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ABSTRACT

Multimodal Large Language Models (MLLMs) have demonstrated remarkable
capabilities in visual mathematical reasoning across various existing benchmarks.
However, these benchmarks are predominantly based on clean or processed mul-
timodal inputs, without incorporating the images provided by real-world Kinder-
garten through 12th grade (K-12) educational users. To address this gap, we
introduce MATHREAL, a meticulously curated dataset comprising 2,000 math-
ematical questions with images captured by handheld mobile devices in authen-
tic scenarios. Each question is an image, containing the question text and vi-
sual element. We systematically classify the real images into three primary cat-
egories: image quality degradation, perspective variation, and irrelevant content
interference, which are further delineated into 14 subcategories. Additionally,
MATHREAL spans five core knowledge and ability categories, which encompass
three question types and are divided into three difficulty levels. To comprehen-
sively evaluate the multimodal mathematical reasoning abilities of state-of-the-art
MLLMs in real-world scenarios, we design six experimental settings that enable
a systematic analysis of their performance. Through extensive experimentation,
we find that the problem-solving abilities of existing MLLMs are significantly
challenged in realistic educational contexts. Based on this, we conduct a thor-
ough analysis of their performance and error patterns, providing insights into their
recognition, comprehension, and reasoning capabilities, and outlining directions
for future improvements.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have catalyzed the development of MLLMs,
which are capable of jointly interpreting visual and textual information. This evolution has sub-
stantially enhanced model performance across a broad range of multimodal understanding tasks,
including visual question answering, diagram interpretation, document analysis, and mathematical
reasoning. As MLLMs become increasingly adept at bridging text and vision, their reasoning ca-
pabilities, particularly in domains requiring precise symbol processing and structured logic, have
drawn significant attention from the research community.

With the rapid development of reasoning models, an increasing number of mathematical reason-
ing benchmarks have been proposed, including both pure-text benchmarks and multimodal bench-
marks. Pure-text mathematical reasoning benchmarks, such as AIME24 |Ankner et al.| (2024),
AIME2S5 Jaech et al.| (2024), OlympiadBench He et al.[(2024)), and Polymath Wang et al.| (2025¢),
primarily focus on evaluating reasoning ability from textual question statements. More recently,
multimodal benchmarks have been introduced to incorporate visual contexts, such as MathVista|Lu
et al.| (2023), MathVerse Zhang et al.|(2024b)), TrustGeoGen [Fu et al.| (2025), MM-MATH |Sun et al.
(2024), MathVision |Awais et al.|(2024), LogicVista Xiao et al.[(2024), DynaMath|Zou et al.|(2024),
VisOnlyQA |[Kamoi et al.| (2024), MathGlance |Sun et al.| (2025)), VisioMath |Li et al.| (2025)), MV-
MATH [Wang et al.| (2025b), GeoEval |Zhang et al.[(2024a), and We-Math |Qiao et al.| (2024)). These
benchmarks provide diverse evaluation settings that test not only pure symbolic reasoning but also
multimodal perception and reasoning, thereby driving progress in the development of more general
and robust MLLMs.
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Figure 1: Sampled MATHREAL examples from each question type. Each question contains a real
image and annotated information.

Despite these advancements, the majority of existing multimodal math benchmarks consist of clean
or post-processed images, which rarely account for cases encountered by real-world users, making
it difficult to assess how multimodal models perform in real environments. For instance, K—12 users
often capture textbook pages or homework questions using handheld mobile devices to ask models
for help. Real-world scenarios are often more challenging than traditional clean image inputs and the
entire question text is embedded within the image, unlike conventional benchmarks that frequently
rely on textual inputs. Additionally, mathematical question images captured by real-world users
often reflect a distribution that differs substantially from both prior multimodal math benchmarks
and the training data of existing models, as they are embedded in authentic educational contexts and
aligned with real user needs, thereby posing joint challenges for both perception and reasoning.

To bridge this gap, we introduce MATHREAL, a novel benchmark designed to assess the perfor-
mance of MLLMs on real-world, visually grounded K—12 mathematical questions. To support this,
we develop a comprehensive data construction pipeline tailored to real-world multimodal math ques-
tions, addressing the challenges of collection, annotation, and validation under realistic conditions.
MATHREAL comprises 2,000 high-quality questions sourced from authentic educational contexts,
each captured via mobile photography as an image containing a figure, requiring models to first per-
ceive visual content before performing reasoning. We define three primary challenges commonly
encountered in real-world K—12 educational scenarios: image quality degradation, perspective vari-
ation, and irrelevant content interference, which are further divided into 14 fine-grained subcate-
gories, such as blur, rotation, handwritten answers, etc.

To evaluate the multimodal mathematical reasoning abilities of MLLMs under real-world condi-
tions, we construct MATHREAL with carefully designed annotations. Every question image spans
five core knowledge and ability categories, three question types, and three difficulty levels. The
dataset includes three question types and is systematically categorized across three difficulty levels
and five knowledge domains, such as geometry, algebra, statistics, logical reasoning, and function
graphs. To ensure high-quality and consistent annotations, each question is independently verified
by at least two expert annotators, and is enriched with precise ground-truth metadata, including the
ground-truth question text, detailed descriptions of visual elements, and correct answers.

We conduct extensive evaluations on MATHREAL across 4 LLMs and 40 multimodal models. Even
in relatively simple K—12 scenarios, the best-performing model Doubao-1.5-thinking-vision-pro at-
tains only 53.9% accuracy, in sharp contrast to the near-human or competition-level performance
often reported on established mathematical benchmarks, underscoring the substantial gap to real-
world applicability and the necessity of MATHREAL grounded in authentic educational scenarios.
In conclusion, the contributions of this paper are summarized as follows:

* We propose MATHREAL, the first real-world benchmark of 2,000 K—12 multimodal math
questions photographed in natural settings, covering 3 systematic characterizations of real-
world scenarios, 5 knowledge and ability categories, 3 question types, and 3 difficulty
levels.
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* We evaluate 40 MLLMs under 6 experimental settings to assess their reasoning abilities un-
der real-world conditions. Our results demonstrate a notable performance gap between real
and clean images, indicating that existing MLLMs remain far from reliable when applied
in real-world educational scenarios.

* Through controlled experiments, we demonstrate that visual conditions commonly encoun-
tered in real-world scenarios, such as blur, rotation, and handwritten answers, significantly
impair the reasoning performance of current MLLMs. In contrast, these models achieve
notably higher accuracy when provided with clean textual or visual inputs, indicating that
their visual perception components remain fragile when exposed to realistic distortions.

2 MATHREAL

While MLLMs have shown strong performance on existing visual math benchmarks, these bench-
marks predominantly feature clean inputs and rarely reflect usage in real-world educational scenar-
i0s. This is particularly relevant because MLLMs have the potential to explain solutions and evaluate
answer correctness in real educational settings. To bridge this gap, we present MATHREAL, a bench-
mark grounded in naturally captured images and designed to evaluate MLLMs under realistic visual
conditions.

2.1 REAL VISUAL MATH DATASET

Dataset Overview. MATHREAL comprises 2,000 math question instances, each represented as a
noisy image captured via handheld mobile devices under real conditions. All images are sourced
from authentic K-12 educational materials, including textbooks, exam papers, and printed exercises.
The photographs reflect a wide range of real-world acquisition scenarios, encompassing three ma-
jor categories of noise: image quality degradation, image perspective variation, and handwriting
interference. These three categories are further divided into a total of 14 fine-grained subtypes, pro-
viding a rich taxonomy of real-world imperfections. This collection process intentionally preserves
the complexity and imperfection inherent to mobile-based image capture in practical settings.

Each sample in MATHREAL is an image that contains a complete math question, with both the
question text and the associated figures embedded within the image rather than provided as separate
clean inputs. The dataset includes 1,296 questions with a single figure and 704 questions with
multiple figures. It also includes 829 questions with a single sub-question and 1,171 with multiple
sub-questions, providing diverse reasoning structures. All questions are manually annotated with
three supplementary elements: the ground-truth question text (QG), an exact visual description of the
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figure present in the image (DG), and the correct reference answer. The purpose of these annotations
is to enable a systematic analysis of models’ multimodal perception and reasoning abilities in real-
world scenarios.

The dataset includes three types of questions: multiple-choice, fill-in-the-blank, and constructed-
response. In terms of academic stage, questions are distributed across three educational stages:
primary school, middle school, and high school, ensuring coverage of content across the K—12
spectrum. Additionally, 745 questions are accompanied only by real images, while 1,255 are paired
with both real images and clean images, which exclude real-world artifacts. The dataset also includes
a testmini subset of 480 questions. Detailed statistics on question types and visual content categories
are summarized in Table[T]
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All question-level metadata annotations (in-

cluding real-world challenge level) are conducted independently by two different professional anno-
tators. In cases where the two annotators disagree, a third professional annotator will re-annotate the
sample until consensus is reached. Detailed annotation rules for the real-world challenge level are
provided in the Appendix. In the end, we conduct a fully human-verified process to ensure that the
final dataset reflects diverse real-world conditions while maintaining high semantic and structural
quality for evaluating multimodal models.

2.2 DATA CHARACTERISTICS

In contrast to other MLLMs math reasoning datasets, the unique characteristics of MATHREAL are
summarized as “vision-only input” and “in-the-wild challenges”. These two features better align
with the data distribution in real educational scenarios and pose distinct challenges to the perception
and reasoning capabilities of MLLMs.



Under review as a conference paper at ICLR 2026

70 [ Real .
[y w 601 [ Clean
60{ 1 +QM - - . —
[ 1+QM+DM 50
501 1 +QG w —
0 HQGHDG m o S
g4 ‘ N ‘ %5 m B B
o
’ IFFREEF
ain . AT
S | . Lol 0 0 O
10 ’ Y 1%"‘@-\ A0 P W e O WO
& cﬁ"‘\“ q\;;’ RN M\\«\ Wﬁ“ﬂv@gﬁ\ W\\\\o \l\é\o“ o
0 el 0 o QA e (o
A0 aand %0 \(«A‘ L aand C W S O R \i\“\" o
v kY . a0 Y Ge0 K S I\
G o \A—\\\ . _5,\1\5\ . _Q(o,\\\ RS 0\)@ 06‘“‘0
S o e
v O e

Figure 5: Acc comparison of models on real
vs. clean images across selected 175 samples
in MATHREAL testmini.

Figure 4: Acc of five models under different in-
put settings.

Vision-Only Input. Inreal educational scenarios, all information necessary for solving mathemat-
ical questions, including the question statement, figures, or diagrams, is typically contained within
a single image. This requires models to first perceive and extract key information from the image
before proceeding to reason and solve the question. Correspondingly, MATHREAL uses a single raw
image as the sole input. However, to decouple perception and reasoning, the dataset provides QG
and DG as supplementary annotations , facilitating fine-grained evaluation of MLLMs’ capabilities.

In-the-Wild Challenges. In real educational scenarios, raw images often contain substantial noise
due to unconstrained capture conditions. This challenges models to robustly perceive critical con-
tent while ignoring non-essential artifacts. To reflect this realism, MATHREAL categorizes noise
into three major categories, encompassing 14 fine-grained subtypes. Specifically, image quality
degradation includes blur, underexposure/overexposure, shadow coverage, and glare; image per-
spective variation includes rotation, in-plane tilt, non-planar capture, and background distortion;
irrelevant content interference includes handwritten questions, reverse side content, question mark-
ing, figure marking, handwritten answer for multiple-choice questions, and handwritten process for
constructed-response questions. Detailed annotations are provided for each subtype.

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

Data Preparation and Subset Division. The MATHREAL dataset contains 2,000 questions. To
enable faster evaluation and model development validation, we divide the dataset into two subsets:
testmini and test. The testmini subset includes 480 questions and serves as a validation set for model
development or for users with limited computational resources. The fest subset consists of the
remaining 1,520 questions and functions as the standard evaluation set. We use a stratified random
sampling strategy across different categories, ensuring that the sample sizes within each stratum
are proportional to those in the full dataset, thus maintaining statistical representativeness. In the
experiments that follow, all quantitative results are reported using the testmini subset of MATHREAL.

Experimental Settings. To evaluate the reasoning capability of MLLMs in real-world, image-
based mathematical questions, we design six experimental settings that progressively disentan-
gle visual perception and reasoning. Each question is an image containing both textual content
(the question) and visual elements (the figure, which can be represented by a textual description).
Based on this, three primary input modalities are defined: image only (I), which serves as the
primary evaluation; image with human-annotated question text (I+QG); and image with human-
annotated question text and figure description (I+QG+DG). Two reasoning paradigms are consid-
ered: a one-stage approach, where the model performs question recognition and reasoning jointly
from the raw image (Iygr), and a two-stage approach, where the model first generates intermediate
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Table 2: Comparison of model performances across five categories. PG: Plane Geometry, SG: Solid
Geometry, LR: Logical Reasoning, FG: Function Graphs, SC: Statistical Charts. Accy;, is strict
accuracy, Acc is loose accuracy. The first and second highest accuracy of LLMs are bolded and

underlined, respectively.

Model Accgyy Acc

PG SG LR FG SC Avg PG SG LR FG SC Avg

LLMs (Question Text + Figure Description, CoT with 0-shot)
Qwen3-235B-A22B-thinking 29.1 306 413 209 485 312 352 364 488 275 614 379
DeepSeek-V3 275 315 348 279 576 312 424 365 469 413 699 433
Qwen3-235B-A22B-instruct 340 333 370 395 455 354 46.0 409 50.8 523 60.5 468
DeepSeek-R1 429 369 413 302 576 412 563 445 517 477 770 538
Closed Models (Image-only, CoT with 0-shot)
Grok-4 5.7 2.7 0.0 0.0 0.0 35 7.7 3.9 2.9 0.0 33 5.4
Claude-sonnet-4 7.3 7.2 8.7 4.7 15.2 7.7 14.3 9.5 145 204 275 147
Claude-sonnet-4-thinking 10.9 7.2 10.9 9.3 152 102 19.1 9.0 152 163 235 165
GPT-4.1 12.1 144 13.0 9.3 303 138 21.0 189 242 237 432 226
GPT-40 134 144 130 116 152 135 232 200 244 244 275 230
Qwen-VL-Max 105 135 109 163 303 13.1 214 199 203 34 384 230
04-mini 263 234 217 186 273 246 373 294 306 355 417 350
03 27.1 297 152 140 364 260 373 361 261 252 442 354
Doubao-1.5-vision-pro-32k 275 279 196 209 273 262 412 367 305 395 426 391
Doubao-seed-1.6-thinking 368 270 174 395 303 325 484 337 309 496 558 439
Gemini-2.5-flash-thinking 429 369 217 419 485 398 542 431 362 51.6 644 504
Gemini-2.5-pro-thinking 40.1 414 3901 395 485 408 513 481 500 498 626 511
Doubao-seed-1.6 409 378 326 372 485 396 53.0 450 495 498 653 514
Doubao-1.5-thinking-vision-pro 433 432 261 326 485 410 562 521 410 498 667 539
Open-source MLLMs (Image-only, CoT with 0-shot)
Gemma-3-4b-it 1.2 1.8 22 0.0 0.0 1.2 42 2.4 2.9 0.0 1.0 3.1
Gemma-3n-E4B 2.4 2.7 43 7.0 6.1 33 8.1 6.6 11.0 110 154 8.8
Gemma-3-27b-it 4.5 4.5 22 23 6.1 42 10.0 6.0 7.6 9.5 13.1 9.0
Kimi-VL-A3B-Instruct 3.6 10.8 0.0 9.3 0.0 52 11.1 14.5 9.4 17.8 9.3 12.2
Qwen2.5-VL-7B-Instruct 4.0 9.0 13.0 4.7 6.1 6.2 150 147 232 182 21.7 165
InternVL3-8B 8.5 10.8 43 9.3 12.1 9.0 16.0 16.5 114 155 302 166
InternVL3-14B 7.7 14.4 8.7 4.7 212 100 156 187 200 143 354 18.0
Llama-4-Maverick 11.3 108 13.0 9.3 6.1 10.8 198 139 217 186 225 187
InternVL3-78B 7.7 153 152 116 152 110 173 19.1 243 256 345 203
Qwen2.5-VL-32B-Instruct 8.9 135 130 186 303 127 184 184 199 318 414 213
InternVL3-38B 10.1  16.2 8.7 1.6 242 125 195 197 159 262 422 214
GLM-4.1v-thinking-flashx 142 126 8.7 9.3 182  13.1 27.1 205 159 227 325 245
Qwen2.5-VL-72B 126 171 109 163 182 142 265 241 202 349 422 272
ERNIE-4.5-Turbo-VL-Preview 182 135 13.0 163 273 171 325 215 246 327 502 304
Reasoner (Image-only, CoT with 0-shot)

Keye-VL-8B-Preview 32 45 0.0 4.7 6.1 3.5 4.7 4.8 0.7 4.7 13.4 49
OVR 2.8 5.4 43 7.0 15.2 4.8 6.8 7.2 9.4 149  19.6 8.7
Revisual-R1 6.1 6.3 43 4.7 12.1 6.2 11.9 7.5 8.7 9.3 260 11.3
OpenVLThinker 5.3 9.0 6.5 9.3 12.1 7.1 148 144 130 209 247 158
ThinkLite-VL 6.1 9.9 8.7 4.7 12.1 715 167 153 159 202 325 177
VLAA-Thinker-Qwen2.5VL-7B 5.7 10.8 8.7 7.0 9.1 7.5 160 17.6 182 229 340 185
WeThink 6.9 9.9 13.0 116 9.1 8.8 17.5 181 271 240 332 202
MMR 1-Math-v0-7B 8.9 11.7 43 9.3 12.1 9.4 198 179 143 244 351 203
MM-Eureka 6.1 16.2 8.7 4.7 15.2 9.2 186 215 190 190 389 207
MiMo-VL-7B-RL 154 126 43 9.3 212 135 237 191 10.1 180 376 218
VL-Rethinker-7B 105 153 13.0 140 182 127 216 216 230 294 353 234
Skywork-R1V3-38B 18.2 8.1 8.7 209 212 154 303 16.1 184 353 343  26.6

representations—model-generated question text (QM) and figure description (DM)—followed by
reasoning (I+QM and I+QM+DM). This framework enables systematic analysis of perception and
reasoning under realistic conditions. Since in real-world scenarios users would not input models in
a few-shot manner, we restrict our evaluation to the CoT with 0-shot setting only.

3.2 EVALUATION PROTOCOL

Strict Accuracy (Accg,). Accy, requires that all sub-answers within a question be correct for the
model to receive credit. If any sub-answer is incorrect, the entire question is marked wrong.

Loose Accuracy (Acc). Acc allows partial correctness and is computed as the proportion of cor-
rectly answered sub-questions within each question.
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For both metrics, an automated scoring pipeline based on GPT-4.1-nano compares model answers
against reference answers, enforcing strict rules for mathematical equivalence, numerical tolerance,
unit consistency, and symbolic structure to ensure scalable and reliable evaluation in real-world
tasks.

3.3 MAIN RESULTS

Robustness Challenge Under Real-world Visual Noise. MATHREAL presents math questions
photographed in realistic settings, introducing three key types of visual degradation: image qual-
ity deterioration, viewpoint shifts, and handwritten annotations. These factors pose substantial
challenges to visual understanding and reasoning for MLLMs. Evaluation reveals sharp perfor-
mance disparities under these conditions. Under the Acc, the top-performing models are Doubao-
1.5-thinking-vision-pro (53.9%) and Doubao-seed-1.6 (51.4%), while GPT-40 and Claude-sonnet-4
reach only 23.0% and 14.7%, respectively. At the other end of the spectrum, the weakest model,
Gemma-3-4b-it, achieves just 3.1%. These results highlight the difficulty current MLLMs face in
handling perceptual degradation. Performance drops are substantial even for frontier models, un-
derscoring the limitations of current vision-language alignment and error tolerance. MATHREAL
thus offers a more realistic and discriminative benchmark for evaluating robustness under imperfect,
real-world inputs.

Performance Gap Between Closed and Open Models. Results on the MATHREAL benchmark
show that closed-source models significantly outperform their open-source counterparts across all
evaluation metrics and task types, with performance gaps further amplified under noisy visual inputs.
Under the strict accuracy metric (Accgy,), Doubao-1.5-thinking-vision-pro achieves the highest av-
erage accuracy of 41.0%. In contrast, the best open-source model, ERNIE-4.5-Turbo-VL-Preview,
reaches only 17.1%, resulting in a gap of over 20%. Reasoners also lag behind, with the strongest
performer, MiMo-VL-7B-RL, reaching only 13.5% under Acc,. Most others fall below 10%, high-
lighting the difficulty of integrating reasoning pipelines with robust visual perception under degraded
inputs. This further emphasizes the advantage of end-to-end, well-aligned architectures in closed
models when handling real-world visual challenges.

Performance Divergence Across Categories. MATHREAL reveals substantial performance di-
vergences across the five categories, reflecting distinct cognitive demands and multimodal chal-
lenges. Statistical charts (SC) yield the highest accuracies under both strict and loose metrics;
for example, Doubao-1.5-thinking-vision-pro achieves 48.5% Accy,, and Doubao-seed-1.6 reaches
48.5%. These tasks benefit from structured layouts and low geometric ambiguity, enabling extrac-
tion from bar charts, tables, and plots. In contrast, logical reasoning (LR) and function graphs (FG)
are the most challenging. LR involves abstract symbolic inference, with top models like Gemini-2.5-
pro-thinking at 39.1% Accg, and Doubao-seed-1.6 at 32.6%. FG requires precise spatial alignment
between visual features and expressions; even the best models, such as Gemini-2.5-flash-thinking,
attain only 41.9%. Overall, models perform best when visual input is structured and symbolic
reasoning is limited. Tasks requiring spatial abstraction, continuous alignment, or geometric com-
plexity—particularly under visual noise—remain key limitations for current MLLM:s.

Model Gaps in OCR and Description Handling. Evaluation under different input settings re-
veals that current models still face significant challenges in OCR and structured description under-
standing. While adding QM or DM brings little or even negative gains, providing QG and DG
leads to substantial improvements across models. For example, Grok-4 remains below 10% accu-
racy with I and I+QM, yet surpasses 50% once QG or DG are provided. This clear divergence
suggests that models struggle to robustly extract and structure information directly from images, but
can reason effectively once accurate textual inputs are supplied. In contrast, stronger models such as
Gemini-2.5-pro-thinking show incremental improvements across all settings, indicating relatively
better internal perception but still benefiting from explicit QG/DG inputs. Overall, these results
highlight that OCR and structured description remain bottlenecks for real-world math reasoning.
Future models could address this gap by enhancing perception capabilities during pre-training, en-
abling post-training stages to better activate the synergy between perception and reasoning. More
detailed results are provided in the Appendix.
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Real Image vs. Clean Image. To assess model robustness to image quality, we select 175 ques-
tions from the testmini set and retrieve higher-quality clean versions of those images. We then eval-
uate models on both real and clean inputs, computing A = AcCclean — ACCrea and aggregating these
deltas across the fourteen interference categories with both coarse-grained (binary presence/absence)
and fine-grained groupings. Most models exhibit substantial gains on clean images. Llama-4-
Maverick improves by +12.0% and Claude-sonnet-4-thinking by +11.8%—indicating that visual
noise significantly constrains their real-image performance. Blur attenuates the high-frequency de-
tails essential for OCR-based text extraction and fine-grained visual feature recognition, while ro-
tation disrupts spatial alignment and forces reliance on implicit geometric transforms, causing the
strict accuracy of Claude-sonnet-4-thinking and Doubao-seed-1.6 to drop by approximately —0.25
and —0.20, respectively; in contrast, models pretrained with extensive rotational augmentation, such
as Gemini-2.5-pro-thinking and Qwen2.5VL-72B, remain largely unaffected. Figure marking and
handwritten answer interference often highlight key regions or provide solution cues, yielding mod-
est benefits to Doubao-1.5-thinking-vision-pro and Gemini-2.5-pro-thinking; by contrast, InternVL-
3-78B and Claude-sonnet-4-thinking, which exhibit weaker visual-saliency integration, suffer slight
declines. Notably, Doubao-1.5-thinking-vision-pro achieves a remarkable +0.21 increase in strict
accuracy (Accg,) on non-blurred real images versus clean versions—Ilikely due to its vision back-
bone being thoroughly trained on authentic mobile-captured data, enabling it to exploit real-world
lighting, shading, and texture cues.

LLM-as-a-Judge Consistency. To assess the reliability of automatic evaluation, we adopt the
LLM-as-a-judge paradigm. Specifically, for each question we use the prompt templates detailed in
the Appendix and employ the GPT-4.1-nano model to generate judgments. To validate consistency,
we randomly sample 100 questions each from the main results of GPT-40 and Doubao-1.5-thinking-
vision-pro under Acc,, and manually score them according to the same prompt. A case is consid-
ered inconsistent if the manual score diverges from the GPT-4.1-nano judgment. The resulting agree-
ment rates are 93% and 94% for GPT-4o0 and Doubao-1.5-thinking-vision-pro, respectively. These
high consistency levels demonstrate that the LLM-as-a-judge approach provides reliable evaluation
in our benchmark setting. Importantly, this method substantially reduces the labor cost of manual
comparisons while maintaining robust fidelity, thus offering a scalable and cost-effective solution
for both benchmark evaluation and model development.

@ Figure Perception Error

Doubao-1.5-thinking-vision-pro:
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Error Reason:
Doubao correctly understands the scoring rules but misinterprets the figure. It
identifies the wrong hit patterns on both boards, leading to an incorrect comparison

Figure 6: Error distribution over 100 anno- e

tated cases from Doubao-1.5-thinking-vision-

pro (left) and Gemini-2.5-pro-thinking (right)  Figure 7: A basic figure perception error, with

error cases. the error highlighted in red. More examples can
be found in the appendix.

3.4 ERROR ANALYSIS

We conduct a detailed error analysis by randomly sampling 100 failed cases (Acc = 0) from each of
Doubao-1.5-thinking-vision-pro and Gemini-2.5-pro-thinking. The errors are categorized into six
types: OCR error,figure perception error, calculation error,reasoning error, hallucination, and reject
error. The distribution is shown in Figure [d]

We observe a broadly consistent trend across both models. Reasoning errors account for the largest
proportion (over one-third), indicating that even when perception is mostly accurate, models often
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fail to construct valid logical chains or apply correct mathematical principles. Visual understand-
ing remains another major source of failure. Specifically, figure perception errors and OCR errors
together account for 40-50% of the failures, reflecting the strong dependence of multimodal math
tasks on accurate visual decoding. In particular, noisy charts, distorted symbols, and handwritten
notations frequently lead to misread digits or misinterpreted geometric structures. These perception
issues are critical, as they compromise the model’s input before any reasoning occurs. Calculation
errors, hallucinations, and reject errors occur less frequently but still contribute to overall perfor-
mance degradation. Notably, hallucinations often arise when models fabricate nonexistent quantities
or assumptions, while reject errors reflect failure to produce meaningful answers under uncertainty.
Overall, the findings highlight two primary challenges: robust visual understanding under imper-
fect inputs, and consistent multi-step reasoning over noisy or ambiguous content. Addressing either
alone is insufficient—future progress in MLLMs will require tightly integrated improvements across
perception, parsing, and reasoning components.

4 RELATED WORK

Plain Text Benchmarks. MathQA Amini et al.| (2019)) is a large-scale benchmark consisting of
math word problems designed to evaluate problem-solving in arithmetic and algebra through nat-
ural language. GSMS8K |Cobbe et al.| (2021) contains 8,500 elementary-level math problems that
test multi-step reasoning. In contrast, MATH Hendrycks et al.| (2021) provides 12,500 challenging
high-school competition-level questions. SuperCLUE-Math Xu et al.|(2024)) specializes in Chinese
mathematical reasoning tasks. RV-Bench Hong et al.| (2025) evaluates structural understanding by
programmatically replacing numerical values in problems. Math-RoB |Yu et al.| (2025) introduces
controlled perturbations to assess model stability under variations. PolyMath [Wang et al|(2025¢)
addresses this by providing a high-quality, large-scale multilingual evaluation set.

Multimodal Benchmarks. With the development of multimodal large models, many benchmarks
focused on multimodal math problems have also emerged. MathVistaLu et al.|(2023)) establishes the
first comprehensive multimodal math evaluation through 6,141 visual tasks across diverse mathe-
matical reasoning scenarios. MathVerse |[Zhang et al.|(2024b) advances visual understanding assess-
ment through 15,000 diagram-based samples, specifically designed to quantify diagram utilization
in math problem-solving. MATH-Vision Wang et al.| (2024) elevates evaluation standards with 3,040
competition-grade problems, creating a rigorous testbed for advanced mathematical reasoning. Vi-
sOnlyQA [Kamoi et al.| (2024) reveals fundamental limitations in geometric perception through 12
tasks demonstrating that even SOTA models struggle with basic visual perception. MathGlance |Sun
et al.|(2025) isolates mathematical perception evaluation through 1,200 images and 1,600 questions
spanning core perceptual tasks. MV-MATH Wang et al.|(2025c) challenges the multivisual reason-
ing by developing 2,009 multi-image problems mirroring real-world mathematical contexts. GeoE-
val [Zhang et al.| (2024a) emphasizes unseen dataset evaluation importance through 2,000 geometry
problems with specialized subsets for comprehensive assessment. We-Math |Qiao et al.|(2024) intro-
duces four-dimensional evaluation metrics for knowledge acquisition and generalization assessment
through 6,500 visual problems spanning 67 hierarchical concepts. CMMath |Li et al.[ (2024b)) de-
livers the first native Chinese mathematical benchmark with 23,000 curriculum-aligned questions,
filling the critical gap in K-12 educational assessment.

5 CONCLUSION

MATHREAL introduces a new benchmark for evaluating MLLMs on real-world, noisy images of
K-12 math questions, addressing the limitations of existing benchmarks that rely on clean images.
The dataset includes diverse math questions with various types of visual noise, such as blur, perspec-
tive distortions, and handwritten interference. By evaluating several open-source and closed-source
models, we establish a benchmark that highlights the limitations of current MLLMs in multi-visual
mathematical reasoning, emphasizing the impact of image quality, input methods, and question types
on performance. Our analysis reveals that most models struggle with noisy images, pointing to the
need for more robust visual encoders in MLLMs. This work sets the stage for future improvements
in multimodal reasoning, especially in real-world educational settings.



Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research does not involve human subjects, personal data, or sensitive information. The MATH-
REAL benchmark is built from photographs of educational materials and anonymized question
repositories, with careful filtering to exclude any potentially identifying or private content. All im-
ages depict only mathematical questions and related figures, and no faces, personal information be-
yond problem-solving steps, or metadata are retained. The dataset is intended strictly for academic
research and evaluation of multimodal reasoning systems, and we believe it poses no foreseeable
ethical risks.

REPRODUCIBILITY STATEMENT

We have taken multiple steps to support reproducibility of our results. The dataset construction
pipeline, including collection, filtering, and multi-stage manual annotation, is documented in the
main paper and appendix. We provide taxonomy definitions, evaluation metrics, and scoring scripts,
together with configuration details for all experimental settings. The festmini split and full anno-
tation metadata are released at submission to allow method development and ablation studies. The
complete dataset will be made publicly available upon acceptance. We also release prompts and
evaluation templates to facilitate exact replication wherever model APIs allow.
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SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL OVERVIEW

* Section[Al Introduction.

* Section[B} Related work.

* Section[C} Dataset Details.

* Section[D} Experimental Details.
* Section [E} Results Analysis.

A INTRODUCTION

The data and code: https://anonymous.4open.science/r/MathReal—-52CD

B RELATED WORK

B.1 BENCHMARK FOR PERCEPTION AND OCR AS THE FOUNDATION OF REASONING

DocVQA Mathew et al.| (2021) introduces 28,000 real document QA pairs, establishing the first
visual question answering evaluation framework for structured documents like contracts and re-
ports. ChartQA Masry et al.| (2022) develops 3,200 chart QA samples, pioneering the joint rea-
soning evaluation mechanism between axis text and visual elements. SEED-Bench-2-Plus Li et al.
(20244a) expands to 15,672 test samples covering three rich-text environments, enabling fine-grained
evaluation across 63 data types. Fox [Liu et al.| (2024b) introduces 9 specialized sub-tasks includ-
ing region-level OCR and color-guided text recognition, establishing the first benchmark for fine-
grained document understanding across multi-page layouts. MMTab Zheng et al.| (2024) releases
5,000+ tax/medical form test sets with specialized metrics for complex table reasoning like merged
cells and cross-column references. CC-OCR |Yang et al.| (2024) collects 15,000 cross-language text
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images, supporting complex document parsing validation across LaTeX, HTML and SMILES for-
mats. OCR-Reasoning Huang et al.| (2025)) creates 1,069 advanced reasoning questions with only
2.3% directly extractable answers, specifically testing deep reasoning capabilities like spatial re-
lationships and numerical calculations. OCRBench v2 (2024) upgrades to 10,000 human-

verified QA pairs across 31 scenarios and 23 tasks, first integrating eight core capability assessments
including text localization and logical reasoning.

C DATASET DETAILS
C.1 DATA ANNOTATION PROCESS

To facilitate annotation, we develop a Gradio-based data annotation platform and organize the pro-
cess into three fully manual stages: e-screening of basic image content, annotation of image condi-
tions, annotation of question-level metadata. This structured workflow ensures high semantic and
structural quality while reflecting the complexity and diversity of real-world educational scenarios.

MathReal Annotation System--Real-world Scenario Categories and Levels
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Figure 8: Gradio annotation page of stage two.

Stage One — Re-screening. We manually verify whether each sample satisfies the three conditions
established during data collection:

* Single Question Only: the image contains exactly one complete question, with possible
interference from other incomplete or partial questions.

* Complete Question: the question text and figure are fully visible, with no missing text or
critical contents.

* Figure Relevant to Solution: the diagram or figure is essential for understanding or solving
the problem, not merely decorative or incidental.

Samples that fail to meet any of these criteria are discarded. This step ensures that only valid,
solvable, and diagram-dependent math questions proceed to the next stage.

Stage Two — Real-world scenario categories and levels. We annotate each image according to a

fine-grained taxonomy of real-world scenario categories and levels. This taxonomy comprises three
primary categories with fourteen subcategories:
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Figure 9: Gradio annotation page of stage three.

* Image Quality Degradation:

— Blur (0-3): The degree to which the image’s text and figures are visually out of focus,

ranging from completely clear and legible to entirely unrecognizable. 0: completely
sharp and all text clearly legible, 1: slight blur but content recognizable, 2: strong blur
making recognition difficult, 3: severe blur rendering content unreadable.
Underexposure/Overexposure (0-3): The extent of excessive darkness or brightness
in the image that may obscure content, from no exposure issues to fully black or
white images. 0: no brightness issues, 1: mild darkness or brightness with content
still visible, 2: severe underexposure or overexposure partially obscuring content, 3:
extreme exposure resulting in completely black or white image.

Shadow Coverage (0-3): The proportion of the question area obscured by shadows,
from none to more than 60% coverage. 0: no shadows, 1: shadows covering 1%-30%
of the content, 2: shadows covering 30%—-60%, 3: shadows covering more than 60%.
Glare (0-3): The presence of reflected light spots on the image, ranging from none
to severe glare that renders the content unreadable. 0: no glare, 1: minor glare with
text still legible, 2: strong glare partially obscuring content, 3: severe glare rendering
content unreadable.

* Image Perspective Variation:

— Rotation: The orientation of the image compared to a correctly aligned version. (Up-

right, clockwise 90°, counterclockwise 90°, or 180°)

— In-plane Tilt (0-3): The tilt angle of the image within the xy-plane, from no tilt to a

tilt angle greater than 30°. 0: no tilt, 1: tilt angle within 15°, 2: tilt angle between
15°-30°, 3: tilt angle greater than 30°.

— Non-planar Capture (0-3): Perspective distortion caused by capturing the image from

a non-perpendicular angle, resulting in trapezoidal or irregular shapes. 0: no perspec-
tive distortion, 1: slight perspective distortion without recognition difficulty, 2: trape-
zoidal or irregular deformation with partial recognition impact, 3: severe deformation
such as ladder-shaped or warped forms strongly affecting recognition.

Background Distortion (0-3): Physical bending or warping of the background or pa-
per, from flat to severely deformed shapes affecting content recognition. 0: flat back-
ground, 1: minor folding without recognition impact, 2: moderate warping causing
partial deformation, 3: severe bending or curling with strong recognition interference.

e Irrelevant Content Interference:

— Handwritten Questions (0-3): The extent to which the question text is handwritten,

from neatly written to extremely illegible. O: printed text, 1: neatly handwritten text,
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2: irregular handwriting with recognition difficulty, 3: extremely messy handwriting
almost illegible.

— Reverse-side Content (0-3): Visual interference from text or images on the reverse
side of the paper, from none to severe bleed-through. 0: no interference, 1: slight
bleed-through without impact, 2: large amount of bleed-through partially obscuring
content, 3: severe bleed-through completely obscuring front content.

— Question Marking (0-3): The presence of underlining, circling, or other markings on
the question text, from none to heavily marked. 0: no markings, 1: few markings
with minimal interference, 2: frequent markings moderately obscuring text, 3: heavy
markings over most of the text.

— Figure Marking (0-3): Markings drawn on figures, from none to extensive markings
obscuring geometric shapes. 0: no markings, 1: one marked element not affecting
recognition, 2: multiple markings partially obscuring shapes, 3: extensive markings
heavily obscuring geometric figures.

— Handwritten Answers for Multiple-choice or Fill-in-the-blank Questions (0-1): The
presence of handwritten answers in answer blanks or options. 0: no handwritten an-
swers, 1: presence of handwritten answers.

— Handwritten Process for Constructed-response Questions (0-3): The amount of hand-
written solution steps shown in the image, from none to four or more lines. 0: no
solution steps, 1: one line of steps, 2: two to three lines of steps, 3: four or more lines
of steps.

We provide detailed annotations for each subtype to support fine-grained analysis of model robust-
ness under diverse real-world conditions.The gradio page of this stage is in Figure[§]

Stage Three — Question Metadata Annotation. We annotate eight key attributes:

Ground-truth Question: The printed question text exactly as it appears in the image.
Presence of Tables: Whether the question contains any tabular data (0 for no, 1 for yes).

Educational Level: The intended education stage, categorized as primary, middle, or high
school.

Question Type: The answer format, including multiple-choice, fill-in-the-blank, or
constructed-response.

Category: The primary domain of the question, including plane geometry (PG), solid ge-
ometry (SG), logical reasoning (LR), function graphs (FG), and statistical charts (SC).

Ground-truth Answer: The correct answer verified by annotators.

Figure Description: A detailed natural-language description of the figure, excluding any
question text.

Clean Image: A standardized and clean version of the image retrieved via web search when
available.

The gradio page of this stage is in Figure[9]

Finally, we conduct a fully human-verified review to ensure consistency and accuracy across all
stages. Through this three-stage pipeline, we construct MATHREAL, a high-quality dataset of real-
world, diagram-based math questions that provides a rigorous benchmark for evaluating visual per-
ception and reasoning under authentic conditions.

C.2 QUESTION DISTRIBUTION

All questions in the dataset are presented in Chinese. The longest question contains 451 characters,
while the shortest has only 7 characters, with an average length of 122.03 characters. Figure [I0]
further illustrates the distribution of question lengths, revealing a diverse range from very short
prompts to extended, detailed questions.
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D EXPERIMENTAL DETAILS

D.1 PROPMT FOR OCR AND FIGURE UNDERSTANDING GENERATION

This prompt is designed to separately guide multimodal large language models in performing OCR-
based question text extraction and detailed figure understanding for real-world, image-based math-
ematical problems. The OCR Task section specifies strict recognition rules, focusing solely on
printed question stems while excluding handwritten content, metadata, and irrelevant figure text. It
enforces format preservation, standardized handling of blanks, and precise processing of tables, en-
suring faithful reproduction of textual content without interpretation or solution attempts. The Figure
Understanding Task section instructs the model to analyze only the mathematical figures—such as
geometric diagrams, function plots, and statistical charts—present in the image. It requires a com-
prehensive, standalone description that details the figure’s structure, key elements, and mathematical
properties, without solving the problem or performing OCR. Together, these prompts enable a clear
separation between textual content extraction and visual element analysis, supporting controlled
evaluations of perception and reasoning.

D.2 PROMPT FOR ANSWER GENERATION

In our study, we design six experimental settings (I, Iygr, I+QM, I+QM+DM, I+QG, and
I+QG+DG) to progressively disentangle visual perception and reasoning, enabling a systematic
evaluation of MLLMSs’ perception and reasoning abilities under realistic educational scenarios. To
operationalize these settings and ensure consistency across experiments, we develop task-specific
prompts that guide the models in processing visual and textual information in a controlled manner.

The Main Setting Prompt is used for the primary evaluation setting (I), where the model receives
only the raw image and is required to jointly perform visual perception and mathematical reasoning.
The instructions are structured to guide the model from problem analysis, through detailed reason-
ing, to a strictly formatted final answer, ensuring that all information in the image is effectively
utilized.

The Iyggr Setting Prompt is tailored for the unified end-to-end reasoning scenario, where the model
performs OCR, figure understanding, and solution derivation within a single interaction. The work-
flow in this prompt is explicitly divided into OCR extraction, detailed figure analysis, reasoning, and
final answer formatting. By combining perception and reasoning within a unified instruction set, this
prompt facilitates systematic assessment of a model’s ability to integrate multimodal information in
a one-pass pipeline under real-world conditions.
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Table 3: Prompt for OCR Task and Figure Understanding Task.

Prompt for OCR Task

You are a professional OCR text recognition expert. Please strictly follow the instructions
below:
1. Recognition Scope:
Recognize only the printed question stem in the image. Ignore any handwritten content.
Include only the question stem, excluding the problem number, year, region, and score.
2. Output Format:
Output text according to the original layout in the image, preserving paragraphs and line
breaks. Do not merge or split paragraphs arbitrarily.
3. Multiple-Choice Options:
— If the option content consists only of text or numbers, fully recognize and output the
options and their corresponding content.
— If any option contains image elements, do not recognize or output any option content.
4. Fill-in-the-Blank Questions:
— If blanks are present, represent them uniformly as “____" (four underscores).
— If blanks are parentheses that need to be filled, represent them uniformly as “( )’ (two
parentheses and four spaces).
5. Math Questions with Figures:
— If text in the figure consists only of numbers, letters, or labels (e.g., AB, 30°), do not
recognize or output it.
— Ignore all text embedded in abstract graphics (e.g., geometric figures, statistical charts,
function plots); do not include it in the question stem.
6. Figure Captions:
Ignore all figure captions; do not recognize or output them.
7. Table Processing:
— Recognize text in the table row-by-row according to its original order.
— Use a single space as the delimiter between columns (e.g., “No. Name 1 Zhang San 2
Li Si”).
Important Notes!!
— Only return the actual recognized text content.
— Do not add any explanations, analysis, hints, or extra notes.
— Do not solve the problem or return the answer.
— No image analysis is required; directly return the OCR results only.

Prompt for Figure Understanding Task

You are a professional mathematical figure analysis expert. Please analyze the mathematical
figure in the image and provide a detailed description.
Requirements:

1. Analyze only the mathematical figures in the image, including geometric figures, function
plots, and statistical charts.

2. Describe in detail the basic features, key elements, and mathematical properties of the
figure.

3. Your answer should contain only one part: description.

4. The description must clearly and thoroughly describe the elements, structures, geometric
shapes, or chart contents in the figure.

5. Do not solve the problem or perform OCR recognition; only analyze what is present in the
figure itself.
Directly output the description without adding any extra content, explanations, or hints.
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Table 4: Prompt for Response Generation.

Main Setting Prompt for Response Generation

Please solve the problem in the image by following these steps, and do not refuse to answer:
1. Problem Analysis: Clearly identify the problem requirements, known conditions, and the objective
to be solved from the image.
2. Solution Process:
(1) Fully utilize the information provided in the image.
(2) Present the reasoning and calculation process in detail.
(3) Explain the principles behind each key step.
(4) Perform verification or validation when necessary.
3. Final Answer:
(1) Place the answer inside \boxed{}.
(2) If there are multiple answers, place each one inside a separate \boxed{ }.
(3) Strictly follow the required format for numerical values, units, etc., as stated in the problem.

Iuer Setting Prompt for Response Generation

Please answer the following math problem and strictly follow the steps below. Do not refuse to answer.
1. OCR of the Question Text:
Scope
— Recognize only the printed question stem in the image.
— Ignore any handwritten content.
— Exclude problem number, year, region, and score.
Output Format
— Preserve the original layout, paragraphs, and line breaks.
— Do not merge or split paragraphs arbitrarily.
— Use English punctuation only.
Multiple-Choice Questions
— If options are text or numbers, recognize and output them completely.
— If options contain image elements, do not output any options.
Fill-in-the-Blank Questions
— Represent blanks with “____" (four underscores).
— Represent to-be-filled parentheses with “( )’ (two parentheses with four spaces).
Questions with Figures
— Ignore pure digits, letters, and labels inside the figure.
— Do not OCR text embedded in abstract graphics such as geometric figures, statistical charts, or
function plots.
Special Handling
— Figure captions: ignore completely.
— Dialogue-style context images: recognize only the question stem and ignore dialogues in the image.
— Tables: recognize row by row in the original order; separate columns with a single space.
Notes
— Recognize text content only.
— Do not add any explanations, analyses, or hints.
2. Figure Understanding:
— Analyze only the mathematical graphics in the image, including geometric figures, function plots,
and statistical charts.
— Describe the basic characteristics, key elements, and mathematical properties of the figure in detail.
— Your output should contain a single section named description.
— Description must detail the elements, structures, geometric shapes, or chart content present in the
figure.
— Do not solve the problem and do not perform OCR here; only analyze the figure content.
3. Solution Process:
(1) Fully utilize information from the image, the OCR step, and the figure understanding step.
(2) Present the reasoning and calculation steps in detail.
(3) Explain the principles behind each key step.
(4) Perform verification or validation when necessary.
4. Final Answer:
(1) Place the answer inside \boxed{}.
(2) If there are multiple answers, place each one inside a separate \boxed{}.
(3) Strictly follow the required format for numbers, units, and other specifications as stated in the
problem.
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Table 5: Prompt for Answer Extraction Task.

Prompt for Answer Extraction Task

You are a professional answer extraction expert. Please extract the final answer from the fol-
lowing text as accurately as possible, strictly following the priority strategy below:
Priority 1: Look for explicit answer keywords
- Search for the following keywords:

CLINT3 99 <.

* “final answer”, “answer”’, “result”
* “the answer is”, “the result is”
* Summary words such as “therefore”, “so”, “in conclusion” followed by the answer
content
- Extract the content that immediately follows these keywords
Priority 2: Extract from the end of the text
- If no explicit answer is found in the previous step, try to extract the most likely answer
from the last paragraph or last sentence of the text
Important Requirements:
1. Multiple answers should be separated by semicolons (;)
2. Return only the answer content itself, without extra explanations or formatting
3. If the answer cannot be determined, return null
Strictly follow the above priority order for extraction.

D.3 PROMPT FOR EXTRACT AND EVALUATE ANSWERS

To ensure consistent and objective measurement of model performance across all six experimental
settings, we design a two-stage evaluation pipeline comprising an Answer Extraction step followed
by an Answer Evaluation step.

In the extraction stage, we first apply direct string matching to capture any content enclosed in
\boxed{} from the model output. If no such match is found, we invoke a dedicated answer extraction
prompt to identify the final answer based on explicit keyword matching or, failing that, from the
concluding part of the output.

In the evaluation stage, the extracted answer is compared against the reference answer using a math-
ematical answer evaluation prompt, which enforces strict equivalence rules on numerical values,
algebraic expressions, units, and multiple-part answers, while supporting proportional partial credit
for partially correct responses. This design enables scalable, fine-grained, and reproducible accuracy
assessment under realistic educational conditions.

D.4 EVALUATION PROTOCOL

OCR Accuracy Evaluation. In real-world multimodal settings, OCR quality is often compro-
mised by noise, handwriting, or layout distortions. To assess the reliability of model-generated
OCR outputs, we adopt a hybrid metric that combines five components: numeric accuracy, keyword
accuracy, semantic similarity, format and structure accuracy, and a lexical term based on normalized
Levenshtein distance.

The final score is computed as:

Accocr = 0.2 - AcCpym + 0.2 - AcCreyword + 0.2 - Simger
+ 0.2 - AcCormat + 0.2 - (1 — LeVoorm)

Here, Accpum measures exact agreement on all numbers and units, AcCieywora €valuates proper nouns
and other key entities, Simge, reflects sentence-level meaning consistency, and AcCiorma; assesses
structural fidelity (tables, paragraphs, lists). Levyom, is the normalized Levenshtein distance between
the OCR output and the ground-truth question text. The first four scores are in [0, 1] following the
rubric above (with semantic decisions based on GPT-4.1-nano judgments), and the lexical compo-
nent contributes via (1 — Levpom ).
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Table 6: Prompt for Mathematical Answer Evaluation Task.

Prompt for Mathematical Answer Evaluation Task

You are a top-tier mathematics evaluation expert, tasked with rigorously and precisely determining the
correctness of model-generated answers.

Core Task

Determine whether the "Model Answer” below is mathematically and option-wise completely equivalent
to the "Reference Answer”, and assign a partial credit score based on the proportion of correct compo-
nents.

Evaluation Principles

1. Numerical Core Priority:

- Focus solely on the final numerical values, expressions, options, or conclusions.

- Ignore solution processes, explanatory text (e.g., “the answer is:”, “therefore the result is:”), variable
names (e.g., D, E, Q1), and irrelevant descriptions.

- Only retain mathematical content that directly corresponds to the reference answer for comparison.
2. Mathematical Equivalence (Strict Judgment):

- Fractions and decimals: 1/2 is equivalent to 0.5; 1/2 is equivalent to 5/10.

- Numerical formats: 10 is equivalent to 10.0; 1,887,800 is equivalent to 1887800 (ignore thousand
separators).

- Special symbols: 7 is equivalent to 3.14 (only when the problem explicitly allows approximation).

- Algebraic expressions: 2*+y is equivalent to y+2*; however, 18+6\sqrt {3} and 18-6\sqrt {3}
are not equivalent.

- Formatting: (v/3 + 3)/2 is equivalent to v/3/2 + 3/2.

- Range notation: z € [0, 1] is equivalent to 0 < z < 1.

- Operator Sensitivity: +, —, X, =, A (power), etc., must be strictly consistent; any symbol error
renders the expressions non-equivalent.

- Coordinate Points: (x,y) values must be numerically identical. Treat z and y as two sub-
components. If one is correct and the other wrong, assign 0.5 for that point.

- Whitespace-induced formatting differences: “y=2x+3" and “’y = 2 x + 3” are equivalent; ignore the
impact of spaces within expressions.

3. Unit Handling:

- Reference answer has no unit: if the model answer includes a correct and reasonable unit (e.g., 15 vs
15m), it is considered correct.

- Reference answer has a unit: incorrect units are considered wrong (e.g., 15m vs 15cm); if the model
answer lacks a unit but the numerical value is correct, it is considered correct.

- Ignore unit formatting differences: “180 { dm}?” and “180dm?>” are equivalent; correctly extract the
content.

4. Handling Multi-Part Answers (Critical!):

- You must split the reference answer into all sub-answers (blanks) based on its structure.

- Bach newline “\n”, semicolon “;”, or major section “(1)”, “(2)” indicates a separate blank.

- For each blank, further decompose it if it contains multiple components:

* “Or”-connected answers: e.g., “5 or -75” — two valid solutions. If model answers only “5”, give
0.5 for that blank.
* Coordinate pairs: e.g., (5,0) — treat as two values. If model says (5, 1), give 0.5.
* Multiple points: e.g., (1,0), (9, 8), (—1,9) — three points. Each correct point gives 1/3.
- Total score = sum of all correct sub-components / total number of sub-components.
- Always allow proportional partial credit unless explicitly stated otherwise.
5. Special Rules for Multiple-Choice Questions:

- If the reference answer is a single option (e.g., “B”), then as long as the model answer contains that
option letter (e.g., “B”, “B.”, “Option B”, “B. f’(z0) > g'(x0)”) and no other options, it is considered
correct — 1.0.

- If multiple options appear or an incorrect option is selected, it is considered wrong — 0.0.

6. Semantic Equivalence:

- Even if the phrasing differs, as long as the mathematical meaning is the same, it is considered correct.
7. Proof or Graphing Questions:

- If the question type is a proof or graphing question, treat the model answer as acceptable by default;
do not score it, and directly return <score>1.0</score>.

Scoring Criteria

- 1.0: All components are correct.

- 0.0-1.0: Assign partial credit proportionally based on the number of correct sub-components.

- 0.0: No component is correct.

- Round to two decimal places (e.g., 0.83, 0.67, 0.50).

Output Format
You must strictly return only the XML tag containing the score, with no additional text or explanation.
<score>score</score>
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Answer Accuracy Evaluation. Accy, requires that all sub-answers within a question be correct
for the model to receive credit. If any component is incorrect, the entire question is marked as wrong.
This metric emphasizes the completeness and consistency of chain-of-thought reasoning and aligns
with the standard pedagogical principle of “full marks only if fully correct.” It is formally defined
as:

N
1
Ace = = [Vj ef{l,... K}, &=

i,J ,J
i=1

Here, N denotes the total number of questions, K is the number of answer blanks in the i-th ques-

tion, a';f;d and af'; denote the model-predicted and ground truth answers for the j-th blank, respec-
tively. The indicator function I[-] returns 1 if the condition is satisfied, and = denotes mathematical

equivalence.

Acc permits partial correctness and is calculated based on the proportion of correctly predicted sub-
answers within each question. This metric captures the model’s partial understanding and reasoning
ability under imperfect outputs:

_ § : pred __ gt
Acc = N ? I |:a7;,j = am}
=1

Cr—

D.5 EVALUATION MODELS

We evaluate the performance of a diverse set of models on the MathReal benchmark, cat-
egorized into four groups: (a) Large Language Models (LLMs), serving as text-only base-
lines, including Deepseek-v3 |Liu et al.| (2024a), Deepseek-rl |Guo et al. (2025), Qwen3 |Yang
et al.| (2025a) and Qwen3-thinkingYang et al| (2025a); (b) Closed-source Multimodal Large
Language Models (MLLMs), including Grok-4 xAll (2025), Claude-sonnet-4 |Anthropic| (2025)),
Claude-sonnet-4-thinking |Anthropic| (2025), GPT-4.1 OpenAl| (2025a)), GPT-40 (OpenAl| (2024),
03 OpenAll (2025b), 04-mini |OpenAll (2025b), Qwen-VL-MaxBai et al.| (2023), Gemini-2.5-
flash-thinkingComanici et al.| (2025), Gemini-2.5-pro-thinkingComanici et al| (2025), Doubao-
1.5-vision-pro [ByteDance| (2025b), Doubao-1.5-thinking-vision-pro |ByteDance| (2025a), Doubao-
seed-1.6 ByteDance| (2025c), Doubao-seed-1.6-thinking |[ByteDance| (2025d); (c) Open-source
MLLMs, including Gemma-3-4b-it [Team et al.| (2025b)), Gemma-3-27b-it [Team et al.| (2025b),
Gemma-3n-e4b [Team et al.| (2025b), Qwen2.5VL-7BBai et al.| (2025), Qwen2.5VL-32BBai et al.
(2025), Qwen2.5VL-72BBai et al.| (2025), InternVL-3-8BZhu et al.| (2025), InternVL-3-14BZhu
et al.| (2025)), InternVL-3-38BZhu et al.| (2025), InternVL-3-78BZhu et al.| (2025), Kimi-VL-A3B-
InstructTeam et al.| (2025c)), Llama-4-Maverick |All (2025a)), GLM-4.1v-thinking-flashx |Al| (2025b)),
and ERNIE-4.5-VL-28B-A3B-PT [Baidu| (2025); and (d) Multimodal Reasoning Models, includ-
ing Keye-VL [Team et al| (2025d), OVR [Wei et al,| (2025), Revisual-R1 |Chen et al.| (2025b),
Skywork-R1V3 |Shen et al.[(2025), OpenVLThinker Deng et al.| (2025), ThinkLite-VL Wang et al.
(2025d), VLAA-Thinker (Chen et al.| (2025a), WeThink |Yang et al.| (2025b), MMR 1-Math-v0 Leng
et al.| (2025), MM-Eureka Meng et al.| (2025), MiMo-VL-7B-RL [Team et al| (2025a), and VL-
Rethinker|{Wang et al.[(2025a).

E RESULTS ANALYSIS

E.1 RESULTS BY QUESTION TYPES
Table OHIT|compare model performances across three question types using the loose accuracy (Acc)

average (Avg) as the primary metric. The analysis here focuses on multimodal closed-source, open-
source, and reasoning-oriented models.

Multiple-choice. Overall accuracy is relatively low, with the best-performing model Doubao-
seed-1.6 achieving an Avg of 42.3. The second-best closed-source model, Gemini-2.5-pro-thinking,
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Table 7: The Acc of the OCR and the six experimental settings of models.

Model Accocr I It +QM [+QG [+QM+DM 1+QG+DG
GLM-4.1v-thinking-flashx 81.8 245 19.6 249 325 22.1 349
Qwen-VL-Max 87.0 230 23.0 260 28.1 24.8 35.1
ERNIE-4.5-turbo-v1 89.8 304 305 284 32.7 27.8 36.6
Llama-4-Maverick 71.0 18.7 205 18.8 322 18.0 38.2
GPT-40 78.6 23.0 224 227 322 245 38.7
GPT-4.1 79.2 226 229 215 37.7 19.1 40.8
Claude-sonnet-4 54.0 147 138 15.0 36.5 15.2 45.1
Claude-sonnet-4-thinking 53.9 16.5 13.7 15.6 40.5 13.5 46.9
Doubao-1.5-vision-pro 87.8 39.1 392 358 44.1 36.7 51.8
04-mini 81.9 350 244 345 48.6 30.9 55.8
Grok-4 35.6 54 17 9.7 45.8 9.3 57.7
Gemini-2.5-flash-thinking 89.8 504 515 514 54.0 49.2 58.3
03 78.4 354 320 330 47.8 34.2 58.5
Doubao-seed-1.6-thinking 87.9 439 462 458 59.5 46.9 63.2
Doubao-1.5-thinking-vision-pro 89.8 539 569 526 61.7 533 64.1
Doubao-seed-1.6 89.7 514 438 525 59.5 48.3 64.2
Gemini-2.5-pro-thinking 94.0 51.1 574 593 62.0 61.9 66.0

Table 8: Acc Comparison: Clean vs. Real, where A = Accclean — ACCReal-

Model Real Clean A
Grok-4 5.6 12.7 +7.1
Qwen2.5VL-7b 18.2 20.0 +1.8
InternVL3-14b 21.2 21.8 +0.6
InternVL3-8b 18.6 233 +4.7
InternVL3-38b 20.6 25.1 +4.5
Claude-sonnet-4 15.8 26.7  +10.9
InternVL3-78b 23.1 29.0 +5.9
GPT-4.1 229 29.7 +6.8
GPT-40 24.1 31.0 +6.9
Claude-sonnet-4-thinking 20.1 31.8  +11.7
Llama-4-Maverick 18.5 31.8  +13.3
Qwen-VL-Max 222 32.1 +9.9
Qwen2.5VL-72b 31.7 32.6 +0.9
Qwen2.5VL-32b 21.9 32.8  +10.9
ERNIE-4.5-turbo-vl 322 33.0 +0.8
GLM-4.1v-thinking-flashx 24.6 36.0 +114
Doubao-1.5-vision-pro 42.0 49.6 +7.6
04-mini 414 50.8 +9.4
Gemini-2.5-flash-thinking 54.5 51.1 -34
03 40.7 53.1  +124
Gemini-2.5-pro-thinking 56.3 56.3 +0.0
Doubao-seed-1.6-thinking 47.8 57.1 +9.3
Doubao-1.5-thinking-vision-pro ~ 62.9 59.9 -3.0
Doubao-seed-1.6 56.2 63.6 +7.4

reaches 34.6, while the best open-source model, InternVL3-8B, also achieves 34.6. These results
indicate that multiple-choice questions are more vision-centric, favoring strong visual encoders ca-
pable of distinguishing among distractors rather than relying heavily on long-chain reasoning.

Fill-in-the-blank. This type yields the highest overall scores, with Doubao-1.5-thinking-vision-
pro achieving 67.7 and Doubao-seed-1.6 close behind at 63.8. The best open-source model, ERNIE-
4.5-Turbo-VL-Preview, reaches 34.5, and the top reasoning model, WeThink, achieves 30.9. Com-
pared with multiple-choice, fill-in-the-blank questions reward coherent step-by-step reasoning and
numerical computation, allowing models with strong symbolic reasoning capabilities to narrow the
gap with top vision models. Accuracy in this category could be further improved through better
normalization of numeric outputs, unit handling, and formatting.
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Constructed-response. Performance is moderate, with the top closed-source vision model
Doubao-1.5-thinking-vision-pro achieving 51.8, and the best open-source model ERNIE-4.5-Turbo-
VL-Preview reaching 29.9. The strongest reasoning-oriented model, MiMo-VL-7B-RL, scores 21.7.
Constructed-response questions require multi-step reasoning and coherent explanations, favoring
models that can maintain complete reasoning chains and produce structured final answers. Further
improvements could be achieved by explicitly presenting intermediate variables and incorporating
step verification to reduce omissions.

Cross-type comparison. Considering Acc Avg across the three types, the achievable performance
ceiling follows the order: Fill-in-the-blank (approximately 68%) ; Constructed-response (approxi-
mately 53%) ; Multiple-choice (approximately 42%). Multiple-choice questions are more depen-
dent on visual recognition, while fill-in-the-blank and constructed-response formats rely more heav-
ily on symbolic reasoning and structured output. Open-source and reasoning-oriented models con-
sistently trail behind the top closed-source models, highlighting gaps in both robust visual encoding
and end-to-end reasoning consistency.

E.2 INTRA-FAMILY PERFORMANCE PATTERNS

The Doubao family demonstrates strong geometric and structured reasoning capabilities. Doubao-
1.5-thinking-vision-pro achieves the highest strict accuracy in PG (43.3%), SG (43.2%), and SC
(48.5%), indicating superior performance in tasks requiring spatial understanding and formal visual
parsing. Within the family, Doubao-seed-1.6 outperforms its thinking variant on more abstract rea-
soning tasks. In LR, the non-thinking version leads with 32.6%, while the thinking model drops to
17.4%, suggesting that longer reasoning chains may hinder performance under noisy visuals. The
Gemini family also shows consistently strong and balanced performance. Gemini-2.5-pro-thinking
ranks among the top across tasks, with 48.5% in SC and over 40% in PG and SG. Even in the
most challenging LR category, it reaches 39.1%, indicating stable multimodal reasoning. InternVL
models show a reversed scaling pattern. The InternVL-3-78B model achieves the best LR score
among open models (15.2%), but underperforms the InternVL-3-38B model in SC, possibly due to
overfitting or degraded visual generalization at scale. The Qwen2.5VL family excels at structured
visual tasks. The 32B model leads in FG (18.6%) and SC (30.3%), showing strength in visual-text
alignment. However, scaling to 72B yields only marginal gains, especially in complex reason-
ing. Overall, different model families show strengths in specific task types—some favor spatial or
symbolic inference, others visual parsing. No model excels across all categories, underscoring the
current limitations in developing truly general-purpose MLLMs capable of handling diverse visual
reasoning tasks.

E.3 STRICT EVALUATION REVEALS INSTABILITY IN MULTI-STEP REASONING

While many models perform decently under Ace, real-world applications often demand fully cor-
rect multi-step solutions. Our evaluation reveals clear gaps between Accy: and Acc, exposing
weaknesses in reasoning stability and compositional understanding. For example, Gemini-2.5-pro-
thinking scores 48.1% Acc but drops to 42.9% under strict evaluation, reflecting small reasoning
failures or incomplete logic. More noticeably, InternVL-3-14B achieves 19.0% Acc but only 10.9%
Accy,, a gap of over 8 points, highlighting its difficulty with full-task consistency. Strict metrics
thus better reflect whether models can fully solve multi-step problems. They uncover bottlenecks
in long-form reasoning and align more closely with educational standards. Reporting both scores is
essential for a clearer picture of true problem-solving ability.

E.4 ANALYSIS OF OCR ACCURACY AND ANSWER ACCURACY

Overall Performance and Ranking. Based on Table[§] in the Clean setting the overall accuracy
shows a clear gap between the top performers and the rest. Doubao-seed-1.6 ranks first (63.6),
followed by Doubao-1.5-thinking-vision-pro (59.9), Gemini-2.5-pro-thinking (56.3), 03 (53.1),
Gemini-2.5-flash-thinking (51.1), and 04-mini (50.8). In the Real setting, the best-performing model
changes to Doubao-1.5-thinking-vision-pro (62.9), followed by Gemini-2.5-pro-thinking (56.3),
Doubao-seed-1.6 (56.2), and Gemini-2.5-flash-thinking (54.5). This indicates that the Doubao fam-
ily consistently dominates in both conditions, Gemini-2.5-pro-thinking maintains balanced perfor-
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Table 9: Comparison of model performances across five categories on multiple-choice questions.
PG: Plane Geometry, SG: Solid Geometry, LR: Logical Reasoning, FG: Function Graphs, SC: Sta-
tistical Charts. Acc is loose accuracy. The first and second highest accuracy of LLMs are bolded
and underlined, respectively.

Model Acc

PG SG LR FG SC Avg

LLMs (Question Text + Figure Description, CoT with 0-shot)
Qwen3-235B-A22B-thinking 125  60.0 66.7 14.3 66.7 34.6
DeepSeek-V3 125 40.0 66.7 14.3 66.7 30.8
Qwen3-235B-A22B-instruct 12.5 334 333 28.6 333 25.7
DeepSeek-R1 250 600 66.7 14.3 66.7 385
Closed Models (Image-only, CoT with 0-shot)
Grok-4 0.0 0.0 0.0 0.0 0.0 0.0
Claude-sonnet-4 0.0 20.0 0.0 28.6 333 15.4
Claude-sonnet-4-thinking 0.0 0.0 0.0 14.3 66.7 11.5
GPT-4.1 0.0 20.0 333 28.6 333 19.2
GPT-40 12.5 0.0 0.0 28.6 333 154
Qwen-VL-Max 0.0 0.0 0.0 28.6 333 11.5
04-mini 0.0 0.0 0.0 0.0 333 3.8
03 12.5 20.0 0.0 14.3 333 15.4
Doubao-1.5-vision-pro-32k 12.5 0.0 0.0 14.3 333 11.5
Doubao-seed-1.6-thinking 250 200 333 429 333 30.8
Gemini-2.5-flash-thinking 25.0 0.0 333 429 0.0 23.1
Gemini-2.5-pro-thinking 250 200 1000 286 333 346
Doubao-seed-1.6 37.5 40.0 66.7 28.6 66.7 42.3
Doubao-1.5-thinking-vision-pro 25.0  40.0 0.0 14.3 22.3 21.8
Open-source MLLMs (Image-only, CoT with 0-shot)
Gemma-3-4b-it 0.0 0.0 0.0 0.0 0.0 0.0
Gemma-3n-E4B 0.0 0.0 333 429 0.0 154
Gemma-3-27b-it 12.5 0.0 333 143 0.0 11.5
Kimi-VL-A3B-Instruct 0.0 0.0 0.0 28.6 0.0 7.7
Qwen2.5-VL-7B-Instruct 0.0 20.0 0.0 14.3 0.0 7.7
InternVL3-8B 37.5 200 0.0 429 667 34.6
InternVL3-14B 25.0 0.0 333 143 100.0 269
Llama-4-Maverick 0.0 0.0 0.0 286 333 11.5
InternVL3-78B 12.5 0.0 0.0 14.3 0.0 7.7
Qwen2.5-VL-32B-Instruct 12.5 0.0 333 28.6 333 19.2
InternVL3-38B 12.5 20.0 0.0 429 667 269
GLM-4.1v-thinking-flashx 0.0 0.0 333 28.6 333 154
Qwen2.5-VL-72B 12.5 0.0 0.0 429 333 19.2
ERNIE-4.5-Turbo-VL-Preview 25.0 0.0 0.0 28.6 333 19.2
Reasoner (Image-only, CoT with 0-shot)

Keye-VL-8B-Preview 0.0 0.0 0.0 14.3 333 7.7
OVR 0.0 0.0 0.0 0.0 66.7 7.7
Revisual-R1 0.0 0.0 0.0 14.3 66.7 11.5
OpenVLThinker 0.0 0.0 0.0 28.6 0.0 7.7
ThinkLite-VL 25.0 0.0 0.0 14.3 333 154
VLAA-Thinker-Qwen2.5VL-7B 12.5 20.0 0.0 143 0.0 11.5
WeThink 12.5 0.0 0.0 14.3 333 11.5
MMR1-Math-v0-7B 12.5 20.0 0.0 14.3 333 154
MM-Eureka 125 200 0.0 14.3 55.7 18.0
MiMo-VL-7B-RL 0.0 0.0 0.0 0.0 333 3.8
VL-Rethinker-7B 25.0 400 0.0 286 66.7  30.8
Skywork-R1V3-38B 250 200 333 143 777 282
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Table 10: Comparison of model performances across five categories on fill-in-the-blank questions.
PG: Plane Geometry, SG: Solid Geometry, LR: Logical Reasoning, FG: Function Graphs, SC: Sta-
tistical Charts. Accy; is strict accuracy, Acc is loose accuracy. The first and second highest accuracy
of LLMs are bolded and underlined, respectively.

Model Accstr Acc

PG SG LR FG SC Avg PG SG LR FG SC Avg

LLMs (Question Text + Figure Description, CoT with 0-shot)
Qwen3-235B-A22B-thinking 41.5 7.1 571 231 583 398 494 209 689 269 673 488
DeepSeek-V3 377 357 381 308 500 38.1 472 440 515 539 604 498
Qwen3-235B-A22B-instruct 472 214 38.1 30.8  50.0 407 60.0 36.1 60.6 468 624 559
DeepSeek-R1 49.1 500 381 231 50.0 442 603 559 506 565 743  59.0
Closed Models (Image-only, CoT with 0-shot)
Grok-4 11.3 7.1 0.0 0.0 0.0 6.2 16.8 9.5 6.3 0.0 6.2 10.9
Claude-sonnet-4 11.3 7.1 14.3 0.0 8.3 9.7 192 142 190 206 278 19.6
Claude-sonnet-4-thinking 18.9 7.1 19.0 0.0 83 14.2 302 166 206 205 257 252
GPT-4.1 170 143 143 154 250 168 237 143 285 282 452 262
GPT-40 189 143 143 7.7 0.0 14.2 265 220 313 256 285 270
Qwen-VL-Max 170 357 143 308 41.7 230 246 414 238 436 584 323
04-mini 302 286 333 308 167 292 412 357 460 532 341 421
03 434 429 238 385 250 372 603 524 366 552 438 526
Doubao-1.5-vision-pro-32k 283 357 238 7.7 16.7 248 40.7 404 413 384 534 419
Doubao-seed-1.6-thinking 472 500 238 308 250 389 60.0 595 40.8 538 582 555
Gemini-2.5-flash-thinking 509 571 286 385 417 451 622 619 460 525 708 59.0
Gemini-2.5-pro-thinking 453 429 476 308 50.0 442 575 635 587 429 743 58.6
Doubao-seed-1.6 509 571 524 308 333 478 60.1 667 732 512 740 63.8
Doubao-1.5-thinking-vision-pro 585 429 381 308 583  49.6 712 659 566 596 820 67.7
Open-source MLLMs (Image-only, CoT with 0-shot)
Gemma-3-4b-it 3.8 0.0 0.0 0.0 0.0 1.8 6.5 24 0.0 0.0 2.8 3.6
Gemma-3n-E4B 7.5 7.1 0.0 0.0 0.0 4.4 135 179 9.8 83 167  13.1
Gemma-3-27b-it 3.8 0.0 0.0 0.0 0.0 1.8 9.6 7.1 8.7 128 138 9.9
Kimi-VL-A3B-Instruct 7.5 14.3 0.0 7.7 0.0 6.2 169 166 174 18.0 8.2 16.2
Qwen2.5-VL-7B-Instruct 3.8 28.6  19.0 7.7 16.7 115 175 363 261 295 312 243
InternVL3-8B 9.4 14.3 0.0 0.0 0.0 6.2 18.0 226 9.0 154 253 174
InternVL3-14B 7.5 21.4 9.5 7.7 83 9.7 168 286 231 243 299 217
Llama-4-Maverick 170 143 190 7.7 0.0 14.2 262 226 253 154 208 238
InternVL3-78B 9.4 357 143  23.1 16.7 159 188 381 246 461 414 278
Qwen2.5-VL-32B-Instruct 9.4 357 143 308 333 18.6 168 38.1 245 539 500 287
InternVL3-38B 17.0  28.6 4.8 7.7 16.7 150 254 334 175 276 375 264
GLM-4.1v-thinking-flashx 13.2 0.0 9.5 15.4 83 10.6 275 206 222 314 340 268
Qwen2.5-VL-72B 132 214 143 7.7 83 13.3 252 426 300 384 542 328
ERNIE-4.5-Turbo-VL-Preview 208 214 9.5 154 250 18.6 307 386 238 378 616 345
Reasoner (Image-only, CoT with O-shot)

Keye-VL-8B-Preview 3.8 7.1 0.0 0.0 0.0 2.7 49 7.1 1.6 0.0 17.3 53
OVR 1.9 7.1 4.8 7.7 8.3 44 5.0 7.1 9.5 205 150 9.0
Revisual-R1 5.7 14.3 4.8 0.0 0.0 53 148 143 9.5 52 174 129
OpenVLThinker 132 214 4.8 154 167 133 190 386 189 333 298 242
ThinkLite-VL 9.4 28.6 143 7.7 8.3 12.4 174 387 253 262 382 248
VLAA-Thinker-Qwen2.5VL-7B 5.7 14.3 4.8 15.4 0.0 7.1 167 268 160 423 394 232
WeThink 7.5 214 190 23.1 83 13.3 20.8  37.1 36.8 384 498 309
MMR 1-Math-v0-7B 5.7 14.3 4.8 15.4 8.3 8.0 202 166 20.1 345 451 241
MM-Eureka 7.5 28.6 9.5 7.7 0.0 9.7 242 334 203 333 389 272
MiMo-VL-7B-RL 189 143 9.5 7.7 16.7  15.0 280 214 159 237 444 262
VL-Rethinker-7B 113 214 143 154 83 133 260 339 297 359 41.0 304
Skywork-R1V3-38B 20.8 7.1 9.5 30.8 8.3 16.8 358 304 198 525 277 332
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Table 11: Comparison of model performances across five categories on constructed-response ques-
tions. PG: Plane Geometry, SG: Solid Geometry, LR: Logical Reasoning, FG: Function Graphs,
SC: Statistical Charts. Accy, is strict accuracy, Acc is loose accuracy. The first and second highest
accuracy of LLMs are bolded and underlined, respectively.

Model Accgyr Acc

PG SG LR FG SC Avg PG SG LR FG SC Avg

LLMs (Question Text + Figure Description, CoT with 0-shot)
Qwen3-235B-A22B-thinking 263 326 227 217 389 282 321 375 273 319 565 345
DeepSeek-V3 253 304 273 304 61.1 290 424 351 398 424 768 42.1
Qwen3-235B-A22B-instruct 312 359 364 478 444 346 434 420 440 627 638 454
DeepSeek-R1 419 337 409 391 61.1 405 56.6 420 507 529 80.6 533
Closed Models (Image-only, CoT with O-shot)
Grok-4 43 22 0.0 0.0 0.0 29 5.5 33 0.0 0.0 1.8 4.0
Claude-sonnet-4 6.5 6.5 45 0.0 16.7 6.5 13.6 8.2 12.1 178 264 130
Claude-sonnet-4-thinking 9.1 7.6 4.5 13.0 11.1 8.8 16.8 8.3 12.1 14.5 14.8 14.0
GPT-4.1 11.3 14.1 9.1 0.0 333 12.3 21.1 19.5 189 196 435 216
GPT-40 11.8 152 13.6 8.7 222 132 227 208 212 225 259 222
Qwen-VL-Max 9.1 10.9 9.1 43 222 100 214 178 197 254 259 208
04-mini 263 239 136 174 333 246 37.8 300 20.1 363 482 350
03 23.1 283 9.1 0.0 444 232 319 345 19.7 117 463 312
Doubao-1.5-vision-pro-32k 280 283 182 304 333 279 426 382 243 479 370 403
Doubao-seed-1.6-thinking 344 239 9.1 435 333 305 46.1 305 212 493 578 411
Gemini-2.5-flash-thinking 414 359 13.6 435 61.1 393 532 426 273 537 708 49.6
Gemini-2.5-pro-thinking 392 424 227 478 500 40.2 507 473 349 602 597 49.8
Doubao-seed-1.6 382 348 9.1 435 556 367 517 419 246 554 592 480
Doubao-1.5-thinking-vision-pro 39.8 435 182  39.1 500 399 532 506 318 551 639 518
Open-source MLLMs (Image-only, CoT with 0-shot)
Gemma-3-4b-it 0.5 22 45 0.0 0.0 1.2 3.7 2.5 6.0 0.0 0.0 3.1
Gemma-3n-E4B 1.1 22 4.5 0.0 11.1 2.1 6.8 53 9.1 2.9 17.1 6.8
Gemma-3-27b-it 43 5.4 0.0 0.0 11.1 44 10.0 6.2 3.0 6.1 14.8 8.5
Kimi-VL-A3B-Instruct 2.7 10.9 0.0 43 0.0 4.7 100 149 3.0 145 11.6 113
Qwen2.5-VL-7B-Instruct 43 5.4 9.1 0.0 0.0 44 149 111 235 13.1 190 145
InternVL3-8B 7.0 9.8 9.1 43 11.1 7.9 145 154 151 72 27.3 15.0
InternVL3-14B 7.0 14.1 4.5 0.0 16.7 8.8 148 182 151 8.7 282 16.1
Llama-4-Maverick 102 109 9.1 43 5.6 9.7 189 133 212 174 218 17.6
InternVL3-78B 7.0 13.0 182 43 16.7 9.7 17.1 172 273 174 356 188
Qwen?2.5-VL-32B-Instruct 8.6 10.9 9.1 8.7 27.8 10.3 19.1 164 136 203 370 19.0
InternVL3-38B 8.1 14.1 13.6 43 222 10.6 18.1 176 16,6 203 412 192
GLM-4.1v-thinking-flashx 15.1 15.2 4.5 0.0 222 138 282 217 7.6 160 314 244
Qwen2.5-VL-72B 124 174 9.1 13.0 222 141 275 226 136 304 357 259
ERNIE-4.5-Turbo-VL-Preview 172 130 182 13.0 278 164 333 201 288 312 453 299
Reasoner (Image-only, CoT with O-shot)

Keye-VL-8B-Preview 32 43 0.0 43 5.6 35 4.8 4.7 0.0 43 7.4 4.6
OVR 32 54 45 8.7 11.1 4.7 7.6 7.6 106 163 14.8 8.7
Revisual-R1 6.5 5.4 45 43 11.1 6.2 11.6 6.9 9.1 10.1 250 108
OpenVLThinker 32 7.6 9.1 0.0 11.1 5.0 142 115 9.1 116 254 136
ThinkLite-VL 43 7.6 45 0.0 11.1 53 16.1 12.5 9.1 185 287 15.5
VLAA-Thinker-Qwen2.5VL-7B 54 9.8 13.6 0.0 16.7 73 16.0 16.1 227 145  36.1 17.4
WeThink 6.5 8.7 9.1 43 5.6 7.0 16.8 162 216 189 222 174
MMRI1-Math-v0-7B 9.7 10.9 45 43 11.1 9.4 20.1 180 106 21.8 287 19.5
MM-Eureka 5.4 14.1 9.1 0.0 222 8.5 17.3 19.8 205 123 36.1 18.8
MiMo-VL-7B-RL 15.1 13.0 0.0 13.0 222 138 234 198 6.0 203 338 217
VL-Rethinker-7B 9.7 13.0 13.6 8.7 16.7 11.1 202 187 197 260 263 205
Skywork-R1V3-38B 17.2 7.6 45 174 222 141 289 137 151 319 314 243
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Figure 11: Scatter plot of the relationship between OCR accuracy and accuracy in the I+QG setting,
where the size of each circle represents the difference in accuracy between the 1+QG setting and the
[+QM setting.

mance across domains, while models like 03 and o4-mini have stronger upper bounds in the Clean
setting but drop in ranking for Real, showing higher sensitivity to input cleanliness.

Robustness and A Analysis. From the perspective of A = Accciean — ACCRreal, @ smaller ab-
solute value indicates greater robustness across domains. The most stable model is Gemini-
2.5-pro-thinking (A = 0.0), followed by ERNIE-4.5-turbo-vl (+0.8), InternVL3-14b (+0.6), and
Qwen2.5VL-72b (+0.9), suggesting minimal dependence on input cleaning. Most mainstream mod-
els gain between 5 and 10 percentage points in Clean compared to Real, such as GPT-40 (+6.9),
GPT-4.1 (+6.8), 04-mini (+9.4), Doubao-1.5-vision-pro (+7.6), and Qwen-VL-Max (+9.9), indi-
cating that standardization and denoising benefit a wide range of systems. Notably, two atyp-
ical patterns emerge: first, models with negative A, including Gemini-2.5-flash-thinking (-3.4)
and Doubao-1.5-thinking-vision-pro (-3.0), perform better in Real than in Clean, possibly due to
stronger adaptation to realistic noise and layout variations; second, models with very large A, such
as Llama-4-Maverick (+13.3), 03 (+12.4), Claude-sonnet-4-thinking (+11.7), GLM-4.1v-thinking-
flashx (+11.4), Qwen2.5VL-32b (+10.9), and Claude-sonnet-4 (+10.9), show substantial benefits
from cleaner inputs, implying higher vulnerability to noise and complex formatting.

Family and Model-Type Comparison. Within the Doubao series, Doubao-1.5-thinking-vision-
pro leads in Real accuracy (62.9) but slightly drops in Clean (negative A), making it well-suited for
raw, noisy data. Doubao-seed-1.6 achieves the highest Clean score (63.6) while remaining compet-
itive in Real (56.2), representing the strongest all-around performer. The Gemini family presents
a contrast: Gemini-2.5-pro-thinking achieves perfect robustness (A = 0) and high scores in both
domains, while Gemini-2.5-flash-thinking is notably stronger in Real than Clean. OpenAI’s 03 and
04-mini benefit greatly from cleaner inputs (large positive A), making them excellent candidates
for pipelines with strong preprocessing. Other major model families, such as GPT-40/4.1, Claude,
Qwen, and InternVL, generally follow the trend of significantly higher accuracy in Clean, reinforc-
ing the importance of preprocessing for optimal performance.
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F THE USE OF LARGE LANGUAGE MODELS

In this work, we used LLMs only in a supportive role for aid and polish writing. Specifically,
LLM assistance was employed for improving the clarity and fluency of exposition in the Abstract,
Introduction, and Related Work sections. In addition, LLMs were used for formatting support,
including converting mathematical expressions into standard I£TEX notation and organizing dataset
statistics and results into well-formatted tables and figures. All substantive research contributions
were performed entirely by the authors without reliance on LLMs.
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Figure 12: Samples of Plane Geometry.
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Figure 13: Samples of Solid Geometry.
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Figure 14: Samples of Logical Reasoning.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

.
4. Function Graphs
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Figure 15: Samples of Function Graphs.
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