text{str}} = \frac{1}{N} \sum_{i=1}^N \mathbb{I} \left[ \forall j \in \{1, \dots, K_i\}, a_{i,j}^{\text{pred}} \equiv a_{i,j}^{\text{gt}} \right]$$

1197

1198 Here,  $N$  denotes the total number of questions,  $K_i$  is the number of answer blanks in the  $i$ -th question,  
 1199  $a_{i,j}^{\text{pred}}$  and  $a_{i,j}^{\text{gt}}$  denote the model-predicted and ground truth answers for the  $j$ -th blank, respectively.  
 1200 The indicator function  $\mathbb{I}[\cdot]$  returns 1 if the condition is satisfied, and  $\equiv$  denotes mathematical  
 1201 equivalence.

1202

1203  $\text{Acc}$  permits partial correctness and is calculated based on the proportion of correctly predicted sub-  
 1204 answers within each question. This metric captures the model’s partial understanding and reasoning  
 1205 ability under imperfect outputs:

1206

$$1207 \text{Acc} = \frac{1}{N} \sum_{i=1}^N \left( \frac{1}{K_i} \sum_{j=1}^{K_i} \mathbb{I} \left[ a_{i,j}^{\text{pred}} \equiv a_{i,j}^{\text{gt}} \right] \right)$$

1208

## 1209 D.5 EVALUATION MODELS

1210

1211 We evaluate the performance of a diverse set of models on the MathReal benchmark, categorized into four groups: (a) *Large Language Models (LLMs)*, serving as text-only baselines, including Deepseek-v3 Liu et al. (2024a), Deepseek-r1 Guo et al. (2025), Qwen3 Yang et al. (2025a) and Qwen3-thinking Yang et al. (2025a); (b) *Closed-source Multimodal Large Language Models (MLLMs)*, including Grok-4 xAI (2025), Claude-sonnet-4 Anthropic (2025), Claude-sonnet-4-thinking Anthropic (2025), GPT-4.1 OpenAI (2025a), GPT-4o OpenAI (2024), o3 OpenAI (2025b), o4-mini OpenAI (2025b), Qwen-VL-MaxBai et al. (2023), Gemini-2.5-flash-thinking Comanici et al. (2025), Gemini-2.5-pro-thinking Comanici et al. (2025), Doubao-1.5-vision-pro ByteDance (2025b), Doubao-1.5-thinking-vision-pro ByteDance (2025a), Doubao-seed-1.6 ByteDance (2025c), Doubao-seed-1.6-thinking ByteDance (2025d); (c) *Open-source MLLMs*, including Gemma-3-4b-it Team et al. (2025b), Gemma-3-27b-it Team et al. (2025b), Gemma-3n-e4b Team et al. (2025b), Qwen2.5VL-7BBai et al. (2025), Qwen2.5VL-32BBai et al. (2025), Qwen2.5VL-72BBai et al. (2025), InternVL-3-8BZhu et al. (2025), InternVL-3-14BZhu et al. (2025), InternVL-3-38BZhu et al. (2025), InternVL-3-78BZhu et al. (2025), Kimi-VL-A3B-InstructTeam et al. (2025c), Llama-4-Maverick AI (2025a), GLM-4.1v-thinking-flashx AI (2025b), and ERNIE-4.5-VL-28B-A3B-PT Baidu (2025); and (d) *Multimodal Reasoning Models*, including Keye-VL Team et al. (2025d), OVR Wei et al. (2025), Revisual-R1 Chen et al. (2025b), Skywork-R1V3 Shen et al. (2025), OpenVLthinker Deng et al. (2025), ThinkLite-VL Wang et al. (2025d), VLAA-Thinker Chen et al. (2025a), WeThink Yang et al. (2025b), MMR1-Math-v0 Leng et al. (2025), MM-Eureka Meng et al. (2025), MiMo-VL-7B-RL Team et al. (2025a), and VL-Rethinker Wang et al. (2025a).

1232

## 1233 E RESULTS ANALYSIS

1234

### 1235 E.1 RESULTS BY QUESTION TYPES

1236

1237 Table 9–11 compare model performances across three question types using the loose accuracy (Acc)  
 1238 average (Avg) as the primary metric. The analysis here focuses on multimodal closed-source, open-  
 1239 source, and reasoning-oriented models.

1240

1241

**Multiple-choice.** Overall accuracy is relatively low, with the best-performing model Doubao-seed-1.6 achieving an Avg of 42.3. The second-best closed-source model, Gemini-2.5-pro-thinking,

Table 7: The Acc of the OCR and the six experimental settings of models.

| Model                          | Acc <sub>OCR</sub> | I    | I <sub>UER</sub> | I+QM | I+QG | I+QM+DM | I+QG+DG |
|--------------------------------|--------------------|------|------------------|------|------|---------|---------|
| GLM-4.1v-thinking-flashx       | 81.8               | 24.5 | 19.6             | 24.9 | 32.5 | 22.1    | 34.9    |
| Qwen-VL-Max                    | 87.0               | 23.0 | 23.0             | 26.0 | 28.1 | 24.8    | 35.1    |
| ERNIE-4.5-turbo-vl             | 89.8               | 30.4 | 30.5             | 28.4 | 32.7 | 27.8    | 36.6    |
| Llama-4-Maverick               | 71.0               | 18.7 | 20.5             | 18.8 | 32.2 | 18.0    | 38.2    |
| GPT-4o                         | 78.6               | 23.0 | 22.4             | 22.7 | 32.2 | 24.5    | 38.7    |
| GPT-4.1                        | 79.2               | 22.6 | 22.9             | 21.5 | 37.7 | 19.1    | 40.8    |
| Claude-sonnet-4                | 54.0               | 14.7 | 13.8             | 15.0 | 36.5 | 15.2    | 45.1    |
| Claude-sonnet-4-thinking       | 53.9               | 16.5 | 13.7             | 15.6 | 40.5 | 13.5    | 46.9    |
| Doubao-1.5-vision-pro          | 87.8               | 39.1 | 39.2             | 35.8 | 44.1 | 36.7    | 51.8    |
| o4-mini                        | 81.9               | 35.0 | 24.4             | 34.5 | 48.6 | 30.9    | 55.8    |
| Grok-4                         | 35.6               | 5.4  | 7.7              | 9.7  | 45.8 | 9.3     | 57.7    |
| Gemini-2.5-flash-thinking      | 89.8               | 50.4 | 51.5             | 51.4 | 54.0 | 49.2    | 58.3    |
| o3                             | 78.4               | 35.4 | 32.0             | 33.0 | 47.8 | 34.2    | 58.5    |
| Doubao-seed-1.6-thinking       | 87.9               | 43.9 | 46.2             | 45.8 | 59.5 | 46.9    | 63.2    |
| Doubao-1.5-thinking-vision-pro | 89.8               | 53.9 | 56.9             | 52.6 | 61.7 | 53.3    | 64.1    |
| Doubao-seed-1.6                | 89.7               | 51.4 | 43.8             | 52.5 | 59.5 | 48.3    | 64.2    |
| Gemini-2.5-pro-thinking        | 94.0               | 51.1 | 57.4             | 59.3 | 62.0 | 61.9    | 66.0    |

Table 8: Acc Comparison: Clean vs. Real, where  $\Delta = \text{Acc}_{\text{Clean}} - \text{Acc}_{\text{Real}}$ .

| Model                          | Real | Clean       | $\Delta$     |
|--------------------------------|------|-------------|--------------|
| Grok-4                         | 5.6  | 12.7        | +7.1         |
| Qwen2.5VL-7b                   | 18.2 | 20.0        | +1.8         |
| InternVL3-14b                  | 21.2 | 21.8        | +0.6         |
| InternVL3-8b                   | 18.6 | 23.3        | +4.7         |
| InternVL3-38b                  | 20.6 | 25.1        | +4.5         |
| Claude-sonnet-4                | 15.8 | 26.7        | +10.9        |
| InternVL3-78b                  | 23.1 | 29.0        | +5.9         |
| GPT-4.1                        | 22.9 | 29.7        | +6.8         |
| GPT-4o                         | 24.1 | 31.0        | +6.9         |
| Claude-sonnet-4-thinking       | 20.1 | 31.8        | +11.7        |
| Llama-4-Maverick               | 18.5 | 31.8        | <b>+13.3</b> |
| Qwen-VL-Max                    | 22.2 | 32.1        | +9.9         |
| Qwen2.5VL-72b                  | 31.7 | 32.6        | +0.9         |
| Qwen2.5VL-32b                  | 21.9 | 32.8        | +10.9        |
| ERNIE-4.5-turbo-vl             | 32.2 | 33.0        | +0.8         |
| GLM-4.1v-thinking-flashx       | 24.6 | 36.0        | +11.4        |
| Doubao-1.5-vision-pro          | 42.0 | 49.6        | +7.6         |
| o4-mini                        | 41.4 | 50.8        | +9.4         |
| Gemini-2.5-flash-thinking      | 54.5 | 51.1        | -3.4         |
| o3                             | 40.7 | 53.1        | <b>+12.4</b> |
| Gemini-2.5-pro-thinking        | 56.3 | 56.3        | +0.0         |
| Doubao-seed-1.6-thinking       | 47.8 | 57.1        | +9.3         |
| Doubao-1.5-thinking-vision-pro | 62.9 | <u>59.9</u> | -3.0         |
| Doubao-seed-1.6                | 56.2 | <b>63.6</b> | +7.4         |

reaches 34.6, while the best open-source model, InternVL3-8B, also achieves 34.6. These results indicate that multiple-choice questions are more vision-centric, favoring strong visual encoders capable of distinguishing among distractors rather than relying heavily on long-chain reasoning.

**Fill-in-the-blank.** This type yields the highest overall scores, with Doubao-1.5-thinking-vision-pro achieving 67.7 and Doubao-seed-1.6 close behind at 63.8. The best open-source model, ERNIE-4.5-Turbo-VL-Preview, reaches 34.5, and the top reasoning model, WeThink, achieves 30.9. Compared with multiple-choice, fill-in-the-blank questions reward coherent step-by-step reasoning and numerical computation, allowing models with strong symbolic reasoning capabilities to narrow the gap with top vision models. Accuracy in this category could be further improved through better normalization of numeric outputs, unit handling, and formatting.

1296 **Constructed-response.** Performance is moderate, with the top closed-source vision model  
 1297 Doubao-1.5-thinking-vision-pro achieving 51.8, and the best open-source model ERNIE-4.5-Turbo-  
 1298 VL-Preview reaching 29.9. The strongest reasoning-oriented model, MiMo-VL-7B-RL, scores 21.7.  
 1299 Constructed-response questions require multi-step reasoning and coherent explanations, favoring  
 1300 models that can maintain complete reasoning chains and produce structured final answers. Further  
 1301 improvements could be achieved by explicitly presenting intermediate variables and incorporating  
 1302 step verification to reduce omissions.

1303  
 1304 **Cross-type comparison.** Considering Acc Avg across the three types, the achievable performance  
 1305 ceiling follows the order: Fill-in-the-blank (approximately 68%)  $\downarrow$  Constructed-response (approximately  
 1306 53%)  $\downarrow$  Multiple-choice (approximately 42%). Multiple-choice questions are more dependent  
 1307 on visual recognition, while fill-in-the-blank and constructed-response formats rely more heavily  
 1308 on symbolic reasoning and structured output. Open-source and reasoning-oriented models  
 1309 consistently trail behind the top closed-source models, highlighting gaps in both robust visual encoding  
 1310 and end-to-end reasoning consistency.

## 1311 E.2 INTRA-FAMILY PERFORMANCE PATTERNS

1312 The Doubao family demonstrates strong geometric and structured reasoning capabilities. Doubao-  
 1313 1.5-thinking-vision-pro achieves the highest strict accuracy in PG (43.3%), SG (43.2%), and SC  
 1314 (48.5%), indicating superior performance in tasks requiring spatial understanding and formal visual  
 1315 parsing. Within the family, Doubao-seed-1.6 outperforms its thinking variant on more abstract rea-  
 1316 soning tasks. In LR, the non-thinking version leads with 32.6%, while the thinking model drops to  
 1317 17.4%, suggesting that longer reasoning chains may hinder performance under noisy visuals. The  
 1318 Gemini family also shows consistently strong and balanced performance. Gemini-2.5-pro-thinking  
 1319 ranks among the top across tasks, with 48.5% in SC and over 40% in PG and SG. Even in the  
 1320 most challenging LR category, it reaches 39.1%, indicating stable multimodal reasoning. InternVL  
 1321 models show a reversed scaling pattern. The InternVL-3-78B model achieves the best LR score  
 1322 among open models (15.2%), but underperforms the InternVL-3-38B model in SC, possibly due to  
 1323 overfitting or degraded visual generalization at scale. The Qwen2.5VL family excels at structured  
 1324 visual tasks. The 32B model leads in FG (18.6%) and SC (30.3%), showing strength in visual-text  
 1325 alignment. However, scaling to 72B yields only marginal gains, especially in complex reasoning.  
 1326 Overall, different model families show strengths in specific task types—some favor spatial or  
 1327 symbolic inference, others visual parsing. No model excels across all categories, underscoring the  
 1328 current limitations in developing truly general-purpose MLLMs capable of handling diverse visual  
 1329 reasoning tasks.

## 1330 E.3 STRICT EVALUATION REVEALS INSTABILITY IN MULTI-STEP REASONING

1331 While many models perform decently under **Acc**, real-world applications often demand fully cor-  
 1332 rect multi-step solutions. Our evaluation reveals clear gaps between  $\text{Acc}_{\text{str}}$  and  $\text{Acc}$ , exposing  
 1333 weaknesses in reasoning stability and compositional understanding. For example, Gemini-2.5-pro-  
 1334 thinking scores 48.1%  $\text{Acc}$  but drops to 42.9% under strict evaluation, reflecting small reasoning  
 1335 failures or incomplete logic. More noticeably, InternVL-3-14B achieves 19.0%  $\text{Acc}$  but only 10.9%  
 1336  $\text{Acc}_{\text{str}}$ , a gap of over 8 points, highlighting its difficulty with full-task consistency. Strict metrics  
 1337 thus better reflect whether models can fully solve multi-step problems. They uncover bottlenecks  
 1338 in long-form reasoning and align more closely with educational standards. Reporting both scores is  
 1339 essential for a clearer picture of true problem-solving ability.

## 1340 E.4 ANALYSIS OF OCR ACCURACY AND ANSWER ACCURACY

1341 **Overall Performance and Ranking.** Based on Table 8, in the Clean setting the overall accuracy  
 1342 shows a clear gap between the top performers and the rest. Doubao-seed-1.6 ranks first (63.6),  
 1343 followed by Doubao-1.5-thinking-vision-pro (59.9), Gemini-2.5-pro-thinking (56.3), o3 (53.1),  
 1344 Gemini-2.5-flash-thinking (51.1), and o4-mini (50.8). In the Real setting, the best-performing model  
 1345 changes to Doubao-1.5-thinking-vision-pro (62.9), followed by Gemini-2.5-pro-thinking (56.3),  
 1346 Doubao-seed-1.6 (56.2), and Gemini-2.5-flash-thinking (54.5). This indicates that the Doubao fam-  
 1347 ily consistently dominates in both conditions, Gemini-2.5-pro-thinking maintains balanced perfor-  
 1348 mance across both settings.

1350  
1351  
1352  
1353  
1354  
1355

Table 9: Comparison of model performances across five categories on multiple-choice questions. PG: Plane Geometry, SG: Solid Geometry, LR: Logical Reasoning, FG: Function Graphs, SC: Statistical Charts. Acc is loose accuracy. The **first** and second highest accuracy of LLMs are bolded and underlined, respectively.

1356  
1357  
1358  
1359  
1360  
1361  
1362  
1363  
1364  
1365  
1366  
1367  
1368  
1369  
1370  
1371  
1372  
1373  
1374  
1375  
1376  
1377  
1378  
1379  
1380  
1381  
1382  
1383  
1384  
1385  
1386  
1387  
1388  
1389  
1390  
1391  
1392  
1393  
1394  
1395  
1396  
1397  
1398  
1399  
1400  
1401  
1402  
1403

| Model                                                             | Acc  |      |       |      |       |             |
|-------------------------------------------------------------------|------|------|-------|------|-------|-------------|
|                                                                   | PG   | SG   | LR    | FG   | SC    | Avg         |
| <i>LLMs</i> (Question Text + Figure Description, CoT with 0-shot) |      |      |       |      |       |             |
| Qwen3-235B-A22B-thinking                                          | 12.5 | 60.0 | 66.7  | 14.3 | 66.7  | 34.6        |
| DeepSeek-V3                                                       | 12.5 | 40.0 | 66.7  | 14.3 | 66.7  | 30.8        |
| Qwen3-235B-A22B-instruct                                          | 12.5 | 33.4 | 33.3  | 28.6 | 33.3  | 25.7        |
| DeepSeek-R1                                                       | 25.0 | 60.0 | 66.7  | 14.3 | 66.7  | 38.5        |
| <i>Closed Models</i> (Image-only, CoT with 0-shot)                |      |      |       |      |       |             |
| Grok-4                                                            | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0         |
| Claude-sonnet-4                                                   | 0.0  | 20.0 | 0.0   | 28.6 | 33.3  | 15.4        |
| Claude-sonnet-4-thinking                                          | 0.0  | 0.0  | 0.0   | 14.3 | 66.7  | 11.5        |
| GPT-4.1                                                           | 0.0  | 20.0 | 33.3  | 28.6 | 33.3  | 19.2        |
| GPT-4o                                                            | 12.5 | 0.0  | 0.0   | 28.6 | 33.3  | 15.4        |
| Qwen-VL-Max                                                       | 0.0  | 0.0  | 0.0   | 28.6 | 33.3  | 11.5        |
| o4-mini                                                           | 0.0  | 0.0  | 0.0   | 0.0  | 33.3  | 3.8         |
| o3                                                                | 12.5 | 20.0 | 0.0   | 14.3 | 33.3  | 15.4        |
| Doubao-1.5-vision-pro-32k                                         | 12.5 | 0.0  | 0.0   | 14.3 | 33.3  | 11.5        |
| Doubao-seed-1.6-thinking                                          | 25.0 | 20.0 | 33.3  | 42.9 | 33.3  | 30.8        |
| Gemini-2.5-flash-thinking                                         | 25.0 | 0.0  | 33.3  | 42.9 | 0.0   | 23.1        |
| Gemini-2.5-pro-thinking                                           | 25.0 | 20.0 | 100.0 | 28.6 | 33.3  | <u>34.6</u> |
| Doubao-seed-1.6                                                   | 37.5 | 40.0 | 66.7  | 28.6 | 66.7  | <b>42.3</b> |
| Doubao-1.5-thinking-vision-pro                                    | 25.0 | 40.0 | 0.0   | 14.3 | 22.3  | 21.8        |
| <i>Open-source MLLMs</i> (Image-only, CoT with 0-shot)            |      |      |       |      |       |             |
| Gemma-3-4b-it                                                     | 0.0  | 0.0  | 0.0   | 0.0  | 0.0   | 0.0         |
| Gemma-3n-E4B                                                      | 0.0  | 0.0  | 33.3  | 42.9 | 0.0   | 15.4        |
| Gemma-3-27b-it                                                    | 12.5 | 0.0  | 33.3  | 14.3 | 0.0   | 11.5        |
| Kimi-VL-A3B-Instruct                                              | 0.0  | 0.0  | 0.0   | 28.6 | 0.0   | 7.7         |
| Qwen2.5-VL-7B-Instruct                                            | 0.0  | 20.0 | 0.0   | 14.3 | 0.0   | 7.7         |
| InternVL3-8B                                                      | 37.5 | 20.0 | 0.0   | 42.9 | 66.7  | <b>34.6</b> |
| InternVL3-14B                                                     | 25.0 | 0.0  | 33.3  | 14.3 | 100.0 | <u>26.9</u> |
| Llama-4-Maverick                                                  | 0.0  | 0.0  | 0.0   | 28.6 | 33.3  | 11.5        |
| InternVL3-78B                                                     | 12.5 | 0.0  | 0.0   | 14.3 | 0.0   | 7.7         |
| Qwen2.5-VL-32B-Instruct                                           | 12.5 | 0.0  | 33.3  | 28.6 | 33.3  | 19.2        |
| InternVL3-38B                                                     | 12.5 | 20.0 | 0.0   | 42.9 | 66.7  | <u>26.9</u> |
| GLM-4.1v-thinking-flashx                                          | 0.0  | 0.0  | 33.3  | 28.6 | 33.3  | 15.4        |
| Qwen2.5-VL-72B                                                    | 12.5 | 0.0  | 0.0   | 42.9 | 33.3  | 19.2        |
| ERNIE-4.5-Turbo-VL-Preview                                        | 25.0 | 0.0  | 0.0   | 28.6 | 33.3  | 19.2        |
| <i>Reasoner</i> (Image-only, CoT with 0-shot)                     |      |      |       |      |       |             |
| Keye-VL-8B-Preview                                                | 0.0  | 0.0  | 0.0   | 14.3 | 33.3  | 7.7         |
| OVR                                                               | 0.0  | 0.0  | 0.0   | 0.0  | 66.7  | 7.7         |
| Revisual-R1                                                       | 0.0  | 0.0  | 0.0   | 14.3 | 66.7  | 11.5        |
| OpenVLThinker                                                     | 0.0  | 0.0  | 0.0   | 28.6 | 0.0   | 7.7         |
| ThinkLite-VL                                                      | 25.0 | 0.0  | 0.0   | 14.3 | 33.3  | 15.4        |
| VLAA-Thinker-Qwen2.5VL-7B                                         | 12.5 | 20.0 | 0.0   | 14.3 | 0.0   | 11.5        |
| WeThink                                                           | 12.5 | 0.0  | 0.0   | 14.3 | 33.3  | 11.5        |
| MMR1-Math-v0-7B                                                   | 12.5 | 20.0 | 0.0   | 14.3 | 33.3  | 15.4        |
| MM-Eureka                                                         | 12.5 | 20.0 | 0.0   | 14.3 | 55.7  | 18.0        |
| MiMo-VL-7B-RL                                                     | 0.0  | 0.0  | 0.0   | 0.0  | 33.3  | 3.8         |
| VL-Rethinker-7B                                                   | 25.0 | 40.0 | 0.0   | 28.6 | 66.7  | <b>30.8</b> |
| Skywork-R1V3-38B                                                  | 25.0 | 20.0 | 33.3  | 14.3 | 77.7  | <u>28.2</u> |

1404  
 1405  
 1406  
 1407  
 1408  
 1409  
 1410  
 1411 Table 10: Comparison of model performances across five categories on fill-in-the-blank questions.  
 1412 PG: Plane Geometry, SG: Solid Geometry, LR: Logical Reasoning, FG: Function Graphs, SC: Sta-  
 1413 tistical Charts.  $\text{Acc}_{\text{str}}$  is strict accuracy,  $\text{Acc}$  is loose accuracy. The **first** and second highest accuracy  
 1414 of LLMs are bolded and underlined, respectively.

| Model                                                             | $\text{Acc}_{\text{str}}$ |      |      |      |      |             | $\text{Acc}$ |      |      |      |      |             |
|-------------------------------------------------------------------|---------------------------|------|------|------|------|-------------|--------------|------|------|------|------|-------------|
|                                                                   | PG                        | SG   | LR   | FG   | SC   | Avg         | PG           | SG   | LR   | FG   | SC   | Avg         |
| <i>LLMs (Question Text + Figure Description, CoT with 0-shot)</i> |                           |      |      |      |      |             |              |      |      |      |      |             |
| Qwen3-235B-A22B-thinking                                          | 41.5                      | 7.1  | 57.1 | 23.1 | 58.3 | 39.8        | 49.4         | 20.9 | 68.9 | 26.9 | 67.3 | 48.8        |
| DeepSeek-V3                                                       | 37.7                      | 35.7 | 38.1 | 30.8 | 50.0 | 38.1        | 47.2         | 44.0 | 51.5 | 53.9 | 60.4 | 49.8        |
| Qwen3-235B-A22B-instruct                                          | 47.2                      | 21.4 | 38.1 | 30.8 | 50.0 | 40.7        | 60.0         | 36.1 | 60.6 | 46.8 | 62.4 | 55.9        |
| DeepSeek-R1                                                       | 49.1                      | 50.0 | 38.1 | 23.1 | 50.0 | 44.2        | 60.3         | 55.9 | 50.6 | 56.5 | 74.3 | 59.0        |
| <i>Closed Models (Image-only, CoT with 0-shot)</i>                |                           |      |      |      |      |             |              |      |      |      |      |             |
| Grok-4                                                            | 11.3                      | 7.1  | 0.0  | 0.0  | 0.0  | 6.2         | 16.8         | 9.5  | 6.3  | 0.0  | 6.2  | 10.9        |
| Claude-sonnet-4                                                   | 11.3                      | 7.1  | 14.3 | 0.0  | 8.3  | 9.7         | 19.2         | 14.2 | 19.0 | 20.6 | 27.8 | 19.6        |
| Claude-sonnet-4-thinking                                          | 18.9                      | 7.1  | 19.0 | 0.0  | 8.3  | 14.2        | 30.2         | 16.6 | 20.6 | 20.5 | 25.7 | 25.2        |
| GPT-4.1                                                           | 17.0                      | 14.3 | 14.3 | 15.4 | 25.0 | 16.8        | 23.7         | 14.3 | 28.5 | 28.2 | 45.2 | 26.2        |
| GPT-4o                                                            | 18.9                      | 14.3 | 14.3 | 7.7  | 0.0  | 14.2        | 26.5         | 22.0 | 31.3 | 25.6 | 28.5 | 27.0        |
| Qwen-VL-Max                                                       | 17.0                      | 35.7 | 14.3 | 30.8 | 41.7 | 23.0        | 24.6         | 41.4 | 23.8 | 43.6 | 58.4 | 32.3        |
| 04-mini                                                           | 30.2                      | 28.6 | 33.3 | 30.8 | 16.7 | 29.2        | 41.2         | 35.7 | 46.0 | 53.2 | 34.1 | 42.1        |
| o3                                                                | 43.4                      | 42.9 | 23.8 | 38.5 | 25.0 | 37.2        | 60.3         | 52.4 | 36.6 | 55.2 | 43.8 | 52.6        |
| Douba-1.5-vision-pro-32k                                          | 28.3                      | 35.7 | 23.8 | 7.7  | 16.7 | 24.8        | 40.7         | 40.4 | 41.3 | 38.4 | 53.4 | 41.9        |
| Douba-seed-1.6-thinking                                           | 47.2                      | 50.0 | 23.8 | 30.8 | 25.0 | 38.9        | 60.0         | 59.5 | 40.8 | 53.8 | 58.2 | 55.5        |
| Gemini-2.5-flash-thinking                                         | 50.9                      | 57.1 | 28.6 | 38.5 | 41.7 | 45.1        | 62.2         | 61.9 | 46.0 | 52.5 | 70.8 | 59.0        |
| Gemini-2.5-pro-thinking                                           | 45.3                      | 42.9 | 47.6 | 30.8 | 50.0 | 44.2        | 57.5         | 63.5 | 58.7 | 42.9 | 74.3 | 58.6        |
| Douba-seed-1.6                                                    | 50.9                      | 57.1 | 52.4 | 30.8 | 33.3 | 47.8        | 60.1         | 66.7 | 73.2 | 51.2 | 74.0 | 63.8        |
| Douba-1.5-thinking-vision-pro                                     | 58.5                      | 42.9 | 38.1 | 30.8 | 58.3 | <b>49.6</b> | 71.2         | 65.9 | 56.6 | 59.6 | 82.0 | <b>67.7</b> |
| <i>Open-source MLLMs (Image-only, CoT with 0-shot)</i>            |                           |      |      |      |      |             |              |      |      |      |      |             |
| Gemma-3-4b-it                                                     | 3.8                       | 0.0  | 0.0  | 0.0  | 0.0  | 1.8         | 6.5          | 2.4  | 0.0  | 0.0  | 2.8  | 3.6         |
| Gemma-3n-E4B                                                      | 7.5                       | 7.1  | 0.0  | 0.0  | 0.0  | 4.4         | 13.5         | 17.9 | 9.8  | 8.3  | 16.7 | 13.1        |
| Gemma-3-27b-it                                                    | 3.8                       | 0.0  | 0.0  | 0.0  | 0.0  | 1.8         | 9.6          | 7.1  | 8.7  | 12.8 | 13.8 | 9.9         |
| Kimi-VL-A3B-Instruct                                              | 7.5                       | 14.3 | 0.0  | 7.7  | 0.0  | 6.2         | 16.9         | 16.6 | 17.4 | 18.0 | 8.2  | 16.2        |
| Qwen2.5-VL-7B-Instruct                                            | 3.8                       | 28.6 | 19.0 | 7.7  | 16.7 | 11.5        | 17.5         | 36.3 | 26.1 | 29.5 | 31.2 | 24.3        |
| InternVL3-8B                                                      | 9.4                       | 14.3 | 0.0  | 0.0  | 0.0  | 6.2         | 18.0         | 22.6 | 9.0  | 15.4 | 25.3 | 17.4        |
| InternVL3-14B                                                     | 7.5                       | 21.4 | 9.5  | 7.7  | 8.3  | 9.7         | 16.8         | 28.6 | 23.1 | 24.3 | 29.9 | 21.7        |
| Llama-4-Maverick                                                  | 17.0                      | 14.3 | 19.0 | 7.7  | 0.0  | 14.2        | 26.2         | 22.6 | 25.3 | 15.4 | 20.8 | 23.8        |
| InternVL3-78B                                                     | 9.4                       | 35.7 | 14.3 | 23.1 | 16.7 | <u>15.9</u> | 18.8         | 38.1 | 24.6 | 46.1 | 41.4 | 27.8        |
| Qwen2.5-VL-32B-Instruct                                           | 9.4                       | 35.7 | 14.3 | 30.8 | 33.3 | <b>18.6</b> | 16.8         | 38.1 | 24.5 | 53.9 | 50.0 | 28.7        |
| InternVL3-38B                                                     | 17.0                      | 28.6 | 4.8  | 7.7  | 16.7 | 15.0        | 25.4         | 33.4 | 17.5 | 27.6 | 37.5 | 26.4        |
| GLM-4.1v-thinking-flashx                                          | 13.2                      | 0.0  | 9.5  | 15.4 | 8.3  | 10.6        | 27.5         | 20.6 | 22.2 | 31.4 | 34.0 | 26.8        |
| Qwen2.5-VL-72B                                                    | 13.2                      | 21.4 | 14.3 | 7.7  | 8.3  | 13.3        | 25.2         | 42.6 | 30.0 | 38.4 | 54.2 | <u>32.8</u> |
| ERNIE-4.5-Turbo-VL-Preview                                        | 20.8                      | 21.4 | 9.5  | 15.4 | 25.0 | <b>18.6</b> | 30.7         | 38.6 | 23.8 | 37.8 | 61.6 | <b>34.5</b> |
| <i>Reasoner (Image-only, CoT with 0-shot)</i>                     |                           |      |      |      |      |             |              |      |      |      |      |             |
| Keye-VL-8B-Preview                                                | 3.8                       | 7.1  | 0.0  | 0.0  | 0.0  | 2.7         | 4.9          | 7.1  | 1.6  | 0.0  | 17.3 | 5.3         |
| OVR                                                               | 1.9                       | 7.1  | 4.8  | 7.7  | 8.3  | 4.4         | 5.0          | 7.1  | 9.5  | 20.5 | 15.0 | 9.0         |
| Revisual-R1                                                       | 5.7                       | 14.3 | 4.8  | 0.0  | 0.0  | 5.3         | 14.8         | 14.3 | 9.5  | 5.2  | 17.4 | 12.9        |
| OpenVLThinker                                                     | 13.2                      | 21.4 | 4.8  | 15.4 | 16.7 | 13.3        | 19.0         | 38.6 | 18.9 | 33.3 | 29.8 | 24.2        |
| ThinkLite-VL                                                      | 9.4                       | 28.6 | 14.3 | 7.7  | 8.3  | 12.4        | 17.4         | 38.7 | 25.3 | 26.2 | 38.2 | 24.8        |
| VLAAThinker-Qwen2.5VL-7B                                          | 5.7                       | 14.3 | 4.8  | 15.4 | 0.0  | 7.1         | 16.7         | 26.8 | 16.0 | 42.3 | 39.4 | 23.2        |
| WeThink                                                           | 7.5                       | 21.4 | 19.0 | 23.1 | 8.3  | 13.3        | 20.8         | 37.1 | 36.8 | 38.4 | 49.8 | <u>30.9</u> |
| MMR1-Math-v0-7B                                                   | 5.7                       | 14.3 | 4.8  | 15.4 | 8.3  | 8.0         | 20.2         | 16.6 | 20.1 | 34.5 | 45.1 | 24.1        |
| MM-Eureka                                                         | 7.5                       | 28.6 | 9.5  | 7.7  | 0.0  | 9.7         | 24.2         | 33.4 | 20.3 | 33.3 | 38.9 | 27.2        |
| MiMo-VL-7B-RL                                                     | 18.9                      | 14.3 | 9.5  | 7.7  | 16.7 | <u>15.0</u> | 28.0         | 21.4 | 15.9 | 23.7 | 44.4 | 26.2        |
| VL-Rethinker-7B                                                   | 11.3                      | 21.4 | 14.3 | 15.4 | 8.3  | 13.3        | 26.0         | 33.9 | 29.7 | 35.9 | 41.0 | 30.4        |
| Skywork-R1V3-38B                                                  | 20.8                      | 7.1  | 9.5  | 30.8 | 8.3  | <b>16.8</b> | 35.8         | 30.4 | 19.8 | 52.5 | 27.7 | <b>33.2</b> |

1452  
 1453  
 1454  
 1455  
 1456  
 1457

1458

1459

1460

1461

1462

1463

1464

Table 11: Comparison of model performances across five categories on constructed-response questions. PG: Plane Geometry, SG: Solid Geometry, LR: Logical Reasoning, FG: Function Graphs, SC: Statistical Charts.  $\text{Acc}_{\text{str}}$  is strict accuracy,  $\text{Acc}$  is loose accuracy. The **first** and second highest accuracy of LLMs are bolded and underlined, respectively.

| Model                                                             | $\text{Acc}_{\text{str}}$ |      |      |      |      |             | $\text{Acc}$ |      |      |      |      |             |
|-------------------------------------------------------------------|---------------------------|------|------|------|------|-------------|--------------|------|------|------|------|-------------|
|                                                                   | PG                        | SG   | LR   | FG   | SC   | Avg         | PG           | SG   | LR   | FG   | SC   | Avg         |
| <i>LLMs (Question Text + Figure Description, CoT with 0-shot)</i> |                           |      |      |      |      |             |              |      |      |      |      |             |
| Qwen3-235B-A22B-thinking                                          | 26.3                      | 32.6 | 22.7 | 21.7 | 38.9 | 28.2        | 32.1         | 37.5 | 27.3 | 31.9 | 56.5 | 34.5        |
| DeepSeek-V3                                                       | 25.3                      | 30.4 | 27.3 | 30.4 | 61.1 | 29.0        | 42.4         | 35.1 | 39.8 | 42.4 | 76.8 | 42.1        |
| Qwen3-235B-A22B-instruct                                          | 31.2                      | 35.9 | 36.4 | 47.8 | 44.4 | 34.6        | 43.4         | 42.0 | 44.0 | 62.7 | 63.8 | 45.4        |
| DeepSeek-R1                                                       | 41.9                      | 33.7 | 40.9 | 39.1 | 61.1 | 40.5        | 56.6         | 42.0 | 50.7 | 52.9 | 80.6 | 53.3        |
| <i>Closed Models (Image-only, CoT with 0-shot)</i>                |                           |      |      |      |      |             |              |      |      |      |      |             |
| Grok-4                                                            | 4.3                       | 2.2  | 0.0  | 0.0  | 0.0  | 2.9         | 5.5          | 3.3  | 0.0  | 0.0  | 1.8  | 4.0         |
| Claude-sonnet-4                                                   | 6.5                       | 6.5  | 4.5  | 0.0  | 16.7 | 6.5         | 13.6         | 8.2  | 12.1 | 17.8 | 26.4 | 13.0        |
| Claude-sonnet-4-thinking                                          | 9.1                       | 7.6  | 4.5  | 13.0 | 11.1 | 8.8         | 16.8         | 8.3  | 12.1 | 14.5 | 14.8 | 14.0        |
| GPT-4.1                                                           | 11.3                      | 14.1 | 9.1  | 0.0  | 33.3 | 12.3        | 21.1         | 19.5 | 18.9 | 19.6 | 43.5 | 21.6        |
| GPT-4o                                                            | 11.8                      | 15.2 | 13.6 | 8.7  | 22.2 | 13.2        | 22.7         | 20.8 | 21.2 | 22.5 | 25.9 | 22.2        |
| Qwen-VL-Max                                                       | 9.1                       | 10.9 | 9.1  | 4.3  | 22.2 | 10.0        | 21.4         | 17.8 | 19.7 | 25.4 | 25.9 | 20.8        |
| o4-mini                                                           | 26.3                      | 23.9 | 13.6 | 17.4 | 33.3 | 24.6        | 37.8         | 30.0 | 20.1 | 36.3 | 48.2 | 35.0        |
| o3                                                                | 23.1                      | 28.3 | 9.1  | 0.0  | 44.4 | 23.2        | 31.9         | 34.5 | 19.7 | 11.7 | 46.3 | 31.2        |
| Doubao-1.5-vision-pro-32k                                         | 28.0                      | 28.3 | 18.2 | 30.4 | 33.3 | 27.9        | 42.6         | 38.2 | 24.3 | 47.9 | 37.0 | 40.3        |
| Doubao-seed-1.6-thinking                                          | 34.4                      | 23.9 | 9.1  | 43.5 | 33.3 | 30.5        | 46.1         | 30.5 | 21.2 | 49.3 | 57.8 | 41.1        |
| Gemini-2.5-flash-thinking                                         | 41.4                      | 35.9 | 13.6 | 43.5 | 61.1 | 39.3        | 53.2         | 42.6 | 27.3 | 53.7 | 70.8 | 49.6        |
| Gemini-2.5-pro-thinking                                           | 39.2                      | 42.4 | 22.7 | 47.8 | 50.0 | <b>40.2</b> | 50.7         | 47.3 | 34.9 | 60.2 | 59.7 | 49.8        |
| Doubao-seed-1.6                                                   | 38.2                      | 34.8 | 9.1  | 43.5 | 55.6 | 36.7        | 51.7         | 41.9 | 24.6 | 55.4 | 59.2 | 48.0        |
| Doubao-1.5-thinking-vision-pro                                    | 39.8                      | 43.5 | 18.2 | 39.1 | 50.0 | <u>39.9</u> | 53.2         | 50.6 | 31.8 | 55.1 | 63.9 | <b>51.8</b> |
| <i>Open-source MLLMs (Image-only, CoT with 0-shot)</i>            |                           |      |      |      |      |             |              |      |      |      |      |             |
| Gemma-3-4b-it                                                     | 0.5                       | 2.2  | 4.5  | 0.0  | 0.0  | 1.2         | 3.7          | 2.5  | 6.0  | 0.0  | 0.0  | 3.1         |
| Gemma-3n-E4B                                                      | 1.1                       | 2.2  | 4.5  | 0.0  | 11.1 | 2.1         | 6.8          | 5.3  | 9.1  | 2.9  | 17.1 | 6.8         |
| Gemma-3-27b-it                                                    | 4.3                       | 5.4  | 0.0  | 0.0  | 11.1 | 4.4         | 10.0         | 6.2  | 3.0  | 6.1  | 14.8 | 8.5         |
| Kimi-VL-A3B-Instruct                                              | 2.7                       | 10.9 | 0.0  | 4.3  | 0.0  | 4.7         | 10.0         | 14.9 | 3.0  | 14.5 | 11.6 | 11.3        |
| Qwen2.5-VL-7B-Instruct                                            | 4.3                       | 5.4  | 9.1  | 0.0  | 0.0  | 4.4         | 14.9         | 11.1 | 23.5 | 13.1 | 19.0 | 14.5        |
| InternVL3-8B                                                      | 7.0                       | 9.8  | 9.1  | 4.3  | 11.1 | 7.9         | 14.5         | 15.4 | 15.1 | 7.2  | 27.3 | 15.0        |
| InternVL3-14B                                                     | 7.0                       | 14.1 | 4.5  | 0.0  | 16.7 | 8.8         | 14.8         | 18.2 | 15.1 | 8.7  | 28.2 | 16.1        |
| Llama-4-Maverick                                                  | 10.2                      | 10.9 | 9.1  | 4.3  | 5.6  | 9.7         | 18.9         | 13.3 | 21.2 | 17.4 | 21.8 | 17.6        |
| InternVL3-78B                                                     | 7.0                       | 13.0 | 18.2 | 4.3  | 16.7 | 9.7         | 17.1         | 17.2 | 27.3 | 17.4 | 35.6 | 18.8        |
| Qwen2.5-VL-32B-Instruct                                           | 8.6                       | 10.9 | 9.1  | 8.7  | 27.8 | 10.3        | 19.1         | 16.4 | 13.6 | 20.3 | 37.0 | 19.0        |
| InternVL3-38B                                                     | 8.1                       | 14.1 | 13.6 | 4.3  | 22.2 | 10.6        | 18.1         | 17.6 | 16.6 | 20.3 | 41.2 | 19.2        |
| GLM-4.1v-thinking-flashx                                          | 15.1                      | 15.2 | 4.5  | 0.0  | 22.2 | 13.8        | 28.2         | 21.7 | 7.6  | 16.0 | 31.4 | 24.4        |
| Qwen2.5-VL-72B                                                    | 12.4                      | 17.4 | 9.1  | 13.0 | 22.2 | <u>14.1</u> | 27.5         | 22.6 | 13.6 | 30.4 | 35.7 | <u>25.9</u> |
| ERNIE-4.5-Turbo-VL-Preview                                        | 17.2                      | 13.0 | 18.2 | 13.0 | 27.8 | <b>16.4</b> | 33.3         | 20.1 | 28.8 | 31.2 | 45.3 | <b>29.9</b> |
| <i>Reasoner (Image-only, CoT with 0-shot)</i>                     |                           |      |      |      |      |             |              |      |      |      |      |             |
| Keye-VL-8B-Preview                                                | 3.2                       | 4.3  | 0.0  | 4.3  | 5.6  | 3.5         | 4.8          | 4.7  | 0.0  | 4.3  | 7.4  | 4.6         |
| OVR                                                               | 3.2                       | 5.4  | 4.5  | 8.7  | 11.1 | <u>4.7</u>  | 7.6          | 7.6  | 10.6 | 16.3 | 14.8 | 8.7         |
| Revisual-R1                                                       | 6.5                       | 5.4  | 4.5  | 4.3  | 11.1 | 6.2         | 11.6         | 6.9  | 9.1  | 10.1 | 25.0 | 10.8        |
| OpenVLthinker                                                     | 3.2                       | 7.6  | 9.1  | 0.0  | 11.1 | 5.0         | 14.2         | 11.5 | 9.1  | 11.6 | 25.4 | 13.6        |
| ThinkLite-VL                                                      | 4.3                       | 7.6  | 4.5  | 0.0  | 11.1 | 5.3         | 16.1         | 12.5 | 9.1  | 18.5 | 28.7 | 15.5        |
| VLAAThinker-Qwen2.5VL-7B                                          | 5.4                       | 9.8  | 13.6 | 0.0  | 16.7 | 7.3         | 16.0         | 16.1 | 22.7 | 14.5 | 36.1 | 17.4        |
| WeThink                                                           | 6.5                       | 8.7  | 9.1  | 4.3  | 5.6  | 7.0         | 16.8         | 16.2 | 21.6 | 18.9 | 22.2 | 17.4        |
| MMR1-Math-v0-7B                                                   | 9.7                       | 10.9 | 4.5  | 4.3  | 11.1 | 9.4         | 20.1         | 18.0 | 10.6 | 21.8 | 28.7 | 19.5        |
| MM-Eureka                                                         | 5.4                       | 14.1 | 9.1  | 0.0  | 22.2 | 8.5         | 17.3         | 19.8 | 20.5 | 12.3 | 36.1 | 18.8        |
| MiMo-VL-7B-RL                                                     | 15.1                      | 13.0 | 0.0  | 13.0 | 22.2 | <u>13.8</u> | 23.4         | 19.8 | 6.0  | 20.3 | 33.8 | <u>21.7</u> |
| VL-Rethinker-7B                                                   | 9.7                       | 13.0 | 13.6 | 8.7  | 16.7 | 11.1        | 20.2         | 18.7 | 19.7 | 26.0 | 26.3 | 20.5        |
| Skywork-R1V3-38B                                                  | 17.2                      | 7.6  | 4.5  | 17.4 | 22.2 | <b>14.1</b> | 28.9         | 13.7 | 15.1 | 31.9 | 31.4 | <b>24.3</b> |

1506

1507

1508

1509

1510

1511

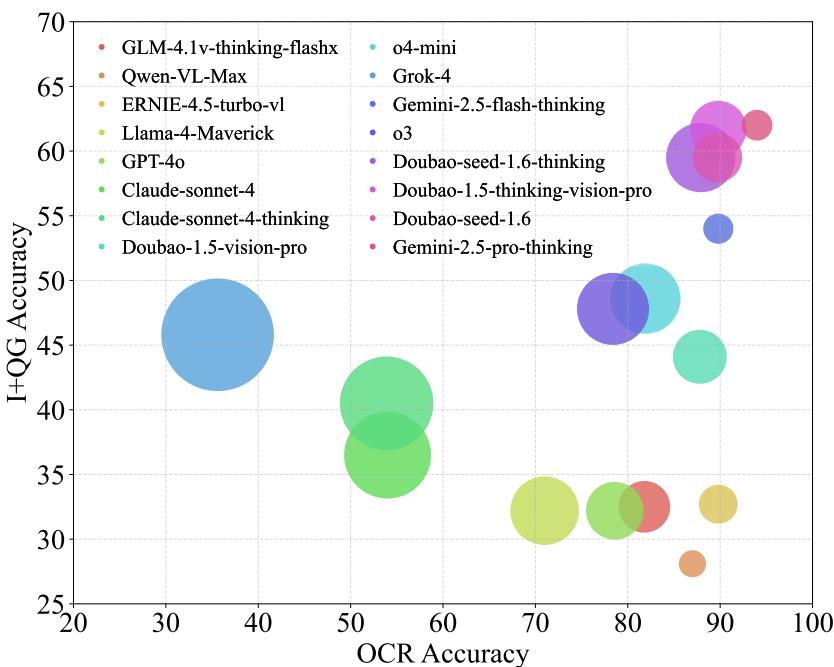


Figure 11: Scatter plot of the relationship between OCR accuracy and accuracy in the I+QG setting, where the size of each circle represents the difference in accuracy between the I+QG setting and the I+QM setting.

mance across domains, while models like o3 and o4-mini have stronger upper bounds in the Clean setting but drop in ranking for Real, showing higher sensitivity to input cleanliness.

**Robustness and  $\Delta$  Analysis.** From the perspective of  $\Delta = \text{Acc}_{\text{Clean}} - \text{Acc}_{\text{Real}}$ , a smaller absolute value indicates greater robustness across domains. The most stable model is Gemini-2.5-pro-thinking ( $\Delta = 0.0$ ), followed by ERNIE-4.5-turbo-v1 (+0.8), InternVL3-14b (+0.6), and Qwen2.5VL-72b (+0.9), suggesting minimal dependence on input cleaning. Most mainstream models gain between 5 and 10 percentage points in Clean compared to Real, such as GPT-4o (+6.9), GPT-4.1 (+6.8), o4-mini (+9.4), Doubao-1.5-vision-pro (+7.6), and Qwen-VL-Max (+9.9), indicating that standardization and denoising benefit a wide range of systems. Notably, two atypical patterns emerge: first, models with negative  $\Delta$ , including Gemini-2.5-flash-thinking (-3.4) and Doubao-1.5-thinking-vision-pro (-3.0), perform better in Real than in Clean, possibly due to stronger adaptation to realistic noise and layout variations; second, models with very large  $\Delta$ , such as Llama-4-Maverick (+13.3), o3 (+12.4), Claude-sonnet-4-thinking (+11.7), GLM-4.1v-thinking-flashx (+11.4), Qwen2.5VL-32b (+10.9), and Claude-sonnet-4 (+10.9), show substantial benefits from cleaner inputs, implying higher vulnerability to noise and complex formatting.

**Family and Model-Type Comparison.** Within the Doubao series, Doubao-1.5-thinking-vision-pro leads in Real accuracy (62.9) but slightly drops in Clean (negative  $\Delta$ ), making it well-suited for raw, noisy data. Doubao-seed-1.6 achieves the highest Clean score (63.6) while remaining competitive in Real (56.2), representing the strongest all-around performer. The Gemini family presents a contrast: Gemini-2.5-pro-thinking achieves perfect robustness ( $\Delta = 0$ ) and high scores in both domains, while Gemini-2.5-flash-thinking is notably stronger in Real than Clean. OpenAI’s o3 and o4-mini benefit greatly from cleaner inputs (large positive  $\Delta$ ), making them excellent candidates for pipelines with strong preprocessing. Other major model families, such as GPT-4o/4.1, Claude, Qwen, and InternVL, generally follow the trend of significantly higher accuracy in Clean, reinforcing the importance of preprocessing for optimal performance.

1566 F THE USE OF LARGE LANGUAGE MODELS  
15671568 In this work, we used LLMs only in a supportive role for aid and polish writing. Specifically,  
1569 LLM assistance was employed for improving the clarity and fluency of exposition in the Abstract,  
1570 Introduction, and Related Work sections. In addition, LLMs were used for formatting support,  
1571 including converting mathematical expressions into standard  $\text{\LaTeX}$  notation and organizing dataset  
1572 statistics and results into well-formatted tables and figures. All substantive research contributions  
1573 were performed entirely by the authors without reliance on LLMs.  
1574  
1575  
1576  
1577  
1578  
1579  
1580  
1581  
1582  
1583  
1584  
1585  
1586  
1587  
1588  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

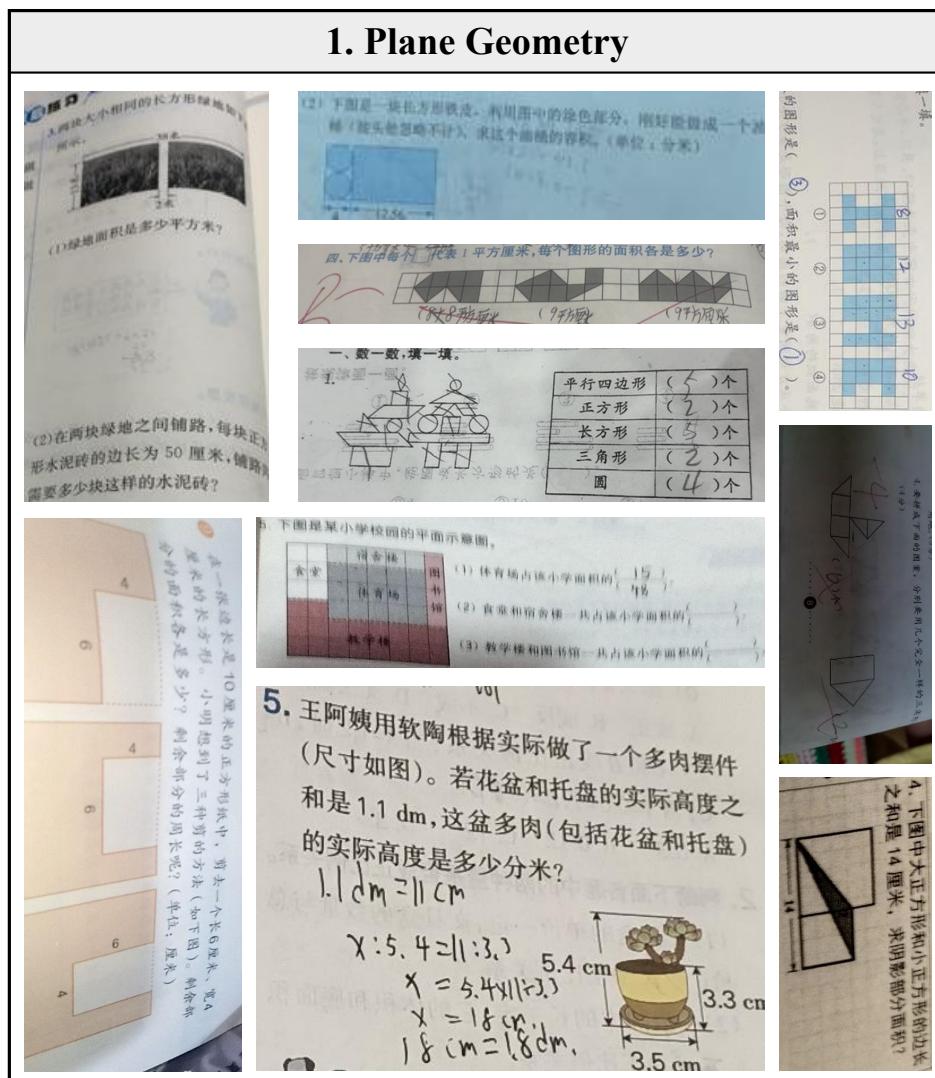


Figure 12: Samples of Plane Geometry.

1674  
1675  
1676  
1677  
1678  
1679  
1680  
1681  
1682  
1683

1684  
1685  
1686  
1687  
1688  
1689  
1690  
1691  
1692  
1693  
1694

1695  
1696  
1697  
1698  
1699  
1700  
1701  
1702  
1703  
1704  
1705  
1706  
1707  
1708  
1709  
1710  
1711  
1712  
1713  
1714  
1715  
1716  
1717

1718  
1719  
1720  
1721  
1722  
1723  
1724  
1725  
1726  
1727



Figure 13: Samples of Solid Geometry.

1728  
1729  
1730  
1731  
1732  
1733  
1734  
1735  
1736  
1737  
1738  
1739  
1740  
1741  
1742  
1743  
1744  
1745  
1746  
1747  
1748  
1749  
1750  
1751



1782  
1783  
1784  
1785  
1786  
1787  
1788  
1789  
1790  
1791

1792  
1793  
1794  
1795

1795  
1796  
1797  
1798  
1799

1799  
1800  
1801  
1802  
1803  
1804  
1805  
1806  
1807  
1808  
1809  
1810  
1811  
1812

1812  
1813  
1814  
1815  
1816  
1817

1818  
1819  
1820  
1821  
1822  
1823  
1824

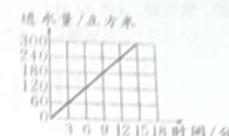
1825  
1826  
1827  
1828  
1829  
1830  
1831  
1832  
1833  
1834  
1835

## 4. Function Graphs

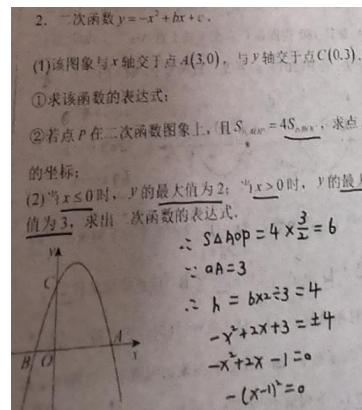
7. 有图描述了一个水池的进水管打开后的进水情况。

(1) 水池的进水量与时间成( )比例。

(2) 按这样的速度,要进水 540 立方米,需要( )分钟;进水管打开 1.5 小时,水池进水量是( )立方米。



6. (2024·南通模拟)如图,在平面直角坐标系中,经过点A的函数 $y=\frac{k}{x}$  ( $x>0$ )的图象同时经过点B,且点A在点B的左侧,点A的横坐标为1,  $\angle AOB=\angle OBA=45^\circ$ ,求k的值.



22. 如图, 一次函数  $y_1 = kx + b$  与  $y_2 = mx$  的图象交于点  $E(n, 3)$ .

- (1) 求出点  $E$  的坐标及  $m$  的值;
- (2) 当  $y_1 \geq y_2$  时, 直接写出  $x$  的取值范围;
- (3) 若点  $P$  从  $C$  点出发, 沿  $C-B-A$  的方向运动 (运动到点  $A$  停止), 速度是每秒 1 个单位长度, 设运动时间为  $t$  秒, 当  $\triangle CEP$  是等腰三角形时, 请直接写出  $t$  的值.



2. [2023, 宁波市] 直线  $y = kx + b$  与  $y = mx + n$  交于点  $(-1, 5)$ ，且  $y = kx + b$  与  $y = mx + n$  在  $x = -1$  时的函数值互为相反数，则  $m - k$  的值为

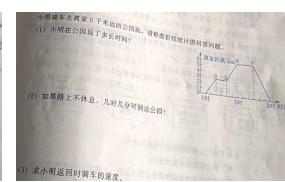


Figure 15: Samples of Function Graphs

