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ABSTRACT

Multimodal Large Language Models (MLLMs) have demonstrated remarkable
capabilities in visual mathematical reasoning across various existing benchmarks.
However, these benchmarks are predominantly based on clean or processed mul-
timodal inputs, without incorporating the images provided by real-world Kinder-
garten through 12th grade (K–12) educational users. To address this gap, we
introduce MATHREAL, a meticulously curated dataset comprising 2,000 math-
ematical questions with images captured by handheld mobile devices in authen-
tic scenarios. Each question is an image, containing the question text and vi-
sual element. We systematically classify the real images into three primary cat-
egories: image quality degradation, perspective variation, and irrelevant content
interference, which are further delineated into 14 subcategories. Additionally,
MATHREAL spans five core knowledge and ability categories, which encompass
three question types and are divided into three difficulty levels. To comprehen-
sively evaluate the multimodal mathematical reasoning abilities of state-of-the-art
MLLMs in real-world scenarios, we design six experimental settings that enable
a systematic analysis of their performance. Through extensive experimentation,
we find that the problem-solving abilities of existing MLLMs are significantly
challenged in realistic educational contexts. Based on this, we conduct a thor-
ough analysis of their performance and error patterns, providing insights into their
recognition, comprehension, and reasoning capabilities, and outlining directions
for future improvements.

1 INTRODUCTION

Recent advances in Large Language Models (LLMs) have catalyzed the development of MLLMs,
which are capable of jointly interpreting visual and textual information. This evolution has sub-
stantially enhanced model performance across a broad range of multimodal understanding tasks,
including visual question answering, diagram interpretation, document analysis, and mathematical
reasoning. As MLLMs become increasingly adept at bridging text and vision, their reasoning ca-
pabilities, particularly in domains requiring precise symbol processing and structured logic, have
drawn significant attention from the research community.

With the rapid development of reasoning models, an increasing number of mathematical reason-
ing benchmarks have been proposed, including both pure-text benchmarks and multimodal bench-
marks. Pure-text mathematical reasoning benchmarks, such as AIME24 Ankner et al. (2024),
AIME25 Jaech et al. (2024), OlympiadBench He et al. (2024), and Polymath Wang et al. (2025e),
primarily focus on evaluating reasoning ability from textual question statements. More recently,
multimodal benchmarks have been introduced to incorporate visual contexts, such as MathVista Lu
et al. (2023), MathVerse Zhang et al. (2024b), TrustGeoGen Fu et al. (2025), MM-MATH Sun et al.
(2024), MathVision Awais et al. (2024), LogicVista Xiao et al. (2024), DynaMath Zou et al. (2024),
VisOnlyQA Kamoi et al. (2024), MathGlance Sun et al. (2025), VisioMath Li et al. (2025), MV-
MATH Wang et al. (2025b), GeoEval Zhang et al. (2024a), and We-Math Qiao et al. (2024). These
benchmarks provide diverse evaluation settings that test not only pure symbolic reasoning but also
multimodal perception and reasoning, thereby driving progress in the development of more general
and robust MLLMs.
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Fill-in-the-Blank Constructed-Response

Question: In the table on the right, if a is
directly proportional to b, the "?" should
be filled with ( ); if a is inversely
proportional to b, the "?" should be filled
with ( ).
Answer: 9, 1

Category: Plane Geometry
Real-World  Challenge Level: 7

Image Quality Degradation: 1
Image Perspective Variation: 5
Content Interference: 1

Multiple-Choice

Category: Function Graphs
Real-World  Challenge Level: 11

Image Quality Degradation: 7
Image Perspective Variation: 4 
Content Interference: 0

Question: The graph
of a proportional
function is shown in
the figure, then the
expression of this
function is ( )

Question: In the
figure below, if
∠1 = 125° and
∠2 + ∠3 = 230° ,
what is the
measure of ∠4?
Answer: 95°

Category: Logical Reasoning
Real-World  Challenge Level: 7

Image Quality Degradation: 1
Image Perspective Variation: 1 
Content Interference: 5

A. 𝑦𝑦 = 𝑥𝑥 B. 𝑦𝑦 = −2𝑥𝑥
C. 𝑦𝑦 = −𝑥𝑥 D. 𝑦𝑦 = −1

2
𝑥𝑥

Answer: C

Figure 1: Sampled MATHREAL examples from each question type. Each question contains a real
image and annotated information.

Despite these advancements, the majority of existing multimodal math benchmarks consist of clean
or post-processed images, which rarely account for cases encountered by real-world users, making
it difficult to assess how multimodal models perform in real environments. For instance, K–12 users
often capture textbook pages or homework questions using handheld mobile devices to ask models
for help. Real-world scenarios are often more challenging than traditional clean image inputs and the
entire question text is embedded within the image, unlike conventional benchmarks that frequently
rely on textual inputs. Additionally, mathematical question images captured by real-world users
often reflect a distribution that differs substantially from both prior multimodal math benchmarks
and the training data of existing models, as they are embedded in authentic educational contexts and
aligned with real user needs, thereby posing joint challenges for both perception and reasoning.

To bridge this gap, we introduce MATHREAL, a novel benchmark designed to assess the perfor-
mance of MLLMs on real-world, visually grounded K–12 mathematical questions. To support this,
we develop a comprehensive data construction pipeline tailored to real-world multimodal math ques-
tions, addressing the challenges of collection, annotation, and validation under realistic conditions.
MATHREAL comprises 2,000 high-quality questions sourced from authentic educational contexts,
each captured via mobile photography as an image containing a figure, requiring models to first per-
ceive visual content before performing reasoning. We define three primary challenges commonly
encountered in real-world K–12 educational scenarios: image quality degradation, perspective vari-
ation, and irrelevant content interference, which are further divided into 14 fine-grained subcate-
gories, such as blur, rotation, handwritten answers, etc.

To evaluate the multimodal mathematical reasoning abilities of MLLMs under real-world condi-
tions, we construct MATHREAL with carefully designed annotations. Every question image spans
five core knowledge and ability categories, three question types, and three difficulty levels. The
dataset includes three question types and is systematically categorized across three difficulty levels
and five knowledge domains, such as geometry, algebra, statistics, logical reasoning, and function
graphs. To ensure high-quality and consistent annotations, each question is independently verified
by at least two expert annotators, and is enriched with precise ground-truth metadata, including the
ground-truth question text, detailed descriptions of visual elements, and correct answers.

We conduct extensive evaluations on MATHREAL across 4 LLMs and 40 multimodal models. Even
in relatively simple K–12 scenarios, the best-performing model Doubao-1.5-thinking-vision-pro at-
tains only 53.9% accuracy, in sharp contrast to the near-human or competition-level performance
often reported on established mathematical benchmarks, underscoring the substantial gap to real-
world applicability and the necessity of MATHREAL grounded in authentic educational scenarios.
In conclusion, the contributions of this paper are summarized as follows:

• We propose MATHREAL, the first real-world benchmark of 2,000 K–12 multimodal math
questions photographed in natural settings, covering 3 systematic characterizations of real-
world scenarios, 5 knowledge and ability categories, 3 question types, and 3 difficulty
levels.
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Table 1: Key Statistics of MATHREAL. The unit
of question length is words.

Statistic Number

Total questions 2000
- Multiple-Choice Questions 104
- Fill-in-the-Blank Questions 475
- Constructed-Response Questions 1421
Questions in the testmini set 480

Elementary-level Questions 779
Middle School-level Questions 883
High School-level Questions 338

Questions with only real images 745
Questions with real images and clean images 1255

Questions with a single figure 1296
Questions with multiple figures 704
Questions with a single sub-question 829
Questions with multiple sub-questions 1171

Minimum question length 7
Maximum question length 451
Average question length 122.03
Average answer length 27.25

Accstr Acc

Logical Reasoning

Function Graphs

Statistical ChartsStatistical Charts

Function Graphs

Logical Reasoning

Solid Geometry

Plane Geometry

Average Accuracy Average Accuracy

Plane Geometry

Solid Geometry

40

50

60

Doubao-1.5-thinking-vision-pro
Gemini-2.5-pro-thinking

GPT-4o
ERNIE-4.5-turbo-vl

Qwen2.5VL-72B
VL-Rethinker

Figure 2: Performance comparison of six
MLLMs on five categories and overall average
accuracy. The radar chart shows results un-
der two evaluation standards: strict accuracy
(Accstr) and loose accuracy (Acc), symmetri-
cally arranged across 12 axes.

• We evaluate 40 MLLMs under 6 experimental settings to assess their reasoning abilities un-
der real-world conditions. Our results demonstrate a notable performance gap between real
and clean images, indicating that existing MLLMs remain far from reliable when applied
in real-world educational scenarios.

• Through controlled experiments, we demonstrate that visual conditions commonly encoun-
tered in real-world scenarios, such as blur, rotation, and handwritten answers, significantly
impair the reasoning performance of current MLLMs. In contrast, these models achieve
notably higher accuracy when provided with clean textual or visual inputs, indicating that
their visual perception components remain fragile when exposed to realistic distortions.

2 MATHREAL

While MLLMs have shown strong performance on existing visual math benchmarks, these bench-
marks predominantly feature clean inputs and rarely reflect usage in real-world educational scenar-
ios. This is particularly relevant because MLLMs have the potential to explain solutions and evaluate
answer correctness in real educational settings. To bridge this gap, we present MATHREAL, a bench-
mark grounded in naturally captured images and designed to evaluate MLLMs under realistic visual
conditions.

2.1 REAL VISUAL MATH DATASET

Dataset Overview. MATHREAL comprises 2,000 math question instances, each represented as a
noisy image captured via handheld mobile devices under real conditions. All images are sourced
from authentic K–12 educational materials, including textbooks, exam papers, and printed exercises.
The photographs reflect a wide range of real-world acquisition scenarios, encompassing three ma-
jor categories of noise: image quality degradation, image perspective variation, and handwriting
interference. These three categories are further divided into a total of 14 fine-grained subtypes, pro-
viding a rich taxonomy of real-world imperfections. This collection process intentionally preserves
the complexity and imperfection inherent to mobile-based image capture in practical settings.

Each sample in MATHREAL is an image that contains a complete math question, with both the
question text and the associated figures embedded within the image rather than provided as separate
clean inputs. The dataset includes 1,296 questions with a single figure and 704 questions with
multiple figures. It also includes 829 questions with a single sub-question and 1,171 with multiple
sub-questions, providing diverse reasoning structures. All questions are manually annotated with
three supplementary elements: the ground-truth question text (QG), an exact visual description of the

3
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figure present in the image (DG), and the correct reference answer. The purpose of these annotations
is to enable a systematic analysis of models’ multimodal perception and reasoning abilities in real-
world scenarios.

The dataset includes three types of questions: multiple-choice, fill-in-the-blank, and constructed-
response. In terms of academic stage, questions are distributed across three educational stages:
primary school, middle school, and high school, ensuring coverage of content across the K–12
spectrum. Additionally, 745 questions are accompanied only by real images, while 1,255 are paired
with both real images and clean images, which exclude real-world artifacts. The dataset also includes
a testmini subset of 480 questions. Detailed statistics on question types and visual content categories
are summarized in Table 1.

Fully Human-verified4

Math questions 
with figures

Filtering2

Model
GPT-4o

Doubao-1.5-Vision-Pro 
Qwen2.5-VL-Instruct-72B

Conditions
· Single Question Only
· Complete Question
· Figure Relevant to Solution

Manual Annotation3

Re-screening

Annotation of real-world 
scenario categories and levels

Metadata

Image Quality Degradation
Image Perspective Variation
Content Interference

Three Conditions

Question, Answer, Description 
(bilingual)
Table, Educational Stage, 
Question Type, Category

Subject
Chinese, Math,

English, Chemistry
Physics, Biology…

Modality

w/o Figures
w Figures

Question Repository1

Figure 3: The flowchart of data construction, in-
cluding data filtering and manual annotation.

Data Collection Process. We construct the
dataset by sampling 1.5 million photographed
math questions from a large-scale user-
uploaded repository. A two-stage filtering
process is applied to ensure quality and rel-
evance. First, a domain-specific classifier
selects math-related samples containing fig-
ures. Then, GPT-4o, Doubao-1.5-vision-
pro-32k, and Qwen2.5-VL-Instruct-72B inde-
pendently evaluate each image to determine
whether it contains a single, complete ques-
tion and whether the figure is essential. Sam-
ples with irrelevant visuals or dialogue-style
formats are excluded. Only those approved
by all three models are retained, resulting in
a high-quality dataset for evaluating the visual
reasoning capabilities of MLLMs.

Data Annotation Process. We build a
Gradio-based platform and organize the anno-
tation into three fully manual stages. In Stage
One, we filter out samples that do not meet
benchmark criteria, such as incomplete ques-
tions, multiple-question images, or irrelevant
figures. In Stage Two, we annotate image
conditions according to a predefined taxon-
omy covering three major real-world scenario
types. In Stage Three, we annotate question-
level metadata, including question content,
type, educational stage, knowledge category,
figure descriptions, and ground truth answers.
All question-level metadata annotations (in-
cluding real-world challenge level) are conducted independently by two different professional anno-
tators. In cases where the two annotators disagree, a third professional annotator will re-annotate the
sample until consensus is reached. Detailed annotation rules for the real-world challenge level are
provided in the Appendix. In the end, we conduct a fully human-verified process to ensure that the
final dataset reflects diverse real-world conditions while maintaining high semantic and structural
quality for evaluating multimodal models.

2.2 DATA CHARACTERISTICS

In contrast to other MLLMs math reasoning datasets, the unique characteristics of MATHREAL are
summarized as “vision-only input” and “in-the-wild challenges”. These two features better align
with the data distribution in real educational scenarios and pose distinct challenges to the perception
and reasoning capabilities of MLLMs.

4
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Figure 4: Acc of five models under different in-
put settings.

Grok-4

Claude-sonnet-4

InternVL-3-78B
GPT-4.1

GPT-4o

Claude-sonnet-4-thinking

Llama-4-Maverick

Qwen-VL-Max

GLM-4.1v-thinking-fla
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Gemini-2.5-fla
sh-thinking

Doubao-1.5-thinking-visio
n-pro

Doubao-seed-1.6
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Real
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Figure 5: Acc comparison of models on real
vs. clean images across selected 175 samples
in MATHREAL testmini.

Vision-Only Input. In real educational scenarios, all information necessary for solving mathemat-
ical questions, including the question statement, figures, or diagrams, is typically contained within
a single image. This requires models to first perceive and extract key information from the image
before proceeding to reason and solve the question. Correspondingly, MATHREAL uses a single raw
image as the sole input. However, to decouple perception and reasoning, the dataset provides QG
and DG as supplementary annotations , facilitating fine-grained evaluation of MLLMs’ capabilities.

In-the-Wild Challenges. In real educational scenarios, raw images often contain substantial noise
due to unconstrained capture conditions. This challenges models to robustly perceive critical con-
tent while ignoring non-essential artifacts. To reflect this realism, MATHREAL categorizes noise
into three major categories, encompassing 14 fine-grained subtypes. Specifically, image quality
degradation includes blur, underexposure/overexposure, shadow coverage, and glare; image per-
spective variation includes rotation, in-plane tilt, non-planar capture, and background distortion;
irrelevant content interference includes handwritten questions, reverse side content, question mark-
ing, figure marking, handwritten answer for multiple-choice questions, and handwritten process for
constructed-response questions. Detailed annotations are provided for each subtype.

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

Data Preparation and Subset Division. The MATHREAL dataset contains 2,000 questions. To
enable faster evaluation and model development validation, we divide the dataset into two subsets:
testmini and test. The testmini subset includes 480 questions and serves as a validation set for model
development or for users with limited computational resources. The test subset consists of the
remaining 1,520 questions and functions as the standard evaluation set. We use a stratified random
sampling strategy across different categories, ensuring that the sample sizes within each stratum
are proportional to those in the full dataset, thus maintaining statistical representativeness. In the
experiments that follow, all quantitative results are reported using the testmini subset of MATHREAL.

Experimental Settings. To evaluate the reasoning capability of MLLMs in real-world, image-
based mathematical questions, we design six experimental settings that progressively disentan-
gle visual perception and reasoning. Each question is an image containing both textual content
(the question) and visual elements (the figure, which can be represented by a textual description).
Based on this, three primary input modalities are defined: image only (I), which serves as the
primary evaluation; image with human-annotated question text (I+QG); and image with human-
annotated question text and figure description (I+QG+DG). Two reasoning paradigms are consid-
ered: a one-stage approach, where the model performs question recognition and reasoning jointly
from the raw image (IUER), and a two-stage approach, where the model first generates intermediate

5
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Table 2: Comparison of model performances across five categories. PG: Plane Geometry, SG: Solid
Geometry, LR: Logical Reasoning, FG: Function Graphs, SC: Statistical Charts. Accstr is strict
accuracy, Acc is loose accuracy. The first and second highest accuracy of LLMs are bolded and
underlined, respectively.

Model Accstr Acc

PG SG LR FG SC Avg PG SG LR FG SC Avg

LLMs (Question Text + Figure Description, CoT with 0-shot)

Qwen3-235B-A22B-thinking 29.1 30.6 41.3 20.9 48.5 31.2 35.2 36.4 48.8 27.5 61.4 37.9
DeepSeek-V3 27.5 31.5 34.8 27.9 57.6 31.2 42.4 36.5 46.9 41.3 69.9 43.3
Qwen3-235B-A22B-instruct 34.0 33.3 37.0 39.5 45.5 35.4 46.0 40.9 50.8 52.3 60.5 46.8
DeepSeek-R1 42.9 36.9 41.3 30.2 57.6 41.2 56.3 44.5 51.7 47.7 77.0 53.8

Closed Models (Image-only, CoT with 0-shot)

Grok-4 5.7 2.7 0.0 0.0 0.0 3.5 7.7 3.9 2.9 0.0 3.3 5.4
Claude-sonnet-4 7.3 7.2 8.7 4.7 15.2 7.7 14.3 9.5 14.5 20.4 27.5 14.7
Claude-sonnet-4-thinking 10.9 7.2 10.9 9.3 15.2 10.2 19.1 9.0 15.2 16.3 23.5 16.5
GPT-4.1 12.1 14.4 13.0 9.3 30.3 13.8 21.0 18.9 24.2 23.7 43.2 22.6
GPT-4o 13.4 14.4 13.0 11.6 15.2 13.5 23.2 20.0 24.4 24.4 27.5 23.0
Qwen-VL-Max 10.5 13.5 10.9 16.3 30.3 13.1 21.4 19.9 20.3 3.4 38.4 23.0
o4-mini 26.3 23.4 21.7 18.6 27.3 24.6 37.3 29.4 30.6 35.5 41.7 35.0
o3 27.1 29.7 15.2 14.0 36.4 26.0 37.3 36.1 26.1 25.2 44.2 35.4
Doubao-1.5-vision-pro-32k 27.5 27.9 19.6 20.9 27.3 26.2 41.2 36.7 30.5 39.5 42.6 39.1
Doubao-seed-1.6-thinking 36.8 27.0 17.4 39.5 30.3 32.5 48.4 33.7 30.9 49.6 55.8 43.9
Gemini-2.5-flash-thinking 42.9 36.9 21.7 41.9 48.5 39.8 54.2 43.1 36.2 51.6 64.4 50.4
Gemini-2.5-pro-thinking 40.1 41.4 39.1 39.5 48.5 40.8 51.3 48.1 50.0 49.8 62.6 51.1
Doubao-seed-1.6 40.9 37.8 32.6 37.2 48.5 39.6 53.0 45.0 49.5 49.8 65.3 51.4
Doubao-1.5-thinking-vision-pro 43.3 43.2 26.1 32.6 48.5 41.0 56.2 52.1 41.0 49.8 66.7 53.9

Open-source MLLMs (Image-only, CoT with 0-shot)

Gemma-3-4b-it 1.2 1.8 2.2 0.0 0.0 1.2 4.2 2.4 2.9 0.0 1.0 3.1
Gemma-3n-E4B 2.4 2.7 4.3 7.0 6.1 3.3 8.1 6.6 11.0 11.0 15.4 8.8
Gemma-3-27b-it 4.5 4.5 2.2 2.3 6.1 4.2 10.0 6.0 7.6 9.5 13.1 9.0
Kimi-VL-A3B-Instruct 3.6 10.8 0.0 9.3 0.0 5.2 11.1 14.5 9.4 17.8 9.3 12.2
Qwen2.5-VL-7B-Instruct 4.0 9.0 13.0 4.7 6.1 6.2 15.0 14.7 23.2 18.2 21.7 16.5
InternVL3-8B 8.5 10.8 4.3 9.3 12.1 9.0 16.0 16.5 11.4 15.5 30.2 16.6
InternVL3-14B 7.7 14.4 8.7 4.7 21.2 10.0 15.6 18.7 20.0 14.3 35.4 18.0
Llama-4-Maverick 11.3 10.8 13.0 9.3 6.1 10.8 19.8 13.9 21.7 18.6 22.5 18.7
InternVL3-78B 7.7 15.3 15.2 11.6 15.2 11.0 17.3 19.1 24.3 25.6 34.5 20.3
Qwen2.5-VL-32B-Instruct 8.9 13.5 13.0 18.6 30.3 12.7 18.4 18.4 19.9 31.8 41.4 21.3
InternVL3-38B 10.1 16.2 8.7 11.6 24.2 12.5 19.5 19.7 15.9 26.2 42.2 21.4
GLM-4.1v-thinking-flashx 14.2 12.6 8.7 9.3 18.2 13.1 27.1 20.5 15.9 22.7 32.5 24.5
Qwen2.5-VL-72B 12.6 17.1 10.9 16.3 18.2 14.2 26.5 24.1 20.2 34.9 42.2 27.2
ERNIE-4.5-Turbo-VL-Preview 18.2 13.5 13.0 16.3 27.3 17.1 32.5 21.5 24.6 32.7 50.2 30.4

Reasoner (Image-only, CoT with 0-shot)

Keye-VL-8B-Preview 3.2 4.5 0.0 4.7 6.1 3.5 4.7 4.8 0.7 4.7 13.4 4.9
OVR 2.8 5.4 4.3 7.0 15.2 4.8 6.8 7.2 9.4 14.9 19.6 8.7
Revisual-R1 6.1 6.3 4.3 4.7 12.1 6.2 11.9 7.5 8.7 9.3 26.0 11.3
OpenVLThinker 5.3 9.0 6.5 9.3 12.1 7.1 14.8 14.4 13.0 20.9 24.7 15.8
ThinkLite-VL 6.1 9.9 8.7 4.7 12.1 7.5 16.7 15.3 15.9 20.2 32.5 17.7
VLAA-Thinker-Qwen2.5VL-7B 5.7 10.8 8.7 7.0 9.1 7.5 16.0 17.6 18.2 22.9 34.0 18.5
WeThink 6.9 9.9 13.0 11.6 9.1 8.8 17.5 18.1 27.1 24.0 33.2 20.2
MMR1-Math-v0-7B 8.9 11.7 4.3 9.3 12.1 9.4 19.8 17.9 14.3 24.4 35.1 20.3
MM-Eureka 6.1 16.2 8.7 4.7 15.2 9.2 18.6 21.5 19.0 19.0 38.9 20.7
MiMo-VL-7B-RL 15.4 12.6 4.3 9.3 21.2 13.5 23.7 19.1 10.1 18.0 37.6 21.8
VL-Rethinker-7B 10.5 15.3 13.0 14.0 18.2 12.7 21.6 21.6 23.0 29.4 35.3 23.4
Skywork-R1V3-38B 18.2 8.1 8.7 20.9 21.2 15.4 30.3 16.1 18.4 35.3 34.3 26.6

representations—model-generated question text (QM) and figure description (DM)—followed by
reasoning (I+QM and I+QM+DM). This framework enables systematic analysis of perception and
reasoning under realistic conditions. Since in real-world scenarios users would not input models in
a few-shot manner, we restrict our evaluation to the CoT with 0-shot setting only.

3.2 EVALUATION PROTOCOL

Strict Accuracy (Accstr). Accstr requires that all sub-answers within a question be correct for the
model to receive credit. If any sub-answer is incorrect, the entire question is marked wrong.

Loose Accuracy (Acc). Acc allows partial correctness and is computed as the proportion of cor-
rectly answered sub-questions within each question.
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For both metrics, an automated scoring pipeline based on GPT-4.1-nano compares model answers
against reference answers, enforcing strict rules for mathematical equivalence, numerical tolerance,
unit consistency, and symbolic structure to ensure scalable and reliable evaluation in real-world
tasks.

3.3 MAIN RESULTS

Robustness Challenge Under Real-world Visual Noise. MATHREAL presents math questions
photographed in realistic settings, introducing three key types of visual degradation: image qual-
ity deterioration, viewpoint shifts, and handwritten annotations. These factors pose substantial
challenges to visual understanding and reasoning for MLLMs. Evaluation reveals sharp perfor-
mance disparities under these conditions. Under the Acc, the top-performing models are Doubao-
1.5-thinking-vision-pro (53.9%) and Doubao-seed-1.6 (51.4%), while GPT-4o and Claude-sonnet-4
reach only 23.0% and 14.7%, respectively. At the other end of the spectrum, the weakest model,
Gemma-3-4b-it, achieves just 3.1%. These results highlight the difficulty current MLLMs face in
handling perceptual degradation. Performance drops are substantial even for frontier models, un-
derscoring the limitations of current vision-language alignment and error tolerance. MATHREAL
thus offers a more realistic and discriminative benchmark for evaluating robustness under imperfect,
real-world inputs.

Performance Gap Between Closed and Open Models. Results on the MATHREAL benchmark
show that closed-source models significantly outperform their open-source counterparts across all
evaluation metrics and task types, with performance gaps further amplified under noisy visual inputs.
Under the strict accuracy metric (Accstr), Doubao-1.5-thinking-vision-pro achieves the highest av-
erage accuracy of 41.0%. In contrast, the best open-source model, ERNIE-4.5-Turbo-VL-Preview,
reaches only 17.1%, resulting in a gap of over 20%. Reasoners also lag behind, with the strongest
performer, MiMo-VL-7B-RL, reaching only 13.5% under Accstr. Most others fall below 10%, high-
lighting the difficulty of integrating reasoning pipelines with robust visual perception under degraded
inputs. This further emphasizes the advantage of end-to-end, well-aligned architectures in closed
models when handling real-world visual challenges.

Performance Divergence Across Categories. MATHREAL reveals substantial performance di-
vergences across the five categories, reflecting distinct cognitive demands and multimodal chal-
lenges. Statistical charts (SC) yield the highest accuracies under both strict and loose metrics;
for example, Doubao-1.5-thinking-vision-pro achieves 48.5% Accstr, and Doubao-seed-1.6 reaches
48.5%. These tasks benefit from structured layouts and low geometric ambiguity, enabling extrac-
tion from bar charts, tables, and plots. In contrast, logical reasoning (LR) and function graphs (FG)
are the most challenging. LR involves abstract symbolic inference, with top models like Gemini-2.5-
pro-thinking at 39.1% Accstr and Doubao-seed-1.6 at 32.6%. FG requires precise spatial alignment
between visual features and expressions; even the best models, such as Gemini-2.5-flash-thinking,
attain only 41.9%. Overall, models perform best when visual input is structured and symbolic
reasoning is limited. Tasks requiring spatial abstraction, continuous alignment, or geometric com-
plexity—particularly under visual noise—remain key limitations for current MLLMs.

Model Gaps in OCR and Description Handling. Evaluation under different input settings re-
veals that current models still face significant challenges in OCR and structured description under-
standing. While adding QM or DM brings little or even negative gains, providing QG and DG
leads to substantial improvements across models. For example, Grok-4 remains below 10% accu-
racy with I and I+QM, yet surpasses 50% once QG or DG are provided. This clear divergence
suggests that models struggle to robustly extract and structure information directly from images, but
can reason effectively once accurate textual inputs are supplied. In contrast, stronger models such as
Gemini-2.5-pro-thinking show incremental improvements across all settings, indicating relatively
better internal perception but still benefiting from explicit QG/DG inputs. Overall, these results
highlight that OCR and structured description remain bottlenecks for real-world math reasoning.
Future models could address this gap by enhancing perception capabilities during pre-training, en-
abling post-training stages to better activate the synergy between perception and reasoning. More
detailed results are provided in the Appendix.
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Real Image vs. Clean Image. To assess model robustness to image quality, we select 175 ques-
tions from the testmini set and retrieve higher-quality clean versions of those images. We then eval-
uate models on both real and clean inputs, computing ∆ = AccClean – AccReal and aggregating these
deltas across the fourteen interference categories with both coarse-grained (binary presence/absence)
and fine-grained groupings. Most models exhibit substantial gains on clean images. Llama-4-
Maverick improves by +12.0% and Claude-sonnet-4-thinking by +11.8%—indicating that visual
noise significantly constrains their real-image performance. Blur attenuates the high-frequency de-
tails essential for OCR-based text extraction and fine-grained visual feature recognition, while ro-
tation disrupts spatial alignment and forces reliance on implicit geometric transforms, causing the
strict accuracy of Claude-sonnet-4-thinking and Doubao-seed-1.6 to drop by approximately –0.25
and –0.20, respectively; in contrast, models pretrained with extensive rotational augmentation, such
as Gemini-2.5-pro-thinking and Qwen2.5VL-72B, remain largely unaffected. Figure marking and
handwritten answer interference often highlight key regions or provide solution cues, yielding mod-
est benefits to Doubao-1.5-thinking-vision-pro and Gemini-2.5-pro-thinking; by contrast, InternVL-
3-78B and Claude-sonnet-4-thinking, which exhibit weaker visual-saliency integration, suffer slight
declines. Notably, Doubao-1.5-thinking-vision-pro achieves a remarkable +0.21 increase in strict
accuracy (Accstr) on non-blurred real images versus clean versions—likely due to its vision back-
bone being thoroughly trained on authentic mobile-captured data, enabling it to exploit real-world
lighting, shading, and texture cues.

LLM-as-a-Judge Consistency. To assess the reliability of automatic evaluation, we adopt the
LLM-as-a-judge paradigm. Specifically, for each question we use the prompt templates detailed in
the Appendix and employ the GPT-4.1-nano model to generate judgments. To validate consistency,
we randomly sample 100 questions each from the main results of GPT-4o and Doubao-1.5-thinking-
vision-pro under Accstr, and manually score them according to the same prompt. A case is consid-
ered inconsistent if the manual score diverges from the GPT-4.1-nano judgment. The resulting agree-
ment rates are 93% and 94% for GPT-4o and Doubao-1.5-thinking-vision-pro, respectively. These
high consistency levels demonstrate that the LLM-as-a-judge approach provides reliable evaluation
in our benchmark setting. Importantly, this method substantially reduces the labor cost of manual
comparisons while maintaining robust fidelity, thus offering a scalable and cost-effective solution
for both benchmark evaluation and model development.

OCR Error
16%

Figure 
Perception 
Error 25%

Hallucination 
Error 6%

Calculation 
Error 12%

Reasoning 
Error
40%

Reject Error
1%

OCR Error
14%

Figure 
Perception 
Error 33%

Hallucination 
Error 4%

Calculation 
Error 10%

Reasoning 
Error
36%

Reject Error
3%

Figure 6: Error distribution over 100 anno-
tated cases from Doubao-1.5-thinking-vision-
pro (left) and Gemini-2.5-pro-thinking (right)
error cases.

× Figure Perception Error

Question: The figure shows the 
dart-throwing situation of two 
children. Who scored more points?

Doubao-1.5-thinking-vision-pro: 
Problem analysis: The problem asks to 
compare Congcong’s and Mingming’s dart 
scores. The given information is that their 
darts landed on rings worth 30, 20, 10, and 
1 points, and the goal is to calculate each 
total and see which is higher. Solution 
process: Congcong’s darts landed on the 30, 
20, 10, and 1 rings, for a total of 30 + 20 + 
10 + 1 = 61 points; Mingming’s darts 
landed on the 30, 20, and two 10 rings, for a 
total of 30 + 20 + 10 + 10 = 70 points. 
Since 70 > 61, Mingming’s score is higher. 
Final answer: Mingming.

Ground Truth: Congcong 

Error Reason: 
Doubao correctly understands the scoring rules but misinterprets the figure. It 
identifies the wrong hit patterns on both boards, leading to an incorrect comparison 
of totals. The error stems from inaccurate visual perception.

Figure 7: A basic figure perception error, with
the error highlighted in red. More examples can
be found in the appendix.

3.4 ERROR ANALYSIS

We conduct a detailed error analysis by randomly sampling 100 failed cases (Acc = 0) from each of
Doubao-1.5-thinking-vision-pro and Gemini-2.5-pro-thinking. The errors are categorized into six
types: OCR error,figure perception error, calculation error,reasoning error, hallucination, and reject
error. The distribution is shown in Figure 6.

We observe a broadly consistent trend across both models. Reasoning errors account for the largest
proportion (over one-third), indicating that even when perception is mostly accurate, models often
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fail to construct valid logical chains or apply correct mathematical principles. Visual understand-
ing remains another major source of failure. Specifically, figure perception errors and OCR errors
together account for 40–50% of the failures, reflecting the strong dependence of multimodal math
tasks on accurate visual decoding. In particular, noisy charts, distorted symbols, and handwritten
notations frequently lead to misread digits or misinterpreted geometric structures. These perception
issues are critical, as they compromise the model’s input before any reasoning occurs. Calculation
errors, hallucinations, and reject errors occur less frequently but still contribute to overall perfor-
mance degradation. Notably, hallucinations often arise when models fabricate nonexistent quantities
or assumptions, while reject errors reflect failure to produce meaningful answers under uncertainty.
Overall, the findings highlight two primary challenges: robust visual understanding under imper-
fect inputs, and consistent multi-step reasoning over noisy or ambiguous content. Addressing either
alone is insufficient—future progress in MLLMs will require tightly integrated improvements across
perception, parsing, and reasoning components.

4 RELATED WORK

Plain Text Benchmarks. MathQA Amini et al. (2019) is a large-scale benchmark consisting of
math word problems designed to evaluate problem-solving in arithmetic and algebra through nat-
ural language. GSM8K Cobbe et al. (2021) contains 8,500 elementary-level math problems that
test multi-step reasoning. In contrast, MATH Hendrycks et al. (2021) provides 12,500 challenging
high-school competition-level questions. SuperCLUE-Math Xu et al. (2024) specializes in Chinese
mathematical reasoning tasks. RV-Bench Hong et al. (2025) evaluates structural understanding by
programmatically replacing numerical values in problems. Math-RoB Yu et al. (2025) introduces
controlled perturbations to assess model stability under variations. PolyMath Wang et al. (2025e)
addresses this by providing a high-quality, large-scale multilingual evaluation set.

Multimodal Benchmarks. With the development of multimodal large models, many benchmarks
focused on multimodal math problems have also emerged. MathVista Lu et al. (2023) establishes the
first comprehensive multimodal math evaluation through 6,141 visual tasks across diverse mathe-
matical reasoning scenarios. MathVerse Zhang et al. (2024b) advances visual understanding assess-
ment through 15,000 diagram-based samples, specifically designed to quantify diagram utilization
in math problem-solving. MATH-Vision Wang et al. (2024) elevates evaluation standards with 3,040
competition-grade problems, creating a rigorous testbed for advanced mathematical reasoning. Vi-
sOnlyQA Kamoi et al. (2024) reveals fundamental limitations in geometric perception through 12
tasks demonstrating that even SOTA models struggle with basic visual perception. MathGlance Sun
et al. (2025) isolates mathematical perception evaluation through 1,200 images and 1,600 questions
spanning core perceptual tasks. MV-MATH Wang et al. (2025c) challenges the multivisual reason-
ing by developing 2,009 multi-image problems mirroring real-world mathematical contexts. GeoE-
val Zhang et al. (2024a) emphasizes unseen dataset evaluation importance through 2,000 geometry
problems with specialized subsets for comprehensive assessment. We-Math Qiao et al. (2024) intro-
duces four-dimensional evaluation metrics for knowledge acquisition and generalization assessment
through 6,500 visual problems spanning 67 hierarchical concepts. CMMath Li et al. (2024b) de-
livers the first native Chinese mathematical benchmark with 23,000 curriculum-aligned questions,
filling the critical gap in K-12 educational assessment.

5 CONCLUSION

MATHREAL introduces a new benchmark for evaluating MLLMs on real-world, noisy images of
K–12 math questions, addressing the limitations of existing benchmarks that rely on clean images.
The dataset includes diverse math questions with various types of visual noise, such as blur, perspec-
tive distortions, and handwritten interference. By evaluating several open-source and closed-source
models, we establish a benchmark that highlights the limitations of current MLLMs in multi-visual
mathematical reasoning, emphasizing the impact of image quality, input methods, and question types
on performance. Our analysis reveals that most models struggle with noisy images, pointing to the
need for more robust visual encoders in MLLMs. This work sets the stage for future improvements
in multimodal reasoning, especially in real-world educational settings.
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ETHICS STATEMENT

This research does not involve human subjects, personal data, or sensitive information. The MATH-
REAL benchmark is built from photographs of educational materials and anonymized question
repositories, with careful filtering to exclude any potentially identifying or private content. All im-
ages depict only mathematical questions and related figures, and no faces, personal information be-
yond problem-solving steps, or metadata are retained. The dataset is intended strictly for academic
research and evaluation of multimodal reasoning systems, and we believe it poses no foreseeable
ethical risks.

REPRODUCIBILITY STATEMENT

We have taken multiple steps to support reproducibility of our results. The dataset construction
pipeline, including collection, filtering, and multi-stage manual annotation, is documented in the
main paper and appendix. We provide taxonomy definitions, evaluation metrics, and scoring scripts,
together with configuration details for all experimental settings. The testmini split and full anno-
tation metadata are released at submission to allow method development and ablation studies. The
complete dataset will be made publicly available upon acceptance. We also release prompts and
evaluation templates to facilitate exact replication wherever model APIs allow.
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SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL OVERVIEW

• Section A: Introduction.
• Section B: Related work.
• Section C: Dataset Details.
• Section D: Experimental Details.
• Section E: Results Analysis.

A INTRODUCTION

The data and code: https://anonymous.4open.science/r/MathReal-52CD

B RELATED WORK

B.1 BENCHMARK FOR PERCEPTION AND OCR AS THE FOUNDATION OF REASONING

DocVQA Mathew et al. (2021) introduces 28,000 real document QA pairs, establishing the first
visual question answering evaluation framework for structured documents like contracts and re-
ports. ChartQA Masry et al. (2022) develops 3,200 chart QA samples, pioneering the joint rea-
soning evaluation mechanism between axis text and visual elements. SEED-Bench-2-Plus Li et al.
(2024a) expands to 15,672 test samples covering three rich-text environments, enabling fine-grained
evaluation across 63 data types. Fox Liu et al. (2024b) introduces 9 specialized sub-tasks includ-
ing region-level OCR and color-guided text recognition, establishing the first benchmark for fine-
grained document understanding across multi-page layouts. MMTab Zheng et al. (2024) releases
5,000+ tax/medical form test sets with specialized metrics for complex table reasoning like merged
cells and cross-column references. CC-OCR Yang et al. (2024) collects 15,000 cross-language text

14

https://anonymous.4open.science/r/MathReal-52CD


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

images, supporting complex document parsing validation across LaTeX, HTML and SMILES for-
mats. OCR-Reasoning Huang et al. (2025) creates 1,069 advanced reasoning questions with only
2.3% directly extractable answers, specifically testing deep reasoning capabilities like spatial re-
lationships and numerical calculations. OCRBench v2 Fu et al. (2024) upgrades to 10,000 human-
verified QA pairs across 31 scenarios and 23 tasks, first integrating eight core capability assessments
including text localization and logical reasoning.

C DATASET DETAILS

C.1 DATA ANNOTATION PROCESS

To facilitate annotation, we develop a Gradio-based data annotation platform and organize the pro-
cess into three fully manual stages: e-screening of basic image content, annotation of image condi-
tions, annotation of question-level metadata. This structured workflow ensures high semantic and
structural quality while reflecting the complexity and diversity of real-world educational scenarios.

Figure 8: Gradio annotation page of stage two.

Stage One – Re-screening. We manually verify whether each sample satisfies the three conditions
established during data collection:

• Single Question Only: the image contains exactly one complete question, with possible
interference from other incomplete or partial questions.

• Complete Question: the question text and figure are fully visible, with no missing text or
critical contents.

• Figure Relevant to Solution: the diagram or figure is essential for understanding or solving
the problem, not merely decorative or incidental.

Samples that fail to meet any of these criteria are discarded. This step ensures that only valid,
solvable, and diagram-dependent math questions proceed to the next stage.

Stage Two – Real-world scenario categories and levels. We annotate each image according to a
fine-grained taxonomy of real-world scenario categories and levels. This taxonomy comprises three
primary categories with fourteen subcategories:
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Figure 9: Gradio annotation page of stage three.

• Image Quality Degradation:
– Blur (0–3): The degree to which the image’s text and figures are visually out of focus,

ranging from completely clear and legible to entirely unrecognizable. 0: completely
sharp and all text clearly legible, 1: slight blur but content recognizable, 2: strong blur
making recognition difficult, 3: severe blur rendering content unreadable.

– Underexposure/Overexposure (0–3): The extent of excessive darkness or brightness
in the image that may obscure content, from no exposure issues to fully black or
white images. 0: no brightness issues, 1: mild darkness or brightness with content
still visible, 2: severe underexposure or overexposure partially obscuring content, 3:
extreme exposure resulting in completely black or white image.

– Shadow Coverage (0–3): The proportion of the question area obscured by shadows,
from none to more than 60% coverage. 0: no shadows, 1: shadows covering 1%–30%
of the content, 2: shadows covering 30%–60%, 3: shadows covering more than 60%.

– Glare (0–3): The presence of reflected light spots on the image, ranging from none
to severe glare that renders the content unreadable. 0: no glare, 1: minor glare with
text still legible, 2: strong glare partially obscuring content, 3: severe glare rendering
content unreadable.

• Image Perspective Variation:
– Rotation: The orientation of the image compared to a correctly aligned version. (Up-

right, clockwise 90◦, counterclockwise 90◦, or 180◦)
– In-plane Tilt (0–3): The tilt angle of the image within the xy-plane, from no tilt to a

tilt angle greater than 30◦. 0: no tilt, 1: tilt angle within 15°, 2: tilt angle between
15°–30°, 3: tilt angle greater than 30°.

– Non-planar Capture (0–3): Perspective distortion caused by capturing the image from
a non-perpendicular angle, resulting in trapezoidal or irregular shapes. 0: no perspec-
tive distortion, 1: slight perspective distortion without recognition difficulty, 2: trape-
zoidal or irregular deformation with partial recognition impact, 3: severe deformation
such as ladder-shaped or warped forms strongly affecting recognition.

– Background Distortion (0–3): Physical bending or warping of the background or pa-
per, from flat to severely deformed shapes affecting content recognition. 0: flat back-
ground, 1: minor folding without recognition impact, 2: moderate warping causing
partial deformation, 3: severe bending or curling with strong recognition interference.

• Irrelevant Content Interference:
– Handwritten Questions (0–3): The extent to which the question text is handwritten,

from neatly written to extremely illegible. 0: printed text, 1: neatly handwritten text,
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2: irregular handwriting with recognition difficulty, 3: extremely messy handwriting
almost illegible.

– Reverse-side Content (0–3): Visual interference from text or images on the reverse
side of the paper, from none to severe bleed-through. 0: no interference, 1: slight
bleed-through without impact, 2: large amount of bleed-through partially obscuring
content, 3: severe bleed-through completely obscuring front content.

– Question Marking (0–3): The presence of underlining, circling, or other markings on
the question text, from none to heavily marked. 0: no markings, 1: few markings
with minimal interference, 2: frequent markings moderately obscuring text, 3: heavy
markings over most of the text.

– Figure Marking (0–3): Markings drawn on figures, from none to extensive markings
obscuring geometric shapes. 0: no markings, 1: one marked element not affecting
recognition, 2: multiple markings partially obscuring shapes, 3: extensive markings
heavily obscuring geometric figures.

– Handwritten Answers for Multiple-choice or Fill-in-the-blank Questions (0–1): The
presence of handwritten answers in answer blanks or options. 0: no handwritten an-
swers, 1: presence of handwritten answers.

– Handwritten Process for Constructed-response Questions (0–3): The amount of hand-
written solution steps shown in the image, from none to four or more lines. 0: no
solution steps, 1: one line of steps, 2: two to three lines of steps, 3: four or more lines
of steps.

We provide detailed annotations for each subtype to support fine-grained analysis of model robust-
ness under diverse real-world conditions.The gradio page of this stage is in Figure 8.

Stage Three – Question Metadata Annotation. We annotate eight key attributes:

• Ground-truth Question: The printed question text exactly as it appears in the image.

• Presence of Tables: Whether the question contains any tabular data (0 for no, 1 for yes).

• Educational Level: The intended education stage, categorized as primary, middle, or high
school.

• Question Type: The answer format, including multiple-choice, fill-in-the-blank, or
constructed-response.

• Category: The primary domain of the question, including plane geometry (PG), solid ge-
ometry (SG), logical reasoning (LR), function graphs (FG), and statistical charts (SC).

• Ground-truth Answer: The correct answer verified by annotators.

• Figure Description: A detailed natural-language description of the figure, excluding any
question text.

• Clean Image: A standardized and clean version of the image retrieved via web search when
available.

The gradio page of this stage is in Figure 9.

Finally, we conduct a fully human-verified review to ensure consistency and accuracy across all
stages. Through this three-stage pipeline, we construct MATHREAL, a high-quality dataset of real-
world, diagram-based math questions that provides a rigorous benchmark for evaluating visual per-
ception and reasoning under authentic conditions.

C.2 QUESTION DISTRIBUTION

All questions in the dataset are presented in Chinese. The longest question contains 451 characters,
while the shortest has only 7 characters, with an average length of 122.03 characters. Figure 10
further illustrates the distribution of question lengths, revealing a diverse range from very short
prompts to extended, detailed questions.
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Figure 10: QuestionCN Length Distribution.

D EXPERIMENTAL DETAILS

D.1 PROPMT FOR OCR AND FIGURE UNDERSTANDING GENERATION

This prompt is designed to separately guide multimodal large language models in performing OCR-
based question text extraction and detailed figure understanding for real-world, image-based math-
ematical problems. The OCR Task section specifies strict recognition rules, focusing solely on
printed question stems while excluding handwritten content, metadata, and irrelevant figure text. It
enforces format preservation, standardized handling of blanks, and precise processing of tables, en-
suring faithful reproduction of textual content without interpretation or solution attempts. The Figure
Understanding Task section instructs the model to analyze only the mathematical figures—such as
geometric diagrams, function plots, and statistical charts—present in the image. It requires a com-
prehensive, standalone description that details the figure’s structure, key elements, and mathematical
properties, without solving the problem or performing OCR. Together, these prompts enable a clear
separation between textual content extraction and visual element analysis, supporting controlled
evaluations of perception and reasoning.

D.2 PROMPT FOR ANSWER GENERATION

In our study, we design six experimental settings (I, IUER, I+QM, I+QM+DM, I+QG, and
I+QG+DG) to progressively disentangle visual perception and reasoning, enabling a systematic
evaluation of MLLMs’ perception and reasoning abilities under realistic educational scenarios. To
operationalize these settings and ensure consistency across experiments, we develop task-specific
prompts that guide the models in processing visual and textual information in a controlled manner.

The Main Setting Prompt is used for the primary evaluation setting (I), where the model receives
only the raw image and is required to jointly perform visual perception and mathematical reasoning.
The instructions are structured to guide the model from problem analysis, through detailed reason-
ing, to a strictly formatted final answer, ensuring that all information in the image is effectively
utilized.

The IUER Setting Prompt is tailored for the unified end-to-end reasoning scenario, where the model
performs OCR, figure understanding, and solution derivation within a single interaction. The work-
flow in this prompt is explicitly divided into OCR extraction, detailed figure analysis, reasoning, and
final answer formatting. By combining perception and reasoning within a unified instruction set, this
prompt facilitates systematic assessment of a model’s ability to integrate multimodal information in
a one-pass pipeline under real-world conditions.
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Table 3: Prompt for OCR Task and Figure Understanding Task.

Prompt for OCR Task
You are a professional OCR text recognition expert. Please strictly follow the instructions
below:
1. Recognition Scope:

Recognize only the printed question stem in the image. Ignore any handwritten content.
Include only the question stem, excluding the problem number, year, region, and score.
2. Output Format:

Output text according to the original layout in the image, preserving paragraphs and line
breaks. Do not merge or split paragraphs arbitrarily.
3. Multiple-Choice Options:

– If the option content consists only of text or numbers, fully recognize and output the
options and their corresponding content.

– If any option contains image elements, do not recognize or output any option content.
4. Fill-in-the-Blank Questions:

– If blanks are present, represent them uniformly as “ ” (four underscores).
– If blanks are parentheses that need to be filled, represent them uniformly as “( )” (two

parentheses and four spaces).
5. Math Questions with Figures:

– If text in the figure consists only of numbers, letters, or labels (e.g., AB, 30°), do not
recognize or output it.

– Ignore all text embedded in abstract graphics (e.g., geometric figures, statistical charts,
function plots); do not include it in the question stem.
6. Figure Captions:

Ignore all figure captions; do not recognize or output them.
7. Table Processing:

– Recognize text in the table row-by-row according to its original order.
– Use a single space as the delimiter between columns (e.g., “No. Name 1 Zhang San 2

Li Si”).
Important Notes!!

– Only return the actual recognized text content.
– Do not add any explanations, analysis, hints, or extra notes.
– Do not solve the problem or return the answer.
– No image analysis is required; directly return the OCR results only.

Prompt for Figure Understanding Task
You are a professional mathematical figure analysis expert. Please analyze the mathematical
figure in the image and provide a detailed description.
Requirements:

1. Analyze only the mathematical figures in the image, including geometric figures, function
plots, and statistical charts.

2. Describe in detail the basic features, key elements, and mathematical properties of the
figure.

3. Your answer should contain only one part: description.
4. The description must clearly and thoroughly describe the elements, structures, geometric

shapes, or chart contents in the figure.
5. Do not solve the problem or perform OCR recognition; only analyze what is present in the

figure itself.
Directly output the description without adding any extra content, explanations, or hints.
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Table 4: Prompt for Response Generation.

Main Setting Prompt for Response Generation

Please solve the problem in the image by following these steps, and do not refuse to answer:
1. Problem Analysis: Clearly identify the problem requirements, known conditions, and the objective

to be solved from the image.
2. Solution Process:

(1) Fully utilize the information provided in the image.
(2) Present the reasoning and calculation process in detail.
(3) Explain the principles behind each key step.
(4) Perform verification or validation when necessary.

3. Final Answer:
(1) Place the answer inside \boxed{}.
(2) If there are multiple answers, place each one inside a separate \boxed{}.
(3) Strictly follow the required format for numerical values, units, etc., as stated in the problem.

IUER Setting Prompt for Response Generation

Please answer the following math problem and strictly follow the steps below. Do not refuse to answer.
1. OCR of the Question Text:

Scope
– Recognize only the printed question stem in the image.
– Ignore any handwritten content.
– Exclude problem number, year, region, and score.

Output Format
– Preserve the original layout, paragraphs, and line breaks.
– Do not merge or split paragraphs arbitrarily.
– Use English punctuation only.

Multiple-Choice Questions
– If options are text or numbers, recognize and output them completely.
– If options contain image elements, do not output any options.

Fill-in-the-Blank Questions
– Represent blanks with “ ” (four underscores).
– Represent to-be-filled parentheses with “( )” (two parentheses with four spaces).

Questions with Figures
– Ignore pure digits, letters, and labels inside the figure.
– Do not OCR text embedded in abstract graphics such as geometric figures, statistical charts, or

function plots.
Special Handling

– Figure captions: ignore completely.
– Dialogue-style context images: recognize only the question stem and ignore dialogues in the image.
– Tables: recognize row by row in the original order; separate columns with a single space.

Notes
– Recognize text content only.
– Do not add any explanations, analyses, or hints.

2. Figure Understanding:
– Analyze only the mathematical graphics in the image, including geometric figures, function plots,

and statistical charts.
– Describe the basic characteristics, key elements, and mathematical properties of the figure in detail.
– Your output should contain a single section named description.
– Description must detail the elements, structures, geometric shapes, or chart content present in the

figure.
– Do not solve the problem and do not perform OCR here; only analyze the figure content.

3. Solution Process:
(1) Fully utilize information from the image, the OCR step, and the figure understanding step.
(2) Present the reasoning and calculation steps in detail.
(3) Explain the principles behind each key step.
(4) Perform verification or validation when necessary.

4. Final Answer:
(1) Place the answer inside \boxed{}.
(2) If there are multiple answers, place each one inside a separate \boxed{}.
(3) Strictly follow the required format for numbers, units, and other specifications as stated in the

problem.
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Table 5: Prompt for Answer Extraction Task.

Prompt for Answer Extraction Task
You are a professional answer extraction expert. Please extract the final answer from the fol-
lowing text as accurately as possible, strictly following the priority strategy below:

Priority 1: Look for explicit answer keywords
- Search for the following keywords:

* “final answer”, “answer”, “result”
* “the answer is”, “the result is”
* Summary words such as “therefore”, “so”, “in conclusion” followed by the answer

content
- Extract the content that immediately follows these keywords

Priority 2: Extract from the end of the text
- If no explicit answer is found in the previous step, try to extract the most likely answer

from the last paragraph or last sentence of the text
Important Requirements:

1. Multiple answers should be separated by semicolons (;)
2. Return only the answer content itself, without extra explanations or formatting
3. If the answer cannot be determined, return null

Strictly follow the above priority order for extraction.

D.3 PROMPT FOR EXTRACT AND EVALUATE ANSWERS

To ensure consistent and objective measurement of model performance across all six experimental
settings, we design a two-stage evaluation pipeline comprising an Answer Extraction step followed
by an Answer Evaluation step.

In the extraction stage, we first apply direct string matching to capture any content enclosed in
\boxed{} from the model output. If no such match is found, we invoke a dedicated answer extraction
prompt to identify the final answer based on explicit keyword matching or, failing that, from the
concluding part of the output.

In the evaluation stage, the extracted answer is compared against the reference answer using a math-
ematical answer evaluation prompt, which enforces strict equivalence rules on numerical values,
algebraic expressions, units, and multiple-part answers, while supporting proportional partial credit
for partially correct responses. This design enables scalable, fine-grained, and reproducible accuracy
assessment under realistic educational conditions.

D.4 EVALUATION PROTOCOL

OCR Accuracy Evaluation. In real-world multimodal settings, OCR quality is often compro-
mised by noise, handwriting, or layout distortions. To assess the reliability of model-generated
OCR outputs, we adopt a hybrid metric that combines five components: numeric accuracy, keyword
accuracy, semantic similarity, format and structure accuracy, and a lexical term based on normalized
Levenshtein distance.

The final score is computed as:

AccOCR = 0.2 · Accnum + 0.2 · Acckeyword + 0.2 · Simsem

+ 0.2 · Accformat + 0.2 · (1− Levnorm)

Here, Accnum measures exact agreement on all numbers and units, Acckeyword evaluates proper nouns
and other key entities, Simsem reflects sentence-level meaning consistency, and Accformat assesses
structural fidelity (tables, paragraphs, lists). Levnorm is the normalized Levenshtein distance between
the OCR output and the ground-truth question text. The first four scores are in [0, 1] following the
rubric above (with semantic decisions based on GPT-4.1-nano judgments), and the lexical compo-
nent contributes via (1− Levnorm).
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Table 6: Prompt for Mathematical Answer Evaluation Task.

Prompt for Mathematical Answer Evaluation Task

You are a top-tier mathematics evaluation expert, tasked with rigorously and precisely determining the
correctness of model-generated answers.
Core Task
Determine whether the ”Model Answer” below is mathematically and option-wise completely equivalent
to the ”Reference Answer”, and assign a partial credit score based on the proportion of correct compo-
nents.
Evaluation Principles
1. Numerical Core Priority:

- Focus solely on the final numerical values, expressions, options, or conclusions.
- Ignore solution processes, explanatory text (e.g., ”the answer is:”, ”therefore the result is:”), variable

names (e.g., D, E, Q1), and irrelevant descriptions.
- Only retain mathematical content that directly corresponds to the reference answer for comparison.

2. Mathematical Equivalence (Strict Judgment):
- Fractions and decimals: 1/2 is equivalent to 0.5; 1/2 is equivalent to 5/10.
- Numerical formats: 10 is equivalent to 10.0; 1,887,800 is equivalent to 1887800 (ignore thousand

separators).
- Special symbols: π is equivalent to 3.14 (only when the problem explicitly allows approximation).
- Algebraic expressions: x2+y is equivalent to y+x2; however, 18+6\sqrt{3} and 18-6\sqrt{3}

are not equivalent.
- Formatting: (

√
3 + 3)/2 is equivalent to

√
3/2 + 3/2.

- Range notation: x ∈ [0, 1] is equivalent to 0 ≤ x ≤ 1.
- Operator Sensitivity: +, −, ×, ÷, ∧ (power), etc., must be strictly consistent; any symbol error

renders the expressions non-equivalent.
- Coordinate Points: (x, y) values must be numerically identical. Treat x and y as two sub-

components. If one is correct and the other wrong, assign 0.5 for that point.
- Whitespace-induced formatting differences: “y=2x+3” and “y = 2 x + 3” are equivalent; ignore the

impact of spaces within expressions.
3. Unit Handling:

- Reference answer has no unit: if the model answer includes a correct and reasonable unit (e.g., 15 vs
15m), it is considered correct.

- Reference answer has a unit: incorrect units are considered wrong (e.g., 15m vs 15cm); if the model
answer lacks a unit but the numerical value is correct, it is considered correct.

- Ignore unit formatting differences: “180 { dm}2” and “180dm2” are equivalent; correctly extract the
content.
4. Handling Multi-Part Answers (Critical!):

- You must split the reference answer into all sub-answers (blanks) based on its structure.
- Each newline “\n”, semicolon “;”, or major section “(1)”, “(2)” indicates a separate blank.
- For each blank, further decompose it if it contains multiple components:

• “Or”-connected answers: e.g., “5 or -75” → two valid solutions. If model answers only “5”, give
0.5 for that blank.

• Coordinate pairs: e.g., (5, 0)→ treat as two values. If model says (5, 1), give 0.5.
• Multiple points: e.g., (1, 0), (9, 8), (−1, 9)→ three points. Each correct point gives 1/3.

- Total score = sum of all correct sub-components / total number of sub-components.
- Always allow proportional partial credit unless explicitly stated otherwise.

5. Special Rules for Multiple-Choice Questions:
- If the reference answer is a single option (e.g., “B”), then as long as the model answer contains that

option letter (e.g., “B”, “B.”, “Option B”, “B. f ′(x0) > g′(x0)”) and no other options, it is considered
correct → 1.0.

- If multiple options appear or an incorrect option is selected, it is considered wrong → 0.0.
6. Semantic Equivalence:

- Even if the phrasing differs, as long as the mathematical meaning is the same, it is considered correct.
7. Proof or Graphing Questions:

- If the question type is a proof or graphing question, treat the model answer as acceptable by default;
do not score it, and directly return <score>1.0</score>.
Scoring Criteria

- 1.0: All components are correct.
- 0.0–1.0: Assign partial credit proportionally based on the number of correct sub-components.
- 0.0: No component is correct.
- Round to two decimal places (e.g., 0.83, 0.67, 0.50).

Output Format
You must strictly return only the XML tag containing the score, with no additional text or explanation.
<score>score</score>
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Answer Accuracy Evaluation. Accstr requires that all sub-answers within a question be correct
for the model to receive credit. If any component is incorrect, the entire question is marked as wrong.
This metric emphasizes the completeness and consistency of chain-of-thought reasoning and aligns
with the standard pedagogical principle of “full marks only if fully correct.” It is formally defined
as:

Accstr =
1

N

N∑
i=1

I
[
∀j ∈ {1, . . . ,Ki}, apred

i,j ≡ agt
i,j

]
Here, N denotes the total number of questions, Ki is the number of answer blanks in the i-th ques-
tion, apred

i,j and agt
i,j denote the model-predicted and ground truth answers for the j-th blank, respec-

tively. The indicator function I[·] returns 1 if the condition is satisfied, and ≡ denotes mathematical
equivalence.

Acc permits partial correctness and is calculated based on the proportion of correctly predicted sub-
answers within each question. This metric captures the model’s partial understanding and reasoning
ability under imperfect outputs:

Acc =
1

N

N∑
i=1

 1

Ki

Ki∑
j=1

I
[
apred
i,j ≡ agt

i,j

]
D.5 EVALUATION MODELS

We evaluate the performance of a diverse set of models on the MathReal benchmark, cat-
egorized into four groups: (a) Large Language Models (LLMs), serving as text-only base-
lines, including Deepseek-v3 Liu et al. (2024a), Deepseek-r1 Guo et al. (2025), Qwen3 Yang
et al. (2025a) and Qwen3-thinkingYang et al. (2025a); (b) Closed-source Multimodal Large
Language Models (MLLMs), including Grok-4 xAI (2025), Claude-sonnet-4 Anthropic (2025),
Claude-sonnet-4-thinking Anthropic (2025), GPT-4.1 OpenAI (2025a), GPT-4o OpenAI (2024),
o3 OpenAI (2025b), o4-mini OpenAI (2025b), Qwen-VL-MaxBai et al. (2023), Gemini-2.5-
flash-thinkingComanici et al. (2025), Gemini-2.5-pro-thinkingComanici et al. (2025), Doubao-
1.5-vision-pro ByteDance (2025b), Doubao-1.5-thinking-vision-pro ByteDance (2025a), Doubao-
seed-1.6 ByteDance (2025c), Doubao-seed-1.6-thinking ByteDance (2025d); (c) Open-source
MLLMs, including Gemma-3-4b-it Team et al. (2025b), Gemma-3-27b-it Team et al. (2025b),
Gemma-3n-e4b Team et al. (2025b), Qwen2.5VL-7BBai et al. (2025), Qwen2.5VL-32BBai et al.
(2025), Qwen2.5VL-72BBai et al. (2025), InternVL-3-8BZhu et al. (2025), InternVL-3-14BZhu
et al. (2025), InternVL-3-38BZhu et al. (2025), InternVL-3-78BZhu et al. (2025), Kimi-VL-A3B-
InstructTeam et al. (2025c), Llama-4-Maverick AI (2025a), GLM-4.1v-thinking-flashx AI (2025b),
and ERNIE-4.5-VL-28B-A3B-PT Baidu (2025); and (d) Multimodal Reasoning Models, includ-
ing Keye-VL Team et al. (2025d), OVR Wei et al. (2025), Revisual-R1 Chen et al. (2025b),
Skywork-R1V3 Shen et al. (2025), OpenVLThinker Deng et al. (2025), ThinkLite-VL Wang et al.
(2025d), VLAA-Thinker Chen et al. (2025a), WeThink Yang et al. (2025b), MMR1-Math-v0 Leng
et al. (2025), MM-Eureka Meng et al. (2025), MiMo-VL-7B-RL Team et al. (2025a), and VL-
Rethinker Wang et al. (2025a).

E RESULTS ANALYSIS

E.1 RESULTS BY QUESTION TYPES

Table 9–11 compare model performances across three question types using the loose accuracy (Acc)
average (Avg) as the primary metric. The analysis here focuses on multimodal closed-source, open-
source, and reasoning-oriented models.

Multiple-choice. Overall accuracy is relatively low, with the best-performing model Doubao-
seed-1.6 achieving an Avg of 42.3. The second-best closed-source model, Gemini-2.5-pro-thinking,
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Table 7: The Acc of the OCR and the six experimental settings of models.

Model AccOCR I IUER I+QM I+QG I+QM+DM I+QG+DG

GLM-4.1v-thinking-flashx 81.8 24.5 19.6 24.9 32.5 22.1 34.9
Qwen-VL-Max 87.0 23.0 23.0 26.0 28.1 24.8 35.1
ERNIE-4.5-turbo-vl 89.8 30.4 30.5 28.4 32.7 27.8 36.6
Llama-4-Maverick 71.0 18.7 20.5 18.8 32.2 18.0 38.2
GPT-4o 78.6 23.0 22.4 22.7 32.2 24.5 38.7
GPT-4.1 79.2 22.6 22.9 21.5 37.7 19.1 40.8
Claude-sonnet-4 54.0 14.7 13.8 15.0 36.5 15.2 45.1
Claude-sonnet-4-thinking 53.9 16.5 13.7 15.6 40.5 13.5 46.9
Doubao-1.5-vision-pro 87.8 39.1 39.2 35.8 44.1 36.7 51.8
o4-mini 81.9 35.0 24.4 34.5 48.6 30.9 55.8
Grok-4 35.6 5.4 7.7 9.7 45.8 9.3 57.7
Gemini-2.5-flash-thinking 89.8 50.4 51.5 51.4 54.0 49.2 58.3
o3 78.4 35.4 32.0 33.0 47.8 34.2 58.5
Doubao-seed-1.6-thinking 87.9 43.9 46.2 45.8 59.5 46.9 63.2
Doubao-1.5-thinking-vision-pro 89.8 53.9 56.9 52.6 61.7 53.3 64.1
Doubao-seed-1.6 89.7 51.4 43.8 52.5 59.5 48.3 64.2
Gemini-2.5-pro-thinking 94.0 51.1 57.4 59.3 62.0 61.9 66.0

Table 8: Acc Comparison: Clean vs. Real, where ∆ = AccClean − AccReal.

Model Real Clean ∆

Grok-4 5.6 12.7 +7.1
Qwen2.5VL-7b 18.2 20.0 +1.8
InternVL3-14b 21.2 21.8 +0.6
InternVL3-8b 18.6 23.3 +4.7
InternVL3-38b 20.6 25.1 +4.5
Claude-sonnet-4 15.8 26.7 +10.9
InternVL3-78b 23.1 29.0 +5.9
GPT-4.1 22.9 29.7 +6.8
GPT-4o 24.1 31.0 +6.9
Claude-sonnet-4-thinking 20.1 31.8 +11.7
Llama-4-Maverick 18.5 31.8 +13.3
Qwen-VL-Max 22.2 32.1 +9.9
Qwen2.5VL-72b 31.7 32.6 +0.9
Qwen2.5VL-32b 21.9 32.8 +10.9
ERNIE-4.5-turbo-vl 32.2 33.0 +0.8
GLM-4.1v-thinking-flashx 24.6 36.0 +11.4
Doubao-1.5-vision-pro 42.0 49.6 +7.6
o4-mini 41.4 50.8 +9.4
Gemini-2.5-flash-thinking 54.5 51.1 -3.4
o3 40.7 53.1 +12.4
Gemini-2.5-pro-thinking 56.3 56.3 +0.0
Doubao-seed-1.6-thinking 47.8 57.1 +9.3
Doubao-1.5-thinking-vision-pro 62.9 59.9 -3.0
Doubao-seed-1.6 56.2 63.6 +7.4

reaches 34.6, while the best open-source model, InternVL3-8B, also achieves 34.6. These results
indicate that multiple-choice questions are more vision-centric, favoring strong visual encoders ca-
pable of distinguishing among distractors rather than relying heavily on long-chain reasoning.

Fill-in-the-blank. This type yields the highest overall scores, with Doubao-1.5-thinking-vision-
pro achieving 67.7 and Doubao-seed-1.6 close behind at 63.8. The best open-source model, ERNIE-
4.5-Turbo-VL-Preview, reaches 34.5, and the top reasoning model, WeThink, achieves 30.9. Com-
pared with multiple-choice, fill-in-the-blank questions reward coherent step-by-step reasoning and
numerical computation, allowing models with strong symbolic reasoning capabilities to narrow the
gap with top vision models. Accuracy in this category could be further improved through better
normalization of numeric outputs, unit handling, and formatting.
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Constructed-response. Performance is moderate, with the top closed-source vision model
Doubao-1.5-thinking-vision-pro achieving 51.8, and the best open-source model ERNIE-4.5-Turbo-
VL-Preview reaching 29.9. The strongest reasoning-oriented model, MiMo-VL-7B-RL, scores 21.7.
Constructed-response questions require multi-step reasoning and coherent explanations, favoring
models that can maintain complete reasoning chains and produce structured final answers. Further
improvements could be achieved by explicitly presenting intermediate variables and incorporating
step verification to reduce omissions.

Cross-type comparison. Considering Acc Avg across the three types, the achievable performance
ceiling follows the order: Fill-in-the-blank (approximately 68%) ¿ Constructed-response (approxi-
mately 53%) ¿ Multiple-choice (approximately 42%). Multiple-choice questions are more depen-
dent on visual recognition, while fill-in-the-blank and constructed-response formats rely more heav-
ily on symbolic reasoning and structured output. Open-source and reasoning-oriented models con-
sistently trail behind the top closed-source models, highlighting gaps in both robust visual encoding
and end-to-end reasoning consistency.

E.2 INTRA-FAMILY PERFORMANCE PATTERNS

The Doubao family demonstrates strong geometric and structured reasoning capabilities. Doubao-
1.5-thinking-vision-pro achieves the highest strict accuracy in PG (43.3%), SG (43.2%), and SC
(48.5%), indicating superior performance in tasks requiring spatial understanding and formal visual
parsing. Within the family, Doubao-seed-1.6 outperforms its thinking variant on more abstract rea-
soning tasks. In LR, the non-thinking version leads with 32.6%, while the thinking model drops to
17.4%, suggesting that longer reasoning chains may hinder performance under noisy visuals. The
Gemini family also shows consistently strong and balanced performance. Gemini-2.5-pro-thinking
ranks among the top across tasks, with 48.5% in SC and over 40% in PG and SG. Even in the
most challenging LR category, it reaches 39.1%, indicating stable multimodal reasoning. InternVL
models show a reversed scaling pattern. The InternVL-3-78B model achieves the best LR score
among open models (15.2%), but underperforms the InternVL-3-38B model in SC, possibly due to
overfitting or degraded visual generalization at scale. The Qwen2.5VL family excels at structured
visual tasks. The 32B model leads in FG (18.6%) and SC (30.3%), showing strength in visual-text
alignment. However, scaling to 72B yields only marginal gains, especially in complex reason-
ing. Overall, different model families show strengths in specific task types—some favor spatial or
symbolic inference, others visual parsing. No model excels across all categories, underscoring the
current limitations in developing truly general-purpose MLLMs capable of handling diverse visual
reasoning tasks.

E.3 STRICT EVALUATION REVEALS INSTABILITY IN MULTI-STEP REASONING

While many models perform decently under Acc, real-world applications often demand fully cor-
rect multi-step solutions. Our evaluation reveals clear gaps between Accstr and Acc, exposing
weaknesses in reasoning stability and compositional understanding. For example, Gemini-2.5-pro-
thinking scores 48.1% Acc but drops to 42.9% under strict evaluation, reflecting small reasoning
failures or incomplete logic. More noticeably, InternVL-3-14B achieves 19.0% Acc but only 10.9%
Accstr, a gap of over 8 points, highlighting its difficulty with full-task consistency. Strict metrics
thus better reflect whether models can fully solve multi-step problems. They uncover bottlenecks
in long-form reasoning and align more closely with educational standards. Reporting both scores is
essential for a clearer picture of true problem-solving ability.

E.4 ANALYSIS OF OCR ACCURACY AND ANSWER ACCURACY

Overall Performance and Ranking. Based on Table 8, in the Clean setting the overall accuracy
shows a clear gap between the top performers and the rest. Doubao-seed-1.6 ranks first (63.6),
followed by Doubao-1.5-thinking-vision-pro (59.9), Gemini-2.5-pro-thinking (56.3), o3 (53.1),
Gemini-2.5-flash-thinking (51.1), and o4-mini (50.8). In the Real setting, the best-performing model
changes to Doubao-1.5-thinking-vision-pro (62.9), followed by Gemini-2.5-pro-thinking (56.3),
Doubao-seed-1.6 (56.2), and Gemini-2.5-flash-thinking (54.5). This indicates that the Doubao fam-
ily consistently dominates in both conditions, Gemini-2.5-pro-thinking maintains balanced perfor-
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Table 9: Comparison of model performances across five categories on multiple-choice questions.
PG: Plane Geometry, SG: Solid Geometry, LR: Logical Reasoning, FG: Function Graphs, SC: Sta-
tistical Charts. Acc is loose accuracy. The first and second highest accuracy of LLMs are bolded
and underlined, respectively.

Model Acc

PG SG LR FG SC Avg

LLMs (Question Text + Figure Description, CoT with 0-shot)

Qwen3-235B-A22B-thinking 12.5 60.0 66.7 14.3 66.7 34.6
DeepSeek-V3 12.5 40.0 66.7 14.3 66.7 30.8
Qwen3-235B-A22B-instruct 12.5 33.4 33.3 28.6 33.3 25.7
DeepSeek-R1 25.0 60.0 66.7 14.3 66.7 38.5

Closed Models (Image-only, CoT with 0-shot)

Grok-4 0.0 0.0 0.0 0.0 0.0 0.0
Claude-sonnet-4 0.0 20.0 0.0 28.6 33.3 15.4
Claude-sonnet-4-thinking 0.0 0.0 0.0 14.3 66.7 11.5
GPT-4.1 0.0 20.0 33.3 28.6 33.3 19.2
GPT-4o 12.5 0.0 0.0 28.6 33.3 15.4
Qwen-VL-Max 0.0 0.0 0.0 28.6 33.3 11.5
o4-mini 0.0 0.0 0.0 0.0 33.3 3.8
o3 12.5 20.0 0.0 14.3 33.3 15.4
Doubao-1.5-vision-pro-32k 12.5 0.0 0.0 14.3 33.3 11.5
Doubao-seed-1.6-thinking 25.0 20.0 33.3 42.9 33.3 30.8
Gemini-2.5-flash-thinking 25.0 0.0 33.3 42.9 0.0 23.1
Gemini-2.5-pro-thinking 25.0 20.0 100.0 28.6 33.3 34.6
Doubao-seed-1.6 37.5 40.0 66.7 28.6 66.7 42.3
Doubao-1.5-thinking-vision-pro 25.0 40.0 0.0 14.3 22.3 21.8

Open-source MLLMs (Image-only, CoT with 0-shot)

Gemma-3-4b-it 0.0 0.0 0.0 0.0 0.0 0.0
Gemma-3n-E4B 0.0 0.0 33.3 42.9 0.0 15.4
Gemma-3-27b-it 12.5 0.0 33.3 14.3 0.0 11.5
Kimi-VL-A3B-Instruct 0.0 0.0 0.0 28.6 0.0 7.7
Qwen2.5-VL-7B-Instruct 0.0 20.0 0.0 14.3 0.0 7.7
InternVL3-8B 37.5 20.0 0.0 42.9 66.7 34.6
InternVL3-14B 25.0 0.0 33.3 14.3 100.0 26.9
Llama-4-Maverick 0.0 0.0 0.0 28.6 33.3 11.5
InternVL3-78B 12.5 0.0 0.0 14.3 0.0 7.7
Qwen2.5-VL-32B-Instruct 12.5 0.0 33.3 28.6 33.3 19.2
InternVL3-38B 12.5 20.0 0.0 42.9 66.7 26.9
GLM-4.1v-thinking-flashx 0.0 0.0 33.3 28.6 33.3 15.4
Qwen2.5-VL-72B 12.5 0.0 0.0 42.9 33.3 19.2
ERNIE-4.5-Turbo-VL-Preview 25.0 0.0 0.0 28.6 33.3 19.2

Reasoner (Image-only, CoT with 0-shot)

Keye-VL-8B-Preview 0.0 0.0 0.0 14.3 33.3 7.7
OVR 0.0 0.0 0.0 0.0 66.7 7.7
Revisual-R1 0.0 0.0 0.0 14.3 66.7 11.5
OpenVLThinker 0.0 0.0 0.0 28.6 0.0 7.7
ThinkLite-VL 25.0 0.0 0.0 14.3 33.3 15.4
VLAA-Thinker-Qwen2.5VL-7B 12.5 20.0 0.0 14.3 0.0 11.5
WeThink 12.5 0.0 0.0 14.3 33.3 11.5
MMR1-Math-v0-7B 12.5 20.0 0.0 14.3 33.3 15.4
MM-Eureka 12.5 20.0 0.0 14.3 55.7 18.0
MiMo-VL-7B-RL 0.0 0.0 0.0 0.0 33.3 3.8
VL-Rethinker-7B 25.0 40.0 0.0 28.6 66.7 30.8
Skywork-R1V3-38B 25.0 20.0 33.3 14.3 77.7 28.2
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Table 10: Comparison of model performances across five categories on fill-in-the-blank questions.
PG: Plane Geometry, SG: Solid Geometry, LR: Logical Reasoning, FG: Function Graphs, SC: Sta-
tistical Charts. Accstr is strict accuracy, Acc is loose accuracy. The first and second highest accuracy
of LLMs are bolded and underlined, respectively.

Model Accstr Acc

PG SG LR FG SC Avg PG SG LR FG SC Avg

LLMs (Question Text + Figure Description, CoT with 0-shot)

Qwen3-235B-A22B-thinking 41.5 7.1 57.1 23.1 58.3 39.8 49.4 20.9 68.9 26.9 67.3 48.8
DeepSeek-V3 37.7 35.7 38.1 30.8 50.0 38.1 47.2 44.0 51.5 53.9 60.4 49.8
Qwen3-235B-A22B-instruct 47.2 21.4 38.1 30.8 50.0 40.7 60.0 36.1 60.6 46.8 62.4 55.9
DeepSeek-R1 49.1 50.0 38.1 23.1 50.0 44.2 60.3 55.9 50.6 56.5 74.3 59.0

Closed Models (Image-only, CoT with 0-shot)

Grok-4 11.3 7.1 0.0 0.0 0.0 6.2 16.8 9.5 6.3 0.0 6.2 10.9
Claude-sonnet-4 11.3 7.1 14.3 0.0 8.3 9.7 19.2 14.2 19.0 20.6 27.8 19.6
Claude-sonnet-4-thinking 18.9 7.1 19.0 0.0 8.3 14.2 30.2 16.6 20.6 20.5 25.7 25.2
GPT-4.1 17.0 14.3 14.3 15.4 25.0 16.8 23.7 14.3 28.5 28.2 45.2 26.2
GPT-4o 18.9 14.3 14.3 7.7 0.0 14.2 26.5 22.0 31.3 25.6 28.5 27.0
Qwen-VL-Max 17.0 35.7 14.3 30.8 41.7 23.0 24.6 41.4 23.8 43.6 58.4 32.3
o4-mini 30.2 28.6 33.3 30.8 16.7 29.2 41.2 35.7 46.0 53.2 34.1 42.1
o3 43.4 42.9 23.8 38.5 25.0 37.2 60.3 52.4 36.6 55.2 43.8 52.6
Doubao-1.5-vision-pro-32k 28.3 35.7 23.8 7.7 16.7 24.8 40.7 40.4 41.3 38.4 53.4 41.9
Doubao-seed-1.6-thinking 47.2 50.0 23.8 30.8 25.0 38.9 60.0 59.5 40.8 53.8 58.2 55.5
Gemini-2.5-flash-thinking 50.9 57.1 28.6 38.5 41.7 45.1 62.2 61.9 46.0 52.5 70.8 59.0
Gemini-2.5-pro-thinking 45.3 42.9 47.6 30.8 50.0 44.2 57.5 63.5 58.7 42.9 74.3 58.6
Doubao-seed-1.6 50.9 57.1 52.4 30.8 33.3 47.8 60.1 66.7 73.2 51.2 74.0 63.8
Doubao-1.5-thinking-vision-pro 58.5 42.9 38.1 30.8 58.3 49.6 71.2 65.9 56.6 59.6 82.0 67.7

Open-source MLLMs (Image-only, CoT with 0-shot)

Gemma-3-4b-it 3.8 0.0 0.0 0.0 0.0 1.8 6.5 2.4 0.0 0.0 2.8 3.6
Gemma-3n-E4B 7.5 7.1 0.0 0.0 0.0 4.4 13.5 17.9 9.8 8.3 16.7 13.1
Gemma-3-27b-it 3.8 0.0 0.0 0.0 0.0 1.8 9.6 7.1 8.7 12.8 13.8 9.9
Kimi-VL-A3B-Instruct 7.5 14.3 0.0 7.7 0.0 6.2 16.9 16.6 17.4 18.0 8.2 16.2
Qwen2.5-VL-7B-Instruct 3.8 28.6 19.0 7.7 16.7 11.5 17.5 36.3 26.1 29.5 31.2 24.3
InternVL3-8B 9.4 14.3 0.0 0.0 0.0 6.2 18.0 22.6 9.0 15.4 25.3 17.4
InternVL3-14B 7.5 21.4 9.5 7.7 8.3 9.7 16.8 28.6 23.1 24.3 29.9 21.7
Llama-4-Maverick 17.0 14.3 19.0 7.7 0.0 14.2 26.2 22.6 25.3 15.4 20.8 23.8
InternVL3-78B 9.4 35.7 14.3 23.1 16.7 15.9 18.8 38.1 24.6 46.1 41.4 27.8
Qwen2.5-VL-32B-Instruct 9.4 35.7 14.3 30.8 33.3 18.6 16.8 38.1 24.5 53.9 50.0 28.7
InternVL3-38B 17.0 28.6 4.8 7.7 16.7 15.0 25.4 33.4 17.5 27.6 37.5 26.4
GLM-4.1v-thinking-flashx 13.2 0.0 9.5 15.4 8.3 10.6 27.5 20.6 22.2 31.4 34.0 26.8
Qwen2.5-VL-72B 13.2 21.4 14.3 7.7 8.3 13.3 25.2 42.6 30.0 38.4 54.2 32.8
ERNIE-4.5-Turbo-VL-Preview 20.8 21.4 9.5 15.4 25.0 18.6 30.7 38.6 23.8 37.8 61.6 34.5

Reasoner (Image-only, CoT with 0-shot)

Keye-VL-8B-Preview 3.8 7.1 0.0 0.0 0.0 2.7 4.9 7.1 1.6 0.0 17.3 5.3
OVR 1.9 7.1 4.8 7.7 8.3 4.4 5.0 7.1 9.5 20.5 15.0 9.0
Revisual-R1 5.7 14.3 4.8 0.0 0.0 5.3 14.8 14.3 9.5 5.2 17.4 12.9
OpenVLThinker 13.2 21.4 4.8 15.4 16.7 13.3 19.0 38.6 18.9 33.3 29.8 24.2
ThinkLite-VL 9.4 28.6 14.3 7.7 8.3 12.4 17.4 38.7 25.3 26.2 38.2 24.8
VLAA-Thinker-Qwen2.5VL-7B 5.7 14.3 4.8 15.4 0.0 7.1 16.7 26.8 16.0 42.3 39.4 23.2
WeThink 7.5 21.4 19.0 23.1 8.3 13.3 20.8 37.1 36.8 38.4 49.8 30.9
MMR1-Math-v0-7B 5.7 14.3 4.8 15.4 8.3 8.0 20.2 16.6 20.1 34.5 45.1 24.1
MM-Eureka 7.5 28.6 9.5 7.7 0.0 9.7 24.2 33.4 20.3 33.3 38.9 27.2
MiMo-VL-7B-RL 18.9 14.3 9.5 7.7 16.7 15.0 28.0 21.4 15.9 23.7 44.4 26.2
VL-Rethinker-7B 11.3 21.4 14.3 15.4 8.3 13.3 26.0 33.9 29.7 35.9 41.0 30.4
Skywork-R1V3-38B 20.8 7.1 9.5 30.8 8.3 16.8 35.8 30.4 19.8 52.5 27.7 33.2
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Table 11: Comparison of model performances across five categories on constructed-response ques-
tions. PG: Plane Geometry, SG: Solid Geometry, LR: Logical Reasoning, FG: Function Graphs,
SC: Statistical Charts. Accstr is strict accuracy, Acc is loose accuracy. The first and second highest
accuracy of LLMs are bolded and underlined, respectively.

Model Accstr Acc

PG SG LR FG SC Avg PG SG LR FG SC Avg

LLMs (Question Text + Figure Description, CoT with 0-shot)

Qwen3-235B-A22B-thinking 26.3 32.6 22.7 21.7 38.9 28.2 32.1 37.5 27.3 31.9 56.5 34.5
DeepSeek-V3 25.3 30.4 27.3 30.4 61.1 29.0 42.4 35.1 39.8 42.4 76.8 42.1
Qwen3-235B-A22B-instruct 31.2 35.9 36.4 47.8 44.4 34.6 43.4 42.0 44.0 62.7 63.8 45.4
DeepSeek-R1 41.9 33.7 40.9 39.1 61.1 40.5 56.6 42.0 50.7 52.9 80.6 53.3

Closed Models (Image-only, CoT with 0-shot)

Grok-4 4.3 2.2 0.0 0.0 0.0 2.9 5.5 3.3 0.0 0.0 1.8 4.0
Claude-sonnet-4 6.5 6.5 4.5 0.0 16.7 6.5 13.6 8.2 12.1 17.8 26.4 13.0
Claude-sonnet-4-thinking 9.1 7.6 4.5 13.0 11.1 8.8 16.8 8.3 12.1 14.5 14.8 14.0
GPT-4.1 11.3 14.1 9.1 0.0 33.3 12.3 21.1 19.5 18.9 19.6 43.5 21.6
GPT-4o 11.8 15.2 13.6 8.7 22.2 13.2 22.7 20.8 21.2 22.5 25.9 22.2
Qwen-VL-Max 9.1 10.9 9.1 4.3 22.2 10.0 21.4 17.8 19.7 25.4 25.9 20.8
o4-mini 26.3 23.9 13.6 17.4 33.3 24.6 37.8 30.0 20.1 36.3 48.2 35.0
o3 23.1 28.3 9.1 0.0 44.4 23.2 31.9 34.5 19.7 11.7 46.3 31.2
Doubao-1.5-vision-pro-32k 28.0 28.3 18.2 30.4 33.3 27.9 42.6 38.2 24.3 47.9 37.0 40.3
Doubao-seed-1.6-thinking 34.4 23.9 9.1 43.5 33.3 30.5 46.1 30.5 21.2 49.3 57.8 41.1
Gemini-2.5-flash-thinking 41.4 35.9 13.6 43.5 61.1 39.3 53.2 42.6 27.3 53.7 70.8 49.6
Gemini-2.5-pro-thinking 39.2 42.4 22.7 47.8 50.0 40.2 50.7 47.3 34.9 60.2 59.7 49.8
Doubao-seed-1.6 38.2 34.8 9.1 43.5 55.6 36.7 51.7 41.9 24.6 55.4 59.2 48.0
Doubao-1.5-thinking-vision-pro 39.8 43.5 18.2 39.1 50.0 39.9 53.2 50.6 31.8 55.1 63.9 51.8

Open-source MLLMs (Image-only, CoT with 0-shot)

Gemma-3-4b-it 0.5 2.2 4.5 0.0 0.0 1.2 3.7 2.5 6.0 0.0 0.0 3.1
Gemma-3n-E4B 1.1 2.2 4.5 0.0 11.1 2.1 6.8 5.3 9.1 2.9 17.1 6.8
Gemma-3-27b-it 4.3 5.4 0.0 0.0 11.1 4.4 10.0 6.2 3.0 6.1 14.8 8.5
Kimi-VL-A3B-Instruct 2.7 10.9 0.0 4.3 0.0 4.7 10.0 14.9 3.0 14.5 11.6 11.3
Qwen2.5-VL-7B-Instruct 4.3 5.4 9.1 0.0 0.0 4.4 14.9 11.1 23.5 13.1 19.0 14.5
InternVL3-8B 7.0 9.8 9.1 4.3 11.1 7.9 14.5 15.4 15.1 7.2 27.3 15.0
InternVL3-14B 7.0 14.1 4.5 0.0 16.7 8.8 14.8 18.2 15.1 8.7 28.2 16.1
Llama-4-Maverick 10.2 10.9 9.1 4.3 5.6 9.7 18.9 13.3 21.2 17.4 21.8 17.6
InternVL3-78B 7.0 13.0 18.2 4.3 16.7 9.7 17.1 17.2 27.3 17.4 35.6 18.8
Qwen2.5-VL-32B-Instruct 8.6 10.9 9.1 8.7 27.8 10.3 19.1 16.4 13.6 20.3 37.0 19.0
InternVL3-38B 8.1 14.1 13.6 4.3 22.2 10.6 18.1 17.6 16.6 20.3 41.2 19.2
GLM-4.1v-thinking-flashx 15.1 15.2 4.5 0.0 22.2 13.8 28.2 21.7 7.6 16.0 31.4 24.4
Qwen2.5-VL-72B 12.4 17.4 9.1 13.0 22.2 14.1 27.5 22.6 13.6 30.4 35.7 25.9
ERNIE-4.5-Turbo-VL-Preview 17.2 13.0 18.2 13.0 27.8 16.4 33.3 20.1 28.8 31.2 45.3 29.9

Reasoner (Image-only, CoT with 0-shot)

Keye-VL-8B-Preview 3.2 4.3 0.0 4.3 5.6 3.5 4.8 4.7 0.0 4.3 7.4 4.6
OVR 3.2 5.4 4.5 8.7 11.1 4.7 7.6 7.6 10.6 16.3 14.8 8.7
Revisual-R1 6.5 5.4 4.5 4.3 11.1 6.2 11.6 6.9 9.1 10.1 25.0 10.8
OpenVLThinker 3.2 7.6 9.1 0.0 11.1 5.0 14.2 11.5 9.1 11.6 25.4 13.6
ThinkLite-VL 4.3 7.6 4.5 0.0 11.1 5.3 16.1 12.5 9.1 18.5 28.7 15.5
VLAA-Thinker-Qwen2.5VL-7B 5.4 9.8 13.6 0.0 16.7 7.3 16.0 16.1 22.7 14.5 36.1 17.4
WeThink 6.5 8.7 9.1 4.3 5.6 7.0 16.8 16.2 21.6 18.9 22.2 17.4
MMR1-Math-v0-7B 9.7 10.9 4.5 4.3 11.1 9.4 20.1 18.0 10.6 21.8 28.7 19.5
MM-Eureka 5.4 14.1 9.1 0.0 22.2 8.5 17.3 19.8 20.5 12.3 36.1 18.8
MiMo-VL-7B-RL 15.1 13.0 0.0 13.0 22.2 13.8 23.4 19.8 6.0 20.3 33.8 21.7
VL-Rethinker-7B 9.7 13.0 13.6 8.7 16.7 11.1 20.2 18.7 19.7 26.0 26.3 20.5
Skywork-R1V3-38B 17.2 7.6 4.5 17.4 22.2 14.1 28.9 13.7 15.1 31.9 31.4 24.3
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Figure 11: Scatter plot of the relationship between OCR accuracy and accuracy in the I+QG setting,
where the size of each circle represents the difference in accuracy between the I+QG setting and the
I+QM setting.

mance across domains, while models like o3 and o4-mini have stronger upper bounds in the Clean
setting but drop in ranking for Real, showing higher sensitivity to input cleanliness.

Robustness and ∆ Analysis. From the perspective of ∆ = AccClean − AccReal, a smaller ab-
solute value indicates greater robustness across domains. The most stable model is Gemini-
2.5-pro-thinking (∆ = 0.0), followed by ERNIE-4.5-turbo-vl (+0.8), InternVL3-14b (+0.6), and
Qwen2.5VL-72b (+0.9), suggesting minimal dependence on input cleaning. Most mainstream mod-
els gain between 5 and 10 percentage points in Clean compared to Real, such as GPT-4o (+6.9),
GPT-4.1 (+6.8), o4-mini (+9.4), Doubao-1.5-vision-pro (+7.6), and Qwen-VL-Max (+9.9), indi-
cating that standardization and denoising benefit a wide range of systems. Notably, two atyp-
ical patterns emerge: first, models with negative ∆, including Gemini-2.5-flash-thinking (-3.4)
and Doubao-1.5-thinking-vision-pro (-3.0), perform better in Real than in Clean, possibly due to
stronger adaptation to realistic noise and layout variations; second, models with very large ∆, such
as Llama-4-Maverick (+13.3), o3 (+12.4), Claude-sonnet-4-thinking (+11.7), GLM-4.1v-thinking-
flashx (+11.4), Qwen2.5VL-32b (+10.9), and Claude-sonnet-4 (+10.9), show substantial benefits
from cleaner inputs, implying higher vulnerability to noise and complex formatting.

Family and Model-Type Comparison. Within the Doubao series, Doubao-1.5-thinking-vision-
pro leads in Real accuracy (62.9) but slightly drops in Clean (negative ∆), making it well-suited for
raw, noisy data. Doubao-seed-1.6 achieves the highest Clean score (63.6) while remaining compet-
itive in Real (56.2), representing the strongest all-around performer. The Gemini family presents
a contrast: Gemini-2.5-pro-thinking achieves perfect robustness (∆ = 0) and high scores in both
domains, while Gemini-2.5-flash-thinking is notably stronger in Real than Clean. OpenAI’s o3 and
o4-mini benefit greatly from cleaner inputs (large positive ∆), making them excellent candidates
for pipelines with strong preprocessing. Other major model families, such as GPT-4o/4.1, Claude,
Qwen, and InternVL, generally follow the trend of significantly higher accuracy in Clean, reinforc-
ing the importance of preprocessing for optimal performance.
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F THE USE OF LARGE LANGUAGE MODELS

In this work, we used LLMs only in a supportive role for aid and polish writing. Specifically,
LLM assistance was employed for improving the clarity and fluency of exposition in the Abstract,
Introduction, and Related Work sections. In addition, LLMs were used for formatting support,
including converting mathematical expressions into standard LATEX notation and organizing dataset
statistics and results into well-formatted tables and figures. All substantive research contributions
were performed entirely by the authors without reliance on LLMs.
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1. Plane Geometry

Figure 12: Samples of Plane Geometry.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

2. Solid Geometry

Figure 13: Samples of Solid Geometry.
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3. Logical Reasoning

Figure 14: Samples of Logical Reasoning.
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4. Function Graphs

Figure 15: Samples of Function Graphs.
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5. Statistical Charts

Figure 16: Samples of Statistical Charts.
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