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Abstract

Multi-source transfer learning provides an effective solution to data scarcity in real-
world supervised learning scenarios by leveraging multiple source tasks. In this
field, existing works typically use all available samples from sources in training,
which constrains their training efficiency and may lead to suboptimal results.
To address this, we propose a theoretical framework that answers the question:
what is the optimal quantity of source samples needed from each source task to
jointly train the target model? Specifically, we introduce a generalization error
measure based on K-L divergence, and minimize it based on high-dimensional
statistical analysis to determine the optimal transfer quantity for each source task.
Additionally, we develop an architecture-agnostic and data-efficient algorithm
OTQMS to implement our theoretical results for target model training in multi-
source transfer learning. Experimental studies on diverse architectures and two
real-world benchmark datasets show that our proposed algorithm significantly
outperforms state-of-the-art approaches in both accuracy and data efficiency. The
code is available at https://github.com/zqy0126/OTQMS.

1 Introduction
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Figure 1: More source samples does not al-
ways mean better performance. Incorporating all
source samples may bring negative impact, which
is illustrated by the comparison of two strategies,
using target task samples with all source sam-
ples (blue) and using target task samples only
(red), evaluated on the equally divided 5-task CI-
FAR10 dataset. Theoretically, although incorporat-
ing more source samples reduces model variance
by expanding the training data, the discrepancy
between the source and target tasks introduces ad-
ditional bias.

Nowadays, various machine learning algorithms
have achieved remarkable success by leveraging
large-scale labeled training data. However, in
many practical scenarios, the limited availability
of labeled data presents a significant challenge,
where transfer learning emerges as an effective
solution [33]. Transfer learning aims to leverage
knowledge from tasks with abundant data or be-
ing well-trained, known as the source tasks, to
improve the performance of a new learning task,
known as the target task. Given its numerous
applications, transfer learning has gained wide
popularity and seen success in a variety of fields,
such as computer vision [28], natural language
processing [24], recommendation systems [7]
and anomaly detection [26]. Traditionally, trans-
fer learning has focused on the transfer between
a single source task and a target task. However,
there is a growing emphasis on multi-source
transfer learning, which leverages multiple source tasks to enhance the training of the target task [23].
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Table 1: Comparison across matching-based transfer learning method, based on whether they are
tailored to multi-sources, have task generality, have shot generality, and require target labels. The
‘!’ represents obtaining the corresponding aspects, while ‘%’ the opposite. Task generality denotes
the ability to handle various target task types, and shot generality denotes the ability to avoid negative
transfer in different target sample quantity settings including few-shot and non-few-shot.

Method Multi-Source Task Generality Shot Generality Target Label

MCW [12] ! % % Supervised
Leep [17] % ! ! Supervised
Tong [25] ! % ! Supervised
DATE [9] ! ! ! Unsupervised

H-ensemble [31] ! % % Supervised
OTQMS (Ours) ! ! ! Supervised

In multi-source transfer learning, traditional methods usually jointly train the target model using all
available samples from sources without selection [32, 22, 14]. This evidently poses a severe limitation
to training efficiency, considering the vast number of available samples from various potential source
tasks in real-world scenarios [19]. Moreover, directly assuming the use of all available samples
seriously constrains their solution space, which possibly leads to suboptimal results, as illustrated in
Figure 1. Therefore, it is critical to establish a theoretical framework to answer the question: what is
the optimal transfer quantity of samples from each source task needed in training the target task?

In this work, we formulate a sample-based multi-source transfer learning problem as a parameter
estimation problem. By employing high-dimensional statistical methods to analyze it, we establish a
theoretical framework to determine the optimal transfer quantity for each source task. Specifically,
we introduce the expectation of Kullback-Leibler (K-L) divergence between the true distribution of
target task samples and the distribution learned from training samples as a measure of generalization
error. This measure is then minimized in the asymptotic regime to derive the optimal transfer quantity
of each source task. Building on this, we propose a practical algorithm, named Optimal Transfer
Quantities for Multi-Source Transfer learning (OTQMS), to implement our theoretical results for
training multi-source transfer learning models. Notably, OTQMS is data-efficient and compatible
with various model architectures, including Vision Transformer (ViT) and Low-Rank Adaptation
(LoRA). It also demonstrates advantages in task generality and shot generality (as illustrated in
Table 1), since we establish theoretical framework without restricting it to a specific target task type
or limiting the range of target sample quantity. In summary, our main contributions are as follows:

a) We use high-dimensional statistics to analyze the parameter estimation problem formu-
lated by the sample-based multi-source transfer learning problem. Based on this, a novel
theoretical framework that optimizes transfer quantities is introduced.

b) Based on the framework, we propose OTQMS, an architecture-agnostic and data-efficient
algorithm for target model training in multi-source transfer learning. In particular, we
propose a dynamic strategy in OTQMS to alleviate the estimation error of transfer quantities
caused by the scarcity of target task samples.

c) Experimental studies on few-shot multi-source transfer learning tasks, two real-world
datasets and various model architectures demonstrate that OTQMS achieves significant
improvements in both accuracy and data efficiency. In terms of accuracy, OTQMS out-
performs state-of-the-art approaches by an average of 1.5% on DomainNet and 1.0% on
Office-Home. In terms of data efficiency, OTQMS reduces the average training time by
35.19% and the average sample usage by 47.85% on DomainNet. Furthermore, extensive
supplementary experiments demonstrate that OTQMS can facilitate both full model training
and parameter-efficient training, and OTQMS is also applicable to multi-task learning tasks.

2 Related Work

This work is related to two main lines of research. The first is transfer learning theory, where we
propose a measure based on K-L divergence as a novel measure of generalization error, different from
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previously adopted measures [10, 2, 25, 1, 31]. The second is multi-source transfer learning, where
most existing studies either utilize all samples from all source tasks or adopt task-level selection
strategies [8, 22, 25, 31]. In contrast, our framework explicitly optimizes the transfer quantity from
each individual source task. Other closely related work is discussed further in Appendix B.

3 Problem Formulation

Consider the transfer learning setting with one target task T , and K source tasks {S1, . . . ,SK}. The
target task T is not restricted to a specific downstream task category. Generally, we formulate it as a
parameter estimation problem under a distribution model PX;θ. For example, when T is a supervised
classification task, PX;θ corresponds to the joint distribution model of input features Z and output
labels Y , i.e., X = (Z, Y ). Our objective is to estimate the true value of θ, which corresponds to
optimizing the neural network parameters for target task T . Here, θ denotes 1-dimensional parameter,
and θ denotes high-dimensional parameter. Furthermore, we assume that the source tasks and the
target task follow the same parametric model and share the same input space X . Without loss of
generality, we assume X to be discrete primarily for clarity of writing and to avoid redundancy, and
our results can be readily extended to continuous spaces. The target task T has N0 training samples
XN0 = {x1, . . . , xN0

} i.i.d. generated from some underlying joint distribution PX;θ0
, where the

parameter θ0 ∈ Rd. Similarly, the source task Si has Ni training samples XNi = {xi
1, . . . , x

i
Ni
}

i.i.d. generated from some underlying joint distribution PX;θi
, where i ∈ [1,K], and the parameter

θi ∈ Rd. In this work, we use the Maximum Likelihood Estimator (MLE) to estimate the true target
task parameter θ0. Moreover, the following lemma characterizes the asymptotic behavior of MLE.
Lemma 1. (Asymptotic Normality of the MLE) [29] When we use MLE only based on target task
samples to estimate θ0, i.e.

θ̂MLE = argmax
θ

1

N0

∑
x∈XN0

logPX;θ(x), (1)

under appropriate regularity conditions, the following holds:√
N0

(
θ̂MLE − θ0

)
d−→ N

(
0, J(θ0)

−1
)
, (2)

where “−1” denotes the matrix inverse and the J(θ) is the Fisher information matrix defined as:

J(θ)d×d = E

[(
∂

∂θ
logPX;θ

)(
∂

∂θ
logPX;θ

)T
]
. (3)

When we transfer n1, . . . , nK samples from the {S1, . . . ,SK}, where ni ∈ [0, Ni], we denote
these training sample sequences as Xn1 , Xn2 , . . . , XnK . Then, the MLE for multi-source transfer
learning, is the parameter value that maximizes the empirical mean of the likelihood of samples from
source tasks and target task, i.e.,

θ̂ = argmax
θ

1

N0 +
∑K

i=1 ni

 ∑
x∈XN0

logPX;θ(x) +

K∑
i=1

∑
x∈Xni

logPX;θ(x)

 . (4)

In this work, our goal is to derive the optimal transfer quantities n∗
1, . . . , n

∗
K of source tasks

S1, . . . ,SK to minimize certain divergence measure Div between the true distribution of target
task PX;θ0

and the distribution PX;θ̂ learned from training samples, i.e.,

n∗
1, . . . , n

∗
K = argmin

n1,...,nK

Div(PX;θ0
, PX;θ̂). (5)

Besides, we provide the notations table in Appendix A.

4 Theoretical Analysis and Algorithm

In this section, we will first introduce a new K-L divergence based measure for the optimization
problem in (5). Then, we will analyze it based on high-dimensional statistics to derive the optimal
transfer quantities for both single-source and multi-source scenarios. Finally, we will develop a
practical algorithm based on the theoretical framework.
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Definition 2. (The K-L divergence) [4] The K-L divergence D (P∥Q) measures the difference
between two probability distributions P (X) and Q(X) over the same probability space. It is defined
as:

D (P∥Q) =
∑
x∈X

p(x) log
p(x)

q(x)
.

In this work, we apply the expectation of the K-L divergence between the true distribution model of
the target task and the distribution model learned from training samples to measure the generalization
error. Compared to other measures, the K-L divergence exhibits a closer correspondence with the
generalization error as measured by the cross-entropy loss, .

Finally, our generalization error measure is defined as:

Div(PX;θ0
, PX;θ̂) = E

[
D
(
PX;θ0

∥∥∥PX;θ̂

)]
. (6)

4.1 Single-Source Transfer Learning

The direct computation of the proposed K-L divergence based measure is challenging. Fortunately, we
can show that the proposed measure is computable in the asymptotic regime using high-dimensional
statistical analysis. To be specific, we can prove that the proposed measure directly depends on the
Mean Squared Error (MSE) in the asymptotic regime, and the MSE can be calculated by an extension
of Lemma 1. Therefore, we perform an asymptotic analysis of this measure.

In this section, we begin by presenting the theoretical results in Lemma 3 and Theorem 4 where
the parameter is 1-dimensional, and subsequently extend them to the high-dimensional parameter
setting in Proposition 5 and 6. To begin, we consider the setting with a target task T with N0 samples
generated from a model with 1-dimensional parameter.
Lemma 3. (proved in Appendix C.1) Given a target task T with N0 i.i.d. samples generated from a
1-dimensional underlying model PX;θ0 , where θ0 ∈ R, and denoting θ̂ as the MLE (1) based on the
N0 samples, then the proposed measure (6) can be expressed as:

E
[
D
(
PX;θ0

∥∥∥PX;θ̂

)]
=

1

2N0
+ o

(
1

N0

)
. (7)

The result of Lemma 3 demonstrates that when there is only one target task without any source
task, the proposed measure is inversely proportional to the number of training samples. Next, we
consider the transfer learning scenario where we have one target task T with N0 training samples
and one source task S1 with N1 training samples. In this case, we aim to determine the optimal
transfer quantity n∗

1 ∈ [1, N1]. To facilitate our mathematical derivations, we assume N0 and N1 are
asymptotically comparable, and the distance between the parameters of the target task and source
task is sufficiently small (i.e., |θ0 − θ1| = O( 1√

N0
)). Considering the similarity of low-level features

among tasks of the same type, this assumption is made without loss of generality and supported by
related studies [20]. Furthermore, as demonstrated in subsequent analysis, our conclusions remain
valid even in extreme cases where the distance between parameters is large.
Theorem 4. (proved in Appendix C.2) Given a target task T with N0 i.i.d. samples generated from a
1-dimensional underlying model PX;θ0 , and a source task S1 with N1 i.i.d. samples generated from a
1-dimensional underlying model PX;θ1 , where θ0, θ1 ∈ R and |θ0 − θ1| = O( 1√

N0
), θ̂ is denoted as

the MLE (4) based on the N0 samples from T and n1 samples from S1, where n1 ∈ [0, N1], then the
proposed measure (6) can be expressed as:

1

2

(
1

N0 + n1︸ ︷︷ ︸
variance term

+
n2
1

(N0 + n1)2
t︸ ︷︷ ︸

bias term

)
+ o

(
1

N0 + n1

)
, (8)

where
t ≜ J(θ0)(θ1 − θ0)

2. (9)
Moreover, the optimal transfer quantity n∗

1 is

n∗
1 =

{
N1, if N0 · t ≤ 0.5

min
(
N1,

N0

2N0t−1

)
, if N0 · t > 0.5

. (10)
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From (8), we observe that the proposed measure decreases as N0 increases, which aligns with
our intuition that utilizing all available target samples is beneficial. In addition, the trend of (8)
with respect to n1 is more complex. We plot (8) as a function of n1 under two different regimes,
determined by the value of N0 · t, as shown in Figure 2. Our goal is to explore the optimal value of
n∗
1 to minimize (8).

• Case 1 (N0 · t ≤ 0.5): The proposed measure monotonically decreases as n1 increases.
Obviously, the optimal point is n∗

1 = N1. This indicates that when the source task and the
target task are highly similar, i.e., when t is small, an increase in the transfer quantity will
positively impact the results.

• Case 2 (N0 · t > 0.5): The proposed measure first decreases and then increases as n1

increases. It attaining its minimum at n′
1 = N0

2N0t−1 . It should be noted that when t is
large enough, the point n′

1 approaches 0. This aligns with the intuition that when the
discrepancy between the source and target tasks is substantial, avoiding transfer yields
better results. Furthermore, if n′

1 exceeds N1, we should utilize all N1 samples, so n∗
1 =

min
(
N1,

N0

2N0t−1

)
.
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Figure 2: The function curve figures of (8) under
different regimes determined by the value of N0 ·
t (blue). The vertical axis denotes the value of
proposed measure (8), while the horizontal axis
denotes the variable n1.

As the dimensionality of the model parameter θ
increases to higher dimensions, we derive the
following propositions.
Proposition 5. (proved in Appendix C.3) In the
case where the parameter dimension is d, i.e.,
θ0 ∈ Rd, with all other settings remaining the
same as the Lemma 3, the proposed measure (6)
can be expressed as

d

2N0
+ o

(
1

N0

)
. (11)

Proposition 6. (proved in Appendix C.4) In the
case where the parameter dimension is d, i.e.,
θ0, θ1 ∈ Rd, with all other settings remaining
the same as the Theorem 4, the proposed measure (6) can be expressed as

d

2

(
1

N0 + n1
+

n2
1

(N0 + n1)2
t

)
+ o

(
1

N0 + n1

)
, (12)

where we denote

t ≜
(θ1 − θ0)

TJ(θ0)(θ1 − θ0)

d
. (13)

In addition, t is a scalar, J(θ0) is d× d matrix, and (θ1 − θ0) is a d− dimensional vector, which is
the element-wise subtraction of two d-dimensional vectors θ1 and θ0.

Compared to Theorem 4, Proposition 6 exhibits a similar mathematical form, allowing us to derive the
optimal transfer quantity through a similar approach. Furthermore, we observe that as the parameter
dimension d increases, the K-L error measure (12) increases. This suggests that for a complex model,
knowledge transfer across tasks becomes more challenging, which is consistent with the findings in
[25].

4.2 Multi-Source Transfer Learning

Consider the multi-source transfer learning scenario with K source task {S1, . . . ,SK} and one target
task T . We aim to derive the optimal transfer quantity n∗

i of each source.
Theorem 7. (proved in Appendix C.5) Given a target task T with N0 i.i.d. samples generated
from the underlying model PX;θ0

, and K source tasks S1, . . . ,SK with N1, . . . , NK i.i.d. samples
generated from the underlying model PX;θ1

, . . . , PX;θK
, where θ0, θ1, . . . , θK ∈ Rd. θ̂ is denoted

as the MLE (4) based on the N0 samples from T and n1, . . . , nK samples from S1, . . . ,SK , where
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ni ∈ [0, Ni]. Denoting s =
K∑
i=1

ni as the total transfer quantity, and αi =
ni

s as the proportion of

different source tasks, then the proposed measure (6) can be expressed as:
d

2

(
1

N0 + s
+

s2

(N0 + s)2
t

)
+ o

(
1

N0 + s

)
. (14)

In (14), t is a scalar denoted as

t =
αTΘTJ(θ0)Θα

d
, (15)

where α = [α1, . . . , αK ]
T is a K-dimensional vector, and Θd×K = [θ1 − θ0, . . . , θK − θ0].

According to Theorem 7, we can derive the optimal transfer quantities n∗
1, . . . , n

∗
K by minimizing

(14). Equivalently, we need to find the optimal total transfer quantity s∗ and the optimal proportion
vector α∗ which minimize (14). The analytical solutions of s∗ and α∗ are difficult to acquire, and we
provide a method to get their numerical solutions in Appendix E. Eventually, we can get the optimal
transfer quantity of each source through n∗

i = s∗ · α∗
i .

4.3 Practical Algorithm

Along with our theoretical framework, we propose a practical algorithm, OTQMS, which is applicable
to sample-based multi-source transfer learning tasks, as presented in Algorithm 1. In OTQMS, when
computing the optimal transfer quantities based on Theorem 7, we use the parameters of pretrained
source models to replace θ1, · · · , θK . Considering that the source model can be trained using
sufficient labeled data, it is reasonable to use the learned parameters as a good approximation of
the true underlying parameters. In contrast, the number of target data in transfer learning is often
insufficient, so it is difficult to accurately estimate the true parameter θ0 - the parameter of the target
task model - using only the target data. Therefore, as shown in lines 5-14 of Algorithm 1, we adopt a
dynamic strategy. Specifically, in the first epoch, we train a θ0 using only the target data. This θ0 is
then used, along with Theorem 7, to determine the optimal transfer quantity from each source task,
and we use random sampling to form a new resampled training dataset. Finally, we continue training
θ0 on this new dataset, and this procedure is repeated in each subsequent epoch to iteratively update
the training dataset. This mechanism helps alleviate the inaccuracy of θ0, and we also validate the
effectiveness of this design in Section 5.3. In particular, we compute the matrix J using the gradient
of Ltrain in line 10, and the loss function ℓ is the negative log-likelihood, following a widely adopted
approach in deep learning known as the empirical Fisher [16, 18].

Algorithm 1 OTQMS: Training

1: Input: Target data DT = {(ziT , yiT )}
N0
i=1, source data {DSk

= {(ziSk
, yiSk

)}Nk
i=1}Kk=1, model

type fθ and its parameters θ0 for target task and {θk}Kk=1 for source tasks, parameter dimension
d. // z represents the feature and y represents the label

2: Parameter: Learning rate η.
3: Initialize: randomly initialize θ0, use parameters of pretrained source models to initialize
{θk}Kk=1.

4: Output: a well-trained θ0 for target task model fθ0
.

5: Dtrain ← DT // Initialize the trainning dataset by target task samples
6: repeat // Use dynamic strategy to train the target task
7: Ltrain ← 1

|Dtrain|
∑

(yi,zi)∈Dtrain

ℓ
(
yi, fθ0

(zi)
)

8: θ0 ← θ0 − η∇θ0
Ltrain

9: Θ← [θ1 − θ0, . . . , θK − θ0]
T

10: J(θ0)← (∇θ0
Ltrain)(∇θ0

Ltrain)
T

11: (s∗, α∗)← argmin
(s,α)

d
2

(
1

N0+s + s2

(N0+s)2
αTΘT J(θ0)Θα

d

)
12: Dsource ←

K⋃
k=1

{
D∗

Sk

∣∣∣∣D∗
Sk

rand
⊆ DSk

, |D∗
Sk
| = s∗α∗

k

}
13: Dtrain ← Dsource

⋃
DT // Update the trainning dataset

14: until θ0 converges;
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5 Experiments

5.1 Experiments Settings

Benchmark Datasets. DomainNet contains 586,575 samples of 345 classes from 6 domains (i.e., C:
Clipart, I: Infograph, P: Painting, Q: Quickdraw, R: Real and S: Sketch). Office-Home benchmark
contains 15588 samples of 65 classes, with 12 adaptation scenarios constructed from 4 domains: Art,
Clipart, Product and Real World (abbr. Ar, Cl, Pr and Rw). Digits contains four-digit sub-datasets:
MNIST(mt), Synthetic(sy), SVHN(sv) and USPS(up), with each sub-dataset containing samples of
numbers ranging from 0 to 9.

Implementation Details. We employ the ViT-Small model [30], pre-trained on ImageNet-21k [5], as
the backbone for all datasets. The Adam optimizer is employed with a learning rate of 1e−5. We
allocate 20% of the dataset as the test set, and report the highest accuracies within 5 epoch early stops
in all experiments. Following the standard few-shot learning protocol, the training data for k-shot
consists of k randomly selected samples per class from the target task. All experiments are conducted
on Nvidia A800 GPUs.

Baselines. For a general performance evaluation, we take SOTA works under similar settings as
baselines. The scope of compared methods includes: 1) Unsupervised Methods: MSFDA [21],
DATE [9], M3SDA [19]. 2) Few-Shot Methods Based on Model(Parameter)-Weighting: H-ensemble
[31], MCW [12]. 3) Few-Shot Methods Based on Sample: MADA [32], WADN [22] 4) Source
Ablating Methods: Target-Only, Single-Source-Avg/Single-Source-Best (average/best performance
of single-source transfer), AllSources ∪ Target (all source & target data in multi-source transfer).

Note that MADA [32] leverages all unlabeled target data in conjunction with a limited amount of
labeled target data, which is a hybrid approach combining unsupervised and supervised learning. Due
to the page limit, we provide detailed information on the experimental design and the results of an
experiment adapted to the WADN settings on the Digits dataset in Appendix D.2.

Table 2: Multi-Source Transfer Performance on DomainNet and Office-Home. The ar-
rows indicate transfering from the rest tasks. The highest/second-highest accuracy is marked in
Bold/Underscore form respectively.

Method Backbone
DomainNet Office-Home

→C →I →P →Q →R →S Avg →Ar →Cl →Pr →Rw Avg

Unsupervised-all-shots
MSFDA[21] ResNet50 66.5 21.6 56.7 20.4 70.5 54.4 48.4 75.6 62.8 84.8 85.3 77.1
DATE[9] ResNet50 - - - - - - - 75.2 60.9 85.2 84.0 76.3
M3SDA[19] ResNet101 57.2 24.2 51.6 5.2 61.6 49.6 41.5 - - - - -

Supervised-10-shots
Few-Shot Methods:
H-ensemble[31] ViT-S 53.4 21.3 54.4 19.0 70.4 44.0 43.8 71.8 47.5 77.6 79.1 69.0
MADA[32] ViT-S 51.0 12.8 60.3 15.0 81.4 22.7 40.5 78.4 58.3 82.3 85.2 76.1
MADA[32] ResNet50 66.1 23.9 60.4 31.9 75.4 52.5 51.7 72.2 64.4 82.9 81.9 75.4
MCW[12] ViT-S 54.9 21.0 53.6 20.4 70.8 42.4 43.9 68.9 48.0 77.4 86.0 70.1
WADN[22] ViT-S 68.0 29.7 59.1 16.8 74.2 55.1 50.5 60.3 39.7 66.2 68.7 58.7
Source-Ablation Methods:
Target-Only ViT-S 14.2 3.3 23.2 7.2 41.4 10.6 16.7 40.0 33.3 54.9 52.6 45.2
Single-Source-Avg ViT-S 50.4 22.1 44.9 24.7 58.8 42.5 40.6 65.2 53.3 74.4 72.7 66.4
Single-Source-Best ViT-S 60.2 28.0 55.4 28.4 66.0 49.7 48.0 72.9 60.9 80.7 74.8 72.3
AllSources ∪ Target ViT-S 71.7 32.4 60.0 31.4 71.7 58.5 54.3 77.0 62.3 84.9 84.5 77.2
OTQMS (Ours) ViT-S 72.8 33.8 61.2 33.8 73.2 59.8 55.8 78.1 64.5 85.2 84.9 78.2

5.2 Main Result

We evaluated our algorithm, OTQMS, alongside baseline methods on the few-shot multi-source
transfer learning tasks using the DomainNet and Office-Home datasets. The quantitative results
are summarized in Table 2. Since the unsupervised baselines are not designed for the supervised
few-shot setting, we report their original results from the respective papers for reference. We make
the following observations:

Overall Performance. In general, compared to baseline methods, OTQMS achieves the best
performance on almost all the transfer scenarios on the two datasets. Specifically, OTQMS outper-
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forms the state-of-the-art (AllSources ∪ Target) by an average of 1.5% on DomainNet and 1.0% on
Office-Home.

Data Speaks Louder Than Model Weighting. It is worth noting that on both datasets, sample-based
methods utilizing both target and source samples to jointly train the model, such as WADN, MADA
and OTQMS, generally outperform model(parameter)-weighting approaches which construct the
target model by weighting source models, such as H-ensemble and MCW. This observation suggests
that sample-based approaches offer greater advantages over model-based methods, because they can
fully leverage the relevant information from the source data for the target task.

Take, But Only as Much as You Need. Comparing results in Table 2 among Target-only,
AllSources ∪ Target, and OTQMS, we observe that OTQMS achieves the best performance in both
datasets by leveraging only a subset of data selected from all available sources based on model
preference. This result validates our theory. By choosing the right quantities of samples from
the source tasks, we could train the target model more accurately, and we give an analysis on the
domain preference of transfer quantity in Appendix F. Furthermore, Figure 4 shows that OTQMS
also significantly reduces the training time and sample usage, which validates its superiority in terms
of data efficiency.

Few-Shot Labels, Big Gains. We make a comparison of the results of unsupervised and supervised
methods. While other conditions remain the same, Table 2 demonstrates that even if unsupervised
methods like MSFDA and M3SDA take all the target data into account (up to 1.3×105 samples on
Real domain of DomainNet), their performance still falls short compared to the supervised methods,
which rely on only a limited number of samples (3450 samples). This illustrates the importance of
having supervised information in multi-source transfer learning.

5.3 Static vs. Dynamic Transfer Quantity

Table 3: Static vs. Dynamic Transfer Quantity
in OTQMS on Office-Home.

Method Backbone
Office-Home

→Ar →Cl →Pr →Rw Avg

Supervised-10-shots:
Static-Under ViT-S 77.0 62.3 84.9 84.5 77.2
Static-Exact ViT-S 46.0 59.8 85.1 83.7 68.7
Static-Over ViT-S 76.8 61.9 78.6 68.6 71.5
Dynamic ViT-S 78.1 64.5 85.2 84.9 78.2

In our proposed Algorithm 1, we employ a “Dy-
namic” strategy that dynamically determines the op-
timal transfer quantities and updates the resampled
dataset during the joint training of target task. To val-
idate the effectiveness of this strategy, we conducted
comparative experiments using the “Static-∗” meth-
ods. “Static-∗” methods first simulate the distribution
of target on target dataset only, and different types of
Static such as “Under, Exact and Over” stands for different fitting levels. In “Static-∗” methods, we
only compute the optimal transfer quantity once to make the resampled dataset, and evaluated on it
until target model converges. The results on Table 3 demonstrate OTQMS using dynamic transfer
quantity achieved the best performance.

5.4 Generality across Different Shot Settings

As discussed in the theoretical analysis of Theorem 4, our theoretical framework is applicable to any
quantity of target samples. Therefore, OTQMS exhibits shot generality, enabling it to avoid negative
transfer across different shot settings. To validate this, we increase the number of shots from 5 to
100 across methods including AllSources ∪ Target, Target-Only, and OTQMS. As shown in Figure
3, experimental results demonstrate that OTQMS consistently outperforms other approaches across
all shot settings. This highlights the generality and scalability of OTQMS in terms of data utilization.

(a) Infograph (b) Painting (c) Quickdraw (d) Real

Figure 3: Performance comparison with increasing target shots up to 100 per class on DomainNet
dataset (I, P, Q and R domains). OTQMS (blue) outperforms other methods.
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5.5 Data Efficiency Test

In this section, we demonstrate the advantage of OTQMS in terms of data efficiency. Specifically, we
conduct experiments with MADA, AllSources ∪ Target, and OTQMS across different shot settings,
and for each shot setting, we accumulate the total sample used and time consumed until the highest
accuracy is reached. To better visualize the results, we present the average sample usage and
training time across all shot settings in Figure 4. To be specific, OTQMS reduces the average
training time by 35.19% and the average sample usage by 47.85% on DomainNet, compared to the
AllSources ∪ Target method.
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Figure 4: Data efficiency comparison of average sample usage and training time on DomainNet
dataset, the left vertical axis represents the amount of sample usage, with green bars indicating
AllSources ∪ Target data counts, blue bars about OTQMS, red bars about MADA(ViT-S) and azury
bars about MADA(Res50), while the right orange vertical axis and lines represent training time.

5.6 Compatibility to Parameter-Efficient Training

To evaluate the applicability with parameter-efficient training, we used a ViT-Base model [6] inte-
grated with the LoRA framework [11] as the backbone. This approach significantly reduces the
number of trainable parameters for downstream tasks while ensuring model quality and improving
training efficiency. In the experiments, we consider the trainable low-rank matrices and the classi-
fication head as the parametric model in our theoretical framework, while treating the remaining
parameters as constants. Other experimental settings are the same as default. Experiments were
conducted on the Office-Home dataset. The results of Table 6 in Appendix demonstrate that our
method remains effective.

5.7 Compatibility to Multi-Task Learning

Table 4: Multi-task performance on four tasks
of Office-Home.

Method Backbone
Office-Home

Ar Cl Pr Rw Avg

Single-task ViT-S 66.7 62.3 87.8 68.6 71.4
OTQMS ViT-S 81.7 76.0 88.6 87.5 83.5

To demonstrate the applicability of our method to
multi-task learning scenarios, we conduct experi-
ments on the Office-Home dataset using the ViT-
Small model. In multi-task learning, each task simul-
taneously serves as both a source and a target task. In
the experiments, each task is treated as the target task
in OTQMS in turn during training, while the transfer
quantities from all source tasks are computed in turn. This setup enables us to evaluate how effectively
OTQMS leverages information across tasks. We compare the performance of our method against
single-task training to evaluate its effectiveness in Table 4.

6 Conclusion

In this work, we propose a theoretical framework to determine the optimal transfer quantities in
multi-source transfer learning. Our framework reveals that by optimizing the transfer quantity of each
source task, we can improve target task training while reducing the total transfer quantity. Based on
this theoretical framework, we develop an architecture-agnostic and data-efficient practical algorithm
OTQMS for jointly training the target model. We evaluated the proposed algorithm through extensive
experiments and demonstrated its superior accuracy and enhanced data efficiency.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction in this paper accurately reflect the paper’s
contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work in Appendix G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer:[Yes]
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Justification: In this paper, all proofs of theorems are provided and all assumptions are
clearly stated or referenced in the statement of any theorems.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: : All the results in this paper can be reproduced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code is available in https://anonymous.4open.science/r/
Materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specify all the training and test details necessary in Section 5 to
understand the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Due to the resource limitation, we do not report error bars. We think the error
bars are not related to the core result of our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: For each experiment, the paper provide sufficient information on the computer
resources needed to reproduce the experiments. We provide them in Section 5.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the impacts of the work in Appendix H.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not deal with data or models with a high risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets used in the paper are properly credited
and the license and terms of use are explicitly mentioned and properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Notations

Symbol Description
T target task
{S1, . . . ,SK} source tasks
N0 quantity of target samples
N1 · · ·NK maximum sample quantity of each source
n1 · · ·nK transfer quantity of each source
θ model parameter
θ vectorized model parameter
θ0 vectorized model parameter of target task
θi, i ∈ [1,K] vectorized model parameter of i-th source task,
J(θ) Fisher information (scalar) of θ
J(θ)d×d Fisher information (matrix) of d-dimensional θ
PX;θ distribution of X parameterized by θ

||x||2 l-2 norm of vector x
αi transfer proportion in multi-source case from i-th source task
α transfer proportion vector in multi-source case whose i-th entry is αi

s total transfer quantity in multi-source case
θ̂ estimator of θ
Eθ̂ expectation of θ̂

Table 5: Notations
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B Extended Related Work

B.1 Transfer Learning Theory

Existing theoretical works can be categorized into two groups. The first group focuses on proposing
measures to quantify the similarity between the target and source tasks. Within this group, some
measures have been introduced, including l2-distance [15], optimal transport cost [3], LEEP [17],
Wasserstein distance [22], and maximal correlations [12]. This work belongs to the second group
focusing on developing new generalization error measures. Within this group, the measures having
been introduced include f -divergence [10], mutual information [2], X 2-divergence [25],H-score [1,
31]. However, the potential of K-L divergence as a generalization error measure has not been
sufficiently explored.

B.2 Multi-source Transfer Learning

Classified by the object of transfer, existing multi-source transfer learning methods mainly focus on
two types: model transfer vs sample transfer [36]. Model transfer assumes there is one or more pre-
trained models on the source tasks and transfers their parameters to the target task via fine-tuning [27].
This work focuses on the latter, which is based on joint training of the source task samples with those
of the target task [32, 22, 14]. Classified by the strategy of transfer, existing methods mainly focus on
two types: alignment strategy and matching-based strategy [35]. Alignment strategy aims to reduce
the domain shift among source and target domains [13, 34, 14]. This work is more similar to the latter,
focusing on determining which source domains or samples should be selected or assigned higher
weights for transfer [8, 22, 25, 31]. However, most existing works either utilize all samples from
all sources or perform task-level selection, whereas this work explores a framework that optimizes
the transfer quantity of each source task. Moreover, many works are restricted to specific target
tasks, such as classification, which limits their task generality. In addition, many studies are mainly
applicable to few-shot scenarios, and may suffer from negative transfer in non-few-shot settings,
which limits their shot generality, as illustrated in Table 1.
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C Proofs

C.1 Proof of Lemma 3

Lemma 8. In the asymptotic case, the proposed measure (6) and the mean squared error have the
relation as follows.

E
[
D
(
PX;θ0

∥∥∥PX;θ̂

)]
=

1

2
J(θ0)MSE(θ̂) + o(

1

N0
), (16)

Proof. In this section, for the sake of clarity, we will write θ̂ in its parameterized form θ̂(XN0)
when necessary, and these two forms are mathematically equivalent. By taking Taylor expansion of
D
(
PX;θ0

∥∥∥PX;θ̂(XN0 )

)
at θ0, we can get

D
(
PX;θ0

∥∥∥PX;θ̂(XN0 )

)
=
∑
x∈X

PX;θ0(x) log
PX;θ0(x)

PX;θ̂(XN0 )(x)

= −
∑
x∈X

PX;θ0(x) log
PX;θ̂(XN0 )(x)

PX;θ0(x)

= −
∑
x∈X

PX;θ0(x) log

(
1 +

PX;θ̂(XN0 )(x)− PX;θ0(x)

PX;θ0(x)

)

= −
∑
x∈X

PX;θ0(x)

(PX;θ̂(XN0 )(x)− PX;θ0(x)

PX;θ0(x)

)
− 1

2

(
PX;θ̂(XN0 )(x)− PX;θ0(x)

PX;θ0(x)

)2
+ o(|θ̂(XN0)− θ0|2)

=
1

2

∑
x∈X

(
PX;θ̂(XN0 )(x)− PX;θ0(x)

)2
PX;θ0(x)

+ o(|θ̂(XN0)− θ0|2) (17)

We denote δ as a small constant, and we can rewrite (6) as

E
[
D
(
PX;θ0

∥∥∥PX;θ̂(XN0 )

)]
=
∑
XN0

PXn;θ0(X
N0)D

(
PX;θ0

∥∥∥PX;θ̂(XN0 )

)

=
∑
XN0

PXn;θ0(X
N0)

1

2

∑
x∈X

(
PX;θ̂(XN0 )(x)− PX;θ0(x)

)2
PX;θ0(x)

+ o(|θ̂(XN0)− θ0|2)


=
∑
XN0

PXn;θ0(X
N0)

1

2

∑
x∈X

(
∂PX;θ0

(x)

∂θ0
(θ̂(XN0)− θ0)

)2
PX;θ0(x)

+ o(|θ̂(XN0)− θ0|2)


=

∑
{XN0 :|θ̂(XN0 )−θ0|2<δ}

PXn;θ0(X
N0)

1

2

∑
x∈X

(
∂PX;θ0

(x)

∂θ0
(θ̂(XN0)− θ0)

)2
PX;θ0(x)

+ o(|θ̂(XN0)− θ0|2)


+

∑
{XN0 :|θ̂(XN0 )−θ0|2≥δ}

PXn;θ0(X
N0)

1

2

∑
x∈X

(
∂PX;θ0

(x)

∂θ0
(θ̂(XN0)− θ0)

)2
PX;θ0(x)

+ o(|θ̂(XN0)− θ0|2)


(18)
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To facilitate the subsequent proof, we introduce the concept of "Dot Equal".

Definition 9. (Dot Equal (=̇)) Specifically, given two functions f(n) and g(n), the notation
f(n)=̇g(n) is defined as

f(n)=̇g(n) ⇔ lim
n→∞

1

n
log

f(n)

g(n)
= 0, (19)

which shows that f(n) and g(n) have the same exponential decaying rate.

We denote P̂XN0 as the empirical distribution of XN0 . Applying Sanov’s Theorem to (18), we can
know that

PXn;θ0(X
N0)

.
= e−N0D(P̂XN0 ∥PX;θ0) (20)

Then, we aim to establish a connection between (20) and |θ̂(XN0)− θ0|2. From (17), we can know
that the D

(
P̂XN0

∥∥∥PX;θ0

)
in (20) can be transformed to

D
(
P̂XN0

∥∥∥PX;θ0

)
=

1

2

∑
x∈X

(
P̂XN0 (x)− PX;θ0(x)

)2
P̂XN0 (x)

+ o(|θ̂(XN0)− θ0|2)

=
1

2

∑
x∈X

(
P̂XN0 (x)− PX;θ0(x)

)2
PX;θ0(x)

+ o(|θ̂(XN0)− θ0|2) (21)

From the characteristics of MLE, we can know that

EP̂
XN0

[
∂ logPX;θ̂(XN0 )(x)

∂θ̂

]
= 0

= EP̂
XN0

[
∂ logPX;θ0(x)

∂θ0

]
+ EP̂

XN0

[
∂2 logPX;θ0(x)

∂θ20

](
θ̂(XN0)− θ0

)
+O(|θ̂(XN0)− θ0|2),

(22)

which can be transform to (
θ̂(XN0)− θ0

)
+O(|θ̂(XN0)− θ0|2)

= −
EP̂

XN0

[
∂ logPX;θ0

(x)

∂θ0

]
EP̂

XN0

[
∂2 logPX;θ0

(x)

∂θ2
0

]

= −
EP̂

XN0

[
∂PX;θ0

(x)

∂θ0

PX;θ0
(x)

]
EP̂

XN0

[
∂2 logPX;θ0

(x)

∂θ2
0

]

=

∑
x∈X

(
P̂XN0 (x)− PX;θ0(x)

) ∂PX;θ0
(x)

∂θ0

PX;θ0
(x)

J(θ0)
(23)

Using the Cauchy-Schwarz inequality, we can obtain

∑
x∈X

(
P̂XN0 (x)− PX;θ0(x)

)2
PX;θ0(x)

·
∑
x

(
∂PX;θ0

(x)

∂θ0
)2

PX;θ0(x)
≥

∑
x∈X

(
P̂XN0 (x)− PX;θ0(x)

) ∂PX;θ0
(x)

∂θ0

PX;θ0(x)

2

(24)
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where∑
x

(
∂PX;θ0

(x)

∂θ0
)2

PX;θ0(x)
=
∑
x

PX;θ0(x)

(
1

PX;θ0(x)

∂PX;θ0(x)

∂θ0

)2

=
∑
x

PX;θ0(x)

(
∂ logPX;θ0(x)

∂θ0

)2

= J(θ0)

(25)

Combining with (21), (23), and (25), the inequality (24) can be transformed to

D
(
P̂XN0

∥∥∥PX;θ0

)
=

1

2

∑
x∈X

(
P̂XN0 (x)− PX;θ0(x)

)2
PX;θ0(x)

+ o(|θ̂(XN0)− θ0|2)

≥ 1

2
J(θ0)

(
θ̂(XN0)− θ0 +O(|θ̂(XN0)− θ0|2)

)2
+ o(|θ̂(XN0)− θ0|2)

=
1

2
J(θ0)|θ̂(XN0)− θ0|2 + o(|θ̂(XN0)− θ0|2) (26)

Combining (20) and (26), we can know that

PXn;θ0(X
N0)

.
= e−N0D(P̂XN0 ∥PX;θ0) ≤ e

−N0J(θ0)|θ̂(XN0 )−θ0|2
2 (27)

For the first term in (18), the ∥θ̂(XN0)− θ0∥ is small enough for us to omit the term o(|θ̂(XN0)−
θ0|2). As for the second term in in (18), even though the magnitude of ∥θ̂(XN0) − θ0∥ is no

longer negligible, the probability of such sequences is O(e
−N0J(θ0)|θ̂(XN0 )−θ0|2

2 ) by (27), which is
exponentially decaying with N0 such that the second term is o( 1

N0
). By transfering (18), we can get

E
[
D
(
PX;θ0

∥∥∥PX;θ̂(XN0 )

)]
=

∑
{XN0 :|θ̂(XN0 )−θ0|2<δ}

PXn;θ0(X
N0)

1

2

∑
x∈X

(
∂PX;θ0

(x)

∂θ0
(θ̂(XN0)− θ0)

)2
PX;θ0(x)

+ o(|θ̂(XN0)− θ0|2)

+
∑

{XN0 :|θ̂(XN0 )−θ0|2≥δ}
PXn;θ0(X

N0)

1

2

∑
x∈X

(
∂PX;θ0

(x)

∂θ0
(θ̂(XN0)− θ0)

)2
PX;θ0(x)

+ o(
1

N0
)

=
1

2
E

∑
x∈X

(
∂PX;θ0

(x)

∂θ0
(θ̂(XN0)− θ0)

)2
PX;θ0(x)

+ o(
1

N0
). (28)

We then transform (28) with (25)

1

2
E

∑
x∈X

(
∂PX;θ0

(x)

∂θ0
(θ̂(XN0)− θ0)

)2
PX;θ0(x)


=

1

2
E
[(

θ̂ − θ0

)2]∑
x

(
∂PX;θ0

(x)

∂θ0
)2

PX;θ0(x)

=
1

2
E
[(

θ̂ − θ0

)2]
J(θ0) (29)

Combining (28), (29), we can get

E
[
D
(
PX;θ0

∥∥∥PX;θ̂

)]
=

1

2
E
[(

θ̂ − θ0

)2]
J(θ0) + o(

1

N0
). (30)
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From (16), we can establish the relationship between the proposed proposed measure (6) and the
mean squared error. Then, by using the (2), the K-L measure is

1

2N0
+ o(

1

N0
). (31)

C.2 Proof of Theorem 4

In this theorem, we are using samples from both target task and source task for our maximum
likelihood estimation, so our optimization problem becomes

θ̂ = argmax
θ

Ln(θ), (32)

where, when using N0 samples from target task, and n1 samples from source task

Ln(θ) ≜
1

N0 + n1

∑
x∈XN0

logPX;θ(x) +
1

N0 + n1

∑
x∈Xn1

logPX;θ(x). (33)

And, we also define the expectation of our estimator, which is somewhere between θ0 and θ1 to be Eθ̂

Eθ̂ = argmax
θ

L(θ), (34)

where L(θ) denotes the expectation of Ln(θ)

L(θ) ≜
N0

N0 + n1
EPX;θ0

[logPX;θ(x)] +
n1

N0 + n1
EPX;θ1

[logPX;θ(x)] . (35)

We could equivalently transform (34) into

Eθ̂ = argmin
θ

N0D (PX;θ0∥PX;θ)

N0 + n1
+

n1D (PX;θ1∥PX;θ)

N0 + n1
(36)

Lemma 10. By taking argmin of (36) we can get

PX;Eθ̂
=

N0PX;θ0 + n1PX;θ1

N0 + n1
, (37)

By doing a Taylor Expansion of (37) around θ′, which is in the neighbourhood of θ1, θ2 and Eθ̂, we
can get

Eθ̂ =
N0θ0 + n1θ1
N0 + n1

+O

(
1

N0 + n1

)
, (38)

Proof. From (36), we know that

Eθ̂ = argmin
θ

N0D (PX;θ0∥PX;θ)

N0 + n1
+

n1D (PX;θ1∥PX;θ)

N0 + n1

= argmin
θ

N0

N0 + n1

∑
x∈X

PX;θ0(x) log
PX;θ0(x)

PX;θ(x)
+

n1

N0 + n1

∑
x∈X

PX;θ1(x) log
PX;θ1(x)

PX;θ(x)
(39)

To minimize the weighted K-L divergence. We treat PX;θ(x), ∀x ∈ X as the variable with the
constraint

∑
x
PX;θ(x) = 1, then we form the Lagrangian:

Lagrangian(P, λ) = −
∑
x

(
N0

N0 + n1
PX;θ0(x) +

n1

N0 + n1
PX;θ1(x)

)
logPX;θ(x) + λ

(∑
x

PX;θ(x)− 1

)
(40)

Taking the derivative with respect to PX;θ(x) and setting it to zero gives:

∂Lagrangian(P, λ)
∂PX;θ(x)

= −
N0

N0+n1
PX;θ0(x) +

n1

N0+n1
PX;θ1(x)

PX;θ(x)
+ λ = 0. (41)
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So

PX;θ(x) =
N0

N0+n1
PX;θ0(x) +

n1

N0+n1
PX;θ1(x)

λ
. (42)

Normalizing PX;θ(x) gives λ = 1, hence the optimal solution is:

PX;Eθ̂
(x) =

N0

N0 + n1
PX;θ0(x) +

n1

N0 + n1
PX;θ1(x), ∀x ∈ X , (43)

which corresponds to (37).

Then we begin to prove (38). By doing a Taylor Expansion of (43) around θ0, we can get

PX;θ0(x) +
∂PX;θ0(x)

∂θ
(Eθ̂ − θ0) +O(|Eθ̂ − θ0|2)

=
N0

N0 + n1
PX;θ0(x) +

n1

N0 + n1

(
PX;θ0(x) +

∂PX;θ0(x)

∂θ
(θ1 − θ0) +O(|θ0 − θ1|2)

)
(44)

From (44) we can get

Eθ̂ =
N0θ0 + n1θ1
N0 + n1

+O(|θ0 − θ1|2), (45)

So we can get

Eθ̂ =
N0θ0 + n1θ1
N0 + n1

+O

(
1

N0 + n1

)
. (46)

Lemma 11. We assume that the following regularity conditions hold:

1. The log-likelihood function is twice continuously differentiable in the neighborhood of θ0.

2. The Fisher information J(θ0) is positive and finite.

Then, the estimator θ̂ is asymptotically normal,i.e.,

√
N0 + n1(θ̂ − Eθ̂)

d−→ N
(
0,

1

J(θ0)

)
. (47)

Proof. Since θ̂ is a maximizer of Ln(θ), L
′

n(θ̂) = 0 = L
′

n(Eθ̂) + L
′′

n(Eθ̂)(θ̂ − Eθ̂) + O
(

1
N0

)
.

Therefore,

√
N0 + n1(θ̂ − Eθ̂) = −

√
N0 + n1L

′

n(Eθ̂)

L′′
n(Eθ̂)

+O

(
1√
N0

)
. (48)
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Since Eθ̂ maximizes L(θ), L
′
(Eθ̂) =

N0

N0+n1
Eθ0

[
∂ logPX;E

θ̂
(x)

∂x

]
+ n1

N0+n1
Eθ1

[
∂ logPX;E

θ̂
(xi)

∂x

]
= 0.

Therefore,√
N0 + n1L

′

n(Eθ̂)

=

√
N0

N0 + n1

√ 1

N0

∑
x∈XN0

∂ logPX;Eθ̂
(x)

∂θ

+

√
n1

N0 + n1

(√
1

n1

∑
x∈Xn1

∂ logPX;Eθ̂
(x)

∂θ

)

=

√
N0

N0 + n1

√ 1

N0

∑
x∈XN0

∂ logPX;Eθ̂
(x)

∂θ

+

√
n1

N0 + n1

(√
1

n1

∑
x∈Xn1

∂ logPX;Eθ̂
(x)

∂θ

)

− N0√
N0 + n1

Eθ0

[
∂ logPX;Eθ̂

(x)

∂x

]
− n1√

N0 + n1

Eθ1

[
∂ logPX;Eθ̂

(x)

∂x

]

=

√
N0

N0 + n1

√ 1

N0

∑
x∈XN0

∂ logPX;Eθ̂
(x)

∂θ
−
√
N0Eθ0

[
∂ logPX;Eθ̂

(x)

∂θ

]
+

√
n1

N0 + n1

(√
1

n1

∑
x∈Xn1

∂ logPX;Eθ̂
(x)

∂θ
−
√
n1Eθ1

[
∂ logPX;Eθ̂

(x)

∂θ

])
(49)

Applying the Central Limit Theorem to (49), we can get√
N0 + n1L

′

n(Eθ̂)
a.s.−−→ N

(
0,

N0

N0 + n1

(
Eθ0

[(
∂ logPX;Eθ̂

(x)

∂θ

)2
]
− Eθ0

[(
∂ logPX;Eθ̂

(x)

∂θ

)]2)
+

n1

N0 + n1

(
Eθ1

[(
∂ logPX;Eθ̂

(x)

∂θ

)2
]
− Eθ1

[(
∂ logPX;Eθ̂

(x)

∂θ

)]2))
(50)

By taking Taylor expansion of Eθ̂ at θ1, we can get

Eθ0

[(
∂ logPX;Eθ̂

(x)

∂θ

)2
]

= Eθ0

[(
∂ logPX;θ0(x)

∂θ
+

∂

∂θ

∂ logPX;θ0(x)

∂θ
(Eθ̂ − θ0) +O(

1

N0 + n1
)

)2
]

= J(θ0) + (Eθ̂ − θ0)Eθ0

[
∂ logPX;Eθ̂

(x)

∂θ

∂2 logPX;Eθ̂
(x)

∂θ2

]
+O(

1

N0 + n1
)
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) (51)

and
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By combining (50), (51), and (52), we can get

var
(√

N0 + n1L
′

n(Eθ̂)
)
=

N0

N0 + n1
J(θ0) +

n1

N0 + n1
J(θ1) +O(

1√
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) (53)

Additionally, we know L
′′

n(Eθ̂)
p−→ −J(Eθ̂). Combining with (48)(53), we know that

√
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n1
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J(θ1)

J2(Eθ̂)

)
(54)

Under the assumption that θ0, θ1, Eθ̂ are sufficiently close to each other, we can easily deduce that
the difference among J(θ0), J(θ1) and J(Eθ̂) is O( 1√

N0+n1
). We can easily get

√
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d−→ N
(
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1
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)
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Therefore, the limit of E
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Combining (6) and (29), we know that
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Combining (57), (38) and (56), we know that the proposed measure is

1

2

1
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+

1

2
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2
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C.3 Proof of Proposition 5

Similar to (16), we can get

E
[
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Combining with Lemma 1, we will know that the K-L measure is
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C.4 Proof of Proposition 6

Similar to (57), we can get
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(61)
Similar to (47),we can get √
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(62)

So we can know that E
[(

θ̂ − Eθ̂

)2]
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The same to (38), we can get

Eθ̂ =
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)
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Combining (61), (63) and (64), we can know that the K-L measure is
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where we denote

t ≜
(θ1 − θ0)

TJ(θ0)(θ1 − θ0)

d
. (66)

C.5 Proof of Theorem 7

Proof. Similar to (47),we can get√√√√N0 +
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Combining (61), (68) and(69) , for the d-demension parameter, we can know that the K-L measure is
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where α = [α1, . . . , αK ]
T is a K-dimensional vector, and

Θd×K = [θ1 − θ0, . . . , θK − θ0] . (71)
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D Experiment Details

D.1 Details information of LoRA framework experiments.

Table 6: Multi-Source Transfer with LoRA on Office-Home. We apply LoRA on ViT-B backbone for
PEFT.

Method Backbone
Office-Home

→Ar →Cl →Pr →Rw Avg

Supervised-10-shots Source-Ablation:
Target-Only ViT-B 59.8 42.2 69.5 72.0 60.9
Single-Source-avg ViT-B 72.2 59.9 82.6 81.0 73.9
Single-Source-best ViT-B 74.4 61.8 84.9 81.9 75.8
AllSources ∪ Target ViT-B 81.1 66.0 88.0 89.2 81.1
OTQMS (Ours) ViT-B 81.5 68.0 89.2 90.3 82.3

D.2 Experimental Design and Model Adaptation

To ensure consistency in the experimental setup, we first evaluate the performance of different
methods on the DomainNet and Office-Home datasets by adapting their settings to align with ours,
such as the backbone, dataset, and early stopping criteria. Specifically, for the MADA method, we
adjusted the preset of keeping 5% of labeled target samples to 10-shots per class target samples while
maintaining other conditions. And in turn, ours is adapted to the WADN settings, equipped with a
3-layer ConvNet and evaluated on Digits dataset.

Table 7: Performance on Digits Dataset. The arrows indicate transferring from the rest tasks.
“3Conv” denotes the backbone with 3 convolution layers.

Method Backbone
Digits

→mt →sv →sy →up Avg

Following settings of WADN:
WADN[22] 3Conv 88.3 70.6 81.5 90.5 82.7
AllSources ∪ Target 3Conv 92.6 67.1 82.5 88.8 82.8
OTQMS (Ours) 3Conv 93.8 67.1 83.3 89.1 83.3
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D.3 Single-Source transfer performance details.

Table 8: Single-Source Transfer Performance on DomainNet. The details accuracy information of
the “Single-Source-∗” lines of Table 2.

Target Domain Backbone
Source Domain

Clipart Infograph Painting Quickdraw Real Sketch Avg Best

Clipart ViT-S - 46.5 55.4 30.3 60.2 59.7 50.4 60.2
Infograph ViT-S 25.6 - 25.3 7.3 28.0 24.4 22.1 28.0
Painting ViT-S 49.6 47.3 - 22.4 55.4 49.6 44.9 55.4
Quickdraw ViT-S 26.9 18.1 23.9 - 25.9 28.4 24.7 28.4
Real ViT-S 64.6 62.2 66.0 38.5 - 62.7 58.8 66.0
Sketch ViT-S 49.7 40.9 48.1 26.1 47.8 - 42.5 49.7

Table 9: Single-Source Transfer Performance on Office-Home. The details accuracy information
of the “Single-Source-∗” lines of Table 2.

Target Domain Backbone
Source Domain

Art Clipart Product Real World Avg Best

Art ViT-S - 61.7 61.1 72.9 65.2 72.9
Clipart ViT-S 49.8 - 49.4 60.9 53.3 60.9
Product ViT-S 68.8 73.7 - 80.7 74.4 80.7
Real World ViT-S 70.9 72.3 74.8 - 72.7 74.8

Table 10: Single-Source Transfer Performance on Office-Home of LoRA. The details accuracy
information of the “Single-Source-∗” lines of Table 6. ViT-B backbone is already frozen and equipped
with small trainable LoRA layers.

Target Domain Backbone
Source Domain

Art Clipart Product Real World Avg Best

Art ViT-B - 68.4 74.4 73.8 72.2 74.4
Clipart ViT-B 58.3 - 59.6 61.8 59.9 61.8
Product ViT-B 82.0 80.8 - 84.9 82.6 84.9
Real World ViT-B 81.0 80.3 81.9 - 81.0 81.9

D.4 Baselines experiments settings in Table 2.

Since the significant difference from unsupervised methods and supervised methods, the results of
MSFDA[21], DATE[9] and M3SDA[19] are directly supported by their own article.

On all the experiments of the baselines, we take all the source samples of different domains from
trainset into account. And types of the backbone are all pretrained on ImageNet21k[5].

As for based on model-parameter-weighting few-shot methods: MCW[12] and H-ensemble[31],
since they have not taken experiments on DomainNet and Office-Home datasets with ViT-Small
backbone and 10-shot per class training samples, we take it by changing the backbone and samples
condition while maintaining other configurations supported by their own work. And for fairness
and efficiency, the well-trained source models from different domains of these methods are directly
equipped with the same models trained by the first stage of our OTQMS method respectively.

As for based on samples few-shot methods: We exam the WADN[22] method under the condition of
limited label on target domain as this setting is similar to ours. And we also change the backbone
and samples condition while maintaining other configurations of its report to realize the experiments
on DomainNet and Office-Home datasets. It is apparent that the settings of MADA[32] are quite
different of ours, leveraging all the labeled source data and all the unlabeled target data with the
few-shot labeled ones that are difficult to classify, which means all the target samples have been
learned to some extent. So we not only decrease the labeled target samples to 10-shot per class but
also the unlabeled target samples. And since MADA is the most SOTA and comparable method, we
realize it with our fair 10-shot setting under both ViT-S and ResNet50 backbone on DomainNet and
Office-Home datasets while maintaining other configurations of its report.
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D.5 Data efficient test details in 5.5 .

Table 11: Data Efficient Test Results on DomainNet. The capital letters represent the target
domains.

Method Backbone
Data Counts (×106) Training Consumed Time (×104 Second)

C I P Q R S Avg C I P Q R S Avg

MADA[32] ViT-S 8.70 13.39 8.31 4.02 19.76 21.32 12.58 6.40 12.52 6.29 3.22 13.19 18.18 9.97
MADA[32] ResNet50 7.83 8.21 4.57 3.69 4.35 8.78 6.24 7.56 9.58 4.56 4.05 4.21 9.58 6.59
AllSources ∪ Target ViT-S 2.17 1.42 1.42 4.20 1.42 1.90 2.09 0.56 0.37 0.39 1.09 0.36 0.49 0.54
OTQMS (Ours) ViT-S 1.18 1.15 0.89 0.97 1.19 1.16 1.09 0.35 0.33 0.28 0.34 0.47 0.36 0.35

Table 12: Data Efficient Log Scaled Test Results on DomainNet. The capital letters represent the
target domains.

Method Backbone
Data Counts (log scale) Training Consumed Time (log scale)

C I P Q R S Avg C I P Q R S Avg

MADA[32] ViT-S 15.98 16.41 15.93 15.21 16.80 16.87 16.35 11.07 11.74 11.05 10.38 11.79 12.11 11.51
MADA[32] ResNet50 15.87 15.92 15.33 15.12 15.29 15.99 15.65 11.23 11.47 10.73 10.61 10.65 11.47 11.10
AllSources ∪ Target ViT-S 14.59 14.17 14.18 15.25 14.17 14.46 14.55 8.63 8.21 8.21 9.30 8.19 8.50 8.59
OTQMS (Ours) ViT-S 13.98 13.95 13.70 13.78 13.99 13.96 13.90 8.17 8.10 7.93 8.12 8.46 8.18 8.17

D.6 Domain choosing analysis details.

To compute the heatmap matrix visualizing domain preference in Figure 5(b), for each source domain,
we count the samples selected from it until the target model converges under the 10-shot condition.
Since the quantities of available samples varies significantly across domains, we normalize the counts
by these quantities. The final domain preference is then determined by computing the importance of
these normalized values.

Similarly, to compute the heatmap matrix for domain selection in Figure 5(a), we calculate the
importance of the counts of selected samples from different source domains throughout the training
epochs.
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E Method to get s∗ and α∗ which minimize (14) in Theorem 7

The minimization problem of proposed measure (14) is

(s∗, α∗)← argmin
(s,α)

d

2

(
1

N0 + s
+

s2

(N0 + s)2
αTΘTJ(θ0)Θα

d

)
. (72)

We decompose this problem and explicitly formulate the constraints as follows.

(s∗, α∗)← argmin

s∈[0,
K∑

i=1
Ni]

d

2

(
1

N0 + s
+

s2

(N0 + s)2d
argmin
α∈A(s)

αTΘTJ(θ0)Θα

)
, (73)

where

A(s) =

{
α

∣∣∣∣∣
K∑
i=1

αi = 1, s ∗ αi ≤ Ni, αi ≥ 0, i = 1, . . . ,K

}
. (74)

Due to the complex constraints between s and α, obtaining an analytical solution to this problem is
challenging. Therefore, we propose a numerical approach to get the optimal solution.

This problem requires optimizing the objective function over two variables: a scalar variable s
representing the total transfer quantity, and a vector variable α representing the proportion of samples
drawn from each source domain. For s which is restricted to integer values, we perform a exhaustive

search over its feasible domain [0, smax], where smax =
K∑
i=1

Ni. For each candidate s′ in the search,

we compute the optimal α′ under the constraint A(s′), which is a K ×K quadratic programming
problem with respect to α

α′ = arg min
α∈A(s′)

αTΘTJ(θ0)Θα.

The quadratic coefficient matrix in this optimization problem is given by Θ⊤J(θ0)Θ. Since the
Fisher information matrix J(θ0) is positive semi-definite, the quadratic coefficient matrix is also
positive semi-definite. This guarantees the existence of a global optimal solution. After getting s′ and
α′, the function is then evaluated at (s′, α′).

In brief, for each s′, we solve for the corresponding optimal α′, yielding a finite collection of candidate
solutions (s′, α′) and their associated objective function values. After completing the search, the
optimal solution (s∗, α∗) is chosen as the pair that achieves the lowest objective function values
among all candidate (s′, α′). Since the feasible set of s is finite and enumerable, and for each fixed s′

the optimization over α′ has a solution, the overall optimization problem is guaranteed to have at
least one global solution. Hence, the optimal pair (s∗, α∗) exists.

It is worth noting that, for the sake of computational efficiency, we do not exhaustively enumerate
all possible values of s in our experiments. Instead, we perform a grid search using 1000 uniformly
spaced steps over the feasible range of s, where the number of steps is denoted as stepnumber =
1000. Experimental results in Section 5 demonstrate that this strategy does not compromise the
effectiveness or stability of the method.
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F Analysis on Domain-specific Transfer Quantity

To understand the domain preference of OTQMS, we visualize the proportion of each source in the
selected samples for each target domain. As shown in Figure 5(b), when the target domain is Clipart,
OTQMS primarily leverages samples from Real, Painting, and Sketch. In addition, Quickdraw
contributes minimally to any target domain. These observations align with the findings in [19]. To
further clarify the selection process of OTQMS during training, we visualize it in Figure 5(a). We
observe that in the Office-Home dataset, Clipart initially selects all source domains but later focuses
on Art and Real World. In the DomainNet dataset, Sketch predominantly selects Clipart, Painting,
and Real throughout the training process.
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Figure 5: Visualization of domain-specific transfer quantity under 10-shot setting. (a) Domain
selection during training epochs (from left to right), where the blue upper part represents the selection
of target domain Clipart on Office-Home, and the orange lower part represents the selection of
target domain Sketch on DomainNet. Darker colors indicate stronger tendencies throughout the
training process. (b) Source domain preferences of different target domains on DomainNet. Each
row corresponds to a target domain while each column represents a source domain.

We additionally report the raw average transfer quantities between domains on the Office-Home and
DomainNet datasets. Each row denotes a target domain and each column denotes a source domain.

Table 13: Average transfer quantities on the Office-Home dataset. Each row denotes a target domain
and each column denotes a source domain.

Target \ Source A C P R

A 0 2546 2956 3341
C 1325 0 753 2192
P 736 1320 0 2378
R 1879 3371 3300 0

Table 14: Average transfer quantities on the DomainNet dataset. Each row denotes a target domain
and each column denotes a source domain.

Target \ Source C I P Q R S

C 0 18391 57901 47641 138497 43100
I 28962 0 28979 17581 138497 41558
P 30907 41380 0 41945 83092 44356
Q 12380 11305 12883 0 30498 18050
R 24168 31066 36179 51749 0 27716
S 23591 11302 36897 50182 88133 0
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G A Detailed Discussion on the Limitations

• Sampling Method. Since our theoretical analysis focuses on the transfer quantity from each
source task, we adopt a straightforward random sampling strategy in the algorithm imple-
mentation. Given that our theoretical results are derived under average-case assumptions,
random sampling is sufficient to demonstrate the robustness of both our theoretical analysis
and the proposed algorithm. Nevertheless, we anticipate that more sophisticated sampling
strategies, such as active sampling, may further improve the algorithm’s performance.

• Weight or Quantity. Many existing work of multi-source transfer learning assign weights
to source tasks and utilize all available samples. In contrast, this work focuses on optimizing
the transfer quantity from each source task. We anticipate that future work could further
improve algorithmic performance by jointly optimizing both the sample weights and the
transfer quantity from each source task.

• Possible Extensions to Other Loss Functions. Our theoretical analysis is developed under
the assumption of a negative log-likelihood objective, which aligns with the cross-entropy
loss commonly used in classification tasks with softmax outputs and one-hot labels. However,
for other learning objectives such as the mean squared error in regression problems, our
framework does not yet provide a direct theoretical guarantee. We believe, nevertheless, that
the core idea can be generalized to broader loss functions under suitable regularity conditions.
We leave a more rigorous theoretical extension and empirical validation with alternative
loss functions as future work to demonstrate the robustness and wider applicability of our
method.

H Broader Impacts

We first develop a theoretical framework for optimizing transfer quantities in transfer learning, and
subsequently propose an architecture-agnostic and data-efficient algorithm based on this theoretical
framework. The proposed theoretical framework and algorithm have broad applicability in various
transfer learning scenarios, including domains such as medical image analysis, recommendation
systems, and anomaly detection. There are no negative social impacts foreseen.
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